ЗМІЩЕННЯ СПЛАВІВ ЗНОСОСТІЙКИМИ ПОКРИТТЯМИ НА ОСНОВІ БОРИДНИХ ФАЗ СФОРМОВАНИХ В МАГНІТНОМУ ПОЛІ

Спеціальність 05.16.01 – металознавство та термічна обробка металів

Дисертація на здобуття наукового ступеня кандидата технічних наук

Науковий керівник
доктор технічних наук, професор
Чернега Світлана Михайлівна

Київ – 2016
ЗМІСТ

ВСТУП .. 5

РОЗДІЛ 1 СУЧАСНИЙ СТАН НАУКОВОЇ ПРОБЛЕМИ ОТРИМАННЯ ТА ТЕНДЕНЦІЇ ВИКОРИСТАННЯ ПОКРИТТІВ НА ОСНОВІ БОРУ, І ШЛЯХИ ЇЇ ВИРІШЕННЯ ... 12

1.1 Борування .. 13
1.2 Бороміднення .. 16
1.3 Класифікація основних методів та способів борування 21
1.4 Термічна обробка металевих сплавів в магнітному полі 22
1.5 Вплив магнітного поля на дифузійні процеси в сталях ... 29
1.6 Фазові переходи у феромагнітних системах .. 33
1.7 Способы підвищення зносостійкості деталей машин та механізмів ... 39
1.8 Основні вимоги, що висуваються до зносостійких покриттів 42

Висновки до розділу 1 .. 44

РОЗДІЛ 2 МЕТОДИКИ, ОБ’ЄКТИ І МАТЕРІАЛИ ДОСЛІДЖЕНЬ 45

2.1 Методика нанесення дифузійних боридних покриттів в умовах дії ЗМП та без його впливу ... 45
2.2 Дослідження мікроструктури дифузійних боридних покриттів 48
2.3 Вивчення мікротвердості .. 50
2.4 Рентгеноструктурний аналіз .. 50
2.5 Мікрорентгеноспектральний аналіз та растроева електронна мікроскопія ... 51
2.6 Визначення параметру тріщинностійкості .. 52
2.7 Дослідження топографії поверхні боридних покриттів ... 54
2.8 Визначення зносостійкості покриттів ... 54

Висновки до розділу 2 .. 56
РОЗДІЛ 3 РОЗРАХУНОК КОЕФІЦІЄНТІВ ДИФУЗІЇ ТА ТЕРМОДИНАМІЧНОГО ПОТЕНЦІАЛУ ПРОТІКАННЯ ХІМІЧНИХ РЕАКЦІЙ ПРИ БОРУВАННІ ТА БОРОМІДНЕННІ...

3.1 Розрахунок коефіцієнтів дифузії B та Cu при боруванні та боромідненні в умовах дії ЗМП та без його впливу 57
3.2 Розрахунок термодинамічного потенціалу перебігу хімічних реакцій при боруванні та боромідненні в різних фізико-хімічних умовах... 66

Висновки до розділу 3 .. 69

РОЗДІЛ 4 ВПЛИВ ЗОВНІШНЬОГО МАГНІТНОГО ПОЛЯ НА ПРОЦЕС НАСИЧЕННЯ БОРОМ ТА МІДДЮ ВУГЛЕЦЕВИХ СТАЛЕЙ 70

4.1 Структура комплексних боридних покриттів, отриманих в різних фізико-хімічних умовах... 70
4.2 Кінетика росту боридних покриттів ... 77
4.3 Мікротвердість боридних фаз... 78
4.4 Хімічний аналіз комплексних боридних покриттів 79
4.5 Фазовий аналіз комплексних боридних шарів.............................. 83
4.6 Дослідження шорсткості комплексних боридних шарів 87
4.7 Дослідження тріщинності... 89
4.8 Дослідження зносостійкості комплексних боридних шарів 90

Висновки до розділу 4 .. 91

РОЗДІЛ 5 ВПЛИВ ЗОВНІШНЬОГО МАГНІТНОГО ПОЛЯ НА ПРОЦЕС НАСИЧЕННЯ БОРОМ ТА МІДДЮ МЕТАСТАБІЛЬНИХ АУСТЕНІТНИХ ХРОМОМАРГАНЦЕВИХ АЗОТОМІСТКИХ СТАЛЕЙ ... 93

5.1 Структура комплексних боридних покриттів.......................... 93
5.2 Мікротвердість боридних фаз.. 95
5.3 Хімічний аналіз комплексних боридних покриттів 96
5.4 Рентгеноструктурний аналіз комплексних боридних шарів .. 106
5.5 Дослідження зносостійкості комплексних боридних шарів 112
Висновки до розділу 5 .. 114
РОЗДІЛ 6 КОМПЛЕКСНЕ НАСИЧЕННЯ БОРОМ ТА МІДЮ
ТВЕРДИХ СПЛАВІВ ГРУПИ ТК .. 115
6.1 Структура комплексних боридних та бороміднених покриттів 115
6.2 Мікротвердість боридних фаз, отриманих на твердому сплаві
Т15K6 та T5K10 ... 117
6.3 Мікрорентгеноспектральний аналіз комплексних боридних
покриттів ... 119
6.4 Рентгенофазовий аналіз комплексних боридних шарів 124
6.5 Дослідження зносостійкості комплексних боридних шарів 129
Висновки до розділу 6 .. 130
ВИСНОВКИ .. 132
СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ ... 135
ДОДАТОК А .. 157
ДОДАТОК Б .. 168
ДОДАТОК В .. 169
ДОДАТОК Г .. 170
ДОДАТОК Д .. 171
ДОДАТОК Е .. 172
ВСТУП

Актуальність теми. Покращення експлуатаційних характеристик деталей машин, механізмів та інструментів, що працюють в умовах інтенсивного зношування, є можливим за умови використання відповідних захисних покриттів, які б оптимально поєднували високу твердість, пластичність та зносостійкість. Для здешевлення деталей застосовують вуглецеві сталі із захисними покриттями. Одними з таких захисних покриттів є покриття на основі бору, які також можна застосовувати для продовження терміну експлуатації деталей із високолегованих сталей та твердих сплавів. Змінювати структуру, фазовий склад та властивості боридних шарів можливо комплексним насиченням завдяки додаванню в реакційне середовище при хіміко-термічній обробці (ХТО), крім сполук, що слугують за джерело бору, різних хімічних елементів, таких як: Cu, Ni, Co, Ti та інших, які призводять до утворення твердих розчинів у боридних шарах та зміни характеристик, зокрема підвищення пластичності та зносостійкості шарів, як це досліджено у роботах Л. Г. Ворошніна, В. Б. Далісова, В. І. Похмурського та інших.

Проте недоліком процесу борування та комплексного борування є низька швидкість росту дифузійного шару, що призводить до 2–6 годинної тривалості дифузійного насичення. Одним із методів інтенсифікації процесу ХТО є застосування зовнішнього магнітного поля (ЗМП), що дозволяє пришвидшити процеси дифузії та утворення дифузійних шарів. Вивчення змін структури, фазового та хімічного складу, а також зносостійкості та інших фізико-механічних характеристик покриттів, сформованих на сталях та сплавах під дією магнітного поля, є одним із напрямків металозвнавства та термічної обробки металів, і тому можна стверджувати, що зазначені дослідження дозволять отримувати комплексні зносостійкі покриття з підвищеннями експлуатаційними характеристиками, які матимуть значний інтерес для промисловості, зокрема для таких галузей, як машинобудування,
сь з науковими програмами, планами, темами. Дисертаційна робота виконана на кафедрі металознавства та термічної обробки (МТО) Національного технічного університету України «Київський політехнічний інститут» і є продовженням тематик держбюджетних НДР, що виконувались на кафедрі МТО: «Створення та оптимізація режимів нанесення наноструктурних покриттів на поверхні сплавів, що містять нікель, хром, алюміній, методом високоенергетичної та фрикційної обробки поверхні» (номер держреєстрації 0111U005880); «Поверхневі наноструктурні шари на виробах, що працюють при терті, отримані високоенергетичними методами та фрикційною обробкою» (номер держреєстрації 0112U006105).

Мета і завдання дослідження. Метою дисертаційної роботи є вдосконалення методу ХТО сталей та сплавів боруванням чи боромідненням за рахунок одночасного застосування ЗМП, з’ясування процесів структуро-та фазоутворення дифузійних боридних шарів на сталях і сплавах, а також встановлення впливу ЗМП на експлуатаційні характеристики покриттів.

Для досягнення поставленої мети необхідно було вирішити такі завдання:

1. Дослідити вплив ЗМП на параметри процесу ХТО – борування та бороміднення.

2. Вдосконалити процеси поверхневого насичення сталей та сплавів В чи одночасно В і Cu при ХТО в порошкових сумішах шляхом застосування ЗМП.

3. Вивчити механізми структуроутворення дифузійних боридних покриттів в умовах дії ЗМП.

4. Дослідити вплив дії ЗМП на формування комплексних дифузійних боридних шарів на сталях та сплавах, їх товщина, фазового та хімічного складу, мікротвердості, тріщинності, шорсткості та зносостійкості, отриманих у порошкових сумішах за участю бору та міді.
5. Оцінити ефективність застосування комплексних боридних покриттів, отриманих за дії ЗМП в умовах виробництва.

Об’єкт дослідження – дифузійні боридні шари, отримані в порошкових середовищах при комплексному насиченні поверхні сталей і сплавів бором чи бором та міддю в умовах дії ЗМП.

Предмет дослідження – структура, фазовий і хімічний склад, мікротвердість, тріщинностійкість, шорсткість та зносостійкість дифузійних боридних шарів на сталях та сплавах, отриманих при комплексному насиченні в борувальних порошкових середовищах в умовах дії ЗМП.

Методи дослідження. У роботі використано такі методи: металографічний, рентгеноструктурний та мікрорентгеноспектральний аналізи, растрова електронна мікроскопія, мікроіндентування, профілометричні дослідження шорсткості поверхні, гравіметричний аналіз, випробування на зносостійкість в умовах сухого ковзання.

Наукова новизна отриманих результатів. Розширено уявлення щодо формування фазового та хімічного складу, структури та фізико-механічних властивостей дифузійних боридних покриттів, отриманих на сталях та сплавах в умовах дії ЗМП.

1. Вперше розкрито закономірності впливу ЗМП на структурно-фазові зміни в дифузійному боридному шарі, отриманому на сталях та сплавах, які полягають у перерозподілі кількісного співвідношення боридних фаз у покритті, зміні періодів кристалічних ґраток, зменшенні об’єму елементарних ґраток боридних фаз та зростанні в 2 рази товщини боридних шарів за однакових умов ХТО.

2. Теоретично обґрунтовано термодинамічніми розрахунками перебігу хімічних реакцій при дифузійному боруванні та боромідненні сплавів можливість формування боридних фаз на основі базових та легуючих елементів у сплавах та окремо фази міді в дифузійному шарі, що експериментально підтверджено ренгеноноструктурними дослідженнями.
3. Вперше показано, що застосування ЗМП при дифузійному насиченні призводить до підвищення в 6 разів коефіцієнтів дифузії бору (1,3 · 10^{-6} см^2/с) та в 5 разів міді (4,1 · 10^{-10} см^2/с), порівняно із ХТО без дії ЗМП, та зменшення на 20 % енергії активації бору (72 кДж/моль) і на 14 % міді (155 кДж/моль), що суттєво впливає на швидкість утворення дифузійного боридного покриття та дає можливість зменшити тривалість дифузійного насичення сталей і сплавів в 2 рази.

4. Вперше встановлено, що поряд з класичними закономірностями утворення боридних фаз та твердих розчинів заміщення на основі боридних фаз (Fe,Me)B, (Fe,Me)_2B при введені мідновмісних сполук у насичуюче середовище, фіксується формування на поверхні і приповерхневій фазі FeB окремих вкрплень фази Cu, неправильної багатогранної форми витягнутої в напрямку дифузії, яка в умовах зношування виконує роль твердого мастила і сприяє зменшенню коефіцієнта терття, що відкриває нові можливості для подальшого підвищення експлуатаційних характеристик дифузійних боридних покриттів.

5. Встановлено вплив ЗМП на фізико-механічні властивості боридних покриттів на сталях і сплавах при боруванні й боромідненні та доведено, що застосування ЗМП призводить до підвищення мікротвердості дифузійних шарів, сформованих на вуглецевих сталях на 1,5–2 ГПа (19–20 ГПа), хромомарганцевих сталях на 4–5 ГПа (19–19,5 ГПа), твердих сплавах на 2–3 ГПа (30–31 ГПа), що пов’язано зі зменшенням областей когерентного розсіювання; спостерігається зростання тріщинностійкості в 1,3 рази (K_{IC} = 2,2 МПа·м^{0,5}) та напружень сколювання в 1,4 рази (345 МПа), зменшення характеристик шорсткості покриттів – Ra в 1,3 рази і Rz в 1,2 рази та підвищення зносостійкості боридних шарів у 1,5–1,7 рази.

Практичне значення одержаних результатів. За результатами роботи запропоновано зносостійкі дифузійні боридні покриття, отримані при комплексному насиченні бором та міддю в умовах дії ЗМП, які можна використовувати для підвищення працездатності деталей машин.
та механізмів, що працюють в умовах зношування. Застосування ЗМП малої магнітної індукції (0,35–0,45 мТл) дозволяє підвищити фізико-механічні властивості (мікротвердість, тріщинностійкість, шорсткість, зносостійкість) боридних покриттів та зменшити тривалість насищення сталей і сплавів в 2 рази, що призводить до зменшення енерговитрат, трудових витрат та амортизації обладнання, яке використовується при ХТО.

Матеріали дисертації можуть бути використані в навчальному процесі при підготовці лекцій та лабораторних робіт з дисциплін «Матеріалознавство» та «Фізичні основи зношування».

Отримані в роботі комплексні дифузійні боридні покриття пройшли випробування на підприємстві ТОВ НВП «Навігатор Л» на деталях кулачкового диференціалу, а саме: внутрішній та зовнішній зірочці диференціалу, які експлуатуються в умовах тертя. Випробування показали, що нанесення розроблених дифузійних боридних покриттів дозволяє підвищити працездатність зірочок диференціалу в 1,5–2 рази порівняно з азотованими покриттями.

Особистий внесок здобувача. Пошук і критичний аналіз літературних даних, проведення процесів дифузійного насичення при одночасній дії ЗМП та без його впливу, дослідження структури, кінетики росту, мікротвердості, тріщинностійкості та зносостійкості отриманих покриттів на сталях та сплавах здобувачем проведено самостійно. Автор приймав безпосередню участь в обговоренні експериментальних результатів, написанні статей, патентів та підготовці доповідей на конференції.

Формулювання теми, постановка завдань, вибір об’єктів дослідження, аналіз та узагальнення отриманих результатів, написання проміжних
та загальних висновків здійснено разом з науковим керівником д.т.н., проф. С. М. Черненкою; дослідження мікроструктури та розподілу елементів між фазовими складовими виконано в Центрі електронної мікроскопії НТУУ «КПІ» разом із провідним інженером Ю. М. Романенко; рентгеноструктурний аналіз поверхні дифузійних боридних покриттів виконано в Центрі рентгеноструктурного аналізу «Rigaku» НТУУ «КПІ» разом із д.ф.-м.н., проф. М. В. Карпцем та к.т.н. А. П. Бурмаком; вимір шорсткості поверхні боридних покриттів та обговорення отриманих результатів здійснено в Інституті проблем матеріалознавства ім. І. М. Францевича Національної академії наук України разом із науковим співробітником О. О. Буценко.

Публікації. Результати дисертації представлені у 34 друкованих наукових працях, у тому числі 9 статей у наукових фахових виданнях, з них 3 у іноземних виданнях та 5 у виданнях України, що входять до міжнародних наукометричних баз даних Scopus та РІНЦ; 21 робота в збірниках матеріалів доповідей міжнародних наукових конференцій; отримано 4 патента України на корисну модель.

Структура та обсяг дисертації. Дисертаційна робота складається зі вступу, шести розділів, висновків до розділів та загального висновку, списку використаних джерел літератури (194 найменувань) та 6 додатків. Загальний обсяг роботи становить 176 сторінок, включаючи 73 рисунка та 41 таблицю. Акт виробничих випробовувань наведено в додатку на 4 сторінках.
РОЗДІЛ 1
СУЧАСНИЙ СТАН НАУКОВОЇ ПРОБЛЕМИ ОТРИМАННЯ ТА ТЕНДЕНЦІЇ ВИКОРИСТАННЯ ПОКРИТТІВ НА ОСНОВІ БОРУ, І ШЛЯХИ ЇЇ ВИРІШЕННЯ

Розробка і отримання нових зносостійких покриттів для екстремальних умов експлуатації є однією з основних і найважливіших задач сучасного матеріалознавства. При вирішенні проблеми підвищення експлуатаційних властивостей деталей машин, штампів та інструменту великого значення набувають розроблення та впровадження нових технологічних процесів з нанесення захисних зносостійких покриттів.

Аналіз робіт, спрямованих на підвищення продуктивності процесів хіміко-термічної обробки (XТО), свідчить про те, що поряд з традиційними дослідженнями в цій області [1–6] ведеться пошук в напрямку інтенсифікації дифузійних процесів за рахунок попередніх способів обробки [7–10] (ультразвук, термомеханічна обробка, магнітотермохімічна обробка, об’ємна пластична деформація).

Одним з методів XТО, який використовують для підвищення триботехнічних характеристик деталей, а саме: підвищення зносостійкості (в умовах сухого тертя, ковзання з мастилом і без мастила), гідроабразивного зношування, корозійної стійкості, кавітаційної стійкості, окалиностійкості є процес борування [11–18]. Проте одними з основних недоліків процесу борування є енергозатратність, низька швидкість росту боридних голок, що призводить до 2–6 годинної тривалості насичення та висока крихкість боридних шарів. Тому для пришвидшення росту боридних голок необхідно застосовувати методи інтенсифікації процесу насичення [19–21]. Одним з методів інтенсифікації процесів борування є застосування зовнішнього магнітного поля (ЗМП) [22–23].
1.1 Борування

Для підвищення твердості, корозійної стійкості, зносостійкості, жаротривкості, блиску і естетичного вигляду застосовують дифузійну металізацію сталей та сплавів: алітування, хромування, борування, силіціювання та інші, проте їх застосування вже не може повною мірою забезпечити необхідними властивостями покриттів. Одним з перспективних методів поверхневої обробки сталей і сплавів є багатокомпонентне дифузійне насичення, за участю бору та інших елементів, таких як: Cu, Ni, Cr, Ti, Mn та інші. Багатокомпонентні дифузійні боридні покриття володіють цілим комплексом фізико-хімічних і механічних властивостей [24–27].

При боруванні заліза відповідно до діаграми Fe – B [43] покриття складається з ромбічного бориду FeB і тетрагонального бориду Fe₂B, утворюючи характерні стовпчасті кристали (рис. 1.1). Зростання боридних фаз вказує на те, що бориди мають області гомогенності, не відмічені на діаграмі стану Fe – B. Під шаром бориду розташовується перехідний шар із α-розчину бору в залізі [44]. При нагріві бориди стійкі: FeB до 800 °C, а Fe₂B до 1000 °C. Встановлено, що вуглець в сталі повністю витісняється із зони боридів вглиб і залежно від виду, легуючих елементів в сталі утворює вузьку або широку перехідну зону. В сталях, легованих карбідоутворюючими елементами, які, окрім утворення карбідів, знижують коефіцієнт дифузії вуглецю в аустеніті, утворюється вузька перехідна зона [45]. Хром і марганець при боруванні дифундують в зону бориду, утворюючи (Fe,Mn,Cr)B і (Fe,Mn,Cr)₂B [45], які по будові аналогічні бориду FeB і Fe₂B. Кремній при боруванні дифундую із зони боридів вглиб, збагачуючи зону α-фази, а при великій кількості кремнію в перехідній зоні може утворитися
графіт і ферит [45]. Тоді боридний шар буде сколюватись. Взагалі боридний шар крихкий. Найбільшою крихкістю володіє борид FeB (мікротвердість 20 ГПа) в порівнянні з Fe₂B (мікротвердість 14,5 ГПа).

Рисунок 1.1 – Мікроструктури дифузійних боридних покриттів на сталі 20, отриманих після борування: а – тривалість насичення 6 годин, х100; б – тривалість насичення 8 годин, х100

Діаграма стану системи В – Fe, приведена на рис. 1.2, яка побудована з урахуванням даних робіт [46–51]. У системі утворюються два з’єднання FeB і Fe₂B. З’єднання FeB плавиться конгруентно і існує в двох модифікаціях. Температура поліморфного перетворення FeB (BT) ↔ FeB (HT) складає ~ 1135 °C. З’єднання Fe₂B утворюється по перитектичній реакції. Обидва з’єднання мають вузьку область гомогенності ~1 % (ат.) В. Крім вказаних з’єднань в роботах [50–51] повідомляється про існування в системі з’єднання Fe₃B. З’єднання Fe₃B отримане гартуванням сплаву Fe₇₆B₂₄ з рідкого стану при достатньо високих швидкостях охолодження, щоб подавити рівновагу (αFe) + Fe₂B, і достатньо низьких, щоб отримати матеріал з кристалічною структурою [51]. Припускається, що отримана фаза Fe₃B існує в термодинамічній рівновазі при високих температурах. Температурна область існування встановлена в межах 1150–1250 °C. З’єднання Fe₃B має дві стабільні модифікації [50–51]. У таблиці 1.1 приведені температури утворення з’єднань і нонваріантні реакції в системі В – Fe.
Рисунок 1.2 – Діаграма стану системи В – Fe [43]

Таблиця 1.1 – Реакції в системі В – Fe

<table>
<thead>
<tr>
<th>Реакція</th>
<th>Температура, °С</th>
<th>Джерело</th>
</tr>
</thead>
<tbody>
<tr>
<td>P* ↔ FeB</td>
<td>1650</td>
<td>[46]</td>
</tr>
<tr>
<td></td>
<td>1590</td>
<td>[47]</td>
</tr>
<tr>
<td>P + FeB ↔ Fe₂B</td>
<td>1410</td>
<td>[46]</td>
</tr>
<tr>
<td></td>
<td>1407</td>
<td>[47]</td>
</tr>
<tr>
<td>P + Fe₂B ↔ Fe₃B</td>
<td>1389</td>
<td>[54]</td>
</tr>
<tr>
<td>Fe₃B ↔ (γFe) + Fe₂B</td>
<td>1250</td>
<td>[51]</td>
</tr>
<tr>
<td>P** ↔ (γFe) + Fe₃B</td>
<td>1150</td>
<td>[51]</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>[46, 51]</td>
</tr>
<tr>
<td></td>
<td>1177</td>
<td>[47, 51]</td>
</tr>
<tr>
<td>P*** ↔ FeB + (B)</td>
<td>1500</td>
<td>[46]</td>
</tr>
<tr>
<td></td>
<td>1497</td>
<td>[47]</td>
</tr>
</tbody>
</table>

*Рідина.
** При концентраціях 17 % (ат.) В.
*** При концентраціях 64 % (ат.) В.

Розчинність В в (αFe) і (γFe) дуже мала. При температурах 500 і 910 °C в (αFe) розчиняється не більше 0,001 і 0,13 % (ат.) В, відповідно. В (γFe) при температурах 910 і 1150 °C розчиняється близько 0,008 і 0,025 % (ат.) В, відповідно [52]. Розчинність Fe в (B) обмежується граничним складом FeB₄₉ і складає близько 2 % (ат.) Fe [53]. Кристалічна структура з’єднань приведена в таблиці 1.2.
Таблица 1.2 – Кристаллическая структура з'єднань системи B – Fe

<table>
<thead>
<tr>
<th>З'єднання</th>
<th>Прототип</th>
<th>Символ</th>
<th>Параметри гратки, нм</th>
<th>Джерело</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeB (BT)*</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>[55]</td>
</tr>
<tr>
<td>FeB (HT)</td>
<td>FeB</td>
<td>oP8, Pnma</td>
<td>0,5506 0,4061 0,2952</td>
<td>[54]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,5502 0,2948 0,4057</td>
<td>[48]</td>
</tr>
<tr>
<td>Fe3B</td>
<td>Al3Cu</td>
<td>tI12, I4/mcm</td>
<td>0,5109 – 0,4249</td>
<td>[54]</td>
</tr>
<tr>
<td>Fe3B (BT)</td>
<td>Fe3B</td>
<td>–</td>
<td>0,8655 – 0,4297</td>
<td>[51]</td>
</tr>
<tr>
<td>Fe3B (HT)</td>
<td>Fe3P0,37B0,63</td>
<td>–</td>
<td>0,8648 – 0,4314</td>
<td>[51]</td>
</tr>
</tbody>
</table>

* Структура невідома.

У роботах [50–51, 53] повідомляється про метастабільні фази в системі B – Fe. При швидкості охолодження 10^6 °C/c утворюється декілька метастабільних фаз: Fe23B6 – фаза з кубічною структурою типу Cr23C6 (символ Пірсона cF116, пр. гр. Fm3¯m), a = 1,069 нм; фаза з ромбічною структурою (a = 0,6726, b = 0,4311, c = 0,5468 нм); фаза з тетрагональною об’ємно-центричною структурою (a = 0,862, c = 0,4270 нм). Про утворення метастабільної фази Fe3B зі структурою типу FeC вказується і в роботах [50–51].

1.2 Бороміднення

Бороміднення – процес двокомпонентного насичення поверхні металів і сплавів бором та міддю. Бороміднення застосовується для зниження твердості шару після борування і підвищення його пластичності. В ряді робіт [35, 56–58] показано, що підвищення пластичності боромідненого шару пов’язане не тільки з присутністю міді в шарі, але і з зменшенням в ньому вмісту високобористої фази. Про це свідчать результати вимірювання твердості бороміднених зразків.

Характер розподілу мікротвердості по глибині боромідненого шару подібний боридному, проте максимальне значення мікротвердості, спостерігається в поверхневих зонах дифузійного боромідненого шару і досягає рівня 14–15 ГПа, тобто на 15–20 % нижче, ніж у боридного.
Збільшення кількості міді в складі насичуючої суміші, призводить до зменшення мікротвердості поверхневих зон дифузійного шару.

Згідно діаграми стану системи Cu – Fe [59] приведеної на рис. 1.3, при 950 °C в γ-залізі може розчинитись до 5,5 % Cu. Наявність вуглецю, а також марганцю і кремнію, присутніх в будь – якій сталі, зсуває межу розчинності міді в бік менших концентрацій. При температурах вище точки Ac3 мідь у кількості 2,5–3 % утворює з γ-залізом твердий розчин заміщення [60], так як кристалічні решітки γ-заліза і міді ізоморфні гранецентричні кубічні.

Рисунок 1.3 – Діаграма стану системи Cu – Fe [59]

В α-твердому розчині міді в залізі при 850 °C міститься від 1,4 [59–60] до 2,13 % Cu [61]. В умовах рівноважного стану системи залізо – мідь з понижением температур розчинність міді в α-залізі зменшується, а нижче 650 °C залишається практично постійною і складає 0,35–0,40 %.

При боромідненні середньовуглецевої сталі значна кількість міді при температурі насичення 950 °C дифундує в γ-залізо і в процесі порівняно
швидкого охолодження при переході \(\gamma \to \alpha \) виділяється не повністю. Частина міді випадає з \(\alpha \)-твердого розчину [60]. Із залізом та вуглецем в металевих сплавах мідь не утворює інтерметалідів. Передбачається, що при температурах вище \(A_{c3} \) в системі \(\text{Cu} – \text{B} \) існує твердий розчин заміщення [60].

Діаграма стану \(\text{B} – \text{Cu} \), яка приведена на рис. 1.4, побудована на сукупності даних роботи [62]. Діаграма \(\text{B} – \text{Cu} \) має евтектичний характер [63–64]. Склад і температура евтектики прийняті згідно даних роботи [64]. В більш ранішій роботі [63] повідомляється про з’єднання \(\text{CuB}_{22} \), проте в роботах [65–67] в цій області складів встановлено існування твердого розчину \(\text{Cu} \) в \(\text{B} \) з впорядкованим розподілом атомів \(\text{Cu} \) в структурі \(\text{B} \).

Причому граничному складу цього твердого розчину відповідає формула \(\text{CuB}_{23} \) \((a = 1,0985, c = 2,3925 \text{ нм}) [65] \) або \(\text{CuB}_{28} \) \((a = 1,0970, c = 2,3890 \text{ нм}) [68] \). Розчинність \(\text{B} \) в (\(\text{Cu} \)) незначна і складає 0,53 % (ат.) при температурі 1060 °C і 0,35 % (ат.) при кімнатній температурі [63].

Рисунок 1.4 – Діаграма стану системи \(\text{B} – \text{Cu} \) [62]

Так, як в даній дисертаційній роботі для насичення сталей застосовували суміші, що містять технічний карбід бору до складу якого крім власне карбіду бору (\(\text{B}_4\text{C} \)) входить борний ангідрид (\(\text{B}_2\text{O}_3 \)), а в якості джерела міді використовували порошок \(\text{Cu}_2\text{O} \), то доцільним є розглянути діаграми стану систем \(\text{CuO} – \text{B}_2\text{O}_3 \) та \(\text{Cu}_2\text{O} – \text{B}_2\text{O}_3 \).
Діаграма стану системи Cu₂O – B₂O₃ представлена на рис. 1.5, яка побудована за даними роботи [69].

Рисунок 1.5 – Діаграма стану системи Cu₂O – B₂O₃ [69]

Згідно з наведеними результатами роботи [69], авторами встановлено утворення двох з’єднань складу CuBO₂ і Cu₂B₄O₇. Температури конгруентного плавлення відповідно рівні 1075 та 1060 °C. З’єднання Cu₂B₄O₇ існує у вигляді двох модифікацій: α – Cu₂B₄O₇ до температури 1000 °C і β – Cu₂B₄O₇ в діапазоні 1000–1060 °C. В системі також існує область двох рідин, що не змішуються в межах 10–40 mol. % Cu₂O і дві евтектики (рис. 1.5). Також існують роботи по вивченню фазових новоутворень в бінарній системі CuO – B₂O₃, в яких приведено дані про існування двох сполук – метабората CuB₂O₄ і ортобората міді Cu₃B₂O₆ [70–71]. Крім того, в роботі [72] наводяться відомості про третє з’єднання – піроборат міді (2CuO:B₂O₃).

Дослідження систем CuO – B₂O₃ та Cu₂O – B₂O₃ також проводилось в роботі [73]. За результатами роботи [73] на рис. 1.6 та рис. 1.7 представлено фазові діаграми систем CuO – B₂O₃ та Cu₂O – B₂O₃.

На основі експериментальних даних роботи [73] в субсолідусній частині системи CuO – B₂O₃ ідентифіковані дві хімічні сполуки CuB₂O₄ і Cu₃B₂O₆, які стійко існують в інтервалі від 500 до 900 °C та плавляться з розкладанням в температурному інтервалі близько 30 градусів з одночасною втратою частини кисню з утворенням оксиду міді (І) (рис. 1.6).
Рисунок 1.6 – Фазова діаграма системи CuO – B₂O₃ в субсолідусній області на повітрі [73]

Дослідження системи Cu₂O – B₂O₃ (рис. 1.7) в середовищі гелю і на повітрі [73] показало, що в даній системі відсутня хімічна взаємодія між оксидом міді (І) і борним ангідридом, тобто борати одновалентної міді не утворюються. Фазова діаграма системи Cu₂O – B₂O₃ в середовищі гелю включає в проміжку 52–96 мол. % B₂O₃ при температурі 1050 °C значну область двох рідин, що не змішуються. Крива ліквідусу має звичайний хід без помітних аномалій в області складів з високим вмістом міді (І) і включає купол розшаровування.
1.3 Класифікація основних методів та способів борування

Можливість поверхневого насичення заліза та сталі бором відомо вже довгий час, вперше вона була запропонована Н.П. Чижевським. В якості вихідного матеріалу для борування використовували аморфний бор або феробор. Насичення проводили в захисних відновлюваних атмосферах. Для борування із твердої фази окрім вказаних речовин, використовують порошки карбіду бору, фероборала, нікельбора [74]. Процес проходить при температурі 900–1100 °C в герметично закритих контейнерах, в вакуумі або захисних відновлюваних атмосферах.

В роботах [75–81] приведено результати по застосуванню різних методів та способів борування, а саме: борування при впливі випромінювання лазера [75–77]; борування в порошкових сумішах [27]; борування в розплавах солей і оксидів [78–79]; борування в газових середовищах [80] та пастах [81].

На сьогодні достатньо розроблені і широко випробувані декілька методів борування металів та сплавів: електролізне, газове, рідинне, борування в порошкових сумішах, вакуумне та лазерне борування.

В 1934 р. Н.Н. Мокін запропонував електролізний спосіб насичення сталі бором. Активні атоми бору при цьому методі можуть утворюватися при пропусканні через розплав бури постійного струму. Деталі, які насичують, підключаються до ланки електролізу в якості катоду, анодом звичайно слугують графітні (вугільні) стрижні. Борування відбувається при температурах 900–980 °C. Час витримки при температурі процесу складає 2–4 год.

Рідинне борування (без електролізу) запропоновано в 1949 р. для насичення рекомендовано розплав хлористих солей, в який вводиться порошок карбіду бору (10 %) або феробору (20 %). Перевагою рідинного борування є простота апаратурного оформлення. Процес проводять в печах – ваннах 900–1050 °C протягом 3–5 год.
Перші досліди по насиченню металів бором із газового середовища було проведено в Німеччині, а потім в 1943–1955 рр., в США. При газовому боруванні використовують властивість галогенідів та боранів, тобто при нагріванні виділяти активний бор. Найкращі результати отримуємо при використанні для борування диборана та трихлористого бору. Газове борування проводять в спеціальному герметичному обладнанні. Деталі для насичення поміщають в муфель, через який з визначеною швидкістю пропускають суміш для насичення (диборан або трихлористий бор + газ – розчинник). Процес ведуть, як правило, при 800–950 °C протягом 2–6 год.

