ОСНОВИ РЕСУРСОЕФЕКТИВНОСТІ ПІДПРИЄМСТВ
Даний Посібник підготовлено у рамках Програми сприяння зеленій модернізації української економіки, яка виконується Німецьким товариством міжнародного співробітництва (GIZ) ГмбХ на замовлення Федерального міністерства економічного співробітництва та розвитку Німеччини (BMZ). Ключовий партнер Програми – Міністерство економічного розвитку і торгівлі України.

Посібник призначений для представників підприємств і інших зацікавлених у знаннях щодо підвищення ресурсоєфективності виробництва. У Посібнику висвітлено загальний підхід, який може бути використаний у всіх галузях виробництва.

У Посібнику міститься огляд тенденцій розвитку світової економіки, нових викликів для підприємств, розкрито поняття ресурсоєфективності підприємства, наведено кроки на шляху її підвищення та відображено приклади ресурсоєфективних заходів на вітчизняних підприємствах.

Розробник:
Ворфоломеєв А.В.
<table>
<thead>
<tr>
<th>ЗМІСТ</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Вступ</td>
<td>5</td>
</tr>
<tr>
<td>Про Платформу зростання зеленої економіки</td>
<td>6</td>
</tr>
<tr>
<td>Сучасні принципи розвитку економіки</td>
<td>7</td>
</tr>
<tr>
<td>Світові тенденції</td>
<td>7</td>
</tr>
<tr>
<td>Зелена економіка України</td>
<td>10</td>
</tr>
<tr>
<td>Ресурсоефективність підприємства, як її оцінити?</td>
<td>11</td>
</tr>
<tr>
<td>Ресурсоефективність, її показники</td>
<td>11</td>
</tr>
<tr>
<td>Порівняльна оцінка</td>
<td>13</td>
</tr>
<tr>
<td>Пошук ресурсоефективних рішень</td>
<td>16</td>
</tr>
<tr>
<td>Ідентифікація неефективного використання ресурсів на підприємстві</td>
<td>17</td>
</tr>
<tr>
<td>Відбір ділянок для детального аналізу</td>
<td>17</td>
</tr>
<tr>
<td>На що звернути увагу?</td>
<td>18</td>
</tr>
<tr>
<td>Розробка ресурсоефективних рішень та їх обґрунтування</td>
<td>20</td>
</tr>
<tr>
<td>Розробка ідей</td>
<td>20</td>
</tr>
<tr>
<td>Розрахунок окупності ресурсоефективного заходу</td>
<td>22</td>
</tr>
<tr>
<td>Оцінка екологічних та соціальних переваг</td>
<td>24</td>
</tr>
<tr>
<td>Відбір пріоритетних заходів</td>
<td>26</td>
</tr>
<tr>
<td>Впровадження ресурсоефективних рішень</td>
<td>29</td>
</tr>
<tr>
<td>Процес впровадження</td>
<td>29</td>
</tr>
<tr>
<td>Джерела фінансування</td>
<td>29</td>
</tr>
<tr>
<td>Приклади заходів із ресурсозбереження на вітчизняних підприємства</td>
<td>32</td>
</tr>
<tr>
<td>Харчова галузь</td>
<td>32</td>
</tr>
<tr>
<td>Зменшення споживання води на хлібозаводі</td>
<td>32</td>
</tr>
<tr>
<td>Ізоляція трубопроводів на цукровому заводі</td>
<td>33</td>
</tr>
<tr>
<td>Виробництво будівельних матеріалів</td>
<td>34</td>
</tr>
<tr>
<td>Рекуперація тепла при виробництві вогнетривів</td>
<td>34</td>
</tr>
<tr>
<td>Оптимізація використання бітуму при виготовленні покрівельних та ізоляційних матеріалів</td>
<td>34</td>
</tr>
<tr>
<td>Машинобудування та металообробка</td>
<td>35</td>
</tr>
<tr>
<td>Технологічні зміни при виробництві запірно-пломбуючих пристроїв</td>
<td>35</td>
</tr>
<tr>
<td>Заміна різального обладнання при металообробці</td>
<td>36</td>
</tr>
</tbody>
</table>
Легка промисловість ... 37
Спалювання відходів при виробництві тканин 37
Заміна сушил та активаторів при виробництві взуття 38
Комунальний сектор .. 39
Погодозалежне регулювання теплоспоживання в коледжі 39
Модернізація освітлення в закладі харчування 39