Заслуговує уваги металотермічний метод отримання боридних шарів [74]. Джерелом бору в цьому випадку слугує борний ангідрит, відновлюваний алюмінієм, кремнієм, титаном або іншими елементами (сплавами), які мають більш високу спорідненість до кисню, ніж бор. Насичення проводять при температурі 900–1050 °C протягом 3–6 год.

Лазерне борування з’явилося порівняно нещодавно [75]. Особливість лазерного борування полягає в тому, що воно проводиться лише з паст (обмазок), хоча для звичайного борування використовують не тільки пасти, але й тверді, рідкі та газоподібні боризатори. Такий спосіб є найбільш технологічним, але потребує великих затрат енергії на розплавлення обмазки, яка має низьку теплопровідність. При цьому товщина обмазки не повинна перевищувати критичну, інакше не буде проходити лазерне борування. Для лазерного борування використовують установки імпульсної та безперервної дії.

1.4 Термічна обробка металевих сплавів в магнітному полі

Термічна обробка металевих сплавів в магнітному полі (ТОМП) відноситься до комбінованих способів впливу на структуру. Особливість такого методу полягає у використанні енергії зовнішнього магнітного поля (постійного, змінного або імпульсного) для впливу на термодинаміку,
механізм і кінетику фазових переходів з метою отримання стійких змін структури і властивостей, корисних для експлуатації.

Дослідженню впливу магнітного поля на структуру та експлуатаційні характеристики сталей присвячено ряд робіт [22–23, 82–86]. В роботі [22] розглянуто вплив зовнішнього магнітного поля на зміну умов фазових рівноваг, механізм і кінетику перетворень при термічній обробці сталі. Показано, що при термічній обробці в зовнішньому магнітному полі відбувається зміщення температури M_p (початку мартенситного перетворення) та M_s (кінця мартенситного перетворення). Одним із факторів є енергетичний вплив магнітного поля, обумовлений різницею намагніченості вихідних фаз і продуктів перетворення.

Вплив магнітного поля в процесі фазових перетворень при термічній обробці призводить до посилення процесів своєрідного магнітного розшарування неферомагнітної матриці (аустеніту), зумовленого утворенням ансамблю феромагнітно-впорядкованих кластерів, які, сприймаючи енергію зовнішнього поля через магнітострикційні напруження, змінюють поля пружних сил в мікрооб’ємах атомної гратки матриці, що призводить до зниження енергії утворення зародкового центру феромагнітної фази (продукту реакції) критичного розміру. Збільшення по цій причині швидкості зародження центрів визначає особливу каталітичну роль магнітного поля в розвитку фазових реакцій, продукти яких є феромагнетики (матриця – неферомагнітна).

Також можна відзначити, що вплив магнітного поля проявляється в зміні кінетики перетворень, що викликано, з одного боку, зниженням термодинамічного потенціалу феромагнітної фази, а з іншого – локальним приrostом вільної енергії вихідної неферомагнітної фази в мікрооб’ємах з ближнім спіновим порядком. При незмінному переохолодженні це дає виграш в рушійній силі переходу і реалізується в збільшенні темпу фазового перетворення. Останнє призводить до стабільних змін структури і властивостей сталі, які є корисними для експлуатації.
В роботі [87] повідомляється про результати дослідження впливу постійного магнітного поля (ПМП) на дифузію у системі алюміній – мідь, з вмістом міді ~ 3 %. Постійне магнітне поле з напруженістю ~ 2,5 · 10^3 kA/m прикладалося перпендикулярно напрямку дифузії. Дифузійні характеристики визначалися методом Матано за допомогою вимірювання мікротвердості зразків. Було отримано, що при відпалі в магнітному полі значення енергії активації Q і предекспоненціального множника D_0 незначно (практично в межах помилки) відрізняються від відповідних величин отриманих після відпалу у відсутності магнітного поля. Для пояснення отриманих результатів була розвинена теорія, яка грунтується на плазмо-магнітогідродинамічних властивостях сплавів. Відповідно до цієї теорії магнітне поле змінює коефіцієнт дифузії в \[\left(1 + \frac{\omega^2_{cl}}{v_0^2} \right)^{-1} \] раз, де \(\omega_{cl} \) і \(v_0 \) – відповідно циклотронна і кругова частота електронів, що дифузійно переміщаються. Механізм впливу магнітного поля на дифузію полягає в дії сили Лоренца на дифундуючі іони і електрони, яка призводить до зменшення потоку вільних електронів, контролюючих швидкість дифузії іонів. При цьому вважалося, що магнітне поле не змінює енергії активації атомно – вакансійних процесів. У цій же роботі зазначалося, що зовнішнє магнітне поле, що діє паралельно напрямку дифузії, значно менше впливає на процес дифузії.

Необхідно відзначити, що в експериментах, описаних в роботі [87], досліджувалась слабомагнітна система, що складається з парамагнітного алюмінію і діамагнітної міді, в якій ефект впливу звонінського магнітного поля при використанні напруженості поля і не міг бути значним. Важливо також підкреслити, що сама експериментальна методика дослідження дифузії не була досконалою і не володіла високою точністю. Можливо, це не дозволяє впевнено стверджувати про існування ефекту впливу магнітного поля на дифузію, як це було зроблено в роботі [87].

Результати теоретичного аналізу роботи [87] ті ж автори використовували для пояснення ефекту впливу магнітного поля
напруженістю $2,5 \cdot 10^3$ kA/m на затвердіння сплавів Al – Cu і Bi – Sb, досліджено в роботах [88–89]. Слід зазначити, що знову, як і в роботі [87] авторами [88–89] були використані слабомагнітні системи з парамагнітного алюмінію і діамагнітних міді, вісмуту і сурми.

У ряді експериментальних робіт досліджувався вплив магнітного поля на електроперенос. Можна відзначити роботи [90–91] по впливу магнітного поля на електроперенос азоту і вуглецю в залізі, іонів тритію в цирконії і титані [92]. В роботі [93] досліджене електроперенос вуглецю в залізі в магнітному полі Холла. Аналізуючи результати цих робіт, можна відзначити, що в цих експериментах вплив магнітного поля зводиться до дії сили Лоренца на заряджений іон, що рухається в зовнішньому електромагнітному полі, тобто процес є більш складним за характером зовнішніх впливів в порівнянні з роботами [87–89], де діяло тільки зовнішнє магнітне поле без електричного.

В роботах [94–97] вивчено вплив магнітного поля на рекристалізацію, а в роботі [98] – магнітного поля на рекристалізацію в фериті. Було встановлено, що магнітне поле уповільнює рекристалізацію і дозволяє отримати задану текстуру. Використовувалося магнітне поле напруженістю порядку – $1114,5$ kA/m (14 kE), діюче на процес рекристалізації в зразках з армко – заліза при температурах 700 і 725 °C. Рекристалізація проводилася в спеціально сконструйованій печі, що дозволяє одночасно відпалювати один кінець зразка в магнітному полі, другий – без поля. Текстура досліджувалася рентгенівським методом, а мікроструктура – за допомогою оптичного та електронного мікроскопів.

Було встановлено, що при відпалі без поля рекристалізація, в основному, закінчувалася через 20 секунд, а через 4 хвилини вже не спостерігалося жодних ознак рекристалізаційних областей. При відпалі в полі рекристалізація була в початковій стадії навіть після 30 хвилин відпалу. Причому відпал в магнітному полі створював рекристалізаційну структуру, яка відрізняється від структури, отриманої при відповідному відпалі без поля.
Для пояснення цього ефекту був використаний термодинамічний підхід, який враховував зміну вільної енергії Гіббса при включені зовнішнього магнітного поля. Уповільнення процесу рекристалізації автори пояснюють зміною рухливості гранець зерен в зовнішньому магнітному полі.

Питання про поведінку дефектів в магнітному полі досліджувався в ряді робіт. Зокрема, в роботі [99] вивчався вплив магнітного поля на механічні властивості і дислокаційну структуру в ніобії і молібдені в області температур нижче 0,2 Tпл. Встановлено, що постійне магнітне поле напруженістю ~ 200 кА/м (2,5 кЕ) в молібдені зменшує енергію утворення дислокацій від 1,76 · 10⁻¹⁹ до 1,28 · 10⁻¹⁹ Дж. Вплив магнітного поля на механічні властивості також досліджувалось в роботах [100–102].

Дислокаційна структура ніобію свідчить про збільшення рухливості гвинтових дислокацій в магнітному полі. Ці зміни обумовлені взаємодією дислокацій з магнітним полем. Так само було встановлено, що магнітне поле підвищує пластичність матеріалу. Дослідження впливу магнітного поля на дислокаційну структуру також досліджувалось в ряді робіт [103–105].

В роботі [106] повідомляється про прискорення утворення дифузійних шарів в разі насичення металів при температурах близьких до температури Кюрі, зокрема, при азотуванні нікель – кобальтових сплавів і цементації заліза у твердому карбюраторі. В останньому випадку підвищення температури з 766 до 768 °C (витримка 8 годин) призвело до збільшення глибини шару з 0,18 до 0,36 мм. При ціануванні сталі в ціаністій ванні аномалія в глибині шару була виявлена при 750 °C, оскільки азот знижує температуру Кюрі [107]. В роботі [106] повідомляється також про результати експериментального дослідження фазового переходу феромагнетик – парамагнетик в точці Кюрі при цементації і азотуванні сталі. Автор роботи вважає, що найважливішою причиною прискорення дифузії при температурі магнітного перетворення є стрикційні дефекти, які виникають внаслідок безперервної переорієнтації елементарних моментів у доменах при температурах, близьких до точки Кюрі.
В роботі [108] М. А. Кривоглаз теоретично розглянув поведінку пор і включення у неоднорідному магнітному полі.

Дія магнітного поля пов’язана з силами, що діють на атоми матриці, які викликають дифузійні потоки в матриці і на її границі.

При русі немагнітної сферичної частинки або пори в однодоменному феромагнетику, що знаходиться в зовнішньому однорідному полі Н, швидкість руху частинок буде дорівнювати:

$$
\vec{v} = \frac{D \omega}{kT} (\overline{MA}),
$$

де \overline{M} – спонтанний магнітний момент одиниці об’єму матриці; ω – атомний об’єм в матриці; D – коефіцієнт об’ємної дифузії; A – деяка константа.

Переміщення включення і пор має відбуватися нормально границі домена. Домішкові атоми в феромагнетику призводять до виникнення неоднорідності магнітного поля, пов’язаної з моментом самого атома, так і зі зміною магнітних моментів сусідніх атомів кристала. Внаслідок цього, в неоднорідному магнітному полі на домішкові атоми діятише сила, що приводить до направленого руху домішкових атомів. У разі впроваджених атомів швидкість руху визначається формулою:

$$
\vec{v} = \frac{D}{kT} \nabla (\delta \vec{\mu} \times \overline{H}),
$$

де $\delta \vec{\mu}$ – зміна магнітного моменту кристала при введенні домішкового атома. Причому, автор відзначає, що \vec{v} залежить не тільки від величини, але й напрямку вектора \overline{H}. Оскільки вакансію можна розглядати як атом з від’ємним магнітним моментом, то зовнішнє неоднорідне магнітне поле повинно, на думку автора, привести до спрямованого переміщення вакансій.

У роботі П. П. Кузьменко [109] теоретично розглянуто можливість і зміст експерименту по дослідженню переносу маси в зовнішньому магнітному полі.
У разі наявності зовнішнього неоднорідного магнітного поля на дифундуючий атом буде діяти сила, яка для одновимірного випадку має вигляд:

\[F = \mu \frac{\partial H}{\partial x}, \]

де \(\mu \) – магнітний момент дифундуючого атома; \(\frac{\partial H}{\partial x} \) – градієнт зовнішнього магнітного поля.

Для \(\mu \approx \mu_B \) (\(\mu_B \) – магнетон Бора, \(10^{-20} \) ерг/Гс) і \(\frac{\partial H}{\partial x} \approx 10^6 \) е/см, сила \(F \approx 10^{-14} \) дн. Тоді при \(D \approx 10^{-7} \) см\(^2\)/с, \(T = 900 \) К і часі \(t = 10 \div 20 \) годин можливе експериментальне виявлення ефекту впливу зовнішнього неоднорідного магнітного поля на дифузію. Таким чином, в роботі зазначається, що для успішного проведення експерименту необхідно, щоб дифундуючі атоми володіли значним магнітним моментом, а градієнти зовнішніх полів мали величину не нижче \(10^6 \) е/см.

В роботах [110 – 111] зроблені спроби побудувати елементарну теорію впливу ПМП на дифузію магнітних атомів в умовах, коли неоднорідності магнітних полів всередині зразка створюються за рахунок градієнта концентрацій дифузанта.

У разі, якщо парамагнітні атоми \(A \) з магнітним моментом \(P_{mA} \) дифундують в феромагнетику \(B \) з коефіцієнтом \(D_A \) у відсутності зовнішнього ПМП, то дифузія в зовнішньому ПМП напруженистю \(H > H_\text{нас} \) (поля насичення) феромагнітної матриці, може бути описана рівнянням:

\[\frac{\partial N_A}{\partial t} = \frac{\partial}{\partial x} \left[D_A \left(1 + \alpha \frac{N_A}{A} \right) \frac{\partial N_A}{\partial x} \right], \]

де

\[\alpha = \frac{b \xi(T) P_{mA} \left(P_{mA} - P_{mB} \right)}{kT} \]

\(b \) – постійна Вейса; \(\xi(T) \) – безрозмірна функція, що враховує температурну залежність відносної намагніченості феромагнетика.
(0 < \(\xi(T) < 1 \)); \(N_A \) – абсолютна концентрація домішкових атомів; \(P_{mA} \) і \(P_{mB} \) – відповідно магнітні моменти атомів дифузанта і матриці.

Таким чином, в даному випадку дифузія може бути також описана як вільна з ефективним коефіцієнтом дифузії:

\[
D_{\text{ef}} = D(1 + \xi N).
\]

(1.5)

1.5 Вплив магнітного поля на дифузійні процеси в сталях

Впливом магнітного поля на дифузійні процеси в сталях почали цікавитись ще в 1932 році. Так в роботах О. Майєра, В. Ейлендера та В. Шмідта [112], було показано, що процес азотування пришвидшується при нагріві у високочастотному магнітному полі. При цьому констатували підвищення твердості і збільшення товщини азотованого шару (рис. 1.8), особливо при обробці сталей, що важко піддаються або взагалі не піддаються азотуванню. У разі азотованих сталей (нітролоїв) вплив поля проявлявся тільки при малих витримках і переважно виражалося в скороченні тривалості процесу. При нормальних витримках результати азотування в магнітному полі нічим не відрізнялися від звичайних [112].

Рисунок 1.8 – Зміна твердості в залежності від глибини шару після азотування при 550 °C: а – електролітичного заліза; б і в – різних нітролоїв (Цифри на кривих – тривалість азотування у годинах. Суцільні криві – азотування в печі, пунктирні – у високочастотному магнітному полі)
Допускаючи можливість розігріву поверхневих шарів через скін – ефект, а, отже, і прискорення дифузії, автори провели точні вимірювання температури. Так як суттєвої різниці між температурою поверхневих шарів і центру не спостерігалося, отримані результати автори пояснили поздовжньою та об’ємною магнітострикцією, яка «розпушує» структуру і полегшує дифузію. Однак, мабуть, головною причиною може бути інша схема дисоціації аміаку (порівняно із звичайним процесом в печах), коли розкладання холодного газу відбувається на гарячій деталі, тобто здійснюється з найбільшою повнотою дисоціації «in situ» на поверхні деталі.

Також спостерігався сприятливий вплив високочастотного поля на процеси виділення в сплаві заліза з 6,19% Ті, що дозволило скоротити тривалість відпуска з 50-ти до 6 годин (рис. 1.9).

Рисунок 1.9 – Зміна твердості під час старіння при 600 °С сплаву заліза з 6,19 % Ті після гартування 1250 °С у воді: 1 – відпуск у високочастотній печі; 2 – відпуск у звичайній печі з ніхромовою обмоткою

Описаний вплив високочастотних полів на процеси дисперсійного твердіння знайшло цікаве підтвердження і розвиток у дослідженнях процесів дифузії і виділення під дією змінних механічних напружень [113–114].

Проводилась цементація при впливі ультразвукових коливань і азотування при пульсуючій напрузі (розтягування). Позитивний вплив цієї обробки пояснюється створюваною пружною деформацією. Існує думка, що, незважаючи на відмінність у величині деформації при магнітострикційних
і механічних пульсуючих напружениях, вплив здійснюється при підведенні енергії, яка залежить від частоти і амплітуди.

При застосуванні постійного магнітного поля напруженностю 5,44 кА/м (68 е) спостерігали збільшення швидкості окислення заліза на 6–12 % при температурах 520–580 °C.

У разі накладання поля до 2400 кА/м (30000 е) перпендикулярно до напрямку дифузії [115] спостерігали статистично достовірне зменшення (на 25%) дифузії Cu в слабо парамагнітному сплаві алюмінію з 3 % Cu в порівнянні з дифузією за відсутності поля. Автори вважають, що уповільнення дифузії відбувається за рахунок структурних змін, що впливають на величину предекспоненціального множника, і вважають, що енергія активації процесу не змінюється.

У літературі є численні дані про аномалії дифузійних процесів в області переходу з феромагнітного в парамагнітний стан.

В роботі [116] автори показали, що максималь швидкості зневуглецювання і навуглецювання в районі 700–850 °C збігається з точкою Кюри (рис. 1.10 – рис. 1.11). Спостережувані ефекти автори пояснюють існуванням різно напружених внаслідок магнітострикції областей, стрибкоподібною зміною каталітичної здатності феромагнетика, електронною обмінною взаємодією, що обумовлює зміну іонного стану вуглецю в залізі, а також утворенням і переміщенням дислокацій під дією магнітострикційних напруж, внаслідок чого можлива краща дифузія вуглецю при фазових переходах I і II роду.

Рисунок 1.10 – Зміна швидкості зневуглецювання в залежності від температури нагріву
За даними інших авторів [117–118], при переході сплавів на залізний основі через точку Кюрі в повністю магнітовпорядкований стан швидкість самодифузії заліза і дифузії ванадію і кобальту зменшується на два порядки в порівнянні зі значеннями, екстрапольованими з парамагнітної області.

Іншими словами, передбачається, що в рівнянні $D = D_0 e^{RT}$, параметр D_0 нижче точки Кюрі зменшується, а енергія активації дифузії E_D зростає.

Жирифалко Л.А. [117] пояснює це необхідністю затрати додаткової енергії, пов’язаної з місцевим розмагнічуванням при утворенні вакансій.

Рисунок 1.1. – Зміна глибини шару в залежності від температури і тривалості цементації. Склад суміші: а – 60% деревного вугілля, 40% BaCO_3, тривалість навуглецювання 8 год.; б – 80% деревного вугілля, 20% BaCO_3, тривалість навуглецювання 4 год

В роботах [23, 96] наведено результати дослідів цементації в магнітному полі (рис. 1.12). Після цементації в області α – фази (750–760 °C) шару не спостерігалося ні при обробці в полі, ні при обробці без поля. Після цементації при температурі, близькій до точки Кюрі (769 °C), без поля наявність шару на поверхні також не спостерігалося, в той час при дії поля отримували слабо насичений шар глибиною до 0,08 мм.

Підвищення температури цементації в області β – фази до 800 °C обумовило одержання шару з насиченням не більше евтектоїдного. Середня
глибина шару в полі становила 0,75 мм, а без поля 0,60 мм. У результаті цементації в області γ – фази при 930 °C в полі також утворився шар, глибина якого була на 0,10 мм більше, ніж у випадку цементації без поля.

Рисунок 1.12 – Зміна глибини шару після цементації заліза у твердому карбюризаторі протягом 6 год.: 1 – у полі 536 кА/м (6700 е); 2 – без поля

Цементація при циклічній витримці в районі точки Кюрі (± 15 °C пo 15 хв при кожній температурі) дала деяке збільшення шару в порівнянні із звичайним нагріванням (точки, позначені трикутниками на рис. 1.12) без поля – в середньому до 0,26 мм, у полі – до 0,32 мм, причому шар був дуже слабо насичений з вмістом вуглецю 0,3–0,4 %.

В роботах [119–121] описується процес борування деталей машин з використанням зовнішнього магнітного поля (ЗМП). ЗМП використовується для інтенсифікації дифузійного насичення робочих поверхонь металевих виробів хімічними елементами (бором, вуглецем, кремнієм та ін.).

В роботі [119] автори описують процес борування металевих деталей, що включає їх дифузійне насичення бором в безокиснювальних боратних теплоносіях, в магнітному полі.

1.6 Фазові переходи у феромагнітних системах

Багато конденсованих середовищ: тверді тіла, рідини і гази – за певних умов так змінюють свій стан, що малій зміні зовнішніх сил (тиску, температури, поля) відповідають кінцеві зміни властивостей середовища.
Такі зміни в середовищі прийнято називати фазовими переходами. По обидві сторони від точки (області) переходу фази розрізняються за своїми властивостями, що визначаються першою або другою похідними від термодинамічних функцій стану. Як приклади фазових перехідів можна назвати плавлення, зрідження газів, магнетизм, надтекучість, впорядкування сплавів, фазовий розпад і багато інших явищ. Фазові переходи супроводжуються появою в середовищі нових, часто цікавих для практики властивостей, і в даний час фазові переходи в різних середовищах інтенсивно вивчаються фахівцями різних областей техніки.

Отже, в поведінці термодинамічної системи особливий інтерес представляють точки, в яких стрибком змінюються властивості системи — точки фазових перехідів. У той же час термодинамічні потенціали, виходячи з вимог термодинамічної стійкості, мають бути безперервними при перехіді, а їх зміни в області нескінченно близькими до точки перехіду і повинні бути нескінченно малими. Для виконання цієї умови можливі два шляхи: або поява в середовищі нескінченно малої кількості нової фази з кінцевою відмінністю певних її властивостей від властивостей вихідного середовища (фази), або виникнення нової фази у всьому об’ємі середовища, але ті ж властивості нової фази нескінченно мало відрізняються від властивостей вихідної.

Перший випадок — випадок перехідів першого роду, він зазвичай супроводжується стрибком перших похідних від відповідного термодинамічного потенціалу. Оскільки виникнення нової фази з помітно розрізняючими властивостями призводить до появи границі розділу фаз і пов’язаної з межею поверхневої енергії, то зародки нової фази занадто малого розміру невигідні.

У другому випадку — випадку перехідів другого роду, поява нової фази відбувається одразу в усьому об’ємі і не пов’язана із змінами у властивостях, що визначаються першими похідними термодинамічних потенціалів. Оскільки „стрибкоподібна” зміна властивостей макроскопічного об’єму середовища неможлива, в околицях точки перехіду повинні флукутаційно
виникати все більше областей „майбутнього стану”, так щоб відразу після переходу новий стан міг „захопити” весь об’єм.

Роль флуктуацій, при фазових переходах другого роду дуже велика. Флуктуації визначають багато рівноважних і нерівноважних властивостей системи поблизу точки фазового переходу.

Точка фазового переходу другого роду представляє собою особливу точку термодинамічного потенціалу, як функції одного з термодинамічних параметрів в тому розумінні, що вона одночасно є загальною для двох ліній потенціалів, які закінчуються в цій точці. У цьому полягає одна з істотних, відмінностей переходів другого роду від переходів першого. Ця особливість робить проблему переходів другого роду надзвичайно складною як у фізичному, так і в математичному відношенні. Прикладом переходу другого роду є перехід ферромагнетик – парамагнетик.

Поведінка будь – якої властивості f_k поблизу точки фазового переходу, що характеризується на фазовій діаграмі координатами $(x_{1c}, x_{2c}…x_{nc})$, прийнято описувати в функції однією з наведених координат $f_k(\varepsilon_i)$, де $\varepsilon_i = (x_i - x_{ic})/x_{ic}$. Наприклад, для температурних залежностей $\chi(T)$, $\Delta V(T)$, $C_v(T)$ $x_{1c} = T_c$ і при малих відхиленнях від T_c:

$$\chi(T) \sim |\tau|^{-\gamma}, \quad (\tau > 0) \quad (1.6)$$

$$\Delta V(T) \sim |\tau|^{\beta}, \quad (\tau < 0) \quad (1.7)$$

$$C_v(T) \sim |\tau|^{-\alpha}, \quad (\tau > 0) \quad (1.8)$$

В наведених вище формулах приведена температура: $\tau = (T - T_c)/T_c$, а показники ступеня $\alpha, \beta, \gamma… > 0$ – критичні показники або індекси. Співвідношення (1.6–1.8) не показують ступеневої поведінки розглянутих властивостей в широкій температурній області, вони свідчать лише про наявність границі:

$$\lambda = \lim_{\tau \to 0} \frac{\ln f_k(\tau)}{\ln|\tau|} \quad (1.9)$$

яка також може служити загальним визначенням критичних індексів поблизу фазового переходу. Останнє співвідношення дає експериментальний спосіб
визначения критических индексов λ из нахила залежностей \(ln f \), побудованных, как функции τ, в подвигновом логарифмичному масштабе.

Однако, след зазначить, что трудно измерить критических индексов в реальных системах, равно как и приречные и очень сложные эксперименты могут поддерживаться сомнения, тем не менее отмечаем, что квадратичный \(f(\tau) \) может существовать как при подвигновом уменьшении τ, так и при душе малей изменений значения \(T_c \) и влажном домишке, зовнешних впливов, зокрема, магнитного поля.

До числа классических феромагнетиков належать такие метали: Fe, Co, Ni, Gd, Tb, Ho, Er, Tm, а также сполюки: Fe\(_2\)B, Fe\(_3\)Al, Ni\(_3\)Mn, ZnCMn\(_3\) и т.д.

Феромагнетик характеризуется самодовольной намагниченностью, которая ниже некоей температуры не зникает навсегда за вредусмотритель магнитного поля. Физически это означает, что силы обменной взаимодействия меж спинами электронов приходят в параллельную ориентацию спинов, и самодовольную намагниченность можно измерить при \(T < T_c \), как:

\[
M_0(T) = \lim_{H \to 0} M(T, H) \sim |\tau|^\beta (\tau < 0),
\]

где \(M(T, H) \) – ровновесная намагниченность в поле \(H \) при уравновешивании розмагнитющего фактора. З ростом температуры \(M_0(T) \) уменьшается и повсюду зникает в точке Кюри. На рис. 1.13 (а) показан график наведенной намагниченности \(m(T, H) = M(T, H)/M_0(0) \).

Вище \(T_c \) намагниченность при \(H = 0 \) ведут, а початкова сприятливость прагне до нескінченності при наближенні до \(T_c^+ \) (рис. 1.13, б):

\[
\chi_0(T) = \left(\frac{C M}{C H} \right)_{H \to 0} \sim \left| \tau \right|^{-\gamma} \to \infty. \quad (1.11)
\]

У випадку феромагнетиків також мають місце аномалії теплоємності, однак, вони часто маскирується звичайною гратковою теплоємністю і лише у феромагнетиків з низькими точками Кюри складають значну частину сумарної теплоємності системи.
Рисунок 1.13 – а – спонтанна намагніченість і початкова сприйнятливість феромагнетика поблизу \(T_c \); б – теплоємність феромагнетика при \(H = 0 \) [122]

При зміні знака поля \(H \) в (1.10) змінюється і знак \(M_0(T) \). Тому ідеальна крива намагніченості \(M(H) \) при \(T < T_c \) має стрибок, рівний \(2M_0 \) (рис. 1.14).

Рисунок 1.14 – Ідеальні криві намагніченості феромагнетика

Виявлення точки Кюрі заліза в 1890 р. і особливо роботи П. Кюрі привели в 1907 р. П’єра Вейса до формулювання феноменологічної теорії феромагнетизму, в якій взаємодія спінів один з одним описується за допомогою уявлень про молекулярне поле, пропорційне середньої намагніченості.

Теорія парамагнетизму Ланжевена трактувала процеси намагнічування таким чином. Якщо розглядати парамагнетик як газ, молекули якого несуть
магнітний момент μ_0, то для руйнування магнітного порядку необхідна теплова енергія $\sim 10^{-16}$ ерг, що відповідає температурі 10К, оскільки взаємодія магнітних моментів дуже мала. При накладенні зовнішнього поля енергія елементарного магнетика:

$$U = \mu_0 H \cos \theta,$$

(1.12)

і ступінь орієнтації їх в полі залежатиме від співвідношення магнітної і теплової енергій. Ймовірність W орієнтації магнетиків під кутом θ визначається функцією Больцмана:

$$W = \exp \left(- \frac{U}{kT} \right) = \exp (\beta \cos \theta), \quad \beta = \frac{\mu_0 H}{kT}$$

(1.13)

Тоді середній магнітний момент на напрямок поля:

$$\bar{\mu} = \mu_0 \cos \theta = \mu_0 \frac{\int_0^\pi \cos \theta \cdot W \cdot d\theta}{\int_0^\pi W \cdot d\theta} = \mu_0 L(\beta),$$

(1.14)

de L – функція Ланжевена

$$L(\beta) = \text{ctg} - \frac{1}{\beta}.$$

(1.15)

При малих β:

$$\mu = \mu_0 \frac{1}{3} \beta = \frac{\mu_0^2 H}{3kT}.$$

(1.16)

Звідси для сприйнятливості отримуємо вираз:

$$\chi = \frac{\partial M}{\partial H} = \frac{N\bar{\mu}}{H} = \frac{N\mu_0^2}{3kT},$$

(1.17)

відоме як закон Кюрі.

П. Вейс запропонував, що на елементарний момент частинки, крім зовнішнього поля, діє і зовнішнє поле сусідів, а поведінка феромагнетика, як і парамагнетика, можна записати тією ж функцією Ланжевена:
\[\frac{M}{\mu_0 H} = \left[\frac{\mu_0 (H + H_{\text{лок}})}{kT} \right], \quad H_{\text{лок}} = aM, \]

(1.18)

de \(a \) – деяка константа. З (1.18) випливають основні властивості феромагнетика. Для малих значень параметра функції Ланжева рівняння стану (1.18) приймає вид:

\[\frac{M}{\mu_0 H} = \frac{\mu_0 (H + aM)}{3kT}, \]

(1.19)

звідки для сприйнятливості феромагнетика отримаємо:

\[\chi = \frac{C}{T - T_c}, \quad \text{де} \quad C = \frac{N\mu_0^2}{3k}, \quad T_c = \frac{aN\mu_0^2}{3k}. \]

(1.20)

Звідси:

\[\chi = C' \tau^{-1} \sim |\tau|^{-1}, \quad \gamma = 1, \quad C' = C/T_c. \]

(1.21)

Нескладно показати, що намагніченість в цьому випадку підкоряється закону:

\[M \sim |\tau|^{1/2}, \quad H \sim M^3, \quad \text{тобто} \quad \beta = \frac{1}{2}, \quad \delta = 3, \]

(1.22)

а теплоємність магнітної підсистеми в точці Кюрі зазнає стрибок. Якщо порівняти поведінку рідкої системи в теорії Ван-дер-Ваальса та магнітної – в теорії Вейса, то виявиться аналогія, яка знаходить своє підтвердження в тому, що критичні індекси у відповідних величин виявляються однаковими.

1.7 Спосіби підвищення зносостійкості деталей машин та механізмів

Змазування поверхонь тертя деталей машин необхідне для зменшення сил тертя, інтенсивності зношування й нагрівання деталей, а також для захисту поверхонь від корозії під час зупинки машини. Крім того,
мастильний матеріал чинить демпфуючу й охолоджуючу дію. Потоком мастильного матеріалу відводиться як теплота, що виникає при терті, так і теплота від нагрітих частин машини. Потоком масла виносяться також із зони тертя продукти зношування.

Мастильні матеріали можуть бути рідкі (масла, вода, сірчана кислота високої концентрації в деяких машинах хімічної промисловості й інші рідини), у вигляді емульсії, газоподібні, пластичні і тверді (тальк, графіт, дисульфід молібдену та інші) [129–132].

Тверді мастила – це матеріали, що забезпечені змащування двох поверхонь, що працюють в умовах сухого або граничного тертя. Тверде мастило може не наноситися ні на одну з деталей (наприклад, порошкоподібні тверді мастила), що труться, або воно може бути наповнювачем композиційного матеріалу або покриття на одній з цих деталей [133]. Висока термостійкість, хороша адгезія до металів і низька швидкість випаровування у вакуумі роблять можливим ефективне застосування твердих мастил у вакуумі, оптичних і електронних системах. Ці мастила набули поширення в машинобудуванні, приладобудуванні і металургії.

Шаруваті тверді мастила подібні до анізотропних композитів, в яких міцність міжатомних зв’язків в різних напрямках істотно розрізняється. Найбільш важливими твердими мастилами є графіт, дисульфід молібдену і політетрафторетилен. Також в якості твердого мастила може використовуватись мідь.

Графіт є модифікацією вуглецю із шаруватою структурою, що володіє дуже хорошими змащуючими властивостями на повітрі. Він широко застосовується як наповнювач для композиційних матеріалів, таких як композити на основі політетрафторетилену. Існують також різні з’єднання тугоплавких металів з сіркою, селеном, теллурам і іншими халькогенами. Ці з’єднання ефективно використовуються як вакуумні мастила в авіакосмічній промисловості. Властивості деяких твердих мастил наведено в таблиці 1.3.
Таблица 1.3 – Характеристики твердих мастил

<table>
<thead>
<tr>
<th>Тверде мастило</th>
<th>Щільність, г/см³</th>
<th>Температура °C</th>
<th>Коефіцієнт тертя</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>окислення на повітрі</td>
<td>розкладання у вакуумі</td>
</tr>
<tr>
<td>Графіт</td>
<td>1,4 – 1,7</td>
<td>455</td>
<td>–</td>
</tr>
<tr>
<td>BN</td>
<td>2,25</td>
<td>800–900</td>
<td>–</td>
</tr>
<tr>
<td>MoS₂</td>
<td>4,8</td>
<td>400</td>
<td>1100</td>
</tr>
<tr>
<td>MoSe₂</td>
<td>6,9</td>
<td>400</td>
<td>–</td>
</tr>
<tr>
<td>WSe₂</td>
<td>9,22</td>
<td>350</td>
<td>–</td>
</tr>
<tr>
<td>WS₂</td>
<td>7,4</td>
<td>510</td>
<td>1400</td>
</tr>
<tr>
<td>NbSe₂</td>
<td>6,25</td>
<td>350</td>
<td>–</td>
</tr>
<tr>
<td>CbJ₂</td>
<td>5,7</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>PbJ₂</td>
<td>6,16</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>BiJ₃</td>
<td>5,7</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Sb₂S₂</td>
<td>5,67</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AgJ</td>
<td>4,64</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Cu</td>
<td>8,92</td>
<td>500</td>
<td>–</td>
</tr>
</tbody>
</table>

*Починається сублімація матеріалу.

В роботі [134] проведено дослідження зносостійкості робочих поверхонь гільз циліндрів двигунів внутрішнього згоряння шляхом металізації поверхні тертя міддю. Авторами роботи встановлено, що металізація гільзи циліндра вставками міді дозволяє покращити змащувальні властивості поверхні гільзи циліндра, що трется. Це підтверджується зниженням інтенсивності зносу гільзи циліндра.

Крім цього в роботі [135] проведено дослідження впливу міді на структуру та механічні властивості покриття TiN. Авторами встановлено, що введення міді в покриття TiN призводить до зменшення розміру зерен, підвищення нанотвердості та зносостійкості покриттів, зменшення коефіцієнта тертя. Підвищення зносостійкості автори пояснюють тим, що зерна основної фази TiN оточені тонкими плівками міді, які в процесі зношування можуть грати роль твердого мастила між покриттям.
і поверхнею контртіла і, таким чином, зменшувати коефіцієнт тертя і зношування покриттів.

Дослідження впливу міді на структуру та властивості високохромистих чавунів проведено в роботі [136]. Авторами показаний позитивний вплив добавок міді на технологічні властивості високохромистих чавунів, оскільки мідь в чавунах, за відсутності графіту, грає роль мастила і компенсатора ливарних та термічних напружень, що сприяє зниженню схильності чавуну до тріщин.

1.8 Основні вимоги, що висуваються до зносостійких покриттів

До зносостійких покриттів, в залежності від матеріала і умов експлуатації виробів, висуваються свого роду технологічні вимоги, які можна розділити на чотири категорії.

По–перше, це урахування умов роботи. Покриття повинно мати: високу твердість, стійкість до високотемпературної корозії, відсутність хваткості з виробом, з яким воно сполучається в усьому діапазоні температур експлуатації, стійкістю до руйнування при коливанні температур та напруг, стійкістю механічних властивостей, навіть при температурах, близьких до температур руйнування матеріалу.

По–друге, це необхідність сумісності властивостей матеріалу покриття з властивостями основного матеріалу виробів: кристалохімічної спорідненості матеріалу покриття та виробу; оптимальне співвідношення матеріалів покриття і виробу за їх модулями пружності, коефіцієнтами Пуасона лінійного розширення, теплопровідності; низька схильність до утворення крихких вторинних сполук.

По–третє, це вимоги до технологічних особливостей методу нанесення покриттів: утворення в процесі нанесення покриття на виробі умов, які особливо не впливають на фізичні та кристалохімічні властивості основного матеріалу виробу.
В-четвертих, вимоги, що відносяться до покриттів в цілому: покриття повинно бути суцільним і мати постійну щільність по всьому об’єму, тим самим, захищаючи матеріал виробу від зіткнення з оброблюваним матеріалом і газовим середовищем; стабільність властивостей покриття у часі; незначне коливання товщини покриття в процесі роботи, яка дозволяє не змінювати рельєф матеріалу виробу.

При аналізі зносітійкості матеріалів та покриттів, як правило використовуються імпіричні залежності, які зв’язують параметри зносостійкості з механічними властивостями. Виходячи з загальних принципів теорії зношування залежність швидкості зношування від енергії деформації та механічних характеристик матеріалу може бути записана у вигляді:

\[
\frac{dm}{dt} = \frac{(dE/dt)}{K_{tc}^m \cdot H_\mu^n},
\]

де \(\frac{dm}{dt}\) — швидкість зносу (втрата маси); \(dE\) — енергія гідравлічного удару; \(K_{tc}\) — тріщинностійкість; \(H_\mu\) — мікротвердість; \(m, n\) — емпіричні константи.

В якості прикладу можна навести результати робіт С. М. Чернеги з співавторами [137], в яких досліджено процес зношування при кавітації. Показано, що рівняння (1.23) добре виконується у випадку кавітації при значенні параметрів \(m = 0,733\), а \(n = 0,384\). Ці результати вказують на те, що зносостійкість покриттів пов’язана із їхніми стандартними механічними характеристиками.

Використання однокомпонентних тугоплавких сполук в якості покриття не завжди задовольняють необхідному комплексу властивостей. Тому на практиці найчастіше використовуються багатокомпонентні покриття. Процеси отримання багатокомпонентних зносостійких покриттів за допомогою XTO, їх структура та властивості ще мало вивчені та відображенні в літературі. Більш докладно вивчені властивості отримання багатоелементних покриттів, які отримують різними методами фізичного (катодним, високочастотним розпиленням, електродуговим випаровуванням
осаджуючої речовини) та хімічного осадження (із парогазової фази)
на поверхню деталей машин та інструменту [138–139]. Такі покриття
формуються на поверхні виробу, матеріал основи не впливає на процес їх
формування і покриття дуже близькі до стехіометричного складу.

Висновки до розділу 1

В результаті аналізу літературних джерел, присвячених отриманню
tа дослідженню одно- та багатокомпонентних покриттів на основі боридних
фаз, показано можливість формування зносостійких дифузійних боридних
шарів за різними методами ХТО. Недоліками процесу борування
є енерговитратність, низька швидкість росту боридних голок та висока
крихкість боридних шарів. Тому значний інтерес для дослідження
представляє можливість інтенсифікувати процес ХТО – борування
для зменшення тривалості насичення та формування багатокомпонентних
pокриттів, які б поєднували високу твердість, пластичність та зносостійкість.
Інтенсифікувати процес ХТО можливо дією магнітного поля під час процесу
nасичення. Тоді, як застосування комплексного насичення сталей та сплавів,
за рахунок додавання в реакційне середовище крім сполук, що слугують
за джерело бору різних хімічних елементів таких, як: Ni, Ti, Co, Mn, Cu
tа інших, дозволяє зменшити крихкість дифузійного боридного шару.

Таким чином, розробка комплексних дифузійних бороміднених
pокриттів, отриманих в умовах дії магнітного поля та дослідження
впливу дії магнітного поля на фазовий та хімічний склад, структуру
tа фізико-механічні властивості покриттів є актуальним і перспективним.
РОЗДІЛ 2
МЕТОДИКИ, ОБ’ЄКТИ І МАТЕРІАЛИ ДОСЛІДЖЕНЬ

При розробці нових зносостійких покриттів, важливу роль відіграє вибір методів дослідження структурно-фазового складу та фізико-механічних властивостей покриттів. Отримання достовірних результатів досліджень в даній работе забезпечено використанням сучасного обладнання i приладів, перевірених і каліброваних метрологічними службами, ретельною підготовкою зразків і обробкою результатів експерименту, строгим дотриманням порядку проведення експерименту.

2.1 Методика нанесення дифузійних боридних покриттів в умовах дії ЗМП та без його впливу

Дослідження проводилося на зразках зі сталей 20, 45, У8, хромомарганцевих (40Х15Г8САФ наступного складу: C – 0,42; Cr – 15,4; Mn – 8,2; Si – 0,66; S – 0,008; P – 0,007; V – 0,22; Al – 0,065; N – 0,265) та твердих сплавах типу ТК. Їх насичення проводили у боромісткому порошку. За насичуючу суміш слугували порошки технічного карбіда бору і Cu₂O чи Cu₃P, як джерело міді [140–141]. В якості активуючої добавки використовували фторопласт.

В якості боромісткого компонента в порошковій суміші був застосований технічний карбід бора, до складу якого крім власне карбіду бору В₄C входить борний ангідрид В₂О₃ (до 2...3 %), сажа та інші домішки.

Дифузійне борування здійснювали з дотриманням послідовності. Підготовлені зразки розміщували в тиглі з нержавіючої сталі 10Х18Н9Т і засипали порошковою сумішшю відповідною відповідного складу. При цьому відстань між зразками і стінками контейнера складала не менше 5 мм.

Для запобігання окислювання зразків і поліпшення умов процесу насичення тиглі герметизували. Для цього порошкову суміш відокремлювали від атмосфери печі асперовою прокладкою, поверх якої насипали шар
натрійсилікатного скла товщиною 25...30 мм. При нагріванні до температур борування 910–1000 °C, натрійсилікатне скло розплавляється, утворюючи при цьому плавкий затвор, це забезпечує герметизацію контейнера.

Нагрівання тиглів і наступну ізотермічну витримку проводили в лабораторній печі типу СНОЛ – 1,6,2,5,1/11М. Після закінчення процесу тиглі витягали з печі, охолоджували на повітрі і розпаковували.

Механізм дифузійного борування в порошку технічного карбіду бору описаний у роботі [14]. Згідно даних цієї роботи, карбід бору при температурі насичення відновлює борний ангідрид до нижчого оксиду бору B₂O₂ по реакції:

\[\text{B}_4\text{C} + \text{B}_2\text{O}_3 \rightarrow \text{B}_2\text{O}_2 + \text{B}_m\text{C}_n \] \hspace{1cm} (2.1)

Парами утворюваного B₂O₂ здійснюється перенос бору до поверхні, що насичується. В такий спосіб транспортером бору є кисень. Пари B₂O₂ диспропорціонують на поверхні, що насичується, з утворенням B₂O₃ і атомарного бору по реакції:

\[3\text{B}_2\text{O}_2 \rightarrow 2\text{B} + 2\text{B}_2\text{O}_3 \] \hspace{1cm} (2.2)

Атомарний бор, що утворився, дифундує всередину матеріалу, і утворює відповідні бориди металу.

Поверхня, що насичується, покрита плівкою B₂O₃ у розплавленому стані. Роль карбіду бору полягає також і в тому, що в місці контакту його часток з поверхнею, що насичується, відбувається відновлення B₂O₃, завдяки чому поверхня очищається від плівки розплаву. При цьому утворюються додаткові порції B₂O₂, і полегшується доступ пару B₂O₂ до металу.

Дифузійні шари, що утворюються в результаті насичення сталевих зразків у сумішах раціональних складів, складаються з двох фаз, одна з яких розташована на поверхні – зовнішній шар (FeB), а інша (Fe₂B) своїми голками проникає в матрицю – внутрішній шар.

Для проведення ХТО в умовах дії ЗМП використовували спеціально розроблену установку загальний вигляд якої представлено на рис. 2.1. Схема установки для ХТО в умовах дії ЗМП представлена на рис. 2.2 [142–143].
Рисунок 2.1 – Загальний вигляд установки для ХТО в умовах дії ЗМП

Рисунок 2.2 – Схема установки для ХТО в умовах дії ЗМП:
1 – високотемпературна шахтна електропіч типу СШОЛ 1.6.3/11,
2 – тигель, 3 – азбестова прокладка; 4 – натрійсилікатне скло (плавкий затвор),
5 – зразок, 6 – керамічна підставка, 7 – соленоїд, 8 – силові лінії навколо соленоїда.
Установка складається з наступних частин: шахтної електропечі типу СШОЛ 1.6.3/11 (параметри робочого простору печі: Ø – 160 мм, h – 300 мм), регулятору температури, термопари, соленоїда, джерела живлення соленоїда, діодного мосту та вентилятора.

Для створення ЗМП використовують соленоїд із внутрішнім діаметром 295 мм та висотою 450 мм. Соленоїд складається із 635 витків шини алюмінієвого сплаву, розміром 10х20 мм; сила струму, яку подають на діодний міст становить 60 – 70 А. В результаті проходження струму через витки соленоїда виникає магнітна індукція величиною 0,35–0,45 мТл (0,44–0,57 кА/м). Для живлення соленоїду застосовували джерело трансформаторного типу.

Для запобігання перегріву соленоїда, його охолоджують за допомогою вентилятора, який розміщують під соленоїдом (рис. 2.1).

Розрахунок напруженості магнітного поля котушки соленоїда виконують за формулами:

\[H_i = \frac{I \cdot n}{l} \quad H_B = \frac{B}{\mu_0 \mu} \]

де \(H_i \) – напруженість магнітного поля, що розрахована за силою струму в котушці соленоїда; \(H_B \) – напруженість магнітного поля, що розрахована за магнітною індукцією; \(I \) – сила струму в котушці; \(n \) – число витків котушки; \(l \) – довжина (висота) котушки, мм; \(B \) – магнітна індукція; \(\mu_0 \) – магнітна стала, Гн/м; \(\mu \) – відносна магнітна проникливість середовища.

2.2 Дослідження мікроструктури дифузійних боридних покриттів

Дослідження мікроструктури, виявлення границь фаз покриття і визначення товщини дифузійних боридних шарів, отриманих після борування та бороміднення при одночасній дії ЗМП та без його впливу проводили металографічним методом.
Мікроскопічне дослідження передбачає виконання таких етапів:
- виготовлення мікрошліфа (одну із поверхонь зразка вирівнюють, шліфують і полірують для надання їй плоскої форми та дзеркального блиску;
- дослідження структури на полірованій (нетравленій) поверхні шліфа;
- виявлення структури полірованої поверхні травленням;
- металографічне дослідження структури протравленої поверхні шліфа.

Грубе шліфування зразків проводилося на шліфувальному верстаті для видалення грубих подряпин на поверхні шліфа. Шліфувальний верстат являє собою два металевих круга – диска, які приводяться в рух електричним двигуном. На дисках механічно закріплений абразивний папір, який послідовно замінювався на папір з меншим розміром зерна. Для полірування на диски наклеювали тканину (фетр), яка добре утримує на собі частинки алмазної суспензії з частинками розміром 1–4 мкм.

З метою збільшення оптичного контрасту між різними структурними складовими, вибіркового забарвлення або розчинення фаз проводилося хімічне травлення шліфів. У якості реактиву для хімічного травлення використали 3…5 %-й розчин азотної кислоти в етиловому спирті, витримка – 30 с [144].

Також для виявлення мікроструктури дифузійних боридних покриттів проводили теплове травлення шляхом нагріву полірованого мікрошліфа до температури 400 °C, витримку при цій температурі протягом 30 хвилин в печі СНОЛ-1,6.2,5,1/9 з наступним охолодженням до кімнатної температури на повітрі. Теплове травлення, яке засноване на хімічній активності фаз залежно від їх складу, обумовило появу кольорового забарвлення фаз, і дозволило визначити їх розташування в структурі покриттів. Слід зазначити, що чутливість теплового травлення до осередків зародження фаз значно вища, ніж у звичайного хімічного травлення [145].

Мікроструктурні дослідження покриттів та вимірювання товщини дифузійних боридних шарів проводили на металографічному мікроскопі Axio Observer.A1m, Zeiss, в інтервалі збільшення 100...1000 разів та на приладі ПМТ – 3. Для запобігання сколювання покриття в процесі
виготовлення мікрошліфів зразки затискали в сталеві струбціни, поміщаючи між струбціною і зразком сталеві або мідні прокладки.

2.3 Вивчення мікротвердості

Для визначення зміни особливостей фаз використовували метод вимірювання мікротвердості фаз за допомогою приладу ПМТ–3 та мікротвердоміру DuraScan, компанії EMCOTEST. Прилади працюють за принципом вдавлювання. Наконечником (індентором) служить алмазна пірамідка із квадратною основою й кутом при вершині між протилежними гранями 136 град (метод Вікерса). Пірамідка вдавлювалася в зразок із навантаженням 0,20, 0,49 та 0,98 Н; час витримки під навантаженням 10 сек. Мікротвердість визначалася як середньоарифметичне значення для 30–40 одиничних вимірів діагоналей відбитків без видимих тріщин і сколів.

Вимірювання мікротвердості проводили відповідно до стандарту ГОСТ 9450 – 76 (Вимірювання мікротвердості вдавлюванням алмазних наконечників).

2.4 Рентгеноструктурний аналіз

Фазовий склад, кількісний аналіз фаз, періоди кристалічної гратки, об’єм елементарних граток фаз, області когерентного розсіювання в боридних покриттях вивчали за допомогою рентгеноструктурного аналізу на рентгенівському дифрактометрі Ultima IV, компанії Rigaku (Японія), в мідному Kα монохроматичному випромінюванні з довжиною хвилі 0,1541841 нм та потенціалом збудження (U₀) ліній K – серії 8,9 кВ. Дані дослідження проводились в Центрі рентгеноструктурного аналізу «Rigaku», що розташований в Національному технічному університеті України «Київський політехнічний інститут», Інженерно-фізичному факультеті.
Ultima IV це сучасний 0 – 0 дифрактометр, в якому фокусування за Брегом – Брентано здійснюється шляхом одночасного зв’язаного обертання трубки та лічильника (детектора) навколо нерухомого зразку.

Фазовий рентгеноструктурний аналіз базується на тому, що кожна фаза має свою специфічну кристалічну гратку з певними періодами, якій на дифрактограмі відповідає певний набір ліній [146]. Провівши ідентифікацію ліній можна отримати точні дані по якісному та кількісному фазовому складу досліджуваного матеріалу.

Для отримання дифрактограм з пониженим рівнем фону, на дифрактометрі Ultima IV, на дифрагованому пучку, встановлюється зігнутий монохроматор з монокристалу графіту. Одержані дифрактограми обробляються за допомогою програмного комплексу PDXL [147]. PDXL є інтегрованим програмним комплексом для проведення рентгенофазового аналізу. Комплекс може бути оснащений різними методами аналізу рентгенівських дифрактограм, включаючи якісний та кількісний аналіз зразків. PDXL проводить обробку завантажених експериментальних даних по двом режимам обробки (автоматична обробка піків чи ручна) та розраховує інформацію про піки.

2.5 Мікрорентгеноспектральний аналіз та растррова електронна мікроскопія

Хімічний склад дифузійних боридних та бороміднених покриттів, отриманих на сталях та сплавах в умовах дії ЗМП та без його впливу вивчали за допомогою растрового електронного мікроскопу РЕМ – 106 при збільшенні 500 – 2000 раз. Сучасний РЕМ дозволяє працювати в широкому діапазоні збільшення приблизно від 10 крат (тобто еквівалентно збільшенню дуже сильної ручної лінзи) до 1 000 000 крат, що приблизно в 500 разів перевищує межу збільшення найкращих оптичних мікроскопів [148–149].
Для отримання в РЕМ інформації пучок електронів, сформований освітлювальною системою, фокусується в певному місці зразка. Він характеризується трьома основними параметрами: силою струму \(i = 10^{-12} - 10^{-16} \text{ Å} \), діаметром \(d = 5 \text{ нм} - 1 \text{ мкм} \) та кутом розходження \(\alpha = 10^{-4} - 10^{-2} \text{ ст. рад.} \), які тісно пов'язані між собою і входять в основні співвідношення растрової мікроскопії.

При проведенні мікрорентгеноспектрального аналізу застосовували прискорюючу напругу величиною 20 кВ, при цьому пучок електронів проникає в матеріал на глубину до 2 мкм.

В області взаємодії пучка електронів з матеріалом відбувається пружна і не пружна взаємодія, яка спричиняє генерацію різних випромінювань (або сигналів для детекторів): пружні, вторинні, поглинуті й ті, що пройшли зразок, електрони; характеристичне і гальмівне (безперервне) рентгенівське випромінювання та катодолюмінісцентне випромінювання. Фіксуючи величину (інтенсивність) цих сигналів, можна визначити певні характеристики об'єкта дослідження: локальну топографію, хімічний склад, енергетичні властивості напівпровідникового зразка та т.д.

2.6 Визначення параметру тріщинностійкості

Для виміру в'язкості руйнування монокристалів твердих кристалічних матеріалів застосовується метод Еванса – Чарлза [150]. При цьому \(K_{1C} \) визначається по довжині радіальних тріщин, що утворюються навколо відбитка від індентора Вікерса, з напівемпіричного співвідношення:

\[
\frac{K_{1C} \cdot \Phi}{H \cdot \sqrt{a}} = 0,15k \cdot \left(\frac{c}{a} \right)^{-3}
\]

або графічної залежності між \((K_{1C} \cdot \Phi/H)-(H/E \cdot \Phi) \) і \(c/a \), де \(\Phi \) – постійна Маршу; \(H \) – твердість по Вікерсу; \(a \) – напівдіагональ відбитку; \(c \) – довжина радіальної тріщини; \(E \) – модуль Юнга.
Рівняння було отримано в результаті випробування полікристалів. З монокристалів випробувалися тільки сапфір і шпінель. Крім того, випробування на цих монокристалах проводилося тільки при великих навантаженнях (с/а = 4 – 5,5), орієнтація відбитка щодо напрямків легкого розколювання була випадковою. У більш пізніх роботах по визначенню КіС при індентуванні було показано, що с/а пропорційно \((K_{1C}/H - a^{0.5}) - (H/E)^{0.5} \). Тому для одержання співвідношення між \((K_{1C}/H - a^{0.5}) - (H/E)^{0.5} \) і с/а для ковалентних монокристалів у роботі були проведені випробування на кремнії в широкому діапазоні навантажень (10–300 т). Відбитки наносилися на площину (001), одна з діагоналей відбитка встановлювалася паралельно напрямку <112> виходу площин {111}. При кожному навантаженні наносили 8 – 10 відбитків. Використовуючи отримані залежності а та с від навантаження на індентор й вважаючи, що \(E = 168 \) ГПа, \(H = 9 \) ГПа, \(K_{1C}\{111\} = 0,65 \) МН·м\(^{-1.5}\), побудували залежність \((K_{1C}/H - a^{0.5}) - (H/E)^{0.5} \) від с/а. Пряма на графіку описується рівнянням:

\[
\frac{K_{1C}}{H \cdot \sqrt{a}} \cdot \left(\frac{H}{E} \right)^{\frac{1}{2}} = 0,032 \cdot \left(\frac{c}{a} \right)^{\frac{3}{2}}
\]

при \(1,9 \leq c/a \leq 3,2 \) використовуючи співвідношення:

\[
H = 0,4636 \cdot \frac{P}{a^2}
\]

де \(P \) – навантаження на індентор, остаточно отримуємо:

\[
K_{1C} = 0,015 \cdot \left(\frac{E}{H} \right)^{\frac{1}{2}} \cdot \frac{P}{C^2}
\]

Співвідношення (2.7) застосовувалося в роботі для визначення \(K_{1C} \) для алмазу, у результаті чого було оцінено його тріщинностійкість \(K_{1C} = 6,0 \pm 0,2 \) МН·м\(^{-1.5}\).
2.7 Дослідження топографії поверхні боридних покриттів

Дослідження топографії поверхні дифузійних боридних покриттів проводили на безконтактному інтерференційному 3D профілографі «Micron – alpha» («Micron – beta»), який призначений для відновлення мікротопографії поверхнь на методом обробки інтерференційних картин в білому світлі.

«Micron – alpha» («Micron – beta») дозволяють реєструвати топографію поверхні шляхом обробки послідовності інтерференційних даних (картин), що реєструються цифровою камерою при зміщенні опорного (еталонного) дзеркала. Крім того, дозволяє: будувати 2D і 3D профілі поверхні; кількісно оцінювати характеристики поверхні; обчислювати об’єм виступу (впадини); спостерігати інтерференційні картини; проводити металографічні дослідження.

2.8 Визначення зносостійкості покриттів

Випробування зносостійкості проводили на машині тертя (рис. 2.3) [27]. Основною частиною установки є вузол тертя 11, розміщений на станині 2 установки.

В дослідженні як матеріал контртіла була використана загартована та низько відпущена сталь У8 із твердістю 52 HRC.

Величину зносу оцінювали ваговим методом, зважуючи зразки до і після випробування. Зважування здійснювали на аналітичних терезах ВЛР – 200г (ГОСТ 19491 – 74) через кожні 10 хвилин зношування. Тривалість зношування для кожного зразка становила 300 хвилин. Після проведення випробувань поверхню зразків досліджували металографічним та рентгеноспектральним методами аналізу.

Зносостійкість зразків оцінюють по зовнішньому вигляду поверхні тертя і втраті маси, яку вимірюють на аналітичних терезах з точністю
до п’ятого знаку. По втраті маси знаходять показник стійкості проти зношування, кг/м²:

\[I = \frac{\Delta m}{S} \]

де \(\Delta m \) – втрата маси, кг; \(S \) – площа поверхні тертя зразка, м².

Після знаходження показника стійкості будуєть графіки, що показують залежність втрати маси від тривалості зношування та втрати маси від пройденого шляху. Шлях визначають знаючи кількість обертів за той чи інший період часу. За один оберт пройденний шлях складає 4 см (оскільки довжина зразка становить 2 см).

Випробування покриттів на зносостійкість також проводили на машині тертя М-22М по методиці [151–152]. Сутність методу полягає у визначенні залежності зношування і сили тертя спряжених поверхонь матеріалу зразка і контрзразка (контртіла) від швидкості ковзання, сили навантаження та обчислення їх інтенсивності зношування і коефіцієнта тертя.
Висновки до розділу 2

Для дослідження дифузійних боридних покриттів, отриманих на сталях та сплавах після борування та комплексного насичення бором і міддю, де в якості джерела міді використовували мідномісткий порошок Cu₂O, в залежності від фізико-хімічних умов насичення було застосовано комплекс методів, а саме: 1) металографічний аналіз; 2) рентгеноструктурний аналіз; 3) мікрорентгеноспектральний аналіз; 5) метод вимірювання мікротвердості вдавлюванням алмазного наконечника; 6) дослідження топографії поверхні; 7) гравіметричний метод; 8) зношування в умовах сухого ковзання.
РОЗДІЛ 3
РОЗРАХУНОК КОЕФІЦІЄНТІВ ДИФУЗІЇ ТА ТЕРМОДИНАМІЧНОГО ПОТЕНЦІАЛУ ПРОТІКАННЯ ХІМІЧНИХ РЕАКЦІЙ ПРИ БОРУВАННІ ТА БОРОМІДНЕННІ

В основі процесів дифузії лежить механізм переміщення атомів. Рух відбувається або між атомами, що знаходяться у вузлах кристалічної гратки (між вузлами), або шляхом заповнення порожніх (вакантних) місць в кристалічній гратці, або за рахунок переміни місць між сусідніми частинками [45].

3.1 Розрахунок коефіцієнтів дифузії B та Cu при боруванні та боромідненні в умовах дії ЗМП та без його впливу

Серед великої кількості частинок, в твердому тілі знаходяться частинки, що володіють більшою і меншою енергією. Частинки, що володіють великим запасом енергії, можуть зірватися з положення рівноваги і проскочити між вузлами кристалічної гратки; при цьому витрачається енергія «розпушення» на подолання сил зв’язку з сусідніми атомами та розсовування вузлів кристалічної гратки. Я.І. Френкель показав, що ймовірність переміщення атому дорівнює [153]:

$$P = Ce^{-E/kT}, \quad (3.1)$$

Якщо число частинок в кристалі N_0, то частка частинок, що перемістилися дорівнює:

$$N = PN_0 = N_0 Ce^{-E/kT}. \quad (3.2)$$

Число дифундуючих частинок є функцією температури. Для заданої температури число дифундуючих частинок є постійним.
Дифузія відбувається за рахунок різниці концентрацій. Якщо біля поверхні кристала концентрація речовини \(c_0\), а на глибині \(x\) концентрація \(c(x)\) і \(c_0 > c(x)\), то речовина буде дифундувати в напрямку зменшення концентрації. Потік дифундуючої речовини в одиницю часу через площу в 1 см² в цьому випадку (відповідно до першого закону Фіка) дорівнює [153]:

\[
m = -D \frac{dc}{dx}.
\]

Потік речовини за час \(\Delta t\) через площу \(\Delta S\) дорівнює:

\[
m = D \frac{\Delta c}{\Delta x} \Delta S \Delta t.
\]

Рівняння (3.3) та (3.4) можна застосовувати тільки до стаціонарного процесу, тобто до процесу, сталому в часі, коли \(\partial c/\partial t = 0\). Насправді стаціонарні дифузійні процеси дуже рідкісні, концентрація дифундуючої речовини змінюється в часі. Нестаціонарний процес дифузії виражається другим законом Фіка [153]:

\[
\frac{\partial c}{\partial t} = D \left(\frac{\partial^2 c}{\partial x^2} + \frac{\partial^2 c}{\partial y^2} + \frac{\partial^2 c}{\partial z^2} \right).
\]

На практиці зазвичай відбувається дифузія в одному напрямку, наприклад дифузія елементів від поверхні деталі в глибину. Рівняння дифузії в цьому випадку буде мати вигляд [45, 153–154]:

\[
\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2}.
\]

Щоб рівняння (3.6) можна було використовувати на практиці його потрібно проінтегрувати. Інтеграл рівняння (3.6) є інтегралом Гаусса:

\[
\frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{z^2}{2}} \, dz = \Phi(x).
\]

Практично проводити інтегрування не потрібно, тому що для розрахунку можна використовувати первісну функцію, що називається функцією Крампа [45, 153] та зв’язується з концентрацією співвідношенням:
\[
\frac{c_0 - c(x_1,t)}{c_0} = \phi \left(\frac{x}{2\sqrt{Dt}} \right).
\]

де \(c_0 \) – концентрація у поверхні, \(c(x_1,t) \) – концентрація по глибині \(x_1 \) за час \(t \), \(D \) – коефіцієнт дифузії.

Дифузійне рівняння Фіка для одновимірної задачі (3.6), що вирішується через так звану функцію Крампа \(\Phi(z) = 1 - c_1/c_0 \), табульовано [155].

Аргумент \(z = \frac{x}{2\sqrt{Dt}} \), звідки \(4z^2Dt = x^2 \).

Отже,
\[
D = \frac{x^2}{4z^2t}
\]

де \(x \) – глибина на якій визначалась концентрація елементу, \(D \) – коефіцієнт дифузії, \(t \) – час дифузії, \(c_1 \) – концентрація дифундуючого елемента на глибині \(x \), \(c_0 \) – концентрація елемента на поверхні.

Використовуючи рівняння (3.7) було розраховано коефіцієнти дифузії \((k_d) \) B та Cu при проведенні борування та боромідрення без застосування ЗМП та при його одночасній дії.

Встановлено, що при дифузійному боруванні без дії ЗМП коефіцієнт дифузії бору змінюється від \(2,4 \cdot 10^{-7} \text{ см}^2/\text{с} \) у поверхневих шарах (5–15 мкм) до \(1,1 \cdot 10^{-8} \text{ см}^2/\text{с} \) у шарах, що межують із матрицею (50 мкм). Накладання МП призводить до збільшення коефіцієнту дифузії \(\Phi \) і при боруванні з одночасною дією ЗМП він відповідно змінюється від \(1,3 \cdot 10^{-6} \text{ см}^2/\text{с} \) до \(2,2 \cdot 10^{-7} \text{ см}^2/\text{с} \).

Також було розраховано коефіцієнт дифузії міді при боромідренні без дії ЗМП та при його одночасній дії. Встановлено, що коефіцієнт дифузії міді при боромідренні без дії ЗМП змінюється від \(7,8 \cdot 10^{-11} \text{ см}^2/\text{с} \) у поверхневих шарах (5–15 мкм) до \(8,8 \cdot 10^{-12} \text{ см}^2/\text{с} \) у шарах, що межують із матрицею, тоді як накладання магнітного поля призводить до зростання коефіцієнту дифузії міді у поверхневому шарі матеріалу, при цьому \(k_d \) відповідно змінюється від \(4,1 \cdot 10^{-10} \text{ см}^2/\text{с} \) до \(2,8 \cdot 10^{-11} \text{ см}^2/\text{с} \).

Відповідно до теорії Дж. Маннінга пояснено ефект збільшення коефіцієнту дифузії B та Cu, описано механізм впливу електромагнітного поля на швидкість дифузії та частоту перескоків атомів.
Дж. Маннінг [156], використовуючи для опису дифузії теорію випадкових блукань, визначив рушійну силу дифузії, як будь – який вплив, що приводить до того, що частота перескоків атомів для переходу в одному напрямку між двома заданими положеннями відрізняється від аналогічної величини, що характеризує переміщення в протилежному напрямку між цими положеннями. Ці рушійні сили він розділив на:

✔ рушійні сили, що безпосередньо діють на кожен атом («прямі»)
✔ рушійні сили, що опосередковано діють на атоми («ефективні»).

На рис. 3.1 зображені схематичні діаграми енергетичних бар’єрів за відсутності рушійних сил (а), при дії «прямої» рушійної сили (б) та при дії «ефективної» рушійної сили (в).

Рисунок 3.1 – Схематичні діаграми енергетичних бар’єрів:
а – за відсутності дії рушійної сили; б – при дії «прямої» рушійної сили;
в – при дії «ефективної» рушійної сили; 0, 1, 2, 3 – вузли решітки (гратки) [156]
Діаграма енергетичних бар’єрів на рис. 3.1 (б) відображає положення, при якому наявність рушійної сили F робить кращим перескок атома праворуч. Потенційна енергія атома зменшується на λF при його переміщенні на відстань λ в напрямку дії сили. Саме тому на рис. 3.1 (б) лінія початку відліку проведена з нахилом. Висота енергетичного бар’єра дорівнює різниці енергій станів, коли атом знаходиться у вузлі решітки та в сідловій точці. У більшості випадків положення сідлової і середньої точки переходу, що знаходиться на відстані $\lambda/2$ від рівноважних положень, збігаються. Таким чином, під дією сили F при переміщенні в сідлову точку атом набуває енергію $\Delta E_m = \lambda F/2$.