Корисна література .. 41

Посилання .. 43

Додаток 1. Перелік питань для самостійної розробки заходів
щодо підвищення ресурсоєфективності .. 44
Належне господарювання .. 44
Використання електроенергії ... 45
Використання тепла ... 46
Використання стиснутого повітря .. 47
Використання матеріалів і зменшення відходів 48
Зменшення викидів ... 48
Використання води та поводження зі стоками 49
Експлуатація будівель ... 50
На сьогодні світовою тенденцією є «озеленення» економіки, тобто перехід від розвитку завдяки споживанню природних ресурсів та пов’язаній з цим шкоді довкіллю в напрямку підвищення ресурсоєфективності, дематеріалізації виробництва та споживання, розробки додаткових джерел створення вартості. Однією з основ зеленої економіки є ресурсоєфективність, яка входить у коло пріоритетів більшості країн світу незалежно від обсягів доступних їм природних ресурсів. Трансформація економіки у напрямі ресурсоєфективності сприяє підвищенню конкурентоспроможності бізнесу, задіянню нових джерел зростання та створеню робочих місць.

Iз поглибленням інтеграційних процесів української економіки у світову велика кількість вітчизняних компаній стикається з вимогами та стандартами нових ринків. Українські підприємства повинні модернізувати свої виробничі процеси, покращити якість продукції та зменшити витрати шляхом підвищення ресурсоєфективності, що є особливо актуальним у контексті Угоди про вільну торгівлю між Україною та Європейським Союзом. У той же час, для більшості українських підприємств актуальна проблема обмеженого доступу до нових технологій і сучасних методик удосконалення виробництва. Такі методики та інструменти дозволили б знижувати ресурсоємність виробничих процесів, застосовуючи навіть маловитратні заходи, але для розробки і впровадження цих заходів необхідні певні специфічні знання і навички працівників підприємства. Відтак, досвід впровадження концепції ресурсоєфективного виробництва потребує поширення серед українських підприємств для підвищення обізнаності їх персоналу із сучасними практиками підвищення ресурсоєфективності в Україні та світі.
Зелена економіка є рушійною силою сталого розвитку, і майбутнє України залежить від її здатності модернізувати економіку, покращити конкурентоздатність економічних секторів, використовувати природні ресурси ефективніше та зупинити/уповільнити деградацію довкілля.

З метою просування ідей зеленої економіки та покращення умов ведення бізнесу в 2015 році в Україні було створено Платформу зростання зеленої економіки. Серед основних завдань Платформи:
› популяризація зеленої модернізації економіки та її складових;
› сприяння розвитку послуг ресурсозбереження в Україні;
› підтримка державних органів, бізнесу та громадянського суспільства в адаптації Порядку денного сталого розвитку 2030.

Учасники Платформи:

► Центр «Розвиток корпоративної та соціальної відповідальності» – це експертна організація з питань корпоративної та соціальної відповідальності (КСВ) в Україні, центр знань, що об’єднує 43 компанії.
► Мережа Глобального договору в Україні – офіційний представник глобальної мережі UN Global Compact, яка забезпечує доступ до кращих світових практик у сфері КСВ, інтеграції Цілей сталого розвитку та 10 принципів Глобального договору ООН у діяльність компаній.
► Програма сприяння зеленій модернізації української економіки – ініціатива Уряду Німеччини у рамках пріоритету «сталий економічний розвиток», що реалізується Німецьким товариством міжнародного співробітництва (GIZ) ГмбХ, і метою якої є посилення державних органів влади, малих та середніх компаній та асоціацій у застосуванні інструментів розвитку зеленої економіки.
► Інститут зеленої економіки – установа, створена експертами в сфері академічної науки, бізнесу та державного управління з метою сприяння розвитку зеленої економіки в Україні.
► Центр ресурсоєфективного та чистого виробництва – організація, заснована за підтримки Організації Об’єднаних Націй з промислового розвитку, Урядів Швейцарії та Австрії, яка надає послуги технічного консалтингу, інжинірингу, експертизи та тренінгів.
► Торгово-промислова палата України – це недержавна організація, метою діяльності якої є створення сприятливих умов для підприємницької діяльності та сприяння розвитку всебічних зв’язків між українськими підприємцями та їх зарубіжними партнерами.
Світові тенденції

До теперішнього часу в багатьох країнах світу панує лінійна модель економіки (linear economy), яка передбачає добування природних ресурсів, переробку в корисні продукти, їх використання та подальше перетворення у відходи, що не мають подальшого застосування. В такій моделі ВВП країни прямо залежить від споживання ресурсів (рис. 1).