Повна енергія, яку необхідно надати атому для переміщення в сідлову точку, дорівнює $S_m = S_{m0} - \Delta E$, де S_{m0} – висота бар’єру за відсутності рушійної сили. Частота перескоків пропорційна $\exp(-S_m / kT)$ і

$$
\Gamma_+ = \Gamma_0 \exp \left(\frac{\Delta E_m}{kT} \right), \quad \Gamma_- = \Gamma_0 \exp \left(-\frac{\Delta E_m}{kT} \right),
$$

де Γ_+ – частота перескоків у напрямку дії сили F, Γ_0 – частота перескоків проти напрямку дії сили, Γ_- – частота перескоків у напрямку, перпендикулярному напрямку дії сили або за відсутності дії сили.

Мікроскопічне пояснення природи спрямованого руху атомів у процесі дифузії засноване на тому, що ймовірності перескоків мігруючих атомів вздовж напрямку дії рушійної сили і проти неї не однакові. Так як ймовірності перескоків пов’язані з висотою потенційного бар’єра, дія рушійної сили еквівалентна зниженню цього бар’єру на величину $\Delta E = \lambda F/2$ (λ – відстань між атомними площинами, перпендикулярними напрямку потоку).

Нехай рушійна сила створюється тільки зовнішнім впливом, яке не створює в зразку градієнта температури. Сусідні площини 1 і 2 розташовані на відстані λ паралельно одна одній і перпендикулярно до напрямку дії сили F. Атоми можуть здійснювати перескоки тільки між цими площинами. Якщо сила F діє в напрямку від 1 до 2, частота перескоків Γ_{12} перевищує
частоти перескоків у зворотному напрямку \(\Gamma_2 \). Тоді потік атомів між площинами, згідно [156], може бути записаний у вигляді:

\[
J = n_1 \Gamma_2 - n_2 \Gamma_2 = n_1 \Gamma_0 \exp \left(\frac{\lambda F}{2kT} \right) - n_2 \Gamma_0 \exp \left(-\frac{\lambda F}{2kT} \right),
\]

де \(n_1, n_2 \) – число атомів на одиницю площі, відповідно на площинах 1 і 2; \(\Gamma_0 \) – частота перескоків за відсутності дії сили; \(k \) – постійна Больцмана; \(T \) – абсолютна температура.

Вважаючи, що \(n_1, n_2 \ll 1 \), зазвичай \(\exp \left(\frac{\lambda F}{2kT} \right) \) і \(\exp \left(-\frac{\lambda F}{2kT} \right) \) в (3.10) замінюють першими членами їх розкладання в ряд, відповідно, \((1 + \varepsilon) \) і \((1 - \varepsilon) \), що, з урахуванням співвідношення \(n = \lambda \varepsilon \) і \(n_1 - n_2 = -\lambda \frac{\partial c}{\partial x} \) [156] дозволяє з мікроскопічної моделі отримати рівняння дифузії в вигляді:

\[
J = -D_T \frac{\partial c}{\partial x} + \frac{D_T F}{kT} \rho, \quad \rho \equiv \rho \rho_A^{(*)},
\]

де \(\rho \) – концентрація дірок (вакансій), \(\rho_A^{(*)} \) – ймовірнісна щільність атомів ізотопу, \(\rho \) – час життя вакансії у вузлі.

Перший член праворуч в (3.13) відповідає дифузійному вирівнюванню
концентрації ізотопу, а другий описує перенос маси за рахунок результуючої силы F (на йони в полі впливає результуюча сила дії поля і дії «електронного вітру»). Автор [158] зазначив, що у разі \(aF/4 > kT \) механізм масопереносу визначався б не дифузійною природою.

В [159] записані рівняння для потоків мічених атомів в ОЦК кристалі в зоні високої концентрації точкових дефектів, мігруючих по вакансійному (\(J_B^{(*)} \)) і міжвузловому (\(J_M^{(*)} \)) механізмам під дією деякої сили \(f_0 \):

\[
J_B^{(*)x} = -2\delta' \exp\left(-\frac{Q_B}{kT} \right) C_B C^* B \frac{df_0}{kT} \left(\frac{\delta^2}{2} \right) \nu \exp\left(-\frac{Q_M}{kT} \right) \frac{\partial C^*}{\partial x} B \frac{df_0}{kT} , \quad (3.14)
\]

\[
J_M^{(*)x} = -2\delta' \exp\left(-\frac{Q_M}{kT} \right) C_M C^* M \frac{df_0}{kT} \left(\frac{\delta^2}{2} \right) \nu \exp\left(-\frac{Q_M}{kT} \right) \frac{\partial C^*}{\partial x} M \frac{df_0}{kT} , \quad (3.15)
\]

de \(\delta \) – постійна кристалічної решітки (ґратки); \(\nu \) – частота дебаєвського порядку; \(Q_B, Q_M \) – відповідно, енергія активації руху вакансії і міжвузлового атома; \(C_B, C_M \) – концентрації вакансій і міжвузлових атомів, \(C^* \) – концентрація мічених атомів.

Вирази (3.11, 3.12) отримані в припущеннях, що значення параметра \(\varepsilon = \lambda F/2kT << 1 \). Вирази (3.13 – 3.15) можуть використовуватись для будь – яких значень \(\varepsilon \). Чи завжди значення параметра \(\varepsilon \) мале настільки, що використання виразів (3.11), (3.12) і випливаючих з них справедливо? Як правило, не приводячи розрахунків, на це питання відповідають позитивно [156, 158, 160]. А якщо ні, то де границя застосування співвідношень (3.11, 3.12). Формальна оцінка дає значення параметра \(\varepsilon \) менше 0,1 [160]. При великих значеннях \(\varepsilon \) застосування співвідношень (3.11, 3.12) стає неправомірним. Представляє інтерес визначити, при яких значеннях параметрів зовнішнього впливу виникають умови для прояву залежностей типу (3.13 – 3.15).

Залежності типу (3.13 – 3.15) – аналоги першого закону Фіка. Для аналога другого закону Фіка, який можна використовувати для будь – яких значень рушійної сили в роботі [161] отримано рівняння:
\[
\frac{\partial C}{\partial t} = D_P \frac{\partial^2 C}{\partial x^2} + D_1 \frac{\partial C}{\partial x} + D_2 C,
\]
(3.16)

де \(D_P = \Gamma \lambda^2 \ ch(F\lambda/2kT) \), \(D_1 = \Gamma \lambda^2 \ [-((\lambda/2kT)(\partial F/\partial x)-2/\lambda)ch(F\lambda/2kT)] \), \(D_2 = \Gamma \lambda^2 / kT \ ch(F\lambda/2kT) \partial F/\partial x \).

Однак слід зазначити, що в [161] (3.16) отримано з рівнянь типу (3.13 – 3.15). Але якщо проводиться врахування градієнта рушійної сили в рівнянні – аналогу другого закону Фіка, то дія градієнта \(F \) має бути відображено і в рівнянні – аналогу першого закону Фіка.

У феноменологічній теорії дифузії для опису дифузії в зовнішніх силових полях друге рівняння Фіка записують через відносну атомну концентрацію:

\[
c(x, t) = \frac{N_1(x, t)}{N_1(x, t) + N_2(x, t)},
\]
(3.17)

де \(N_1(x, t) \) – абсолютна концентрація атомів дифузанта, \(N_2(x, t) \) – абсолютна концентрація атомів матриці.

Тоді вираз:

\[
\frac{\partial N_t(r, t)}{\partial t} = \text{div} \left(D_t \ \text{grad}N_t \left(r, t \right) \right).
\]
(3.18)

перетвориться до вигу:

\[
\frac{\partial c(x, t)}{\partial t} = D \frac{\partial^2 c(x, t)}{\partial x^2}.
\]
(3.19)

у разі, якщо \(D = \text{Const} \), і дифузію як і раніше вважаємо однорідною.

Якщо на кожен дифундуючий атом буде діяти додаткова сила \(F \), то перше рівняння Фіка буде мати вигляд:

\[
j = -D \frac{\partial c}{\partial x} + \frac{DF}{kT} C.
\]
(3.20)

Тоді друге рівняння Фіка може бути записано у вигляді:

\[
\frac{\partial c(x, t)}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial c(x, t)}{\partial x} - \frac{DF}{kT} C \right).
\]
(3.21)
або
\[
\frac{\partial c(x,t)}{\partial t} = D \frac{\partial^2 c(x,t)}{\partial x^2} - \frac{D}{kT} \frac{\partial}{\partial x} (cF).
\] (3.22)

якщо D не залежить від x.

У випадку, коли можливе представлення F = – grad U, де U (x, y, z) – потенціал зовнішнього поля. Тоді для одномірного випадку:

\[
\frac{\partial c(x,t)}{\partial t} = D \frac{\partial}{\partial x}\left(\frac{\partial c(x,t)}{\partial x} - \frac{c}{kT} \frac{\partial U(x)}{\partial x}\right).
\] (3.23)

Для знаходження c(x,t), у випадку рівняння (3.23), необхідно встановити вид потенціалу U(x), а також задати відповідні крайові умови.

Згідно закону Арреніуса [154], що описує залежність коефіцієнта дифузії від температури, було розраховано енергію активації:

\[
D = D_0 \exp\left(-\frac{E}{RT}\right)
\] (3.24)

де D_0 – предекспоненціальний фактор, E_a – енергія активації, R – універсальна газова стала, T – температура.

Предекспоненціальний фактор D_0 розраховують використовуючи рівняння [154]:

\[
D_0 = \gamma a^2 \nu
\] (3.25)

де γ – коефіцієнт пропорційності, величина порядку одиниці, a – період гратки, ν – середня частота коливань атома, яку зазвичай приймають рівною дебаєвській частоті, тобто 10^{12} – 10^{13} с^{-1}.

Логарифмуючи рівняння 3.24 отримуємо:

\[
\ln D = \ln D_0 - \frac{E}{RT}
\] (3.26)

Використовуючи 3.26 знаходимо рівняння для розрахунку енергії активації:

\[
E_a = -RT \ln \left(\frac{D}{D_0}\right)
\] (3.27)
Використовуючи рівняння (3.27) було розраховано енергію активації В та Cu при проведені борування та бороміднення без застосування ЗМП та при його одночасній дії.

Встановлено, що при дифузійному боруванні без дії ЗМП енергія активації бору становить 89 кДж/моль. Накладання магнітного поля призводить до зменшення величини енергії активації бору і при боруванні з одночасною дією ЗМП вона становить 72 кДж/моль.

Енергія активації міді при боромідненні без дії ЗМП становить 177 кДж/моль, тоді як накладання магнітного поля призводить до зменшення Е\textsubscript{а} – 155 кДж/моль.

3.2 Розрахунок термодинамічного потенціалу перебігу хімічних реакцій при боруванні та боромідненні в різних фізико-хімічних умовах

В процесі формування боридних та бороміднених покриттів відбувається масообмін між поверхнею матеріалу й активним газовим середовищем, яке утворюється в реакційному просторі у процесі проходження хімічних реакцій. Ці реакції можуть проходити одночасно або послідовно, причому не тільки в об’ємі активної газової фази, але й на межі поділу з оброблюваним матеріалом, а також всередині останнього. Саме ці реакції суттєво впливають на перебіг процесу формування покриттів [162–165].

Проведення експериментальних досліджень передувало визначення основних хімічних реакцій, які проходять у закритому реакційному середовищі за допомогою термодинамічного аналізу. В якості вихідних компонентів використовували порошки карбіду бору, оксиду міді та фторопласту, нагрів та витримка яких, у замкнутому реакційному просторі призводить до проходження великої кількості хімічних реакцій [166–167].

Було розраховано більше 100 окисно-відновлювальних реакцій, які проходять при комплексному насиченні сталей бором чи бором та міддю.
Для визначення термодинамічної можливості перебігу хімічних реакцій, розраховували зміну термодинамічного потенціалу хімічних реакцій при різних значеннях температури за допомогою програми HSC 5.1 CHEMISTRY (додаток А).

У результаті досліджень було виокремлено групу реакцій, в яких термодинамічна ймовірність утворення продуктів взаємодії значно вища від решти реакцій (рис. 3.2 та рис. 3.3).

1. \(14 \text{Fe} + \text{B}_2\text{O}_3 + 3\text{B}_4\text{C} = 14\text{FeB} + 3\text{CO}(g) \)
2. \(28 \text{Fe} + \text{B}_2\text{O}_3 + 3\text{B}_4\text{C} = 14\text{Fe}_2\text{B} + 3\text{CO}(g) \)
3. \(42 \text{Fe} + 2\text{B}_2\text{O}_3 + 6\text{B}_4\text{C} = 14\text{Fe}_2\text{B} + 14\text{FeB} + 6\text{CO}(g) \)

4. \(7\text{Cr} + \text{B}_2\text{O}_3 + 3\text{B}_4\text{C} = 7\text{CrB}_2 + 3\text{CO}(g) \)
5. \(14\text{Cr} + \text{B}_2\text{O}_3 + 3\text{B}_4\text{C} = 14\text{CrB} + 3\text{CO}(g) \)
6. \(70\text{Cr} + 3\text{B}_2\text{O}_3 + 9\text{B}_4\text{C} = 14\text{Cr}_3\text{B}_3 + 9\text{CO}(g) \)
7. \(91\text{Cr} + 5\text{B}_2\text{O}_3 + 15\text{B}_4\text{C} = 14\text{Cr}_5\text{B}_3 + 14\text{CrB} + 7\text{CrB}_2 + 15\text{CO}(g) \)

8. \(7\text{Mn} + \text{B}_2\text{O}_3 + 3\text{B}_4\text{C} = 7\text{MnB}_2 + 3\text{CO}(g) \)
9. \(14\text{Mn} + \text{B}_2\text{O}_3 + 3\text{B}_4\text{C} = 14\text{MnB} + 3\text{CO}(g) \)
10. \(28\text{Mn} + \text{B}_2\text{O}_3 + 3\text{B}_4\text{C} = 14\text{Mn}_2\text{B} + 3\text{CO}(g) \)
11. \(49\text{Mn} + 3\text{B}_2\text{O}_3 + 9\text{B}_4\text{C} = 14\text{Mn}_2\text{B} + 14\text{MnB} + 7\text{MnB}_2 + 9\text{CO}(g) \)

12. \(3\text{Cu}_2\text{O} + 2\text{Fe} = 6\text{Cu} + \text{Fe}_2\text{O}_3 \)
13. \(3\text{Cu}_2\text{O} + 2\text{Cr} = 6\text{Cu} + \text{Cr}_2\text{O}_3 \)
14. \(2\text{Cu}_2\text{O} + \text{Mn} = 4\text{Cu} + \text{MnO}_2 \)
15. \(7\text{Cu}_2\text{O} + \text{B}_3\text{C} = 14\text{Cu} + 2\text{B}_2\text{O}_3 + \text{CO}(g) \)

16. \(13,86\text{Fe} + \text{B}_2\text{O}_3 + 3\text{B}_4\text{C} + 14\text{Cr} = 12,6\text{Fe}_{1.1}\text{Cr}_{0.9}\text{B}_{0.9} + 3\text{CO}(g) \)
17. \(14\text{Fe} + \text{B}_2\text{O}_3 + 3\text{B}_4\text{C} + 14\text{Cr} = 14\text{FeCrB} + 3\text{CO}(g) \)
Рисунок 3.2 – Залежність зміни вільної енергії утворення боридних фаз від температури: а – Fe, б – Cr, в – Mn, г – Cu$_2$O (1 – 15 – номер термохімічних реакцій)

Рисунок 3.3 – Залежність зміни вільної енергії утворення боридних фаз від температури (3, 7, 11, 15 – номер термохімічних реакцій)
З рис. 3.2 та рис. 3.3 випливає, що термодинамічна ймовірність утворення боридних фаз FeB, Fe₂B, CrB, FeCrB із підвищенням температури зростає про що свідчить зменшення вільної енергії Гіббса.

З отриманих даних можна зробити висновок, що при одночасному насиченні сталі 40X15Г8САФ бором чи бором та міддю на поверхні формується покриття, яке складається з боридів FeB, FeCrB, CrB та Fe₂B, а при комплексному насиченні бором та міддю також з’являється ймовірність присутності у дифузійному шарі скупчень міді. Згідно рис. 3.2 (г) Cu₂O, який використовується при боромідненні, як джерело міді, може вступати в реакцію із Fe, Cr, Mn, B₄C з утворенням атомарної міді, яка і дифундує в поверхневі шари дифузійного боридного покриття.

Відповідно до рис. 3.3 можна стверджувати, що так як для реакції 7 отримано саме більше від’ємне значення енергії Гіббса при 975 °C, то ймовірно ця реакція буде протікати першою з утворенням бориду CrB. Наступною згідно розрахунку буде протікати реакція 3 з утворенням боридів FeB та Fe₂B.

FeCrB – це нестехіометричне з’єднання і для нього неможливо розрахувати значення енергії Гіббса, але так як рентгенофазовий аналіз показав існування такого з’єднання, то можна стверджувати, що ΔG цього з’єднання менше 0.

Висновки до розділу 3

Знайдено кореляцію між фазовим складом боридних фаз та термодинамічними розрахунками перебігу хімічних реакцій при дифузійному боруванні та боромідненні сталей. Встановлено, що застосування зовнішнього магнітного поля призводить до зростання коефіцієнтів дифузії бору та міді на порядок та зменшення їх енергії активації.
РОЗДІЛ 4
ВПЛИВ ЗОВНІШНЬОГО МАГНІТНОГО ПОЛЯ НА ПРОЦЕС НАСИЧЕННЯ БОРОМ ТА МІДДЮ ВУГЛЕЦЕВИХ СТАЛЕЙ

Хіміко-термічна обробка металів та сплавів в магнітному полі відноситься до комбінованих способів впливу на структуру. Особливість такого методу полягає у використанні енергії зовнішнього магнітного поля (ЗМП) (постійного, змінного або імпульсного) для впливу на термодинаміку, механізм і кінетику фазових переходів з метою отримання стійких змін структури і властивостей, корисних для експлуатації.

В даному розділі проведено дослідження структури, кінетики росту, мікротвердості фазового та хімічного складу, шорсткості, тріщинності та зносостійкості боридних покриттів отриманих на вуглецевих сталях при комплексному насиченні бором і міддю в різних фізико-хімічних умовах, а саме проведення насичення без застосування зовнішнього магнітного поля (ЗМП) та при його одночасному накладанні.

4.1 Структура комплексних боридних покриттів, отриманих в різних фізико-хімічних умовах

При нагріванні тиглів до 975 °C в борувальній суміші на поверхні деталей утворюється плівка з B₂O₃ у розплавленому стані. Ця плівка слугує джерелом двох- та тривалентних іонів бору, які мають свої магнітні моменти.

Дифузійне масоперенесення іонів бору до основного фронту реакції на сталевій матриці призводить до утворення осередків фази Fe₂B при досягненні концентрації бору 33 ат. % в залізі, якими поступово заростає вся сталева поверхня. При зростанні концентрації B до 49 ат. % утворюються осередки фази FeB, які поступово поширюються по поверхні фази Fe₂B. Наступне вростання фази Fe₂B в сталеву матрицю пов’язане з дифузією іонів бору через фазу FeB.
Металографічним аналізом встановлено, що при застосуванні ЗМП змінюються морфологія боридних шарів, гольчатість зерен різко зменшується, зникають окремо пророслі в матрицю зерна боридів (рис. 4.1 – рис. 4.6). Гольчаті зерна боридних фаз щільно прилягають один до одного та формується суцільний, однорідний боридний шар, товщина якого у 1,5 – 2 рази вища, ніж при боруванні без ЗМП за однакової тривалості насичення деталей [168–171].

Рисунок 4.1 – Мікроструктури комплексних боридних покриттів на сталі 20, отриманих в різних фізико-хімічних умовах (збільшення: х200): борування без ЗМП, тривалість насичення 1 год (а), 2 год (в) та 4 год (ґ); борування в умовах дії ЗМП, тривалість насичення 30 хв (б), 1 год (г) та 2 год (д), (теплове травлення при 400 °C)
Рисунок 4.2 – Мікроструктури комплексних боридних покриттів на сталі 20, отриманих в різних фізико-хімічних умовах: а – комплексне насичення бором та міддю без дії ЗМП, тривалість насичення 1 год, х200; б – комплексне насичення бором та міддю в умовах дії ЗМП, тривалість насичення 30 хв, х200; в – комплексне насичення бором та міддю без дії ЗМП, тривалість насичення 2 год, х200; г – комплексне насичення бором та міддю в умовах дії ЗМП, тривалість насичення 1 год, х200; ґ – комплексне насичення бором та міддю без дії ЗМП, тривалість насичення 4 год, х200; д – комплексне насичення бором та міддю в умовах дії ЗМП, тривалість насичення 2 год, х200, (теплове травлення при 400 °C)
Рисунок 4.3 – Мікроструктури комплексних боридних покриттів на сталі 45, отриманих в різних фізико-хімічних умовах: а – борування без дії ЗМП, тривалість насичення 1 год, х200; б – борування в умовах дії ЗМП, тривалість насичення 30 хв, х200; в – борування без дії ЗМП, тривалість насичення 2 год, х200; г – борування в умовах дії ЗМП, тривалість насичення 1 год, х200; д – борування без дії ЗМП, тривалість насичення 4 год, х200; (теплове травлення при 400 °C)
Рисунок 4.4 – Мікроструктури комплексних боридних покриттів на сталі 45, отриманих в різних фізико-хімічних умовах:
а – комплексне насичення бором та міддю без дії ЗМП, тривалість насичення 1 год, х200;
б – комплексне насичення бором та міддю в умовах дії ЗМП, тривалість насичення 30 хв, х200;
в – комплексне насичення бором та міддю без дії ЗМП, тривалість насичення 2 год, х200;
г – комплексне насичення бором та міддю в умовах дії ЗМП, тривалість насичення 1 год, х200;
д – комплексне насичення бором та міддю без дії ЗМП, тривалість насичення 4 год, х200;
(теплове травлення при 400 °С)
Рисунок 4.5 – Мікроструктури комплексних боридних покриттів на сталі У10, отриманих в різних фізико-хімічних умовах: а – борування без дії ЗМП, тривалість насичення 2 год, x200; б – борування без дії ЗМП, тривалість насичення 4 год, x200; в – борування в умовах дії ЗМП, тривалість насичення 30 хв, x200; г – борування в умовах дії ЗМП, тривалість насичення 1 год, x200, (теплове травлення при 400 °C)

Як відомо магнітне поле (МП) – складова електромагнітного поля, яка створюється змінним у часі електричним полем, рухомими електричними зарядами або спінами заряджених частинок. Магнітне поле спричиняє силову дію на рухомі електричні заряди (сила Лоренца). В нашому випадку магнітне поле взаємодіє з власними магнітними моментами іонів бору, що і спричиняє направленний рух іонів бору до сталеної поверхні матеріалу, що насичується, та прискорює утворення боридних фаз FeB та Fe₂B. Ймовірно, магнітне поле спричиняє деяке зміщення в розташуванні спінів в атомах решітки аустеніту, а це впливає на ефективний радіус атома аустеніту і, як наслідок, може приводити до незначного розширення пор в кристалічній гратці. Останнє в свою чергу зменшує енергію активації для дифузійного проникнення атомів бору в глибші шари сталевої матриці.
Рисунок 4.6 – Мікроструктури комплексних боридних покриттів на сталі У10, отриманих в різних фізико-хімічних умовах: а – комплексне насичення бором та міддю без дії ЗМП, тривалість насичення 2 год, х200; б – комплексне насичення бором та міддю без дії ЗМП, тривалість насичення 4 год, х100; в – комплексне насичення бором та міддю в умовах дії ЗМП, тривалість насичення 30 хв, х200; г – комплексне насичення бором та міддю в умовах дії ЗМП, тривалість насичення 1 год, х200 (теплове травлення при 400 °C)

В системі Fe – В масоперенесення елементів здійснюється переважно шляхом дифузії бору через боридний шар до основного фронту реакції, розташованому на міжфазних границях залізо – борид Fe₂B і борид Fe₂B – борид FeB. При формуванні дифузійного шару на поверхні металу по досягненні граничного насичення бором твердого розчину (γ) спочатку виникає зародок, а потім голки тетраонального бориду Fe₂B (a = 5,109 Å, c = 4,249 Å і c/a = 0,832 Å), що містить 8,84% В, густина якого складає 7,336 г\cm³.

Голки тетраонального бориду ростуть поступово замикаючись в суцільний шар боридів Fe₂B. Потім на поверхні боридного шару виникають
відокремлені голки фази FeB, а після цього утворюється другий шар ромбічного бориду FeB, котрий має густину 6,706 г\(\text{cm}^3\) \((a = 5,506\text{Å}, b=4,061\text{Å} \text{ i } c = 2,952\text{Å})\), що містить 16,25% В. Застосування магнітного поля призводить до розрихлювання ґратки і швидшому проникненню атому В в кристалічну ґратку Fe.

4.2 Кінетика росту боридних покриттів

Проведено дослідження кінетики росту боридних шарів в різних фізико-хімічних умовах. Встановлено, що після дифузійного насичення в борувальній суміші протягом 4 годин без ЗМП отримуємо покриття, товщина яких складала 125–160 мкм, тоді, як при накладанні ЗМП формуються покриття товщиною 160–200 мкм за 2 години; при боромідненні протягом 4 годин без ЗМП формуються покриття товщиною 165–200 мкм, тоді, як при боромідненні в умовах дії ЗМП за 2 години дифузійного насичення виростають боридні фази товщиною 180–225 мкм (рис. 4.7 та рис. 4.8) [172–174].

Рисунок 4.7 – Кінетичні криві росту боридних покриттів, отриманих після: 1 – борування із застосуванням ЗМП, сталь 20; 2 – борування із застосуванням ЗМП, сталь 45; 3 – борування із застосуванням ЗМП, У10; 4 – борування без застосуванням ЗМП, сталь 20; 5 – борування без застосуванням ЗМП, сталь 45; 6 – борування без застосуванням ЗМП, У10.
Рисунок 4.8 – Кінетичні криві росту боридних покриттів, отриманих після: 1 – комплексного насичення бором та міддю в умовах дії ЗМП, сталь 20; 2 – комплексного насичення бором та міддю в умовах дії ЗМП, сталь 45; 3 – комплексного насичення бором та міддю в умовах дії ЗМП, У10; 4 – комплексного насичення бором та міддю без дії ЗМП, сталь 20; 5 – комплексного насичення бором та міддю без дії ЗМП, сталь 45; 6 – комплексного насичення бором та міддю без дії ЗМП, У10

4.3 Мікротвердість боридних фаз

Дослідження мікротвердості боридних фаз після борування при одночасній дії ЗМП показало, що мікротвердість фази FeB – 19–20 ГПа, а фази Fe$_2$B – 17–18 ГПа, без дії магнітного поля – FeB – 17–18 ГПа, Fe$_2$B – 15–16 ГПа. При комплексному насиченні бором та міддю із застосуванням ЗМП отримуємо боридні шари з мікротвердістю – для фази (Fe,Cu)B – 17–18 ГПа, а для фази (Fe,Cu)$_2$B – 15–16 ГПа, без дії магнітного поля (Fe,Cu)B – 15,5–16,5 ГПа, а для фази (Fe,Cu)$_2$B – 13,5–14,5 ГПа. Таким чином, спостерігається зростання мікротвердості фаз FeB, Fe$_2$B та (Fe,Cu)B, (Fe,Cu)$_2$B на 1,5–2 ГПа, отриманих в умовах дії магнітного поля, що, ймовірно, пов’язано із подрібненням блочної структури боридних зерен до 38,3 нм порівняно із 66,1 нм для фази FeB, отриманої без дії ЗМП. При комплексному насиченні бором та міддю, спостерігаємо зменшення мікротвердості боридних шарів порівняно із боруванням.
Рисунок 4.9 – Мікротвердість боридних фаз на вуглецевих сталях після борування в різних фізико-хімічних умовах: 1 – сталь 20 + МП; 2 – сталь 45 + МП; 3 – У10 + МП; 4 – сталь 45 без МП

Рисунок 4.10 – Мікротвердість боридних фаз на вуглецевих сталях після комплексного насичення бором та міддю в різних фізико-хімічних умовах: 1 – сталь 20 + МП; 2 – сталь 45 + МП; 3 – У10 + МП; 4 – сталь 45 без МП

4.4 Хімічний аналіз комплексних боридних покриттів

Розподіл елементів по перерізу дифузійного боридного шару, отриманого на сталі 20 та 45 після комплексного насичення бором

з додаванням Cu₂O, як джерела міді, в різних фізико-хімічних умовах представлено на рис. 4.11 – рис. 4.14 та табл. 4.1 – табл. 4.4.

Локальним мікрорентгеноспектральним аналізом встановлено дискретний розподіл міді в поверхневому шарі фази FeB до 20 мкм покриття. Мідні вкраплення можуть накопичуватися в порах боридних покриттів і оточувати їх стінки (рис. 4.11 та табл. 4.1) [175–177].

Рисунок 4.11 – Структура поперечного шліфа з дифузійним боридним покриттям, отриманого при комплексному насиченні бором та міддю без дії ЗМП на сталі 20 (хімічний аналіз визначався в точках +1, +2, +3, +4, +5, +6, +7, +8)

Таблиця 4.1 – Хімічний склад дифузійного шару, отриманого після комплексного насичення бором та міддю на сталі 20 без застосування ЗМП

<table>
<thead>
<tr>
<th>Елементи</th>
<th>Позиція на структурі (рис. 4.11)</th>
<th>має. %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+1</td>
<td>+2</td>
</tr>
<tr>
<td>Fe (K)</td>
<td>2,38±0,06</td>
<td>2,69±0,07</td>
</tr>
<tr>
<td>Cu (K)</td>
<td>97,62±1,50</td>
<td>97,31±1,80</td>
</tr>
</tbody>
</table>
Накладання магнітного поля при комплексному насиченні бором та міддю спричинює збільшення коефіцієнту дифузії міді в поверхневих шарах боридних покриттів від $7,8 \cdot 10^{-11}$ см2/с до $4,1 \cdot 10^{-10}$ см2/с. Локальним мікрорентгеноспектральним аналізом встановлено, що мідь при такому способі насичення проникає на глибину до 30 мкм (рис. 4.12 та табл. 4.2), порівняно з 20 мкм при традиційному боромідненні без ЗМП.

Рисунок 4.12 – Структура поперечного шліфа з дифузійним боридним покриттям, отриманого при комплексному насиченні бором та міддю в умовах дії ЗМП на сталі 20 (хімічний аналіз визначався в точках +1, +2, +3, +4, +5, +6, +7, +8)

Таблиця 4.2 – Хімічний склад дифузійного шару, отриманого після комплексного насичення бором та міддю на сталі 20 при одночасній дії ЗМП

<table>
<thead>
<tr>
<th>Елементи</th>
<th>Позиція на структурі (рис. 4.12)</th>
<th>мас. %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+1</td>
<td>+2</td>
</tr>
<tr>
<td>Fe (K)</td>
<td>1,33±0,05</td>
<td>22,09±0,74</td>
</tr>
<tr>
<td>Cu (K)</td>
<td>98,67±2,53</td>
<td>77,91±2,19</td>
</tr>
</tbody>
</table>
Рисунок 4.13 – Структура поперечного шліфа з дифузійним боридним покриттям, отриманого при комплексному насиченні бором та міддю без дії ЗМП на сталі 45 (хімічний аналіз визначався в точках +1, +2, +3, +4, +5, +6, +7, +8); ділянка зони поверхневої фази FeB

Таблиця 4.3 – Хімічний склад дифузійного шару, отриманого після комплексного насичення бором та міддю на сталі 45 без застосування ЗМП

<table>
<thead>
<tr>
<th>Елементи</th>
<th>Позиція на структурі (рис. 4.13)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+1</td>
</tr>
<tr>
<td>Fe (К)</td>
<td>11,11±0,40</td>
</tr>
<tr>
<td>Cu (К)</td>
<td>88,89±2,52</td>
</tr>
</tbody>
</table>

Рисунок 4.14 – Структура поперечного шліфа з дифузійним боридним покриттям, отриманого при комплексному насиченні бором та міддю в умовах дії ЗМП на сталі 45 (хімічний аналіз визначався в точках +1, +2, +3, +4, +5, +6, +7, +8), ділянка зони поверхневої фази FeB
Таблиця 4.4 – Хімічний склад дифузійного шару, отриманого після комплексного насичення бором та міддю на сталі 45 при одночасній дії ЗМП

<table>
<thead>
<tr>
<th>Елементи</th>
<th>Позиція на структурі (рис. 4.14)</th>
<th>мас. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe (K)</td>
<td>+1, +2, +3, +4, +5, +6, +7, +8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,28±0,05 0,77±0,39 3,19±0,13 7,13±0,34 27,76±0,79 71,88±2,17 95,34±2,48 100±2,85</td>
<td></td>
</tr>
<tr>
<td>Cu (K)</td>
<td>+1, +2, +3, +4, +5, +6, +7, +8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>98,72±2,78 99,23±3,25 96,81±3,05 92,87±2,96 72,24±2,07 28,12±0,90 4,66±0,55 0,00</td>
<td></td>
</tr>
</tbody>
</table>

4.5 Фазовий аналіз комплексних боридних шарів

Для встановлення взаємозв’язку між фазовим складом і структурою, отриманих дифузійних шарів після борування та бороміднення в умовах дії ЗМП та без його впливу, зразки були піддані рентгеноструктурному аналізу [178–179]. Характерні ділянки дифрактограми, показані на рис. 4.15 – рис. 4.18.

Дифрактограми, зняті з поверхні боридних покриттів на сталі 45 після борування без ЗМП показали, що у поверхневому шарі до 15–20 мкм формується фаза FeB (рис. 4.15), а при боромідненні без дії ЗМП – фази FeB, Fe₂B та Cu (рис. 4.16).

Рисунок 4.15 – Дифрактограми, зняті з поверхні сталі 45 з боридними покриттями, отриманими після борування без дії ЗМП
Рисунок 4.16 – Дифрактограми, зняті з поверхні сталі 45 з боридними покриттями, отриманими після комплексного насичення бором та міддю без дії ЗМП. Дифракційні максимуми Cu відповідають кристалографічним площинам: (111), (200), (220), (311)

При накладанні ЗМП у боридних шарах спостерігається зменшення об’єму фази FeB і на дифрактограмах поверхневих шарів боридних покриттів, отриманих після борування, фіксується наявність фаз FeB та Fe₂B (рис. 4.17). Після комплексного насичення бором та міддю в умовах дії зовнішніх магнітних полів фіксуються фази FeB та Cu (рис. 4.18).