Лінійна модель економіки породжує наростаючий сировинний і енергетичний дефіцит, забруднення навколишнього середовища (наприклад, збільшуються викиди парникових газів), що загрожує незворотним кліматичним змінам. Вже з сімдесятих років минулого століття людство споживає більше ресурсів, ніж Земля може регенерувати за рік (рис. 2). Зараз цей індекс складає 1,6 в.о., а за декілька десятиліть нам потрібно вже буде дві планети[2].

Рисунок 1. Зв’язок між ВВП країни і споживанням ресурсів[1]

Рисунок 2. Кількість планет Земля, необхідних для задоволення потреб людства[2]
Новітнім підходом є економіка замкненого циклу (circular economy), яка передбачає безвідходність чи мінімізацію споживання первинної сировини поряд зі зниженням обсягів відходів, що не використовуються корисно, шляхом удосконалення вхідних ресурсів, виробів, систем виробництва і користування, бізнес-моделей. Економіка замкненого циклу включає подовження строку використання продуктів, переробку відходів, залучення відновлюваних джерел енергії тощо (рис. 3). У процесі виробництва, крім еко-дизайну продукції, велика увага приділяється його ресурсоефективності, що виражається співвідношенням отриманих корисних продуктів і використаними ресурсами.

Рисунок 3. Економіка замкненого циклу

НАПРЯМКИ НОВИХ БІЗНЕС-МОДЕЛЕЙ ЕКОНОМІКИ ЗАМКНЕНОГО ЦИКЛУ:\[1]\:

Замкнена система постачання: ресурси що відновлюються, перероблюються або розкладаються в природному середовищі.

Відновлення ресурсів: наприклад, з відходів.

Подовження строку використання продуктів: обслуговування, ремонт, повторне виробництво, повторний продаж.

Платформи спільного використання: між користувачами, в тому числі між приватними особами та організаціями.

Послуги як продукт: користувачі не володіють продуктом, а платять за його використання.

Розбудова ресурсоефективної економіки стала закономірним трендом багатьох розвинутих країн. Так, в Євросоюзі були прийняті два базових документи, спрямовані

Рисунок 4. Цілі сталого розвитку
Зелена економіка України

Україна намагається не стояти останньою в сфері зеленої економіки. Так, на національному рівні було прийнято та адаптовано 17 згаданих Цілей сталого розвитку. Україна підтримала також Декларацію країн Східного партнерства про співробітництво в сфері екології та зміни клімату та Батумську ініціативу Зеленої економіки.

Втім, за даними дослідження[5], за індексом «Малі та середні підприємства (МСП) в зеленій економіці» Україна посідає одне з останніх місць серед країн Східного партнерства ЄС (Азербайджан, Білорусь, Вірменія, Грузія, Молдова та Україна). Цей індекс включає природоохоронну політику щодо МСП та інструменти їх стимулювання. Відсутність значного прогресу на національному рівні з 2012 року можна пояснити складною ситуацією в країні.

На даний момент держава не здійснює активного заохочення (стимулювання) вітчизняних підприємств у напрямку підвищення ресурсоєфективності. Однак, природним каталізатором цього процесу є зростання цін на ресурси. Так за даними опитування МСП[6], понад 80 % з них впроваджували ресурсоєфективні заходи саме через зміну цін на енергоресурси та сировину. Серед 410 МСП Полтавської області найпоширенішими були заходи зі збереження енергії, одного з найвартісніших ресурсів (рис. 5). При цьому 81,1 % підприємств відзначили, що не отримують зовнішньої підтримки для реалізації своїх дій щодо довкілля і ефективного використання ресурсів.

Рисунок 5. Напрямки діяльності українських МСП щодо підвищення ефективності використання ресурсів

Нові завдання побудови зеленої ресурсоєфективної економіки України, поряд з нагальними проблемами забезпечення енергетичної безпеки, ефективного використання ресурсів, сталого зростання і створення нових робочих місць, включають роботу з підприємствами. Це означатиме появи нових інструментів їх стимулювання: нових законів, нормативів, зборів (податків), фондів, програм підтримки (у тому числі міжнародних). Для вітчизняних підприємств важливо бути готовим до прийдення змін і викликів і вже зараз працювати над своєю ресурсоєфективністю, таким чином інвестуючи у власне майбутнє.
Ресурсоефективність, її показники

Ресурсоефективність підприємства має багато трактувань, але її основною ідеєю є «робити більше, витрачаючи менше». У випадку виробництва розглядається ефективність, з якою вхідні компоненти або ресурси (наприклад, енергія, сировина, вода) перетворюються у корисні вихідні (продукція) на всьому виробництві чи на якійсь його ділянці. При цьому звертається увага на некорисні вихідні компоненти (викиди, відходи, стічні води). Ресурсоефективність передбачає отримання тієї ж кількості вихідного продукту без погіршення якості при зменшенні споживання ресурсів за рахунок зменшення втрат і відходів.