Рисунок 4.17 – Дифрактограми, зняті з поверхні сталі 45 з боридними покриттями, отриманими після борування із застосуванням ЗМП
Рисунок 4.18 – Дифрактограми, зняти з поверхні сталі 45 з боридними покриттями, отриманими після комплексного насичення бором та міддю із застосуванням ЗМП. Дифракційні максимуми Cu відповідають кристалографічним площинам: (111), (200), (220), (311), (222)

Накладання ЗМП призводить до перерозподілу кількісного співвідношення боридних фаз в поверхневих шарах, зміни періодів кристалічної гратки, зменшення об’єму елементарної гратки фази FeB (табл. 4.5). При комплексному насиченні бором і міддю об’ємна частка міді в поверхностному шарі, за результатами рентгеноструктурних досліджень, становила 4 %, а при ХТО із накладанням ЗМП кількість мідної складової в поверхневій фазі FeB збільшилась до 18,9 %. Області когерентного розсіювання у фазі FeB, отриманій при насиченні бором та міддю з одночасною дією ЗМП, зменшилися до 38,3 нм порівняно із 66,1 нм у фазі FeB, отриманій без дії ЗМП (табл. 4.6).
Таблиця 4.5 – Параметри кристалічних граток фаз та кількісний фазовий аналіз після борування та бороміднення в різних фізико-хімічних умовах

<table>
<thead>
<tr>
<th>Процес насичення</th>
<th>Фаза</th>
<th>Параметри кристалічної гратки, Å</th>
<th>Об’єм елементарної кристалічної гратки, Å³</th>
<th>Вміст фаз, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Борування без ЗМП</td>
<td>FeB</td>
<td>4,056 5,497 2,945</td>
<td>65,66</td>
<td>100</td>
</tr>
<tr>
<td>Борування + ЗМП</td>
<td>FeB</td>
<td>4,048 5,497 2,943</td>
<td>64,50</td>
<td>15,8</td>
</tr>
<tr>
<td></td>
<td>Fe₂B</td>
<td>5,105 5,105 4,243</td>
<td>110,55</td>
<td>84,2</td>
</tr>
<tr>
<td>Бороміднення без ЗМП</td>
<td>FeB</td>
<td>4,053 5,494 2,942</td>
<td>65,52</td>
<td>62,0</td>
</tr>
<tr>
<td></td>
<td>Fe₂B</td>
<td>5,096 5,094 4,247</td>
<td>110,29</td>
<td>30,5</td>
</tr>
<tr>
<td></td>
<td>Fe</td>
<td>2,949 2,949 2,949</td>
<td>25,64</td>
<td>3,5</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>3,669 3,669 3,669</td>
<td>49,40</td>
<td>4,0</td>
</tr>
<tr>
<td>Бороміднення + ЗМП</td>
<td>FeB</td>
<td>4,054 5,493 2,942</td>
<td>65,51</td>
<td>81,1</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>3,607 3,607 3,607</td>
<td>46,91</td>
<td>18,9</td>
</tr>
</tbody>
</table>

Таблиця 4.6 – Області когерентного розсіювання фази FeB, отриманої в різних фізико-хімічних умовах

<table>
<thead>
<tr>
<th>Процес насичення</th>
<th>Фаза</th>
<th>Області когерентного розсіювання, Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>Борування без ЗМП</td>
<td>FeB</td>
<td>540 ± 9,5</td>
</tr>
<tr>
<td>Борування з одночасною дією ЗМП</td>
<td>FeB</td>
<td>325 ± 16,5</td>
</tr>
<tr>
<td>Бороміднення без ЗМП</td>
<td>FeB</td>
<td>661 ± 21,5</td>
</tr>
<tr>
<td>Бороміднення з одночасною дією ЗМП</td>
<td>FeB</td>
<td>383 ± 53,5</td>
</tr>
</tbody>
</table>
4.6 Дослідження шорсткості комплексних боридних шарів

Дослідження шорсткості комплексних боридних шарів, отриманих у різних фізико-хімічних умовах, показало, що найменший рівень шорсткості \(R_a = 0,0553 \) мкм досягається при комплексному насиченні бором та міддю із застосуванням ЗМП, порівняно з \(R_a = 0,0650 \) мкм при боромідненні без ЗМП. При боруванні в ЗМП \(R_a = 0,0855 \) мкм, порівняно з \(R_a = 0,0961 \) мкм при боруванні без ЗМП (табл. 4.7).

На рис. 4.19 та рис. 4.20, відповідно, представлено топографії та профілограми поверхонь дифузійних боридних та бороміднених покриттів, отриманих в різних фізико-хімічних умовах. Встановлено, що найбільший виступ профілю, який складає 100 мкм притаманний боридним покриттям, отриманим при комплексному насиченні бором та міддю із одночасною дією ЗМП, тоді як без дії ЗМП величина профілю становить 120 мкм. При боруванні без дії ЗМП величина найбільшого профілю становить 140 мкм. Накладання магнітного поля призводить до зменшення величини профілю і при цьому він становить 120 мкм.

Таблиця 4.7 – Параметри шорсткості боридних шарів

<table>
<thead>
<tr>
<th>Процес насичення</th>
<th>(Ra,) мкм</th>
<th>(Rz,) мкм</th>
</tr>
</thead>
<tbody>
<tr>
<td>Борування без ЗМП</td>
<td>0,0961</td>
<td>0,378</td>
</tr>
<tr>
<td>Борування з одночасною дією ЗМП</td>
<td>0,0855</td>
<td>0,348</td>
</tr>
<tr>
<td>Бороміднення без ЗМП</td>
<td>0,0650</td>
<td>0,345</td>
</tr>
<tr>
<td>Бороміднення з одночасною дією ЗМП</td>
<td>0,0553</td>
<td>0,306</td>
</tr>
<tr>
<td>B – Co</td>
<td>0,0951</td>
<td>0,371</td>
</tr>
<tr>
<td>B – Cr</td>
<td>0,0825</td>
<td>0,345</td>
</tr>
<tr>
<td>B – Mn</td>
<td>0,0728</td>
<td>0,329</td>
</tr>
</tbody>
</table>
Рисунок 4.19 – Топографія поверхонь боридних шарів, отриманих в різних фізико-хімічних умовах: а – борування без ЗМП; б – борування + ЗМП; в – бороміднення без ЗМП; г – бороміднення + ЗМП

Рисунок 4.20 – Профілограми поверхонь боридних покриттів, отриманих в різних фізико-хімічних умовах: а – борування без ЗМП; б – борування в умовах дії ЗМП; в – бороміднення без ЗМП; г – бороміднення в умовах дії ЗМП
4.7 Дослідження тріщиностійкості

Розрахункові дані тріщиностійкості та напружень сколювання, які можуть виникати в боридних фазах Fe₂B в залежності від фізико-хімічних умов отримання на сталі 20, 45 та У10 представлено в таблиці 4.8 [180–182].

Встановлено, що найвищий рівень тріщиностійкості досягається в боридних фазах, отриманих в порошкових середовищах за участю порошку міді при накладанні ЗМП, і на сталі 20 відповідно становить 2,2 МПа·м⁰·⁵, при цьому напруження сколювання складає 345 МПа. Тоді, як при боруванні без дії ЗМП тріщиностійкість на сталі 20 – 1,2 МПа·м⁰·⁵, а напруження сколювання – 181 МПа. Підвищення величини напружень сколювання в комплексних бороміднених шарах зумовлено формуванням фаз більшої в'язкості, для яких тріщиностійкість К₁с в 1,4 – 1,7 разів вища за вихідні боридні фази (FeB, Fe₂B).

Таблиця 4.8 – Розрахункові дані тріщиностійкості та напружень сколювання боридних шарів (фаза Fe₂B)

<table>
<thead>
<tr>
<th>Фізико-хімічні умови насичення</th>
<th>Покриття на сталі</th>
<th>К₁с МПа·м⁰·⁵</th>
<th>σсколювання МПа</th>
</tr>
</thead>
<tbody>
<tr>
<td>Борування без ЗМП</td>
<td>Сталь 20</td>
<td>1,2</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>Сталь 45</td>
<td>1,2</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>У10</td>
<td>1,1</td>
<td>163</td>
</tr>
<tr>
<td>Бороміднення без ЗМП</td>
<td>Сталь 20</td>
<td>1,7</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>Сталь 45</td>
<td>1,8</td>
<td>258</td>
</tr>
<tr>
<td></td>
<td>У10</td>
<td>1,6</td>
<td>235</td>
</tr>
<tr>
<td>Борування + ЗМП</td>
<td>Сталь 20</td>
<td>1,4</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Сталь 45</td>
<td>1,5</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>У10</td>
<td>1,5</td>
<td>221</td>
</tr>
<tr>
<td>Бороміднення + ЗМП</td>
<td>Сталь 20</td>
<td>2,2</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>Сталь 45</td>
<td>1,9</td>
<td>275</td>
</tr>
<tr>
<td></td>
<td>У10</td>
<td>1,8</td>
<td>263</td>
</tr>
</tbody>
</table>
4.8 Дослідження зносостійкості комплексних боридних шарів

Проведено дослідження зносостійкості боридних покриттів, отриманих у різних фізико-хімічних умовах [183–186]. Встановлено, що дифузійні боридні покриття, отримані при застосуванні зовнішнього магнітного поля, мають більш високі триботехнічні характеристики (рис. 4.21). Так, середнє лінійне зношування боридних покриттів, отриманих в умовах дії ЗМП, зменшується в 1,5 рази, порівняно з покриттями, отриманими без дії ЗМП, при цьому коефіцієнт тертя зменшується до 0,63, порівняно із 0,66 для дифузійних боридних покриттів, отриманих без дії ЗМП. При спрацюванні боромідишних покриттів, отриманих в умовах дії ЗМП, середнє лінійне зношування зменшується в 1,7 рази, а коефіцієнт тертя зменшується до 0,60, порівняно із 0,64 для боромідишних покриттів, отриманих без дії ЗМП (табл. 4.9). Площа при терті плями контакту на зразку із боридним покриттям, отриманим в умовах дії ЗМП, зменшується на 20 %, а в боромідишних покриттях на 30%, що пов’язано із більш високою мікротвердістю на 1,5–2 ГПа боридного шару та формуванням більш досконалої структури з меншою пористістю.

Рисунок 4.21 – Зносостійкість боридних покриттів, отриманих в різних фізико-хімічних умовах після: 1 – борування без дії ЗМП, 2 – комплексного насичення бором та міддю без дії ЗМП, 3 – борування в умовах дії ЗМП, 4 – комплексного насичення бором та міддю в умовах дії ЗМП.
Таблиця 4.9 – Триботехнічні характеристики боридних покриттів

<table>
<thead>
<tr>
<th>Процес насичення</th>
<th>Коеф. тертя</th>
<th>Лінійне зношування пари тертя I, мкм</th>
<th>Пройденний шлях (шлях тертя, км)</th>
<th>Масове зношування I, (мг/км)</th>
<th>Середнє лінійне зношування пари тертя Iср, мкм/км за 3 км пройденого шляху</th>
<th>Площа плями конт. на зразку S, (см²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Борування без ЗМП</td>
<td>0,66</td>
<td>7</td>
<td>19,5</td>
<td>26</td>
<td>0,94</td>
<td>1,6</td>
</tr>
<tr>
<td>Бороміднення без ЗМП</td>
<td>0,64</td>
<td>6,4</td>
<td>14,7</td>
<td>17,7</td>
<td>0,41</td>
<td>1,3</td>
</tr>
<tr>
<td>Борування + ЗМП</td>
<td>0,63</td>
<td>6,0</td>
<td>8,4</td>
<td>16,4</td>
<td>0,25</td>
<td>0,95</td>
</tr>
<tr>
<td>Бороміднення + ЗМП</td>
<td>0,60</td>
<td>5,2</td>
<td>7,2</td>
<td>10,1</td>
<td>0,25</td>
<td>0,45</td>
</tr>
</tbody>
</table>

Висновки до розділу 4

1. При накладанні ЗМП в боридних шарах спостерігається перерозподіл кількісного співвідношення боридних фаз, зміна періодів кристалічної ґратки, зменшення питомого об’єму фази FeB та зміна морфології боридних шарів. Спостерігається зменшення гольчатості зерен, зникають окремо пророслі в матрицю зерна боридів. Гольчаті зерна боридних фаз щільно прилягають один до одного та формується суцільний, однорідний боридний шар.

2. Проведено дослідження кінетики росту боридних шарів на вуглецевих сталях в різних фізико-хімічних умовах. Встановлено, що після дифузійного насичення вуглецевих сталей в борувальній суміші із застосування ЗМП, при однаковій тривалості насичення, товщина покриття збільшується в 1,5–2 рази, а тривалість насичення скорочується в 2 рази.

3. Встановлено, що формування боридного покриття на вуглецевих сталях при насиченні бором за одночасної дії ЗМП призводить до підвищення
мікротвердості дифузійних шарів на 1,5–2 ГПа, а при комплексному насиченні бором та міддю в умовах дії ЗМП спостерігається підвищення мікротвердості на 1–1,5 ГПа, порівняно із дифузійними шарами, отриманими без дії ЗМП. Підвищення мікротвердості фаз сформованих при дії ЗМП пов’язано із зменшенням параметрів блочної структури, а саме зменшенням областей когерентного розсіювання, що призводить до зростання протяжності границь блоків, які блокують рух дислокацій.

4. Показано, що накладання ЗМП призводить до зменшення характеристик шорсткості дифузійних боридних покриттів – Ra в 1,3 рази та Rz в 1,2 рази.

5. Застосування ЗМП при дифузійному боруванні та боромідненні вуглецевих сталей сприяє підвищенню зносостійкості боридних шарів в 1,5–1,7 рази порівняно із покриттями отриманими при хіміко-термічній обробці без дії ЗМП, що пов’язано із різним фазовим складом поверхні боридних шарів, зростанням мікротвердості на 1,5–2 ГПа, більш високими тріщиноустойкістю та напруженнями сколювання, які зростають до 345 МПа порівняно із 181 МПа для дифузійних боридних шарів отриманих без дії ЗМП на сталі 20.
РОЗДІЛ 5
ВПЛИВ ЗОВНІШНЬОГО МАГНІТНОГО ПОЛЯ НА ПРОЦЕС НАСИЧЕННЯ БОРОМ ТА МІДДЮ МЕТАСТАБІЛЬНИХ АУСТЕНІТНИХ ХРОМОМАРГАНЦЕВИХ АЗОТОМІСТКИХ СТАЛЕЙ

Аустенітна хромомарганцева сталь відноситься до зносостійких сталей в яких метастабільний аустеніт в процесі експлуатації зазнає фазове перетворення з утворення ε – мартенситу. Однак в жорстких умовах інтенсивних навантажень при гідроабразивному зношуванні в різних корозійних середовищах, наприклад, як деталей гідрозатворної арматури із хромомарганцевої сталі, виникає проблема підвищення експлуатаційних характеристик. Ефективним методом підвищення експлуатаційних характеристик є застосування хіміко-термічної обробки (ХТО) з використанням бору та інших насичуючих елементів. ХТО дозволяє створити на поверхні матеріалу структуру, яка складається із високотвердих боридних фаз [187]. Тому значний інтерес представляє дослідження фазового і хімічного складу, товщини, мікротвердості та зносостійкості дифузійних боридних та бороміднених шарів отриманих на сталі 40Х15Г8САФ в різних фізико-хімічних умовах дифузійного насичення.

5.1 Структура комплексних боридних покриттів

Мікроструктурним аналізом встановлено, що після дифузійного насичення сталі 40Х15Г8САФ у боруючій суміші протягом 5 годин формуються дифузійні шари товщиною до 50 мкм (рис. 5.1, а), а при комплексному насиченні бором та міддю за 5 годин дифузійного насичення – до 75 мкм (рис. 5.1, в). Накладання ЗПМ при боруванні протягом 2 годин приводить до збільшення дифузійного боридного шару в 1,8 рази (до 90 мкм) (рис. 5.1, б) та в 1,3 раза при комплексному насиченні бором та міддю (до 100 мкм) (рис. 5.1, г).
Мікроструктура боридного шару, представлена на рис. 5.1(а) та рис. 5.1(б), має шарувату будову та неоднорідний розподіл фаз по перерізу окремого шару через наявність вкрплень іншої фази, які виявляються локальними темними зонами в структурі шару. Покриття складається із різних фаз з розмірами зерен 1–2 мкм, багатогранної чи краплеподібної форми дещо витягнутых у напрямку фронту дифузії насичуючих елементів [188].

Рисунок 5.1 – Мікроструктури комплексних боридних покриттів на сталі 40Х15Г8САФ, отриманих в різних фізико-хімічних умовах:
а – борування без накладання ЗМП, тривалість насичення 5 год, х200;
б – борування в ЗМП, тривалість насичення 2 год, х200; в – комплексне насичення бором та міддю без дії ЗМП, тривалість насичення 5 години, х200;
г – комплексне насичення бором та міддю при одночасні дії ЗМП, тривалість насичення 2 години, х200, (теплове травлення при 400 °C)
Характерним для боридного покриття є наявність дифузійних мікропор орієнтованих вздовж підповерхневого шару (рис. 5.1, б). Структура боридного шару, сформованого при комплексному насиченні бором та міддю в умовах дії ЗМП, має більш виражений шаруватий характер із більшою однорідністю у межах окремого прошарку та меншою кількістю мікропор (рис. 5.1, г).

5.2 Мікротвердість боридних фаз

Дослідження розподілу мікротвердості по перерізу дифузійного боридного шару на сталі 40Х15Г8САФ представлено на рис. 5.2. Показано, що борування дозволяє отримати дифузійні покриття із мікротвердістю поверхневого підшарку до 14,5 ГПа, а формування боридних шарів в умовах дії ЗМП сприяє підвищенню мікротвердості поверхневого підшарку до 19–19,5 ГПа. Мікротвердість бороміднених поверхневих шарів на сталі 40Х15Г8САФ становила 13,0 ГПа, а таких шарів, отриманих в умовах дії ЗМП – 18,0 ГПа (рис. 5.2). Таким чином після борування з одночасною дією ЗМП на поверхні сталі 40Х15Г8САФ отримуємо боридні шари, мікротвердість яких в 1,4 раза вища ніж мікротвердість боридного покриття, отриманого без накладання ЗМП та в 6,5 разів вища, ніж мікротвердість основи (2,5–3 ГПа). При комплексному насиченні хромомаргацевої сталі 40Х15Г8САФ бором та міддю при одновременіні дії ЗМП, спостерігаємо формування більш пластичних дифузійних боридних шарів з меншою в 1,1 рази мікротвердістю, порівняно із боруванням в умовах дії ЗМП (рис. 5.2). Поряд з цим застосування бороміднення з одночасною дією ЗМП призводить до зростання мікротвердості в 1,4 рази, порівняно із боромідненням без впливу ЗМП та в 6 разів, порівняно з матеріалом основи. Застосування ЗМП дозволяє підвищити мікротвердість боридних покриттів на 4–5 ГПа, порівняно з боридними покриттями, отриманими без дії ЗМП. Розподіл мікротвердості в покритті в залежності від відстані
від поверхні має сходинковий характер і вказує на різний фазовий склад по перерізу дифузійного боридного шару (рис. 5.2). При цьому максимальна твердість формується в поверхневому шарі фази FeB, товщиною 10–15 мкм.

Рисунок 5.2 – Зміна мікротвердості по товщині дифузійного боридного покриття на сталі 40Х15Г8САФ, отриманого в різних фізико-хімічних умовах: 1 – борування без дії ЗМП; 2 – комплексне насичення бором та міддю без дії ЗМП; 3 – борування при одночасній дії ЗМП; 4 – комплексне насичення бором та міддю при одночасній дії ЗМП

5.3 Хімічний аналіз комплексних боридних покриттів

Дослідження розподілу елементів по перерізу дифузійного шару на зразках сталі 40Х15Г8САФ після борування та бороміднення в різних фізико-хімічних умовах наведено в табл. 5.1–5.4 та рис. 5.3–5.8. Точковим рентгеноспектральним аналізом боридного покриття виявлено, що хром, який є основним легуючим елементом у сталі 40Х15Г8САФ із вмістом до 15 мас. %, нерівномірно розподілений по перерізу дифузійного шару. Основна концентрація хрому зосереджена в центральній та приграничній до матриці частині боридного покриття. Оскільки товщина боридних покриттів залежала від умов насичення та складу насичуючого середовища,
то в борованих шарах при загальній товщині покриття 45–50 мкм максимальний вміст хрому 18–20 мас. % виявлено на глибині 15–30 мкм. За межами боридного шару вміст хрому різко зменшується до 6 мас. % (рис. 5.3, а; табл. 5.1). Для боридних шарів товщиною 85–90 мкм, отриманих в умовах дії ЗМП, основна частина хрому із вмістом від 17 мас. % до 24 мас. % зосереджується на глибині 30–65 мкм боридного шару (рис. 5.3, б; табл. 5.2).

Рисунок 5.3 – Структура поперечного шліфа з борованими шарами на сталі 40Х15Г8САФ: а – борування без ЗМП, тривалість насичення 5 год; б, в – борування при одночасній дії ЗМП, тривалість насичення 2 год (хімічний аналіз визначався в точках +1, +2, +3, +4, +5, +6, +7, +8, +9)

На рис. 5.4 представлено розподіл Si, V, Cr, Mn, Fe по перерізу дифузійного боридного шару на сталі 40Х15Г8САФ, отриманого після
борування без застосування ЗМП. Встановлено, що максимальна концентрація Si, V, Cr, Mn зосереджена на глибині 20 мкм від поверхні (табл. 5.1). Накладання ЗМП призводить до перерозподілу елементів по товщині дифузійного боридного шару.

Рисунок 5.4 – Розподіл елементів по перерізу дифузійного боридного шару на сталі 40Х15Г8САФ, отриманого після борування без застосування ЗМП
Таблиця 5.1 – Хімічний склад дифузійного шару на сталі 40Х15Г8САФ, отриманого після борування без застосування ЗМП

Наведено дані з таблиці 5.2.

Таблиця 5.2 – Хімічний склад дифузійного шару на сталі 40Х15Г8САФ, отриманого після борування при накладанні ЗМП
Рисунок 5.5 – Розподіл елементів по перерізу дифузійного боридного шару на сталі 40Х15Г8САФ, отриманого після борування при одночасній дії ЗМП

Рентгеноспектральним аналізом встановлено дискретний розподіл міді по перерізу боридного покриття та зосередження окремих вкраплень міді в приповерхневих ділянках боридних фаз (рис. 5.6–5.8, табл. 5.3–5.4). Концентрація міді в окремих зонах поверхневого підшарку товщиною до 15 мкм досягає 96 мас. %, тому на рентгенограмах фіксується фаза міді. Переважно мідь знаходиться в поверхневій фазі FeV. За межами вкраплень міді виявлено плавне зменшення її концентрації по перерізу боридного шару від 1,64 мас. % у приповерхневій зоні до 0,18 мас. % на границі з основою, а в самій основі мідь не виявлено.
Рисунок 5.6 – Структура поперечного шліфа з боридними шарами на сталі 40Х15Г8САФ: а – бороміднення без ЗМП, тривалість насичення 5 год; б, в – бороміднення при одночасній дії ЗМП, тривалість насичення 2 год (хімічний аналіз визначався в точках +1, +2, +3, +4, +5, +6, +7, +8)

При бороміднені розподіл хрому по перерізу дифузійного шару більш рівномірний та має вищу концентрацію на 12–14 мас. % із максимальним вмістом хрому до 20 мас. % в пограничній зоні боридного шару із матрицею. За межами дифузійного шару в матриці сплаву вміст хрому різко знижується до 1,6 мас. %. Такий розподіл хрому добре корелює із фазовим рентгеноструктурним аналізом оскільки високий вміст хрому відповідає розташуванню фази (Fe,Cr)B, а максимальний вміст хрому відповідає фазі CrB.
Рисунок 5.7 – Розподіл елементів по перерізу дифузійного боридного шару на сталі 40Х15Г8САФ, отриманої після комплексного насичення бором та міддю без застосування ЗМП
Рисунок 5.8 – Розподіл елементів по перерізу дифузійного боридного шару на сталі 40Х15Г8САФ, отриманого після комплексного насичення бором та міддю в умовах дії ЗМП
Таблиця 5.3 – Хімічний склад дифузійного шару на сталі 40X15Г8САФ, отриманого після комплексного насичення бором та міддю без застосування ЗМП

<table>
<thead>
<tr>
<th>Елементи</th>
<th>Позиція на структурі (рис. 5.6, а)</th>
<th>+1</th>
<th>+2</th>
<th>+3</th>
<th>+4</th>
<th>+5</th>
<th>+6</th>
<th>+7</th>
<th>+8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>мас. %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si (K)</td>
<td>0,04±0,02</td>
<td>0,06±0,02</td>
<td>0,03±0,01</td>
<td>0,08±0,03</td>
<td>0,00</td>
<td>0,03±0,01</td>
<td>0,00</td>
<td>0,70±0,06</td>
<td></td>
</tr>
<tr>
<td>V (K)</td>
<td>0,37±0,07</td>
<td>0,54±0,03</td>
<td>0,37±0,07</td>
<td>0,26±0,05</td>
<td>0,32±0,06</td>
<td>0,28±0,05</td>
<td>0,30±0,05</td>
<td>0,12±0,03</td>
<td></td>
</tr>
<tr>
<td>Cr (K)</td>
<td>14,99±0,45</td>
<td>12,68±0,44</td>
<td>11,49±0,37</td>
<td>11,58±0,37</td>
<td>11,96±0,37</td>
<td>19,41±0,39</td>
<td>20,09±0,42</td>
<td>1,61±0,16</td>
<td></td>
</tr>
<tr>
<td>Mn (K)</td>
<td>1,38±0,15</td>
<td>3,86±0,19</td>
<td>3,32±0,18</td>
<td>1,16±0,14</td>
<td>5,34±0,21</td>
<td>5,35±0,22</td>
<td>5,43±0,22</td>
<td>3,38±0,18</td>
<td></td>
</tr>
<tr>
<td>Fe (K)</td>
<td>81,58±1,41</td>
<td>81,90±1,55</td>
<td>83,25±1,29</td>
<td>86,64±1,31</td>
<td>81,80±1,24</td>
<td>74,55±1,22</td>
<td>74,09±1,22</td>
<td>94,19±1,34</td>
<td></td>
</tr>
<tr>
<td>Cu (K)</td>
<td>1,64±0,34</td>
<td>0,96±0,05</td>
<td>1,54±0,31</td>
<td>0,28±0,04</td>
<td>0,58±0,06</td>
<td>0,38±0,05</td>
<td>0,18±0,02</td>
<td>0,00</td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 5.4 – Хімічний склад дифузійного шару на сталі 40X15Г8САФ, отриманого після комплексного насичення бором та міддю при одночасній дії ЗМП

<table>
<thead>
<tr>
<th>Елементи</th>
<th>Позиція на структурі (рис. 5.6, б)</th>
<th>+1</th>
<th>+2</th>
<th>+3</th>
<th>+4</th>
<th>+5</th>
<th>+6</th>
<th>+7</th>
<th>+8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>мас. %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si (K)</td>
<td>0,03±0,01</td>
<td>0,64±0,05</td>
<td>0,43±0,07</td>
<td>0,08±0,05</td>
<td>0,03±0,01</td>
<td>0,00</td>
<td>2,53±0,13</td>
<td>0,21±0,06</td>
<td></td>
</tr>
<tr>
<td>V (K)</td>
<td>0,00</td>
<td>0,00</td>
<td>0,16±0,05</td>
<td>0,18±0,05</td>
<td>0,22±0,08</td>
<td>0,25±0,09</td>
<td>0,39±0,10</td>
<td>0,67±0,13</td>
<td></td>
</tr>
<tr>
<td>Cr (K)</td>
<td>0,54±0,06</td>
<td>0,39±0,05</td>
<td>3,28±0,15</td>
<td>12,92±0,29</td>
<td>13,10±0,94</td>
<td>25,77±0,52</td>
<td>26,57±0,50</td>
<td>50,62±0,84</td>
<td></td>
</tr>
<tr>
<td>Mn (K)</td>
<td>0,84±0,07</td>
<td>0,84±0,06</td>
<td>3,32±0,18</td>
<td>13,53±0,44</td>
<td>6,46±0,42</td>
<td>5,44±0,40</td>
<td>13,42±0,49</td>
<td>4,40±0,45</td>
<td></td>
</tr>
<tr>
<td>Fe (K)</td>
<td>2,70±0,09</td>
<td>2,17±0,08</td>
<td>56,82±0,91</td>
<td>70,70±0,94</td>
<td>79,79±1,24</td>
<td>68,09±1,12</td>
<td>54,86±0,93</td>
<td>44,10±1,03</td>
<td></td>
</tr>
<tr>
<td>Cu (K)</td>
<td>95,89±1,70</td>
<td>95,96±1,83</td>
<td>35,99±1,59</td>
<td>2,59±0,24</td>
<td>0,40±0,19</td>
<td>0,45±0,25</td>
<td>2,23±0,30</td>
<td>0,00</td>
<td></td>
</tr>
</tbody>
</table>

Результати аналізу розподілу хрому по перерізу боридного покриття на сталі 40X15Г8САФ представлено на рис. 5.9–5.10. При боруванні сталі 40X15Г8САФ максимальна кількість хрому 19 мас. % в боридному покритті зосереджується на глибині 15–25 мкм, а при боромідненні – на глибині 45 мкм в кількості 20 %.
Рисунок 5.9 – Розподіл хрому по перерізу дифузійного боридного шару на сталі 40X15Г8САФ, отриманого в різних фізико-хімічних умовах: 1 – борування без застосування ЗМП; 2 – борування при одночасній дії ЗМП

Рисунок 5.10 – Розподіл хрому по перерізу дифузійного боридного шару на сталі 40X15Г8САФ, отриманого в різних фізико-хімічних умовах: 1 – бороміднення без дії ЗМП; 2 – бороміднення при одночасній дії ЗМП

Отримані результати розподілу хрому по перерізу покриття корелюють із товщиною прошарків різного фазового складу, який визначено рентгеноструктурними дослідженнями. Таким чином, виявлено незначну кількість хрому у поверхневому шарі, який відповідає фазі FeB. Формування боридних покриттів в умовах дії ЗМП сприяє росту товщини окремих фазових прошарків і загалом всього покриття.
5.4 Рентгеноструктурний аналіз комплексних боридних шарів

Рентгенофазовим аналізом сталі 40Х15Г8САФ з дифузійним покриттям встановлено, що при боруванні без застосування ЗМП у поверхневому шарі до 10–15 мкм формуються фази FeB, (Fe,Cr)B, CrB та Fe₂B (рис. 5.11, а). Пошаровий аналіз дифузійних боридних покриттів, отриманих без дії ЗМП, показав такий фазовий склад: після зішліфовування 15 мкм покриття виявлено фази FeB, (Fe,Cr)B, CrB та Fe₂B (рис. 5.11, б); після зішліфовування 35 мкм – (Fe,Cr)B, CrB та Fe₂B (рис. 5.11, в).

При накладанні ЗМП спостерігається збільшення товщини боридного покриття і зокрема прошарку фази FeB. Унаслідок цього на дифрактограмах поверхневих шарів боридних покриттів, отриманих після борування в умовах дії ЗМП, фіксується наявність фаз FeB, (Fe,Cr)B та CrB (рис. 5.12, а). Після зішліфовування 12 мкм покриття було встановлено такий фазовий склад: FeB, (Fe,Cr)B, CrB та Fe₂B (рис. 5.12, б). Зішліфовування ще 15 мкм не показало зміни фазового складу (FeB, (Fe,Cr)B, CrB та Fe₂B). Це пояснюється збільшенням товщини покриття (рис. 5.12, в).

При дослідженні дифузійних боридних покриттів, отриманих після комплексного насичення бором та міддю без дії ЗМП, було встановлено такий фазовий склад: вихідний стан покриттів (рис. 5.13, а) – FeB, (Fe,Cr)B та Cu; після зішліфовування 15 мкм – FeB, (Fe,Cr)B та CrB (рис. 5.13, б); після зішліфовування 30 мкм – FeB, (Fe,Cr)B, CrB та Fe₂B (рис. 5.13, в). В результаті пошарового аналізу виявлено такий фазовий склад боромідленого покриття починаючи від поверхні: FeB, Cu → (Fe,Cr)B → CrB → Fe₂B.

Після комплексного насичення бором та міддю в умовах дії ЗМП, оскільки формуються покриття більшої товщини, ніж при боруванні, на дифрактограмах фіксуються фази FeB та Cu (рис. 5.14, а). Після зішліфовування 10 мкм покриття було встановлено такий фазовий склад: FeB, (Fe,Cr)B та Cu (рис. 5.14, б), а після зішліфовування ще 15 мкм – FeB, (Fe,Cr)B, CrB та Cu (рис. 5.14, в).
Рисунок 5.11 — Дифрактограми, зняті з поверхні сталі 40Х15Г8САФ з боридними покриттями, отриманими після борування без дії ЗМП, тривалість насичення 5 год.: а — вихідний стан покриттів (після насичення); б — після зішліфування 15 мкм покриття; в — після зішліфування 35 мкм покриття
Дифрактограми, зняті з поверхні сталі 40Х15Г8САФ з боридними покриттями, отриманими після борування в умовах дії ЗМП, тривалість насичення 2 год: а – вихідний стан покриттів (після насичення); б – після зішліфовування 12 мкм покриття; в – після зішліфовування 27 мкм покриття
Рисунок 5.13 – Дифрактограми, зняті з поверхні сталі 40Х15Г8САФ з боридними покриттями, отриманими після комплексного насичення бором та міддю без дії ЗМП, тривалість насичення 5 год.: а – вихідний стан покриттів (після насичення); б – після зішліфовування 15 мкм покриття; в – після зішліфовування 30 мкм покриття. Дифракційні максимуми Cu відповідають кристалографічним площинам: (111), (200), (220), (311)
Рисунок 5.14 – Дифрактограми, зняти з поверхні сталі 40Х15Г8САФ з боридними покриттями, отриманими після комплексного насичення бором та міддю в умовах дії ЗМП, тривалість насичення 2 год.: а – вихідний стан покриттів (після насичення); б – після зішліфовування 10 мкм покриття; всі після зішліфовування 25 мкм покриття. Дифракційні максимуми Cu відповідають кристалографічним площинам: (111), (200), (220), (311), (222)
Накладання ЗМП призводить до зростання окремих прошарків боридних фаз і перерозподілу кількісного співвідношення боридних фаз у поверхневих шарах та зміни періодів кристалічної гратки (табл. 5.5). При комплексному насиченні бором і міддю об’ємна частка міді в поверхневому шарі, за результатами рентгеноструктурних досліджень, становила 2 %, а при ХТО із накладанням ЗМП кількість мідної складової в поверхневій фазі FeB збільшилась до 5 %.