Рисунок 6. Процес виробництва

Ресурсоефективне та більш чисте виробництво (РЕЧВ) – це комплексна, послідовна, превентивна екологічна стратегія для застосування у виробничих процесах, яка покликана підвищувати економічну ефективність виробництва, знижувати виробничі ризики для людей та зменшувати навантаження на навколишнє середовище. (за методологією ЮНІДО та ЮНЕП)[7]

Ресурсоефективність підприємства – величина відносна та змінна. Тому ресурсоефективність виробництва передбачає постійну циклічну роботу з його аналізу, пошуку та впровадженню вдосконалень із моніторингом результатів (рис. 7).
Як виміряти ресурсоєфективність? На даний момент немає єдиної показника, яким би можна було оцінити ефективність перетворення енергії, матеріалів і води в кінцеву продукцію, при цьому враховуючи також вплив на навколишнє середовище та соціальні аспекти. Тому для оцінки ресурсоєфективності використовується багато різних показників, зважаючи на конкретні цілі оцінки, її межі, а також доступну інформацію.

Так, щоб оцінювати процес виконання «Дорожньої карти ресурсоєфективної економіки Європи» та відслідковувати прогрес країн чи окремих галузей виробництва, в ЄС ведеться панель «Ресурсоєфективна Європа»[8]. Основним показником є **продуктивність ресурсів** (resource productivity), яка визначається як відношення валового внутрішнього продукту (ВВП) до загального споживання ресурсів і вимірюється в євро/кг. Так, середня продуктивність ресурсів у Європі з 2000 по 2016 рік зросла майже в півтора рази: з 1,47 до 2,08 євро/кг. Іншими показниками є споживання матеріалів на душу населення (т/душу населення), продуктивність земель (мільйонів стандартів купівельної спроможності/км²), індекс використання води (%), продуктивність води (євро/м³), екоєфективність (відношення ВВП, вираженого в євро, до якогось загального показника впливу на довкілля)[9, 10].

Для оцінки ресурсоєфективності підприємства краще підходити простіші показники, які охоплюють найважливіші параметри виробництва[11]:

► **продуктивність енергії** (т/кВт·год) – відношення випуску продукції до споживання енергії;
Головні показники ухвалення матеріалів та води:

1. **Продуктивність матеріалів** (т/т) – відношення випуску продукції до споживання матеріалів, не включаючи повторне використання;

2. **Продуктивність води** (т/м³) – відношення випуску продукції до споживання води, не включаючи повторне використання;

3. **Інтенсивність відходів** (т/т) – відношення утворення відходів до випуску продукції;

4. **Інтенсивність стоків** (м³/т) – відношення утворення стоків до випуску продукції;

5. **Інтенсивність викидів** (т СО₂-екв./т) – відношення утворення викидів, включаючи пов’язані з використанням енергоресурсів викиди, до випуску продукції.

Перші три показники відображають, скільки продукції виробляється з одиниці ресурсу, і в процесі розвитку підприємства вони мають збільшуватися. Останні три – скільки утворюється відходів при виробництві одиниці продукції, вони повинні зменшуватися. В Україні більш розповсюджено показники питомого споживання, тобто скільки енергії/ресурсів/води витрачено на виробництво одиниці продукції і скільки при цьому утворилося викидів/відходів/стоків.

Показники ресурсоєфективності розраховуються за достатньо довгий, репрезентативний відрізок часу, наприклад, за рік. Можна використовувати альтернативні одиниці, особливо для оцінки кількості виробленої продукції, але краще за все зупинитися на масових показниках, оскільки вони полегшують складання матеріального балансу виробництва.

Розглядаючи роботу власного підприємства, можна використовувати більш специфічні показники, наприклад, кількість фарби, яка витрачається на 1 м² поверхні.