Таблиця 5.5 – Параметри кристалічних граток фаз та кількісний фазовий аналіз поверхні сталі 40Х15Г8САФ після борування та бороміднення в різних фізико-хімічних умовах

<table>
<thead>
<tr>
<th>Процес насичення</th>
<th>Фаза</th>
<th>Параметри кристалічної гратки, Å</th>
<th>Об’єм елементарної кристалічної гратки, Å³</th>
<th>Вміст фаз, %</th>
<th>Области когерентного розсіювання, Å</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>a b c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Борування без дії ЗМП</td>
<td>FeB</td>
<td>4,176 5,554 3,007</td>
<td>70</td>
<td>19</td>
<td>1214 ±27</td>
</tr>
<tr>
<td></td>
<td>Fe₂B</td>
<td>5,118 5,118 4,225</td>
<td>110</td>
<td>1</td>
<td>128 ±23</td>
</tr>
<tr>
<td></td>
<td>FeCrB</td>
<td>14,619 7,287 4,213</td>
<td>449</td>
<td>11</td>
<td>122 ±10</td>
</tr>
<tr>
<td></td>
<td>CrB</td>
<td>2,994 7,820 2,895</td>
<td>68</td>
<td>69</td>
<td>174 ±35</td>
</tr>
<tr>
<td>Борування при дії ЗМП</td>
<td>FeB</td>
<td>4,106 5,558 2,947</td>
<td>67</td>
<td>24</td>
<td>554 ±14</td>
</tr>
<tr>
<td></td>
<td>FeCrB</td>
<td>14,537 7,316 4,211</td>
<td>448</td>
<td>20</td>
<td>37,3 ±8</td>
</tr>
<tr>
<td></td>
<td>CrB</td>
<td>2,959 7,664 2,951</td>
<td>67</td>
<td>56</td>
<td>113,5 ±8</td>
</tr>
<tr>
<td>Бороміднення без дії ЗМП</td>
<td>FeB</td>
<td>4,105 5,540 2,950</td>
<td>67</td>
<td>76</td>
<td>1251 ±41</td>
</tr>
<tr>
<td></td>
<td>FeCrB</td>
<td>14,520 7,370 4,142</td>
<td>443</td>
<td>22</td>
<td>255 ±9</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>3,615 3,615 3,615</td>
<td>47</td>
<td>2</td>
<td>784 ±35</td>
</tr>
<tr>
<td>Бороміднення при дії ЗМП</td>
<td>FeB</td>
<td>4,086 5,504 2,950</td>
<td>66</td>
<td>95</td>
<td>197 ±15</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>3,614 3,614 3,614</td>
<td>47</td>
<td>5</td>
<td>572 ±81</td>
</tr>
</tbody>
</table>

Боридні фази, що формуються в умовах дії магнітного поля мають менші об’єми елементарних кристалічних граток (табл. 5.5) та області
когерентного розсіювання. Зменшення розмірів блочної структури боридних фаз обумовлює зростання мікротвердості дифузійних шарів на 4–5 ГПа, отриманих при боруванні в умовах дії ЗМП та на 3–4 ГПа бороміднених покриттів, отриманих в умовах дії ЗМП (рис. 5.2), що обумовлено зростанням протяжності границь блоків, які блокують рух дислокацій.

5.5 Дослідження зносостійкості комплексних боридних шарів

Борування та бороміднення дозволяє підвищити зносостійкість хромомарганцевої сталі 40Х15Г8САФ як при дії ЗПМ, так і без його впливу (рис. 5.15). Так, швидкість зношування хромомарганцевої сталі 40Х15Г8САФ без покриття за першу годину становила 2,15 \cdot 10^{-6} \text{ кг/м}^2 \cdot \text{с}, тоді як при боруванні без дії ЗМП швидкість зношування становила 1,67 \cdot 10^{-6} \text{ кг/м}^2 \cdot \text{с}, а при боромідненні – 1,39 \cdot 10^{-6} \text{ кг/м}^2 \cdot \text{с}. Застосування борування при одночасній дії ЗМП приводить до зменшення швидкості зношування за першу годину до 0,86 \cdot 10^{-6} \text{ кг/м}^2 \cdot \text{с}, а бороміднення – до 0,65 \cdot 10^{-6} \text{ кг/м}^2 \cdot \text{с}.

З приведених даних видно, що найменша швидкість зношування по завершенню періоду припрацювання властива боридним покриттям, отриманих при комплексному насиченні бором та міддю при одночасній дії ЗМП. При цьому швидкість зношування шарів насичених міддю, отриманих при одночасній дії ЗМП в 3–4 рази менша ніж без покриття. Продовження зношування до 2 – х годин показало, що швидкість спрацювання поверхневих шарів за цей термін становила: сталі 40Х15Г8САФ без насичення 1,53 \cdot 10^{-6} \text{ кг/м}^2 \cdot \text{с}, борування без дії ЗМП – 1,39 \cdot 10^{-6} \text{ кг/м}^2 \cdot \text{с}, бороміднення без дії ЗМП – 0,97 \cdot 10^{-6} \text{ кг/м}^2 \cdot \text{с}, борування при дії ЗМП – 0,78 \cdot 10^{-6} \text{ кг/м}^2 \cdot \text{с}, бороміднення при дії ЗМП – 0,59 \cdot 10^{-6} \text{ кг/м}^2 \cdot \text{с}. На етапі зношування 5 годин швидкість спрацювання дифузійних шарів була відповідно сталі без насичення 1,47 \cdot 10^{-6} \text{ кг/м}^2 \cdot \text{с}, борування без дії ЗМП – 0,92 \cdot 10^{-6} \text{ кг/м}^2 \cdot \text{с}, бороміднення без дії ЗМП – 0,67 \cdot 10^{-6} \text{ кг/м}^2 \cdot \text{с}, борування
при дії ЗМП – 0,61 ∙ 10^{-6} кг/м^2 ∙ с, бороміднення при дії ЗМП – 0,51 ∙ 10^{-6} кг/м^2 ∙ с. Продовження випробування на зносостійкість до 10 годин показало, що швидкість спрацювання дифузійних боридних шарів, отриманих на сталі 40X15Г8САФ без дії ЗМП – 0,72 ∙ 10^{-6} кг/м^2 ∙ с., бороміднення без дії ЗМП – 0,56 ∙ 10^{-6} кг/м^2 ∙ с, борування при дії ЗМП – 0,49 ∙ 10^{-6} кг/м^2 ∙ с, бороміднення при дії ЗМП – 0,47 ∙ 10^{-6} кг/м^2 ∙ с.

Рисунок 5.15 – Гістограма зношування боридних покриттів на сталі 40X15Г8САФ, отриманих в різних фізико-хімічних умовах: 1 – стала 40X15Г8САФ без покриття; 2 – борування без дії ЗМП; 3 – комплексне насичення бором та міддю без дії ЗМП; 4 – борування при одночасній дії ЗМП; 5 – комплексне насичення бором та міддю при одночасній дії ЗМП.

Зносостійкість сталі 40X15Г8САФ після борування зростає в 1,6 разів при коефіцієнті терття 0,53, а дифузійні боридні шари, отримані при накладанні ЗМП, підвищують зносостійкість сталі в 2,4 рази, при коефіцієнті терття 0,48. Застосування бороміднення призводить до підвищення зносостійкості сталі 40X15Г8САФ в 2,2 рази, при коефіцієнті терття 0,42. Боридні шари сформовані на сталі 40X15Г8САФ при боромідненні в умовах дії ЗМП дозволяють підвищити її зносостійкість в 2,7 рази при коефіцієнті терття 0,41.

На всі етапах зношування найменша швидкість спрацювання виявлена в боридних шарах, отриманих при комплексному насиченні бором та міддю при одночасній дії ЗМП (рис. 5.15).
Висновки до розділу 5

1. Формування дифузійних боридних покриттів на сталі 40Х15Г8САФ в умовах дії ЗМП дозволяє в 1,5 – 2 рази зменшити тривалість насичення деталей заданої товщини покриття та отримати більш однорідну структуру боридного шару, який складається із фаз FeB, (Fe,Cr)B, CrB та Fe₂B високої твердості та зносостійкості, а при боромідненні додатково утворюється фаза Cu.

2. Застосування зовнішнього магнітного поля призводить до зростання прошарків боридних фаз в покритті. Спостерігається збільшення кількісного вмісту фази FeB і на дифрактограмах поверхневих шарів боридних покриттів, отриманих після борування в умовах дії ЗМП фікуються фази FeB, (Fe,Cr)B та CrB, а після комплексного насичення бором та міддю в умовах дії ЗМП – FeB та Cu.

3. Показано, що мікротвердість поверхневих шарів сталі 40X15Г8САФ після борування становила 14,5 ГПа, а при боруванні в умовах дії ЗМП вона підвищилась до 19,5 ГПа. Мікротвердість бороміднених поверхневих шарів на сталі 40X15Г8САФ становила 13,0 ГПа, а таких шарів, отриманих в умовах дії ЗМП – 18,0 ГПа. Таким чином борування та бороміднення в умовах дії ЗМП, дозволяє підвищити мікротвердість поверхневих боридних шарів в 1,4 рази, що обумовлено подрібненням блиної структури зерен боридних фаз.

4. Найкращу зносостійкість в умовах сухого ковзання мають боридні фази, сформовані при комплексному насиченні сталі 40Х15Г8САФ бором та міддю за одночасної дії ЗМП, при цьому їх зносостійкість підвищується в 2,7 рази порівняно із сталлю 40X15Г8САФ без покриття та в 1,7 рази, порівняно із сталлю 40X15Г8САФ з боридним покриттям нанесеним без дії ЗМП. Це пояснюється зміною кількісного співвідношення фазового складу, морфології, збільшенням мікротвердості дифузійного покриття та наявністю окремих скупчень міді в поверхневих зонах боридних шарів, які виконують роль твердого мастила.
РОЗДІЛ 6
КОМПЛЕКСНЕ НАСИЧЕННЯ БОРОМ ТА МІДДЮ ТВЕРДИХ СПЛАВІВ ГРУПИ ТК

Подано результати дослідження з формування, комплексних дифузійних боридних шарів в порошкових сумішах на твердих сплавах групи ТК. Визначено фазовий і хімічний склад, товщину та мікротвердість отриманих шарів на твердих сплавах Т15К6 [189–190]. Встановлено, що дифузійні шари, отримані в борувальному середовищі з додаванням мідномістких сполук, що слугують за джерело міді, складаються з фаз TiB, CoB, WC та Cu. Борування дозволяє сформувати боридні фази в поверхневій зоні твердого сплаву із мікротвердістю до 33 ГПа, а бороміднення до 25 ГПа порівняно із основним матеріалом (13,5 ГПа) і таким чином підвищити зносостійкість твердого сплаву Т15К6 в 2–2,2 рази.

Досліджено структуру, фазовий і хімічний склад, товщину дифузійних боридних шарів отриманих після борування та бороміднення із одночасною дією ЗМП на твердому сплаві Т5К10. Встановлено, що застосування зовнішнього магнітного поля дозволяє інтенсифікувати процес дифузійного насичення твердих сплавів бором і за 2 години магнітотермохімічної обробки отримати таку товщину дифузійних боридних шарів яка формується за 4 години хіміко-термічної обробки без дії магнітного поля.

6.1 Структура комплексних боридних та бороміднених покриттів

Мікроструктурним аналізом встановлено, що після дифузійного насичення твердого сплаву Т15К6 в борувальні суміші протягом 4 годин формуються дифузійні шари товщиною до 60 мкм (рис. 6.1, а), а при комплексному насиченні бором та міддю за 4 години дифузійного насичення – до 90 мкм (рис. 6.1, б).
Дослідження структури твердого сплаву T5K10 з дифузійними боридними покриттями, отриманими після борування та бороміднення в різних фізико-хімічних умовах, показало, що після дифузійного борування протягом 4 годин на поверхні твердого сплаву T5K10 формується дифузійний шар товщиною до 25 мкм (рис. 6.2, а), а протягом 6 годин – до 40 мкм (рис. 6.2, б). При застосуванні ЗМП на поверхні твердого сплаву T5K10 формується дифузійний шар товщиною до 20 мкм за 2 години дифузійного насичення (рис. 6.2, в) [191].

Рисунок 6.1 – Мікроструктури боридних покриттів на твердих сплавах T15K6: а – після борування, 4 години, x500; б – після комплексного насичення бором та міддю, 4 години, x500 (теплове травлення при 400 °C)

Рисунок 6.2 – Мікроструктури боридних покриттів на твердому сплаві T5K10, отриманих після борування без дії ЗМП (а, б) за тривалості насичення 4 (а) і 6 (б) годин та в умовах дії ЗМП (в) за тривалості насичення 2 години, x500 (теплове травлення при 400 °C)
При комплексному насиченні бором та міддю за 4 години дифузійного насичення на поверхні твердого сплаву Т5К10 спостерігається формування боридного шару, товщина якого складає до 25 мкм (рис. 6.3, а), а за 6 годин – до 35 мкм (рис. 6.3, б), тоді як при боромідненні із одночасною дією ЗМП за 2 години формується дифузійний шар товщиною до 23 мкм (рис. 6.3, в).

![Рисунок 6.3 – Мікроструктури боридних покриттів на твердому сплаві Т5К10, отриманих після: а – комплексного насичення бором та міддю без дії ЗМП, тривалість насичення 4 години, х500; б – комплексного насичення бором та міддю без дії ЗМП, тривалість насичення 6 години, х500; в – комплексного насичення бором та міддю в умовах дії ЗМП, тривалість насичення 2 години, х500 (теплове травлення при 400 °C)](image)

6.2 Мікротвердість боридних фаз, отриманих на твердому сплаві T15K6 та T5K10

Встановлено, що борування дозволяє підвищити мікротвердість поверхневих шарів твердого сплаву T15K6 в 2,4, а бороміднення 1,8 рази. Після борування на поверхні твердого сплаву T15K6 отримуємо боридні шари, мікротвердість яких становить 31–33 ГПа, тоді як мікротвердість основи становить 13–13,5 ГПа. При комплексному насиченні твердого сплаву T15K6 бором та міддю, отримуємо більш в'язкі шари із мікротвердістю 24–25 ГПа (рис. 6.4). Зменшення мікротвердості бороміднених шарів, отриманих при комплексному насиченні бором та міддю, узгоджується із результатами, отриманими для вуглецевих сталей.
Рисунок 6.4 – Мікротвердість боридних шарів, отриманих на твердому сплаві T15K6 після: 1 – борування; 2 – комплексного насичення бором та міддю

Також проведено дослідження мікротвердості твердого сплаву T5K10 з дифузійними боридними покриттями, отриманих при боруванні та боромідненні із одночасною дією ЗМП та без його впливу (рис. 6.5).

Рисунок 6.5 – Зміна мікротвердості по товщині дифузійного боридного покриття на твердому сплаві T5K10, отриманого в різних фізико-хімічних умовах: 1 – борування без дії ЗМП; 2 – комплексне насичення бором та міддю без дії ЗМП; 3 – борування при одночасній дії ЗМП; 4 – комплексне насичення бором та міддю при одночасній дії ЗМП

При боромідненні твердого сплаву Т5К10 отримували в’язкіші шари, завдяки чому мікротвердість боридних шарів знижується до 25–26 ГПа, тоді як застосування ЗМП дозволяє підвищити мікротвердість бороміднених покриттів до 27–28 ГПа.

Таким чином, застосування ЗМП при боруванні дозволяє підвищити мікротвердість твердого сплаву Т5К10 в 2,4 рази, а бороміднення в 2,2 рази, порівняно із матеріалом основи (12–13 ГПа).

6.3 Мікрорентгеноспектральний аналіз комплексних боридних покриттів

Для визначення хімічного складу шарів з точністю 0,01 мас. % був застосований мікрорентгеноспектральний аналіз за використанням електронного растрового мікроскопу – РЕМ 106И при збільшенні 500 – 2500 разів.

Мікрорентгеноспектральним аналізом проведено дослідження розподілу міді в боридних покриттях. Встановлено, що мідь наявна на поверхні і в приповерхневій зоні дифузійного боридного шару, сформованого при комплексному насиченні твердого сплаву Т15К6 бором та міддю (рис. 6.6, табл. 6.1 та табл. 6.2). При цьому мідь розподіляється в боридному шарі у вигляді окремих вкраплень (табл. 6.1 та табл. 6.2).

Також мікрорентгеноспектральним аналізом проведено дослідження хімічного складу дифузійних боридних шарів, отриманих після борування та комплексного насичення бором та міддю на твердому сплаві Т5К10 в різних фізико-хімічних умовах (рис. 6.7 – рис. 6.10, табл. 6.3 – табл. 6.6).
Рисунок 6.6 – Топографія поверхні (а, в) та структура поперечного шліфа (а, б, г) з боромідненими шарами на твердому сплаві Т15К6:
1 – поверхня, яка знаходиться під кутом 18° відносно шліфа 2 (а); 2 – шліф (а); (хімічний аналіз визначався в точках +1, +2, +3, +4, +5).

Таблиця 6.1 – Хімічний склад дифузійного шару, отриманого після комплексного насичення бором та міддю на твердому сплаві Т15К6

<table>
<thead>
<tr>
<th>Елементи</th>
<th>Позиція на структурі</th>
<th>Рис. 6.6 (а)</th>
<th>Рис. 6.6 (б)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+1</td>
<td>+2</td>
<td>+1</td>
</tr>
<tr>
<td>Ti (К)</td>
<td>мас. %</td>
<td>мас. %</td>
<td>мас. %</td>
</tr>
<tr>
<td>Fe (К)</td>
<td>0,80</td>
<td>0,55</td>
<td>25,39</td>
</tr>
<tr>
<td>Co (К)</td>
<td>0,34</td>
<td>0,85</td>
<td>0,72</td>
</tr>
<tr>
<td>W (К)</td>
<td>10,89</td>
<td>0,37</td>
<td>1,49</td>
</tr>
<tr>
<td>Cu (К)</td>
<td>84,76</td>
<td>98,23</td>
<td>72,38</td>
</tr>
<tr>
<td></td>
<td>мас. %</td>
<td>мас. %</td>
<td>мас. %</td>
</tr>
<tr>
<td>Ti (К)</td>
<td>0,69</td>
<td>2,17</td>
<td>99,08</td>
</tr>
<tr>
<td>Fe (К)</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Co (К)</td>
<td>96,25</td>
<td>96,25</td>
<td>96,25</td>
</tr>
<tr>
<td>W (К)</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Cu (К)</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
</tbody>
</table>
Таблиця 6.2 – Хімічний склад поверхні та дифузійного шару, отриманого після комплексного насичення бором та міддю на твердому сплаві Т15К6

<table>
<thead>
<tr>
<th>Елементи</th>
<th>Позиція на структурі</th>
<th>Рис. 6.6 (в)</th>
<th>Рис. 6.6 (г)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Рис. 6.6 (в)</td>
<td>Рис. 6.6 (г)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+1</td>
<td>+2</td>
<td>+3</td>
</tr>
<tr>
<td>Ti (K)</td>
<td>мас. %</td>
<td>мас. %</td>
<td>мас. %</td>
</tr>
<tr>
<td>0,29</td>
<td>0,05</td>
<td>0,26</td>
<td>0,03</td>
</tr>
<tr>
<td>Fe (K)</td>
<td>мас. %</td>
<td>мас. %</td>
<td>мас. %</td>
</tr>
<tr>
<td>0,76</td>
<td>1,10</td>
<td>0,92</td>
<td>46,35</td>
</tr>
<tr>
<td>Co (K)</td>
<td>мас. %</td>
<td>мас. %</td>
<td>мас. %</td>
</tr>
<tr>
<td>0,98</td>
<td>0,82</td>
<td>1,06</td>
<td>52,08</td>
</tr>
<tr>
<td>W (K)</td>
<td>мас. %</td>
<td>мас. %</td>
<td>мас. %</td>
</tr>
<tr>
<td>0,28</td>
<td>0,68</td>
<td>0,69</td>
<td>0,01</td>
</tr>
<tr>
<td>Cu (K)</td>
<td>мас. %</td>
<td>мас. %</td>
<td>мас. %</td>
</tr>
<tr>
<td>97,70</td>
<td>97,36</td>
<td>97,07</td>
<td>1,53</td>
</tr>
</tbody>
</table>

Рисунок 6.7 – Структура поперечного шліфа з борованими шарами на твердому сплаві Т5К10: а – борування без ЗМП, тривалість насичення 6 год, х500; б – борування без ЗМП, тривалість насичення 6 год, х1000 (хімічний аналіз визначався в точках +1, +2, +3, +4, +5, +6)
Таблиця 6.3 – Хімічний склад дифузійного боридного шару на твердому сплаві Т5К10, отриманого після борування без дії ЗМП

<table>
<thead>
<tr>
<th>Елементи</th>
<th>Позиція на структурі (рис. 6.7, б)</th>
<th>мас. %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+1</td>
<td>+2</td>
</tr>
<tr>
<td>Ti (K)</td>
<td>0,76±0,11</td>
<td>0,73±0,21</td>
</tr>
<tr>
<td>Co (K)</td>
<td>24,47±0,37</td>
<td>19,64±0,67</td>
</tr>
<tr>
<td>W (М)</td>
<td>74,77±1,35</td>
<td>79,63±1,35</td>
</tr>
</tbody>
</table>

Рисунок 6.8 – Структура поперечного шліфа з борованими шарами на твердому сплаві Т5К10 після борування при одночасній дії ЗМП, тривалість насичення 2 год, х1000 (а) та х2500 (б) (хімічний аналіз визначався в точках +1, +2, +3, +4, +5, +6, +7, +8)

Таблиця 6.4 – Хімічний склад дифузійного боридного шару на твердому сплаві Т5К10, отриманого після борування в умовах дії ЗМП

<table>
<thead>
<tr>
<th>Елементи</th>
<th>Позиція на структурі (рис. 6.8, б)</th>
<th>мас. %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+1</td>
<td>+2</td>
</tr>
<tr>
<td>Ti (K)</td>
<td>0,00</td>
<td>0,62±0,17</td>
</tr>
<tr>
<td>Co (K)</td>
<td>18,97±0,70</td>
<td>0,49±0,26</td>
</tr>
<tr>
<td>W (М)</td>
<td>81,03±1,82</td>
<td>98,89±2,44</td>
</tr>
</tbody>
</table>
Рисунок 6.9 – Структура поперечного шліфа з боридними покриттями на твердому сплаві Т5К10, отриманих після комплексного насичення бором та міддю без дії ЗМП за тривалості насичення 6 годин (а – х500; б – х2500) (хімічний аналіз визначався в точках +1, +2, +3, +4)

Таблиця 6.5 – Хімічний склад дифузійного боридного шару на твердому сплаві Т5К10, отриманого після бороміднення без дії ЗМП

<table>
<thead>
<tr>
<th>Елементи</th>
<th>Позиція на структурі (рис. 6.9, б)</th>
<th>+1</th>
<th>+2</th>
<th>+3</th>
<th>+4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Загальний</td>
<td>7,17 ± 0,32</td>
<td>0,22 ± 0,18</td>
<td>0,19 ± 0,10</td>
<td>42,02 ± 0,70</td>
</tr>
<tr>
<td>Ti (K)</td>
<td></td>
<td>0,19 ± 0,10</td>
<td>42,02 ± 0,70</td>
<td>11,31±0,49</td>
<td>12,90 ± 0,61</td>
</tr>
<tr>
<td>Co (K)</td>
<td></td>
<td>12,90 ± 0,61</td>
<td>99,13 ± 1,73</td>
<td>79,06 ± 0,67</td>
<td>0,87 ± 0,46</td>
</tr>
<tr>
<td>W (M)</td>
<td></td>
<td>79,06 ± 0,67</td>
<td>99,13 ± 1,73</td>
<td>79,06 ± 0,67</td>
<td>35,88 ± 0,65</td>
</tr>
<tr>
<td>Cu (K)</td>
<td></td>
<td>0,19 ± 0,10</td>
<td>42,02 ± 0,70</td>
<td>11,31±0,49</td>
<td>0,87 ± 0,46</td>
</tr>
</tbody>
</table>

Рисунок 6.10 – Структура поперечного шліфа з боридними покриттями на твердому сплаві Т5К10, отриманими після комплексного насичення бором та міддю в умовах дії ЗМП, тривалість насичення 2 год, х1000 (а) та х2500 (б) (хімічний аналіз визначався в точках +1, +2, +3, +4, +5, +6)
Таблица 6.6 – Химический состав диффузионного слоя на твердом сплаве T5K10, отмеченного позже комплексного насыщения бором и меди в условиях трения ZМП

<table>
<thead>
<tr>
<th>Элементы</th>
<th>Позиция на структуре (рис. 6.10, б)</th>
<th>Загальный мас. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti (К)</td>
<td>+1</td>
<td>45,75±0,74</td>
</tr>
<tr>
<td></td>
<td>+2</td>
<td>31,81±0,64</td>
</tr>
<tr>
<td></td>
<td>+3</td>
<td>0,49±0,21</td>
</tr>
<tr>
<td></td>
<td>+4</td>
<td>19,16±0,51</td>
</tr>
<tr>
<td></td>
<td>+5</td>
<td>0,42±0,18</td>
</tr>
<tr>
<td></td>
<td>+6</td>
<td>44,68±0,73</td>
</tr>
<tr>
<td>Co (К)</td>
<td>+1</td>
<td>8,30±0,59</td>
</tr>
<tr>
<td></td>
<td>+2</td>
<td>1,32±0,33</td>
</tr>
<tr>
<td></td>
<td>+3</td>
<td>2,27±0,33</td>
</tr>
<tr>
<td></td>
<td>+4</td>
<td>14,92±0,65</td>
</tr>
<tr>
<td></td>
<td>+5</td>
<td>32,35±0,84</td>
</tr>
<tr>
<td></td>
<td>+6</td>
<td>1,74±0,36</td>
</tr>
<tr>
<td>W (М)</td>
<td>+1</td>
<td>45,12±0,77</td>
</tr>
<tr>
<td></td>
<td>+2</td>
<td>66,87±1,24</td>
</tr>
<tr>
<td></td>
<td>+3</td>
<td>97,20±1,85</td>
</tr>
<tr>
<td></td>
<td>+4</td>
<td>65,92±1,21</td>
</tr>
<tr>
<td></td>
<td>+5</td>
<td>67,16±1,18</td>
</tr>
<tr>
<td></td>
<td>+6</td>
<td>53,58±1,17</td>
</tr>
<tr>
<td>Cu (К)</td>
<td>+1</td>
<td>0,83±0,45</td>
</tr>
<tr>
<td></td>
<td>+2</td>
<td>0,53 ± 0,41</td>
</tr>
<tr>
<td></td>
<td>+3</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>+4</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>+5</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>+6</td>
<td>0,00</td>
</tr>
</tbody>
</table>

6.4 Рентгенокристаллографический анализ комплексных боридных слоев

Для установления фазового состава сформированных после комплексного насыщения бором и меди диффузионных слоев проводили рентгеноструктурный анализ (рис. 6.11 и рис. 6.12) [192]. Дифрактограммы, снятые с поверхности образца после борирования (рис. 6.11), указывают на наличие дифракционных максимумов от фаз TiB, CoB, WB, WC, TiC. Позже борирования в середине с добавлением мионометрических сплавов Cu2O або Cu3P (рис. 6.12) на поверхности фиксируются дифракционные максимумы только от TiB, CoB, WC и Cu. Фазы WB и TiC при боромидном вращении отсутствуют на ближе глибину диффузионного слоя и в приповерхностной зоне на глубине до 15 мкм, на якорь проникает рентгеновский промежуток, не фиксируются. Природа этого явления не установлена. При боромидном вращении присутствует зона периода кристаллических граток и об’емов элементарных граток деякого фаз (табл. 6.7 и табл. 6.8). Так, период ромбоидной гратки фазы CoB при насыщенной в боромидном середовище поровинно с борированием сутяг зростают, что приводит до збільшення об’єму елементарной комірки фази CoB від 60,610 Å³ (після борирования) до 63,066 Å³ (після бороміднення). Таке збільшення об’єму СоB ймовірно, пов’язане з утворенням твердих розчинів заміщення кобальту міддю в фазі CoB, оскільки радіус атома Cu (1,28 Å) більший за радіус
атома Co (1,25 Å), і відповідно до подвійної діаграми стану Co – Cu при температурі дифузійного насичення (975 °C) в Co може розчинятись до 5,6 ат. % Cu [59].

Рисунок 6.11 – Дифрактограми, зняті з поверхні твердого сплаву Т15К6 з боридними шарами в Cu Kα монохроматичному випромінюванні після борування

Рисунок 6.12 – Дифрактограми, зняті з поверхні твердого сплаву Т15К6 з боридними шарами, отриманими після комплексного насичення бором та міддю в Cu Kα монохроматичному випромінюванні. Дифракційні максимуми Cu відповідають кристалографічним плоскостям: (111), (200), (220), (311), (222)
Зміна періодів кристалічної гратки спостерігається також для фази TiB. Оскільки атомний радіус Cu менший за атомний радіус Ti (1,46 Å), то утворення твердих розчинів заміщення (Ti,Cu)B призводить до зменшення періодів ромбічної гратки фази на основі TiB. При цьому об’єм елементарної ромбічної комірки зменшується від 88,671 Å³ (після борування) до 88,226 Å³ (після бороміднення).

Таблиця 6.7 – Параметри кристалічної гратки фаз після борування твердого сплаву T15K6

<table>
<thead>
<tr>
<th>Фаза</th>
<th>Параметри кристалічної гратки, Å</th>
<th>Об’єм елементарної кристалічної гратки, Å³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>а</td>
<td>b</td>
</tr>
<tr>
<td>TiB</td>
<td>6,231</td>
<td>3,098</td>
</tr>
<tr>
<td>CoB</td>
<td>3,877</td>
<td>5,188</td>
</tr>
<tr>
<td>WB</td>
<td>3,123</td>
<td>3,123</td>
</tr>
<tr>
<td>WC</td>
<td>2,907</td>
<td>2,907</td>
</tr>
<tr>
<td>TiC</td>
<td>4,318</td>
<td>4,318</td>
</tr>
</tbody>
</table>

Таблиця 6.8 – Параметри кристалічної гратки фаз після комплексного насичення бором та міддю твердого сплаву T15K6

<table>
<thead>
<tr>
<th>Фаза</th>
<th>Параметри кристалічної гратки, Å</th>
<th>Об’єм елементарної кристалічної гратки, Å³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>а</td>
<td>b</td>
</tr>
<tr>
<td>TiB</td>
<td>6,190</td>
<td>3,109</td>
</tr>
<tr>
<td>CoB</td>
<td>3,901</td>
<td>5,314</td>
</tr>
<tr>
<td>WC</td>
<td>2,908</td>
<td>2,908</td>
</tr>
<tr>
<td>Cu</td>
<td>3,613</td>
<td>3,613</td>
</tr>
</tbody>
</table>

При дослідженні поверхні твердого сплаву T5K10 з дифузійними боридними покриттями, сформованими при боруванні без застосування ЗМП рентгеновідзеркаленням аналізом встановлено, що в поверхневому шарі
до 10–15 мкм формуються фази: B_2CoW_2, CoB, TiB, WB, TiC та WC (рис. 6.13, а; табл. 6.9).

При накладанні ЗМП спостерігається зміна фазового складу і на дифрактограмах, знятих з поверхні твердого сплаву T5K10 з дифузійними боридними покриттям, отриманих після борування в умовах дії ЗМП фікрується наявність фаз CoB, CoB_2, TiB, WB, W_2B, TiC та WC (рис. 6.13, б; табл. 6.9).

Рисунок 6.13 – Дифрактограми, зняті з поверхні твердого сплаву T5K10 з боридними шарами, отриманими після борування без дії ЗМП (а) та в умовах дії ЗМП (б) в Cu Kα монохроматичному випромінюванні
При дослідженні дифузійних боридних покриттів, отриманих після комплексного насичення бором та міддю без дії ЗМП було встановлено такий фазовий склад: B_2CoW_2, CoB, WB, TiC, WC та Cu (рис. 6.14, а; табл. 6.9).

Після комплексного насичення бором та міддю в умовах дії ЗМП формуються дифузійні боридні покриття такого фазового складу: B_2CoW_2, TiB, WB, WC та Cu (рис. 6.14, б; табл. 6.9).

Рисунок 6.14 – Дифрактограми, зняті з поверхні твердого сплаву Т5К10 з боридними шарами, отриманими після комплексного насичення бором та міддю без дії ЗМП (а) та в умовах дії ЗМП (б) в Cu Ka монохроматичному випромінюванні. Дифракційні максимуми Cu відповідають кристалографічним площинам: (111), (200), (311), (222), (400)
Таблиця 6.9 – Параметри кристалічних граток фаз та кількісний фазовий аналіз поверхні твердого сплаву T5K10 після борування та бороміднення в різних фізико-хімічних умовах

<table>
<thead>
<tr>
<th>Процес насичення</th>
<th>Фаза</th>
<th>Параметри кристалічної ґратки, Å</th>
<th>Об’єм елементарної кристалічної ґратки, Å³</th>
<th>Области когерентного розсіювання, Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>Борування без дії ЗМП</td>
<td>B₂CoW₂</td>
<td>7,095 4,560 3,186</td>
<td>103,082</td>
<td>151 ± 12</td>
</tr>
<tr>
<td></td>
<td>CoB</td>
<td>3,963 5,253 3,052</td>
<td>63,539</td>
<td>131 ± 9</td>
</tr>
<tr>
<td></td>
<td>TiB</td>
<td>6,232 2,999 4,466</td>
<td>83,490</td>
<td>176 ± 21</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>3,158 8,167 3,013</td>
<td>77,716</td>
<td>204 ± 10</td>
</tr>
<tr>
<td></td>
<td>TiC</td>
<td>4,336 4,336 4,336</td>
<td>81,5</td>
<td>252 ± 49</td>
</tr>
<tr>
<td></td>
<td>WC</td>
<td>2,908 2,908 2,844</td>
<td>20,832</td>
<td>247 ± 22</td>
</tr>
<tr>
<td>Борування при дії ЗМП</td>
<td>Co₂B</td>
<td>5,019 5,019 4,191</td>
<td>105,591</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>TiB</td>
<td>6,118 3,046 4,461</td>
<td>83,146</td>
<td>86 ± 7</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>3,267 8,403 3,033</td>
<td>83,257</td>
<td>97 ± 4</td>
</tr>
<tr>
<td></td>
<td>W₂B</td>
<td>5,497 5,497 4,869</td>
<td>147,117</td>
<td>64 ± 3</td>
</tr>
<tr>
<td></td>
<td>TiC</td>
<td>4,312 4,312 4,312</td>
<td>80,155</td>
<td>58 ± 3</td>
</tr>
<tr>
<td></td>
<td>WC</td>
<td>2,910 2,910 2,837</td>
<td>20,809</td>
<td>98 ± 5</td>
</tr>
<tr>
<td>Бороміднення без дії ЗМП</td>
<td>B₂CoW₂</td>
<td>7,038 4,548 3,168</td>
<td>101,385</td>
<td>134 ± 8</td>
</tr>
<tr>
<td></td>
<td>CoB</td>
<td>3,942 5,257 3,022</td>
<td>62,609</td>
<td>141 ± 7</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>3,252 8,504 3,143</td>
<td>86,916</td>
<td>249 ± 9</td>
</tr>
<tr>
<td></td>
<td>TiC</td>
<td>4,537 4,537 4,537</td>
<td>93,421</td>
<td>65 ± 4</td>
</tr>
<tr>
<td></td>
<td>WC</td>
<td>2,973 2,973 2,872</td>
<td>21,978</td>
<td>108 ± 5</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>3,612 3,612 3,612</td>
<td>47,106</td>
<td>315 ± 28</td>
</tr>
<tr>
<td>Бороміднення при дії ЗМП</td>
<td>B₂CoW₂</td>
<td>6,971 4,549 3,172</td>
<td>100,591</td>
<td>115 ± 10</td>
</tr>
<tr>
<td></td>
<td>TiB</td>
<td>6,183 3,074 4,575</td>
<td>86,948</td>
<td>103 ± 4</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>3,260 8,379 3,146</td>
<td>85,953</td>
<td>105 ± 4</td>
</tr>
<tr>
<td></td>
<td>WC</td>
<td>2,903 2,903 2,833</td>
<td>20,669</td>
<td>94 ± 15</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>3,611 3,611 3,611</td>
<td>47,076</td>
<td>264 ± 18</td>
</tr>
</tbody>
</table>

6.5 Дослідження зносостійкості комплексних боридних шарів

Випробування зносостійкості боридних та бороміднених шарів проводили при прокатці алюмінієвого профілю у виробничих умовах на віджимних роликах, виготовлених із твердого сплаву T15K6 (рис. 6.15) [193].
Рисунок 6.15 – Віджимні ролики (а), топографія поверхні зношування бороміднених шарів на віджимних роликах (б) та секція машини для прокатки алюмінієвого профілю (в, г): 1, 2, 3, 4 – віджимні ролики в процесі роботи

Проведені випробування показали, що боридні шари на твердому сплаві Т15К6 дозволяють підвищити термін експлуатації віджимних роликів в 2 рази, а бороміднені – в 2,2 рази. При роботі віджимних роликів із твердого сплаву Т15К6 без насичення було виготовлено 10 тонн алюмінієвого профілю, а при застосуванні твердого сплаву Т15К6 із боромідненими шарами – 21 тонна.

Висновки до розділу 6

1. Досліджено структуру, фазовий склад, розподіл мікротвердості в боридних та композиційних бороміднених шарах на твердих сплавах
групи ТК, отриманих в порошкових середовищах за участю карбіду бора та мідномісткої сполуки Cu₂O.

2. Рентгеноструктурним фазовим аналізом встановлено, що при дифузійному боруванні твердого сплаву T15K6 в поверхневих шарах на глибині до 15 мкм формуються фази: TiB, WB, CoB, WC, TiC, а при комплексному боромідненні тільки TiB, CoB, WC та додатково виявлена фаза Cu із чіткими рефлексами від площин (111), (200), (220), (311), (222).

3. Рентгеноспектральним аналізом підтверджено локальний розподіл міді в поверхневій зоні боридних шарів, отриманих після бороміднення. Поява в поверхневому шарі, крім боридів, чистої міді, виконуючої роль твердого мастила, дозволяє підвищити зносостійкість ще більше – до 2,2 раза.

4. Борування дозволяє сформувати боридні фази в поверхневій зоні твердого сплаву T15K6 з більшою (до 33 ГПа) мікротвердістю порівняно із основним матеріалом (13,5 ГПа) і за рахунок цього підвищити зносостійкість віджимних роликів в 2 рази.

5. Застосування ЗМП дозволяє в 2 рази скоротити тривалість насичення твердосплавних виробів. Боридні фази, що формуються в умовах дії магнітного поля мають менші періоди, а відповідно й об’єми елементарних кристалічних гроток та менші значення областей когерентного розсіювання.
ВИСНОВКИ

У результаті досліджень вирішено науково-технічні завдання з підвищення рівня фізико-механічних та експлуатаційних властивостей поверхні сталей і сплавів шляхом формування зміцнених шарів дифузійним боруванням та боромідненням у магнітному полі.

Основні наукові та практичні результати полягають в наступному:

1. Вперше встановлено, що в умовах дії ЗМП формування дифузійних боридних покриттів заданої товщини та більш однорідної структури на сталях і сплавах із високими значеннями експлуатаційних характеристик відбувається в 1,5–2 рази швидше порівняно з покриттями, отриманими без дії ЗМП.

Встановлено, що застосування ЗМП дозволяє інтенсифікувати процес дифузійного насичення твердих сплавів бором і за 2 години ХТО в умовах дії ЗМП отримати товщино дифузійних боридних шарів, яка формується за 4 години ХТО без дії магнітного поля.

2. Показано, що застосування ЗМП призводить до зростання в 6 разів коефіцієнтів дифузії бору і в 5 разів міді та зменшення енергії активації бору на 20 %, а міді на 14 % порівняно з боридними покриттями, отриманими без дії ЗМП.

3. Встановлено, що формування боридного покриття на вуглецевих сталях при насиченні бором за одночасної дії ЗМП призводить до підвищення мікротвердості дифузійних шарів на 1,5–2 ГПа: фази FeB до 19–20 ГПа, а фази Fe₂B до 17–18 ГПа, порівняно з боридними фазами, отриманими без дії ЗМП, так мікротвердість фази FeB – 17–18 ГПа, Fe₂B – 14–15 ГПа. При комплексному насиченні бором та міддю в умовах дії ЗМП спостерігається підвищення мікротвердості на 1–1,5 ГПа, порівняно із дифузійними шарами, отриманими без дії ЗМП. Так, мікротвердість фаз, сформованих при ХТО в умовах дії ЗМП, становить:
фази (Fe,Cu)B – 17–18 ГПа, фази (Fe,Cu)₂B – 15–16 ГПа, а без дії ЗМП: (Fe,Cu)B – 15,5–16,5 ГПа, (Fe,Cu)₂B – 13,5–14,5 ГПа.

Борування із одночасною дією ЗМП хромомарганцевих сталей призводить до підвищення мікротвердості дифузійних боридних шарів на 4–5 ГПа (18,5–19,5 ГПа), а бороміднення при дії ЗМП – на 3–4 ГПа (17–18 ГПа), порівняно з боридними покриттями, сформованими без впливу ЗМП (13,5–14,5 ГПа); твердих сплавів на 2–3 ГПа (30–31 ГПа) при боруванні та на 1–2 ГПа (27–28 ГПа) при боромідненні в умовах дії ЗМП, порівняно з дифузійними боридними шарами, сформованими при боруванні (27–28 ГПа) та боромідненні (25–26 ГПа) без впливу ЗМП.

Підвищення мікротвердості фаз, сформованих при дії ЗМП, пов’язано із зменшенням розмірів блочної структури, а саме зменшенням областей когерентного розсіювання, що призводить до зростання протяжності границь блоків, які блокують рух дислокацій.

4. Пошаровим рентгеноструктурним методом встановлено фазовий склад боридних і бороміднених покриттів, отриманих на сталі 40Х15Г8САФ без та в умовах дії ЗМП. Встановлено, що боридні покриття, отримані при боруванні, мають такий фазовий склад, починаючи від поверхні: FeB → (Fe,Cr)B → CrB → Fe₂B, а після бороміднення: FeB, Cu → (Fe,Cr)B → CrB → Fe₂B.

5. Встановлено, що найвищий рівень тріщиностійкості (К₁С) досягається в боридних фазах, отриманих у порошкових середовищах за участі порошку міді при накладанні ЗМП, і на вуглецевих сталях К₁С досягає рівня 2,2 МПа·м⁰.⁵, при цьому напруження сколювання складає 345 МПа. Тоді, як при боруванні без дії ЗМП тріщиностійкість вуглецевих сталей становить – 1,2 МПа·м⁰.⁵, а напруження сколювання – 181 МПа. Підвищення величини напружень сколювання у комплексних бороміднених шарах зумовлено формуванням фаз більшої в’язкості, для яких тріщиностійкість К₁С у 1,4–1,7 разів вища за вихідні боридні фази (FeB, Fe₂B).
6. Встановлено, що ЗМП покращує триботехнічні характеристики дифузійних боридних покриттів, що призводить до зростання їх зносостійкості. Так, застосування ЗМП при дифузійному боруванні та боромідненні вуглецевих сталей сприяє підвищенню зносостійкості боридних шарів у 1,5–1,7 рази, порівняно із покриттями, отриманими без застосування ЗМП, що пов’язано із різним фазовим складом поверхні боридних шарів (FeB та Cu при застосуванні ЗМП), зростанням мікротвердості на 1,5–2 ГПа, більш високими тріщинностійкістю та напружениями сколювання.

Показано, що кращу зносостійкість в умовах сухого ковзання мають боридні фази, сформовані при комплексному насиченні сталі 40Х15Г8САФ бором та міддю за одночасної дії ЗМП, при цьому їх зносостійкість підвищується в 2,7 рази, порівняно із сталлю 40X15Г8САФ без покриття та в 1,6 рази, порівняно із сталлю 40X15Г8САФ з боромідненими покриттями нанесеними без дії ЗМП. Це пояснюється зміною кількісного співвідношення фазового складу, морфології, збільшенням мікротвердості дифузійного покриття та наявністю окремих вкраплень міді в поверхневих зонах боридних шарів, які виконують роль твердого мастила.

Встановлено, що борування та бороміднення твердого сплаву дозволяє підвищити його зносостійкість в 2 та 2,2 рази відповідно.

7. Розроблені комплексні дифузійні бороміднені покриття, сформовані в умовах дії ЗМП, дозволяють підвищити працездатність деталей кулачкового диференціалу, а саме: внутрішньої та зовнішньої зірочки диференціалу, які експлуатуються в умовах тертя в 1,5–2 рази порівняно з азотованими покриттями, що підтверджено актом виробничих випробувань на підприємстві ТОВ НВП «Навігатор Л».
СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

42. А. с. 1727950 А1 СССР, МКИ3 В22F 3/24, 3/10. Способ борирования твердых сплавов / Ю. И. Коковихин, А. Б. Лысенко, А. А. Толок, Н. Н. Козина, И. С. Решетняк, Ю. Ф. Коровин, И. В. Домов, А. П. Мухачев (СССР). – № 4812517/02 ; заявл. 14.02.90 ; опубл. 23.04.92, Бюл. № 15.

49. Кушнир С. В. Повышение жаростойкости стали 45 алюмохромосилицированием в обмазках / С. В. Кушнир, Г. М. Кравчук, В. И. Удовицкий // Технология и организация производства. – 1986. – № 1. – С. 35–36.

57. Пат. 2005811 Российская Федерация, МПК5 С 23 С 8/70 (1990.01). Способ боромеднения стальных изделий в виbroкипящем слое / Грачев С. В., Колпаков А. С., Баландин Ю. А.; заявители Грачев С. В., Колпаков А. С., Баландин Ю. А.; патентообладатель Баландин Ю. А. – № 5029228/02 ; заявл. 25.02.1992; опубл. 15.01.1994, Бюл. № 28.

72. Заявка 59-197369 Япония. Изготовление фтористого флюса / Томосаки Редзо, Оносэ Син, Утида Такэо, Хитати Сэйсакусе (Япония). – № 58-69909 ; заявл. 22.04.83 ; опубл. 08.11.84.

73. Лаврив Л. В. Физико-химические исследования окисления сплавов Cu – Mn и процесса взаимодействия продуктов окисления с B₂O₃ с целью разработки защитных флюсов для пайки сталей: дис. канд. хим. наук: 02.00.04 / Лаврив Л. В. – Киев, 1996. – 160 с.

82. Фёклин В. Н. Влияние магнитного поля на подвижность дислокаций в ионных кристаллах : дис. канд. физ.-мат. наук : 01.04.07 / Фёклин В. Н. – Воронеж, 2006. – 102 с.

84. Заблудовский В. О. Электрокристаллизация миных плівок у зовнішньому постійному магнітному полі / В. О. Заблудовский, Д. І. Борошук // Фізика і хімія твердого тіла. – 2012. – № 3. – С. 790–792.

104. Пат. 76331 України, МПК (2006.01) С23С 8/00, С25D 5/26, G01N 27/82. Застосування зовнішнього магнітного поля для одержання визначеної щільності лінійних дефектів (дислокацій) кристалічної структури поверхневих шарів металів при дифузійному боруванні / М. Ф. Дмитриченко, Л. П. Барилович, В. М. Ткачук ; заявник і патентовласник Національний транспортний університет. – № 20041008007 ; заявл. 04.10.2004 ; опубл. 17.07.2006, Бюл. № 7.

108. Кривоглаз М. А. О диффузионном движении включений и атомов и об искривлении пор в неоднородном магнитном поле / М. А. Кривоглаз, М. Е. Осиновский // Металлофизика. – 1970. – Вып. 31. – С. 45–47.

119. Пат. 40807 А України, МПК С23 С 8/00. Спосіб борування металевих деталей / Л. П. Барилович, В. М. Ткачук; заявник і патентовласник Український транспортний університет. – № 2000052823; заявл. 17.05.2000; опубл. 15.08.2001, Бюл. № 7.

120. Пат. 24531 А України, МПК С23 С 8/00. Спосіб відновлення прецизійних деталей боруванням / В. Є. Канарчук, Л. П. Барилович, В. М. Ткачук, Н. І. Вербовська; заявник і патентовласник Український транспортний університет. – № 94076280; заявл. 18.07.94; опубл. 30.10.98, Бюл. № 5.

121. Пат. 75824 України, МПК С23 С 8/00. Спосіб одержання монофази бориду заліза Fe₂B в поверхневому шарі сталей і чавунів / М. Ф. Дмитриченко, Л. П. Барилович, В. М. Ткачук; заявник і патентовласник Національний транспортний університет. – № 20041109215; заявл. 10.11.2004; опубл. 15.05.2006, Бюл. № 5.

127. Ковалевский В. Ф. Триботехнические характеристики пар трения скольжения с маслоудерживающим рельефом, сформированным капельно-адгезионной технологией / В. Ф. Ковалевский // Омский научный вестник. – 2013. – Т. 120. – № 2. – С. 78–81.

140. Пат. 83894 України, МПК С23C 8/00. Склад порошкової суміші для бороміднення сталевих виробів / С. М. Чернега, І. А. Поляков, І. Ю. Медова ; заявники і патентовласники С. М. Чернега, І. А. Поляков, І. Ю. Медова. – № u201215001 ; заявл. 27.12.2012 ; опубл. 10.10.2013, Бюл. № 19.

141. Пат. 109189 України, МПК С23C 8/70. Склад для бороміднення сталевих виробів / П. І. Лобода, С. М. Чернега, І. А. Поляков, М. О. Красовський ; заявник і патентовласник Національний технічний університет України «Київський політехнічний інститут». – № u201603094 ; заявл. 25.03.2016 ; опубл. 10.08.2016, Бюл. № 15;
142. Пат. 108781 України, МПК C23C 8/68, B05D 5/00. Спосіб борування сталевих виробів / С. М. Чернега, І. А. Поляков, М. О. Красовський, В. Д. Кузнецов; заявник і патентовласник Національний технічний університет України «Київський політехнічний інститут». – № u201601924; заявл. 29.02.2016; опубл. 25.07.2016, Бюл. № 14.

143. Пат. 109188 України, МПК C23C 8/70, B05D 5/00. Спосіб бороміднення сталевих виробів / С. М. Чернега, І. А. Поляков, М. О. Красовський, В. Д. Кузнецов; заявник і патентовласник Національний технічний університет України «Київський політехнічний інститут». – № u201603093; заявл. 25.03.2016; опубл. 10.08.2016, Бюл. № 15.

ДОДАТОК А

Розрахунок зміни термодинамічного потенціалу хімічних реакцій при різних значеннях температури за допомогою програми HSC 5.1 CHEMISTRY.

Рисунок А.1 – Головне вікно програми HSC 5.1 CHEMISTRY

Рисунок А.2 – Вікно запису рівняння реакції для розрахунку зміни термохімічних характеристик хімічних процесів
Використовуючи рівняння Кірхгофа [194] можна обчислити приріст енталпії \(\Delta H \) при будь – якій температурі, якщо відомі значення цієї величини \((\Delta H_0) \) при якій – небудь одній температурі \((t_0) \) і залежність теплоємностей початкових і кінцевих речовин від температури:

\[
\Delta H = \int_{t}^{t_0} \Delta C_p \, dt + \Delta H_0
\]

(А.1)

Для розрахунків ентропії речовин можна користуватися співвідношеннями, що випливають із рівняння \(\mathrm{d}S = q_{\text{обр}}/T \) для оборотних процесів. Для оборотного переходу речовини з одного стану в інший при \(T \) і \(p = \text{const} \) (випаровування, плавлення, алотропні і поліморфні перетворення) з рівняння \(\mathrm{d}S = q_{\text{обр}}/T \) отримуємо:

\[
\Delta S = \lambda / T
\]

(А.2)

де \(\Delta S \) – приріст ентропії при перетворенні (різниця ентропії одного моля речовини в кінцевому і вихідному станах при однаковій температурі і тиску); \(\lambda = H_2 - H_1 \) – молярна теплota перетворення; \(H_2, H_1 \) – молярна енталпія речовини в двох рівноважних станах; \(T \) – температура рівноваги двох станів речовини при даному тиску (температура перетворення).

При оборотному нагріванні речовини при \(p = \text{const} \) приріст ентропії згідно \(C_p = (\partial H/\partial t)_p, \ dS = q_{\text{обр}}/T \) і рівності \(\mathrm{d}H = q \), отримуємо: \(\mathrm{d}S = q/T = \mathrm{d}H/T = C_p dT/T \) або

\[
S_p - S_{p_1} = \int_{T_1}^{T_2} C_p \, dT/T = \int_{T_1}^{T_2} C_p \, d\ln T.
\]

(А.3)

За допомогою рівнянь (А.2) і (А.3) можна розрахувати приріст ентропії будь – якої речовини при його нагріванні, якщо відомі для цієї речовини теплоти всіх перетворень, які відбуваються в досліджуваному інтервалі температур, і відома залежність теплоємності речовини в кожному з агрегатних станів від температури.

Обчисленим \(\Delta G \) для реакцій у твердій фазі можуть бути проведені в такий спосіб. З урахуванням \(\Delta G = \Delta H - T \Delta S \). Але, згідно (А.1) і (А.3):
\[\Delta H = \Delta H_0 + \int_0^T \Delta C \, dT \] \hspace{1cm} (A.4)

\[\Delta S = \Delta S_0 + \int_0^T \frac{\Delta C}{T} \, dT \] \hspace{1cm} (A.5)

і, отже

\[\Delta G = \Delta H_0 + \int_0^T \Delta C \, dT - T \int_0^T \frac{\Delta C}{T} \, dT - T \Delta S_0 \] \hspace{1cm} (A.6)

або

\[\Delta G = \Delta H_0 - \int_0^T \frac{\Delta C}{T^2} \, dT - T \Delta S_0 \] \hspace{1cm} (A.7)

З рівнянь A.8 і A.9 випливає, що константи рівноваги залежать від температури [194]:

при \(T = \text{const} \) – \(\prod_i f_i^{v_i} = K_f = \exp \left[-\sum_i v_i \mu_i^0(T) / RT \right] \) \hspace{1cm} (A.8)

при постійних \(T \) і \(p = \text{const} \) – \(\prod_i a_i^{v_i} = K_a = \exp \left[-\sum_i v_i \mu_i^0(T, p) / RT \right] \) \hspace{1cm} (A.9)

Константи \(K_f \) і \(K_a \) називаються константами рівноваги, вираженими через фугітівності і активності [194].

Використовуючи ряд перетворень, що наведено в роботі [194] та підставляючи в A.11 вираз A.10 і інтегруючи, отримуємо рівняння Габера (A.12):

\[C_p = C_0 + aT + bT^2 + \ldots \] \hspace{1cm} (A.10)

\[\ln K_p = \frac{1}{R} \int_0^\Delta H_0 \, dT + \int_0^\Delta C \, dT + \text{const} \] \hspace{1cm} (A.11)

\[\ln K_p = - \frac{\Delta H_0}{RT} + \Delta C \frac{1}{R} \ln T + \frac{\Delta a}{2R} T + \frac{\Delta b}{6R} T^2 + \ldots + I \] \hspace{1cm} (A.12)

Рівняння Габера можна використовувати для розрахунку константи рівноваги реакції при заданій температурі [194].
Таблиця А.1 – Зміна ентальпії (ΔH), ентропії (ΔS), вільної енергії Гіббса (ΔG) та константи рівноваги (K_р) в залежності від температури для термохімічної реакції № 1 [C. 67]

<table>
<thead>
<tr>
<th>Температура, °C</th>
<th>ΔH, кДж</th>
<th>ΔS, Дж/К</th>
<th>ΔG, кДж</th>
<th>K_р</th>
<th>Log(K_р)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>110,687</td>
<td>503,203</td>
<td>-26,763</td>
<td>1,313 \cdot 10^5</td>
<td>5,118</td>
</tr>
<tr>
<td>100</td>
<td>118,775</td>
<td>528,629</td>
<td>-78,483</td>
<td>9,711 \cdot 10^{10}</td>
<td>10,987</td>
</tr>
<tr>
<td>200</td>
<td>124,047</td>
<td>541,274</td>
<td>-132,057</td>
<td>3,802 \cdot 10^{14}</td>
<td>14,580</td>
</tr>
<tr>
<td>300</td>
<td>126,483</td>
<td>546,039</td>
<td>-186,479</td>
<td>9,917 \cdot 10^{16}</td>
<td>16,996</td>
</tr>
<tr>
<td>400</td>
<td>125,489</td>
<td>544,523</td>
<td>-241,057</td>
<td>5,092 \cdot 10^{18}</td>
<td>18,707</td>
</tr>
<tr>
<td>500</td>
<td>94,430</td>
<td>501,684</td>
<td>-293,447</td>
<td>6,717 \cdot 10^{19}</td>
<td>19,827</td>
</tr>
<tr>
<td>600</td>
<td>81,638</td>
<td>486,201</td>
<td>-342,889</td>
<td>3,269 \cdot 10^{20}</td>
<td>20,514</td>
</tr>
<tr>
<td>700</td>
<td>61,053</td>
<td>463,978</td>
<td>-390,468</td>
<td>9,129 \cdot 10^{20}</td>
<td>20,960</td>
</tr>
<tr>
<td>800</td>
<td>31,766</td>
<td>435,294</td>
<td>-435,369</td>
<td>1,559 \cdot 10^{21}</td>
<td>21,193</td>
</tr>
<tr>
<td>900</td>
<td>16,391</td>
<td>421,544</td>
<td>-478,143</td>
<td>1,955 \cdot 10^{21}</td>
<td>21,291</td>
</tr>
<tr>
<td>1000</td>
<td>0,622</td>
<td>408,237</td>
<td>-519,125</td>
<td>1,997 \cdot 10^{21}</td>
<td>21,300</td>
</tr>
<tr>
<td>1100</td>
<td>-0,166</td>
<td>407,644</td>
<td>-559,922</td>
<td>2,001 \cdot 10^{21}</td>
<td>21,301</td>
</tr>
</tbody>
</table>

Таблиця А.2 – Зміна ентальпії (ΔH), ентропії (ΔS), вільної енергії Гіббса (ΔG) та константи рівноваги (K_р) в залежності від температури для термохімічної реакції № 2 [C. 67]

<table>
<thead>
<tr>
<th>Температура, °C</th>
<th>ΔH, кДж</th>
<th>ΔS, Дж/К</th>
<th>ΔG, кДж</th>
<th>K_р</th>
<th>Log(K_р)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-309,639</td>
<td>408,382</td>
<td>-421,188</td>
<td>3,555 \cdot 10^{30}</td>
<td>80,551</td>
</tr>
<tr>
<td>100</td>
<td>-300,223</td>
<td>437,877</td>
<td>-463,617</td>
<td>8,013 \cdot 10^{64}</td>
<td>64,904</td>
</tr>
<tr>
<td>200</td>
<td>-293,725</td>
<td>453,471</td>
<td>-508,285</td>
<td>1,313 \cdot 10^{56}</td>
<td>56,118</td>
</tr>
<tr>
<td>300</td>
<td>-291,522</td>
<td>457,852</td>
<td>-553,940</td>
<td>3,077 \cdot 10^{50}</td>
<td>50,488</td>
</tr>
<tr>
<td>400</td>
<td>-295,395</td>
<td>451,775</td>
<td>-599,507</td>
<td>3,342 \cdot 10^{46}</td>
<td>46,524</td>
</tr>
<tr>
<td>500</td>
<td>-333,130</td>
<td>399,759</td>
<td>-642,204</td>
<td>2,463 \cdot 10^{43}</td>
<td>43,391</td>
</tr>
<tr>
<td>600</td>
<td>-357,940</td>
<td>369,741</td>
<td>-680,779</td>
<td>5,368 \cdot 10^{40}</td>
<td>40,730</td>
</tr>
<tr>
<td>700</td>
<td>-398,723</td>
<td>325,718</td>
<td>-715,696</td>
<td>2,623 \cdot 10^{38}</td>
<td>38,419</td>
</tr>
<tr>
<td>800</td>
<td>-457,216</td>
<td>268,430</td>
<td>-745,281</td>
<td>1,901 \cdot 10^{36}</td>
<td>36,279</td>
</tr>
<tr>
<td>900</td>
<td>-488,116</td>
<td>240,797</td>
<td>-770,608</td>
<td>2,062 \cdot 10^{34}</td>
<td>34,314</td>
</tr>
<tr>
<td>1000</td>
<td>-519,960</td>
<td>213,934</td>
<td>-792,331</td>
<td>3,239 \cdot 10^{32}</td>
<td>32,510</td>
</tr>
<tr>
<td>1100</td>
<td>-521,923</td>
<td>212,456</td>
<td>-813,656</td>
<td>8,996 \cdot 10^{30}</td>
<td>30,954</td>
</tr>
</tbody>
</table>
Таблиця А.3 – Зміна ентальпії (ΔH), ентропії (ΔS), вільної енергії Гіббса (ΔG) та константи рівноваги (Кр) в залежності від температури для термохімічної реакції № 3 [C. 67]

<table>
<thead>
<tr>
<th>Температура, °C</th>
<th>ΔH, кДж</th>
<th>ΔS, Дж/К</th>
<th>ΔG, кДж</th>
<th>Kр</th>
<th>Log(Kр)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-198,952</td>
<td>911,585</td>
<td>-447,952</td>
<td>4,669·10^{-55}</td>
<td>85,669</td>
</tr>
<tr>
<td>100</td>
<td>-181,448</td>
<td>966,507</td>
<td>-542,100</td>
<td>7,782·10^{-75}</td>
<td>75,891</td>
</tr>
<tr>
<td>200</td>
<td>-169,678</td>
<td>994,745</td>
<td>-640,342</td>
<td>4,991·10^{-70}</td>
<td>70,698</td>
</tr>
<tr>
<td>300</td>
<td>-165,039</td>
<td>1003,891</td>
<td>-740,419</td>
<td>3,051·10^{-67}</td>
<td>67,484</td>
</tr>
<tr>
<td>400</td>
<td>-169,906</td>
<td>996,298</td>
<td>-840,564</td>
<td>1,702·10^{-65}</td>
<td>65,231</td>
</tr>
<tr>
<td>500</td>
<td>-238,700</td>
<td>901,443</td>
<td>-935,650</td>
<td>1,654·10^{-63}</td>
<td>63,219</td>
</tr>
<tr>
<td>600</td>
<td>-276,302</td>
<td>855,942</td>
<td>-1023,668</td>
<td>1,755·10^{-61}</td>
<td>61,244</td>
</tr>
<tr>
<td>700</td>
<td>-337,670</td>
<td>789,697</td>
<td>-1106,164</td>
<td>2,394·10^{-59}</td>
<td>59,379</td>
</tr>
<tr>
<td>800</td>
<td>-425,449</td>
<td>703,724</td>
<td>-1180,650</td>
<td>2,964·10^{-57}</td>
<td>57,472</td>
</tr>
<tr>
<td>900</td>
<td>-471,725</td>
<td>662,341</td>
<td>-1248,751</td>
<td>4,031·10^{-55}</td>
<td>55,605</td>
</tr>
<tr>
<td>1000</td>
<td>-519,338</td>
<td>622,172</td>
<td>-1311,456</td>
<td>6,467·10^{-53}</td>
<td>53,811</td>
</tr>
<tr>
<td>1100</td>
<td>-522,088</td>
<td>620,100</td>
<td>-1373,578</td>
<td>1,800·10^{-52}</td>
<td>52,255</td>
</tr>
</tbody>
</table>

Таблиця А.4 – Зміна ентальпії (ΔH), ентропії (ΔS), вільної енергії Гіббса (ΔG) та константи рівноваги (Кр) в залежності від температури для термохімічної реакції № 4 [C. 67]

<table>
<thead>
<tr>
<th>Температура, °C</th>
<th>ΔH, кДж</th>
<th>ΔS, Дж/К</th>
<th>ΔG, кДж</th>
<th>Kр</th>
<th>Log(Kр)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>466,789</td>
<td>468,536</td>
<td>338,808</td>
<td>1,600·10^{-65}</td>
<td>-64,796</td>
</tr>
<tr>
<td>100</td>
<td>472,159</td>
<td>485,932</td>
<td>290,833</td>
<td>1,927·10^{-41}</td>
<td>-40,715</td>
</tr>
<tr>
<td>200</td>
<td>472,321</td>
<td>486,451</td>
<td>242,157</td>
<td>1,837·10^{-27}</td>
<td>-26,736</td>
</tr>
<tr>
<td>300</td>
<td>470,905</td>
<td>483,754</td>
<td>193,641</td>
<td>2,243·10^{-18}</td>
<td>-17,649</td>
</tr>
<tr>
<td>400</td>
<td>469,355</td>
<td>481,257</td>
<td>145,397</td>
<td>5,207·10^{-12}</td>
<td>-11,283</td>
</tr>
<tr>
<td>500</td>
<td>442,544</td>
<td>444,213</td>
<td>99,100</td>
<td>2,014·10^{-7}</td>
<td>-6,696</td>
</tr>
<tr>
<td>600</td>
<td>440,474</td>
<td>441,677</td>
<td>54,825</td>
<td>5,247·10^{-4}</td>
<td>-3,280</td>
</tr>
<tr>
<td>700</td>
<td>439,955</td>
<td>441,099</td>
<td>10,700</td>
<td>2,665·10^{-1}</td>
<td>-0,574</td>
</tr>
<tr>
<td>800</td>
<td>440,876</td>
<td>441,989</td>
<td>-33,444</td>
<td>4,246·10^{1}</td>
<td>1,628</td>
</tr>
<tr>
<td>900</td>
<td>443,099</td>
<td>443,961</td>
<td>-77,734</td>
<td>2,893·10^{3}</td>
<td>3,461</td>
</tr>
<tr>
<td>1000</td>
<td>446,467</td>
<td>446,710</td>
<td>-122,262</td>
<td>1,039·10^{3}</td>
<td>5,017</td>
</tr>
<tr>
<td>1100</td>
<td>450,812</td>
<td>449,991</td>
<td>-167,094</td>
<td>2,274·10^{6}</td>
<td>6,357</td>
</tr>
</tbody>
</table>
Таблиця А.5 – Зміна ентальпії (ΔH), ентропії (ΔS), вільної енергії Гіббса (ΔG) та константи рівноваги (K_p) в залежності від температури для термохімічної реакції № 5 [C. 67]

\[
14\text{Cr} + 3\text{B}_2\text{O}_3 + 9\text{B}_4\text{C} = 14\text{CrB} + 9\text{CO(g)}
\]

<table>
<thead>
<tr>
<th>Температура, °C</th>
<th>ΔH, кДж</th>
<th>ΔS, Дж/К</th>
<th>ΔG, кДж</th>
<th>K_p</th>
<th>Log(K_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>72,631</td>
<td>461,822</td>
<td>-53,515</td>
<td>1,716 \cdot 10^{10}</td>
<td>10,235</td>
</tr>
<tr>
<td>100</td>
<td>75,718</td>
<td>471,570</td>
<td>-100,248</td>
<td>1,082 \cdot 10^{14}</td>
<td>14,034</td>
</tr>
<tr>
<td>200</td>
<td>77,560</td>
<td>475,976</td>
<td>-147,648</td>
<td>2,001 \cdot 10^{16}</td>
<td>16,301</td>
</tr>
<tr>
<td>300</td>
<td>79,923</td>
<td>478,749</td>
<td>-195,392</td>
<td>6,438 \cdot 10^{17}</td>
<td>17,809</td>
</tr>
<tr>
<td>400</td>
<td>80,947</td>
<td>480,827</td>
<td>-243,375</td>
<td>7,706 \cdot 10^{18}</td>
<td>18,887</td>
</tr>
<tr>
<td>500</td>
<td>55,657</td>
<td>446,871</td>
<td>-289,795</td>
<td>3,805 \cdot 10^{19}</td>
<td>19,580</td>
</tr>
<tr>
<td>600</td>
<td>54,694</td>
<td>445,634</td>
<td>-334,412</td>
<td>1,017 \cdot 10^{20}</td>
<td>20,007</td>
</tr>
<tr>
<td>700</td>
<td>53,920</td>
<td>444,795</td>
<td>-378,933</td>
<td>2,194 \cdot 10^{20}</td>
<td>20,341</td>
</tr>
<tr>
<td>800</td>
<td>52,999</td>
<td>443,897</td>
<td>-423,369</td>
<td>4,036 \cdot 10^{20}</td>
<td>20,609</td>
</tr>
<tr>
<td>900</td>
<td>51,599</td>
<td>442,654</td>
<td>-467,700</td>
<td>6,701 \cdot 10^{20}</td>
<td>20,826</td>
</tr>
<tr>
<td>1000</td>
<td>49,392</td>
<td>440,854</td>
<td>-511,881</td>
<td>1,007 \cdot 10^{21}</td>
<td>21,003</td>
</tr>
<tr>
<td>1100</td>
<td>46,053</td>
<td>438,336</td>
<td>-555,847</td>
<td>1,400 \cdot 10^{21}</td>
<td>21,146</td>
</tr>
</tbody>
</table>

Таблиця А.6 – Зміна ентальпії (ΔH), ентропії (ΔS), вільної енергії Гіббса (ΔG) та константи рівноваги (K_p) в залежності від температури для термохімічної реакції № 6 [C. 67]

\[
70\text{Cr} + 3\text{B}_2\text{O}_3 + 9\text{B}_4\text{C} = 14\text{CrB}_3 + 9\text{CO(g)}
\]

<table>
<thead>
<tr>
<th>Температура, °C</th>
<th>ΔH, кДж</th>
<th>ΔS, Дж/К</th>
<th>ΔG, кДж</th>
<th>K_p</th>
<th>Log(K_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-99,692</td>
<td>1659,026</td>
<td>-552,855</td>
<td>5,390 \cdot 10^{105}</td>
<td>105,732</td>
</tr>
<tr>
<td>100</td>
<td>-108,767</td>
<td>1631,059</td>
<td>-717,396</td>
<td>2,702 \cdot 10^{100}</td>
<td>100,432</td>
</tr>
<tr>
<td>200</td>
<td>-120,489</td>
<td>1603,243</td>
<td>-879,064</td>
<td>1,134 \cdot 10^{97}</td>
<td>97,055</td>
</tr>
<tr>
<td>300</td>
<td>-131,509</td>
<td>1582,072</td>
<td>-1038,274</td>
<td>4,286 \cdot 10^{94}</td>
<td>94,632</td>
</tr>
<tr>
<td>400</td>
<td>-141,046</td>
<td>1566,703</td>
<td>-1195,673</td>
<td>6,148 \cdot 10^{92}</td>
<td>92,789</td>
</tr>
<tr>
<td>500</td>
<td>-226,660</td>
<td>1448,418</td>
<td>-1346,504</td>
<td>9,517 \cdot 10^{90}</td>
<td>90,978</td>
</tr>
<tr>
<td>600</td>
<td>-239,907</td>
<td>1432,278</td>
<td>-1490,500</td>
<td>1,493 \cdot 10^{89}</td>
<td>89,174</td>
</tr>
<tr>
<td>700</td>
<td>-251,649</td>
<td>1419,538</td>
<td>-1633,072</td>
<td>4,611 \cdot 10^{87}</td>
<td>87,664</td>
</tr>
<tr>
<td>800</td>
<td>-263,343</td>
<td>1408,105</td>
<td>-1774,451</td>
<td>2,382 \cdot 10^{86}</td>
<td>86,377</td>
</tr>
<tr>
<td>900</td>
<td>-276,448</td>
<td>1396,443</td>
<td>-1914,685</td>
<td>1,814 \cdot 10^{85}</td>
<td>85,259</td>
</tr>
<tr>
<td>1000</td>
<td>-292,417</td>
<td>1383,400</td>
<td>-2053,693</td>
<td>1,844 \cdot 10^{84}</td>
<td>84,266</td>
</tr>
<tr>
<td>1100</td>
<td>-312,705</td>
<td>1368,083</td>
<td>-2191,289</td>
<td>2,310 \cdot 10^{83}</td>
<td>83,364</td>
</tr>
</tbody>
</table>
Таблиця А.7 – Зміна ентальпії (ΔH), ентропії (ΔS), вільної енергії Гіббса (ΔG) та константи рівноваги (Kₚ) в залежності від температури для термохімічної реакції № 7 [C. 67]

<table>
<thead>
<tr>
<th>Температура, °С</th>
<th>ΔH, кДж</th>
<th>ΔS, Дж/К</th>
<th>ΔG, кДж</th>
<th>Kₚ</th>
<th>Log(Kₚ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>439,728</td>
<td>2589,384</td>
<td>-267,841</td>
<td>1,480 · 10⁵³</td>
<td>51,170</td>
</tr>
<tr>
<td>100</td>
<td>439,110</td>
<td>2588,561</td>
<td>-526,811</td>
<td>5,633 · 10⁷³</td>
<td>73,751</td>
</tr>
<tr>
<td>200</td>
<td>429,392</td>
<td>2565,671</td>
<td>-784,555</td>
<td>4,171 · 10⁸⁶</td>
<td>86,620</td>
</tr>
<tr>
<td>300</td>
<td>418,398</td>
<td>2544,755</td>
<td>-1040,025</td>
<td>6,189 · 10⁹⁴</td>
<td>94,792</td>
</tr>
<tr>
<td>400</td>
<td>408,603</td>
<td>2528,888</td>
<td>-1293,651</td>
<td>2,467 · 10¹⁰⁰</td>
<td>100,392</td>
</tr>
<tr>
<td>500</td>
<td>271,541</td>
<td>2339,441</td>
<td>-1537,198</td>
<td>7,3295 · 10¹⁰³</td>
<td>103,863</td>
</tr>
<tr>
<td>600</td>
<td>255,261</td>
<td>2319,589</td>
<td>-1770,087</td>
<td>7,964 · 10¹⁰⁵</td>
<td>105,901</td>
</tr>
<tr>
<td>700</td>
<td>242,227</td>
<td>2305,433</td>
<td>-2001,305</td>
<td>2,696 · 10¹⁰⁷</td>
<td>107,431</td>
</tr>
<tr>
<td>800</td>
<td>230,532</td>
<td>2293,990</td>
<td>-2231,264</td>
<td>4,110 · 10¹⁰⁸</td>
<td>108,614</td>
</tr>
<tr>
<td>900</td>
<td>218,250</td>
<td>2283,058</td>
<td>-2460,119</td>
<td>3,517 · 10¹⁰⁹</td>
<td>109,546</td>
</tr>
<tr>
<td>1000</td>
<td>203,441</td>
<td>2270,964</td>
<td>-2687,836</td>
<td>1,929 · 10¹¹⁰</td>
<td>110,285</td>
</tr>
<tr>
<td>1100</td>
<td>184,160</td>
<td>2256,411</td>
<td>-2914,230</td>
<td>7,355 · 10¹¹⁰</td>
<td>110,867</td>
</tr>
</tbody>
</table>

Таблиця А.8 – Зміна ентальпії (ΔH), ентропії (ΔS), вільної енергії Гіббса (ΔG) та константи рівноваги (Kₚ) в залежності від температури для термохімічної реакції № 8 [C. 67]

<table>
<thead>
<tr>
<th>Температура, °С</th>
<th>ΔH, кДж</th>
<th>ΔS, Дж/К</th>
<th>ΔG, кДж</th>
<th>Kₚ</th>
<th>Log(Kₚ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>467,282</td>
<td>468,100</td>
<td>339,421</td>
<td>1,222 · 10⁻⁶⁵</td>
<td>-64,913</td>
</tr>
<tr>
<td>100</td>
<td>470,573</td>
<td>479,037</td>
<td>291,820</td>
<td>1,402 · 10⁻⁴¹</td>
<td>-40,853</td>
</tr>
<tr>
<td>200</td>
<td>468,220</td>
<td>473,607</td>
<td>244,133</td>
<td>1,112 · 10⁻²⁷</td>
<td>-26,954</td>
</tr>
<tr>
<td>300</td>
<td>463,788</td>
<td>465,143</td>
<td>197,191</td>
<td>1,065 · 10⁻¹⁸</td>
<td>-17,973</td>
</tr>
<tr>
<td>400</td>
<td>458,774</td>
<td>457,083</td>
<td>151,089</td>
<td>1,883 · 10⁻¹²</td>
<td>-11,725</td>
</tr>
<tr>
<td>500</td>
<td>428,134</td>
<td>414,742</td>
<td>107,476</td>
<td>5,473 · 10⁻³</td>
<td>-7,262</td>
</tr>
<tr>
<td>600</td>
<td>421,979</td>
<td>407,238</td>
<td>66,399</td>
<td>1,065 · 10⁻⁴</td>
<td>-3,973</td>
</tr>
<tr>
<td>700</td>
<td>417,227</td>
<td>402,072</td>
<td>25,951</td>
<td>4,045 · 10⁻²</td>
<td>-1,393</td>
</tr>
<tr>
<td>800</td>
<td>398,576</td>
<td>383,149</td>
<td>-12,601</td>
<td>4,106</td>
<td>0,613</td>
</tr>
<tr>
<td>900</td>
<td>397,600</td>
<td>382,266</td>
<td>-50,855</td>
<td>1,839 · 10²</td>
<td>2,265</td>
</tr>
<tr>
<td>1000</td>
<td>398,695</td>
<td>383,150</td>
<td>-89,113</td>
<td>4,533 · 10³</td>
<td>3,656</td>
</tr>
<tr>
<td>1100</td>
<td>386,624</td>
<td>374,340</td>
<td>-127,401</td>
<td>7,027 · 10⁴</td>
<td>4,847</td>
</tr>
</tbody>
</table>
Таблиця A.9 – Зміна ентальпії (ΔH), ентропії (ΔS), вільної енергії Гіббса (ΔG) та константи рівноваги (Кр) в залежності від температури для термохімічної реакції № 9 [C. 67]

<table>
<thead>
<tr>
<th>Температура, °С</th>
<th>ΔH, кДж</th>
<th>ΔS, Дж/К</th>
<th>ΔG, кДж</th>
<th>Kр</th>
<th>Log(Kр)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>73,627</td>
<td>460,984</td>
<td>-52,291</td>
<td>1,001·10¹⁰</td>
<td>10,000</td>
</tr>
<tr>
<td>100</td>
<td>72,516</td>
<td>457,689</td>
<td>-98,270</td>
<td>5,719·10¹³</td>
<td>13,757</td>
</tr>
<tr>
<td>200</td>
<td>69,286</td>
<td>450,099</td>
<td>-143,678</td>
<td>7,296·10¹⁵</td>
<td>15,863</td>
</tr>
<tr>
<td>300</td>
<td>64,658</td>
<td>441,261</td>
<td>-188,251</td>
<td>1,438·10¹⁷</td>
<td>17,158</td>
</tr>
<tr>
<td>400</td>
<td>58,977</td>
<td>432,146</td>
<td>-231,922</td>
<td>9,954·10¹³</td>
<td>17,998</td>
</tr>
<tr>
<td>500</td>
<td>26,644</td>
<td>387,479</td>
<td>-272,935</td>
<td>2,762·10¹⁸</td>
<td>18,441</td>
</tr>
<tr>
<td>600</td>
<td>17,467</td>
<td>376,318</td>
<td>-311,114</td>
<td>4,106·10¹⁸</td>
<td>18,613</td>
</tr>
<tr>
<td>700</td>
<td>8,188</td>
<td>366,257</td>
<td>-348,235</td>
<td>4,936·10¹⁸</td>
<td>18,693</td>
</tr>
<tr>
<td>800</td>
<td>-31,918</td>
<td>325,694</td>
<td>-381,437</td>
<td>3,695·10¹⁸</td>
<td>18,568</td>
</tr>
<tr>
<td>900</td>
<td>-39,757</td>
<td>318,702</td>
<td>-413,642</td>
<td>2,624·10¹⁸</td>
<td>18,419</td>
</tr>
<tr>
<td>1000</td>
<td>-46,550</td>
<td>313,140</td>
<td>-445,225</td>
<td>1,854·10¹⁸</td>
<td>18,268</td>
</tr>
<tr>
<td>1100</td>
<td>-82,762</td>
<td>286,409</td>
<td>-476,044</td>
<td>1,289·10¹⁸</td>
<td>18,110</td>
</tr>
</tbody>
</table>

Таблиця A.10 – Зміна ентальпії (ΔH), ентропії (ΔS), вільної енергії Гіббса (ΔG) та константи рівноваги (Кр) в залежності від температури для термохімічної реакції № 10 [C. 67]

<table>
<thead>
<tr>
<th>Температура, °С</th>
<th>ΔH, кДж</th>
<th>ΔS, Дж/К</th>
<th>ΔG, кДж</th>
<th>Kр</th>
<th>Log(Kр)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-152,942</td>
<td>492,714</td>
<td>-287,526</td>
<td>9,737·10⁵⁴</td>
<td>54,988</td>
</tr>
<tr>
<td>100</td>
<td>-160,226</td>
<td>469,897</td>
<td>-335,568</td>
<td>9,499·10⁴⁶</td>
<td>46,978</td>
</tr>
<tr>
<td>200</td>
<td>-167,803</td>
<td>451,947</td>
<td>-381,642</td>
<td>1,367·10⁴²</td>
<td>42,136</td>
</tr>
<tr>
<td>300</td>
<td>-176,441</td>
<td>435,421</td>
<td>-426,003</td>
<td>6,722·10⁴⁸</td>
<td>38,827</td>
</tr>
<tr>
<td>400</td>
<td>-186,397</td>
<td>419,440</td>
<td>-468,744</td>
<td>2,378·10⁵⁶</td>
<td>36,376</td>
</tr>
<tr>
<td>500</td>
<td>-223,560</td>
<td>368,094</td>
<td>-508,152</td>
<td>2,158·10⁵⁴</td>
<td>34,334</td>
</tr>
<tr>
<td>600</td>
<td>-238,281</td>
<td>350,199</td>
<td>-544,057</td>
<td>3,548·10⁵²</td>
<td>32,550</td>
</tr>
<tr>
<td>700</td>
<td>-253,911</td>
<td>333,260</td>
<td>-578,224</td>
<td>1,095·10⁵¹</td>
<td>31,039</td>
</tr>
<tr>
<td>800</td>
<td>-331,852</td>
<td>254,360</td>
<td>-604,819</td>
<td>2,764·10⁴⁹</td>
<td>29,441</td>
</tr>
<tr>
<td>900</td>
<td>-345,863</td>
<td>241,867</td>
<td>-629,609</td>
<td>1,086·10⁵⁸</td>
<td>28,036</td>
</tr>
<tr>
<td>1000</td>
<td>-358,325</td>
<td>231,665</td>
<td>-653,269</td>
<td>6,375·10⁵⁶</td>
<td>26,804</td>
</tr>
<tr>
<td>1100</td>
<td>-430,107</td>
<td>178,688</td>
<td>-675,473</td>
<td>4,979·10⁵⁵</td>
<td>25,697</td>
</tr>
</tbody>
</table>
Таблица А.11 – Зміна ентальпії (ΔH), ентропії (ΔS), вільної енергії Гіббса (ΔG) та константи рівноваги (Кп) в залежності від температури для термохімічної реакції № 11 [C. 67]

<table>
<thead>
<tr>
<th>Температура, °С</th>
<th>ΔH, кДж</th>
<th>ΔS, Дж/К</th>
<th>ΔG, кДж</th>
<th>Кп</th>
<th>Log(Kп)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>387,968</td>
<td>1421,798</td>
<td>-0,397</td>
<td>1,191</td>
<td>0,076</td>
</tr>
<tr>
<td>100</td>
<td>382,863</td>
<td>1406,622</td>
<td>-142,018</td>
<td>7,616 · 10^{19}</td>
<td>19,882</td>
</tr>
<tr>
<td>200</td>
<td>369,703</td>
<td>1375,653</td>
<td>-281,187</td>
<td>1,109 · 10^{21}</td>
<td>31,045</td>
</tr>
<tr>
<td>300</td>
<td>352,005</td>
<td>1341,826</td>
<td>-471,063</td>
<td>1,030 · 10^{38}</td>
<td>38,013</td>
</tr>
<tr>
<td>400</td>
<td>331,353</td>
<td>1308,668</td>
<td>-549,577</td>
<td>4,459 · 10^{42}</td>
<td>42,649</td>
</tr>
<tr>
<td>500</td>
<td>231,218</td>
<td>1170,315</td>
<td>-673,611</td>
<td>3,262 · 10^{45}</td>
<td>45,514</td>
</tr>
<tr>
<td>600</td>
<td>201,165</td>
<td>1133,755</td>
<td>-788,772</td>
<td>1,552 · 10^{47}</td>
<td>47,191</td>
</tr>
<tr>
<td>700</td>
<td>171,503</td>
<td>1101,589</td>
<td>-900,508</td>
<td>2,186 · 10^{48}</td>
<td>48,340</td>
</tr>
<tr>
<td>800</td>
<td>34,805</td>
<td>963,203</td>
<td>-998,856</td>
<td>4,193 · 10^{48}</td>
<td>48,623</td>
</tr>
<tr>
<td>900</td>
<td>11,979</td>
<td>942,835</td>
<td>-1094,108</td>
<td>5,240 · 10^{48}</td>
<td>48,719</td>
</tr>
<tr>
<td>1000</td>
<td>-6,179</td>
<td>927,956</td>
<td>-1187,606</td>
<td>5,358 · 10^{48}</td>
<td>48,729</td>
</tr>
<tr>
<td>1100</td>
<td>-126,245</td>
<td>839,437</td>
<td>-1278,919</td>
<td>4,509 · 10^{48}</td>
<td>48,654</td>
</tr>
</tbody>
</table>

Таблица А.12 – Зміна ентальпії (ΔH), ентропії (ΔS), вільної енергії Гіббса (ΔG) та константи рівноваги (Кп) в залежності від температури для термохімічної реакції № 12 [C. 67]

<table>
<thead>
<tr>
<th>Температура, °С</th>
<th>ΔH, кДж</th>
<th>ΔS, Дж/К</th>
<th>ΔG, кДж</th>
<th>Кп</th>
<th>Log(Kп)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-311,491</td>
<td>-46,926</td>
<td>-298,673</td>
<td>1,319 · 10^{57}</td>
<td>57,120</td>
</tr>
<tr>
<td>100</td>
<td>-310,104</td>
<td>-42,643</td>
<td>-294,192</td>
<td>1,532 · 10^{41}</td>
<td>41,185</td>
</tr>
<tr>
<td>200</td>
<td>-308,513</td>
<td>-38,866</td>
<td>-290,124</td>
<td>1,076 · 10^{22}</td>
<td>32,032</td>
</tr>
<tr>
<td>300</td>
<td>-306,988</td>
<td>-35,938</td>
<td>-286,390</td>
<td>1,267 · 10^{26}</td>
<td>26,103</td>
</tr>
<tr>
<td>400</td>
<td>-305,647</td>
<td>-33,776</td>
<td>-282,911</td>
<td>9,014 · 10^{21}</td>
<td>21,955</td>
</tr>
<tr>
<td>500</td>
<td>-304,535</td>
<td>-32,232</td>
<td>-279,615</td>
<td>7,808 · 10^{18}</td>
<td>18,893</td>
</tr>
<tr>
<td>600</td>
<td>-303,603</td>
<td>-31,097</td>
<td>-276,451</td>
<td>3,464 · 10^{16}</td>
<td>16,540</td>
</tr>
<tr>
<td>700</td>
<td>-303,023</td>
<td>-30,451</td>
<td>-273,390</td>
<td>4,738 · 10^{14}</td>
<td>14,676</td>
</tr>
<tr>
<td>800</td>
<td>-306,614</td>
<td>-33,961</td>
<td>-270,169</td>
<td>1,417 · 10^{13}</td>
<td>13,151</td>
</tr>
<tr>
<td>900</td>
<td>-308,702</td>
<td>-35,828</td>
<td>-266,670</td>
<td>7,491 · 10^{11}</td>
<td>11,875</td>
</tr>
<tr>
<td>1000</td>
<td>-310,774</td>
<td>-37,582</td>
<td>-262,926</td>
<td>6,141 · 10^{10}</td>
<td>10,788</td>
</tr>
<tr>
<td>1100</td>
<td>-231,005</td>
<td>21,171</td>
<td>-260,076</td>
<td>7,837 · 10^{9}</td>
<td>9,894</td>
</tr>
</tbody>
</table>
Таблица А.13 – Зміна ентальпії (\(\Delta H\)), ентропії (\(\Delta S\)), вільної енергії Гіббса (\(\Delta G\)) та константи рівноваги (\(K_p\)) в залежності від температури для термохімічної реакції № 13 [C. 67]

<table>
<thead>
<tr>
<th>Температура, °C</th>
<th>(\Delta H), кДж</th>
<th>(\Delta S), Дж/К</th>
<th>(\Delta G), кДж</th>
<th>(K_p)</th>
<th>Log((K_p))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-623,507</td>
<td>-46,795</td>
<td>-610,725</td>
<td>6,295 (\cdot 10^{116})</td>
<td>116,799</td>
</tr>
<tr>
<td>100</td>
<td>-621,019</td>
<td>-38,952</td>
<td>-606,484</td>
<td>8,025 (\cdot 10^{84})</td>
<td>84,904</td>
</tr>
<tr>
<td>200</td>
<td>-619,925</td>
<td>-36,328</td>
<td>-602,736</td>
<td>3,517 (\cdot 10^{66})</td>
<td>66,546</td>
</tr>
<tr>
<td>300</td>
<td>-619,079</td>
<td>-34,700</td>
<td>-599,190</td>
<td>4,096 (\cdot 10^{54})</td>
<td>54,612</td>
</tr>
<tr>
<td>400</td>
<td>-618,620</td>
<td>-33,953</td>
<td>-595,764</td>
<td>1,712 (\cdot 10^{46})</td>
<td>46,234</td>
</tr>
<tr>
<td>500</td>
<td>-618,542</td>
<td>-33,840</td>
<td>-592,379</td>
<td>1,059 (\cdot 10^{40})</td>
<td>40,025</td>
</tr>
<tr>
<td>600</td>
<td>-618,832</td>
<td>-34,188</td>
<td>-588,981</td>
<td>1,728 (\cdot 10^{35})</td>
<td>35,238</td>
</tr>
<tr>
<td>700</td>
<td>-619,464</td>
<td>-34,870</td>
<td>-585,530</td>
<td>2,701 (\cdot 10^{31})</td>
<td>31,431</td>
</tr>
<tr>
<td>800</td>
<td>-620,392</td>
<td>-35,776</td>
<td>-581,999</td>
<td>2,141 (\cdot 10^{28})</td>
<td>28,331</td>
</tr>
<tr>
<td>900</td>
<td>-621,535</td>
<td>-36,793</td>
<td>-578,371</td>
<td>5,678 (\cdot 10^{25})</td>
<td>25,754</td>
</tr>
<tr>
<td>1000</td>
<td>-622,787</td>
<td>-37,817</td>
<td>-574,641</td>
<td>3,787 (\cdot 10^{23})</td>
<td>23,578</td>
</tr>
<tr>
<td>1100</td>
<td>-544,590</td>
<td>19,749</td>
<td>-571,708</td>
<td>5,618 (\cdot 10^{21})</td>
<td>21,750</td>
</tr>
</tbody>
</table>

Таблица А.14 – Зміна ентальпії (\(\Delta H\)), ентропії (\(\Delta S\)), вільної енергії Гіббса (\(\Delta G\)) та константи рівноваги (\(K_p\)) в залежності від температури для термохімічної реакції № 14 [C. 67]

<table>
<thead>
<tr>
<th>Температура, °C</th>
<th>(\Delta H), кДж</th>
<th>(\Delta S), Дж/К</th>
<th>(\Delta G), кДж</th>
<th>(K_p)</th>
<th>Log((K_p))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-178,832</td>
<td>-31,680</td>
<td>-170,179</td>
<td>3,516 (\cdot 10^{32})</td>
<td>32,546</td>
</tr>
<tr>
<td>100</td>
<td>-178,753</td>
<td>-31,447</td>
<td>-167,019</td>
<td>2,409 (\cdot 10^{23})</td>
<td>23,382</td>
</tr>
<tr>
<td>200</td>
<td>-178,664</td>
<td>-31,232</td>
<td>-163,887</td>
<td>1,242 (\cdot 10^{18})</td>
<td>18,094</td>
</tr>
<tr>
<td>300</td>
<td>-178,698</td>
<td>-31,292</td>
<td>-160,763</td>
<td>4,493 (\cdot 10^{14})</td>
<td>14,653</td>
</tr>
<tr>
<td>400</td>
<td>-178,932</td>
<td>-31,663</td>
<td>-157,618</td>
<td>1,705 (\cdot 10^{12})</td>
<td>12,232</td>
</tr>
<tr>
<td>500</td>
<td>-179,377</td>
<td>-32,276</td>
<td>-154,423</td>
<td>2,715 (\cdot 10^{10})</td>
<td>10,434</td>
</tr>
<tr>
<td>600</td>
<td>-180,021</td>
<td>-33,057</td>
<td>-151,157</td>
<td>1,105 (\cdot 10^{9})</td>
<td>9,043</td>
</tr>
<tr>
<td>700</td>
<td>-180,833</td>
<td>-33,936</td>
<td>-147,808</td>
<td>8,598 (\cdot 10^{7})</td>
<td>7,934</td>
</tr>
<tr>
<td>800</td>
<td>-183,950</td>
<td>-37,080</td>
<td>-144,158</td>
<td>1,041 (\cdot 10^{7})</td>
<td>7,017</td>
</tr>
<tr>
<td>900</td>
<td>-184,784</td>
<td>-37,824</td>
<td>-140,411</td>
<td>1,788 (\cdot 10^{6})</td>
<td>6,252</td>
</tr>
<tr>
<td>1000</td>
<td>-185,467</td>
<td>-38,383</td>
<td>-136,599</td>
<td>4,026 (\cdot 10^{5})</td>
<td>5,605</td>
</tr>
<tr>
<td>1100</td>
<td>-135,110</td>
<td>-1,302</td>
<td>-133,322</td>
<td>1,180 (\cdot 10^{3})</td>
<td>5,072</td>
</tr>
</tbody>
</table>
Таблиця А.15 – Зміна ентальпії (ΔH), ентропії (ΔS), вільної енергії Гіббса (ΔG) та константи рівноваги (Kₚ) в залежності від температури для термохімічної реакції № 15 [С. 67]

<table>
<thead>
<tr>
<th>Температура, °C</th>
<th>ΔH, кДж</th>
<th>ΔS, Дж/К</th>
<th>ΔG, кДж</th>
<th>Kₚ</th>
<th>Log(Kₚ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1401,499</td>
<td>94,185</td>
<td>-1427,226</td>
<td>8,954</td>
<td>10²⁷₂</td>
</tr>
<tr>
<td>100</td>
<td>-1401,469</td>
<td>94,412</td>
<td>-1436,699</td>
<td>1,349</td>
<td>10²⁰¹</td>
</tr>
<tr>
<td>200</td>
<td>-1402,558</td>
<td>91,854</td>
<td>-1446,018</td>
<td>4,470</td>
<td>10¹³⁰⁹</td>
</tr>
<tr>
<td>300</td>
<td>-1403,918</td>
<td>89,246</td>
<td>-1455,070</td>
<td>4,172</td>
<td>10¹³²</td>
</tr>
<tr>
<td>400</td>
<td>-1405,194</td>
<td>87,190</td>
<td>-1463,886</td>
<td>4,010</td>
<td>10¹¹³</td>
</tr>
<tr>
<td>500</td>
<td>-1354,717</td>
<td>156,893</td>
<td>-1476,019</td>
<td>5,362</td>
<td>10⁹⁹</td>
</tr>
<tr>
<td>600</td>
<td>-1351,862</td>
<td>160,380</td>
<td>-1491,898</td>
<td>1,810</td>
<td>10⁸⁹</td>
</tr>
<tr>
<td>700</td>
<td>-1350,006</td>
<td>162,402</td>
<td>-1508,047</td>
<td>8,962</td>
<td>10⁸⁰</td>
</tr>
<tr>
<td>800</td>
<td>-1348,879</td>
<td>163,508</td>
<td>-1524,348</td>
<td>1,594</td>
<td>10⁷⁴</td>
</tr>
<tr>
<td>900</td>
<td>-1348,161</td>
<td>164,150</td>
<td>-1540,733</td>
<td>4,046</td>
<td>10⁶⁸</td>
</tr>
<tr>
<td>1000</td>
<td>-1347,496</td>
<td>164,693</td>
<td>-1557,175</td>
<td>7,814</td>
<td>10⁶³</td>
</tr>
<tr>
<td>1100</td>
<td>-1161,161</td>
<td>301,942</td>
<td>-1575,772</td>
<td>8,859</td>
<td>10⁵⁹</td>
</tr>
</tbody>
</table>
ДОДАТОК Б

УКРАЇНА

ПАТЕНТ

НА КОРИСНУ МОДЕЛЬ
№ 83894

СКЛАД ПОРОШКОВОЇ СУМШІ ДЛЯ БОРОМІДНЕННЯ
СТАЛЕВИХ ВИРОБІВ

Видано відповідно до Закону України "Про охорону прав на винаходи
і корисні моделі".

Зареєстровано в Державному реєстрі патентів України на корисні
моделі 10.10.2013.

Голова Державної служби
інтелектуальної власності України

М.В. Ковіна
ДОДАТОК В

НА КОРИСНУ МОДЕЛЬ
№ 108781

СПОСІБ БОРУВАННЯ СТАЛЕВИХ ВИРОБІВ

Видано відповідно до Закону України "Про охорону прав на винаходи і корисні моделі".

Зареєстровано в Державному реєстрі патентів України на корисні моделі 25.07.2016.

В.О. Голови Державної служби інтелектуальної власності України

А.А. Малиш
ДОДАТОК Г

НА КОРІСНУ МОДЕЛЬ
№ 109188

СПОСІБ БОРЮЧІДЕННЯ СТАЛЕВИХ ВИРОБІВ

Видано відповідно до Закону України "Про охорону прав на винаходи і корисні моделі".

Зареєстровано в Державному реєстрі патентів України на корисні моделі 10.08.2016.

В.о. Голови Державної служби інтелектуальної власності України А.А.Малиш
ДОДАТОК Д

НА КОРИСНУ МОДЕЛЬ
№ 109189

СКЛАД ДЛЯ БОРОМІДНЕННЯ СТАЛЕВИХ ВИРОБІВ

Видано відповідно до Закону України "Про охорону прав на винаходи і корисні моделі".

Зареєстровано в Державному реєстрі патентів України на корисні моделі 10.08.2016.

В.о. Голови Державної служби інтелектуальної власності України А.А.Малиш
ДОДАТОК Е
Акт технічного випробування результатів дисертаційної роботи
ЗАТВЕРДЖУЮ

Директор ТОВ НВП «Навігатор Л»

Якименко Т.Б.

«28» березня 2016 р.

А К Т

про випробування деталей кулачкового диференціалу з комплексними дифузійними боридними покриттями за участю бору та міді

Ми, що нижче підписалися, представники ТОВ НВП «Навігатор Л» нач. КТВ Андрющенко А.М., інженер — технолог Голуб Є.Л. та представники Національного технічного університету України «Київський політехнічний інститут» д.т.н., проф. Чернега С.М., аспірант Поляков І.А. склали цей акт в тому, що в період з 01.11.2015 по 25.03.2016 року проводились випробування на стійкість деталей кулачкового диференціалу, а саме внутрішньої та зовнішньої зірочки диференціалу зі сталі 20ХН2М. На зірочки диференціалу наносили комплексні дифузійні боридні покриттями за участю бору та міді за способами розробленими на кафедрі металоознавства та термічної обробки, ІФФ, НТУУ «КПІ».

Внутрішня та зовнішня зірочки є деталями кулачкового диференціалу, який є одним з диференціалів підвищеного тертя. Такі диференціали здійснюють передачу моменту крученьня до ведучих коліс автомобіля збільшують його на відстані колес в порівнянні із забігаючим (буксуючим) колесом.

В ході випробувань встановлено, що нанесення захисних дифузійних боридних покриттів дозволяє підвищити працездатність зірочок диференціалу в 1,5 – 2 рази в порівнянні з азотованими покриттями.

В теперішній час розглядається можливість впровадження процесу хіміко – термічної обробки, розробленої в НТУУ «КПІ» на підприємстві.

Представники НТУУ «КПІ»

д.т.н., проф. Чернега С.М.

аспірант Поляков І.А.

Представники ТОВ НВП «Навігатор Л»

нач. КТВ Андрющенко А.М.

інженер-технолог Голуб Є.Л.