Не варто оцінювати ресурсоєфективність в абсолютних показниках. Так, загальне зниження споживання електроенергії може бути викликане не ростом енергоєфективності, а сезонним зменшенням випуску продукції. Також не рекомендується використовувати розрахунок частки, наприклад, електроенергії у собівартості продукції. Такий спосіб оцінки, поширенний за радянських часів, не відповідає сучасній економіці: зміни цін, девальвація гривні тощо.

Порівняльна оцінка

Оцінити реальний стан підприємства можна шляхом порівняння основних показників його роботи з показниками подібних підприємств. Це називається **порівняльною оцінкою (benchmarking)**. Така оцінка відображає загальний стан підприємства і дає змогу оцінити потенціал збереження ресурсів (у тому числі економічний), що дозволить правильно формувати цілі розвитку, розставляти пріоритети активності щодо удосконалення виробництва.
Рисунок 8. Результати порівняльної оцінки підприємства

Порівняльна оцінка є ефективним інструментом, але її найдбільшою проблемою є складність пошуку адекватних даних для порівняння. По-перше, показники споживання ресурсів підприємствами сприймаються ними як комерційна таємниця, тому вони відсутні в загальному доступі. Таким чином, потрібно аналізувати галузеві посібники та звіти, наукові статті, збірники найкращих технологій, доповіді міжнародних організацій. В Європі асоціації виробників розробляють збірки найкращих технологій у галузі. Також збірки та посібники з кращими технологіями видаються за кошти ЄС. На жаль, більшість матеріалів доступно лише англійською мовою. Дані для порівняння за деякими галузями можна знайти в посібниках Центру РЕЧВ (див. розділ "Корисна література").

Складною процедурою є також підбір підприємств-аналогів та відсівання невідповідних показників. Наприклад, у теплих країнах тривалість та інтенсивність теплової обробки в окремих виробничих процесах може бути меншою або й зовсім відсутньою, тому й енергоспоживання буде іншим. На підприємствах, що виробляють однакову продукцію, можуть бути дещо різні технологічні процеси, наприклад, може включатися додаткова обробка.

Також треба бути уважними щодо показників, які порівнюються. Часто в літературі наводяться дані за весь життєвий цикл продукту – «від колиски до могили» (from cradle to grave), тобто від видобутку компонентів продукту до його утилізації. Такий показник відображає витрати ресурсів (енергії і т.д.) при добуванні компонентів, їх транспортуванні, зберіганні, переробці тощо. Звісно, ці показники будуть суттєво вищими за безпосередньо виробництво на підприємстві.
ПОРАДИ ЩОДО ПРОВЕДЕННЯ ПОРІВНЯЛЬНОЇ ОЦІНКИ:

• підбираєте підприємства з найбільш схожим технологічним процесом і умовами. Можна розділяти порівняння з вітчизняними підприємствами та кращими зарубіжними;

• уважно читайте опис показників у тексті матеріалу та стежте за одиницями вимірювання;

• розбиваєте виробництво на окремі технологічні процеси і шукайте їх показники, якщо дані по всьому виробництву відсутні;

• не варто брати за основу показники десятирічної давності, оскільки за такий час технології виробництва істотно змінюються.

Також можна використовувати внутрішню порівняльну оцінку (internal benchmarking) – порівняння зміни показників роботи підприємства у часі. Таким чином можна визначити потенціал підприємства (найкращі показники) чи встановити перевитрати ресурсів і їх причини (рис. 9).
Пошук ресурсоєфективних рішень

Ресурсоєфективні рішення спрямовані на зменшення питомого споживання ресурсів (енергії, матеріалів, води) та утворення відходів, стоків і викидів, а також покращення умов праці. До заходів з підвищення ресурсоєфективності відносяться не тільки технічні, як от модернізація обладнання чи його заміна, але й організаційні, наприклад, зміна графіку роботи з обладнанням, призначення відповідальних за певні процеси тощо.

Процес розробки ресурсоєфективних заходів включає встановлення проблемних ділянок/процесів виробництва, їх детальний аналіз, генерацію ідей щодо удосконалення ділянки, відбір кращих ідей і їх техніко-економічне та соціально-екологічне обґрунтування.

Рисунок 10. Впровадження проекту з ресурсоєфективності
Ідентифікація неефективного використання ресурсів на підприємстві

Розробка заходів щодо удосконалення ресурсоефективності підприємства базується на детальному аналізі виробничих процесів, який включає технічні вимірювання і розрахунки їх параметрів. Надто складно і не раціонально виконувати такий аналіз для кожного процесу/ділянки. Перш за все, треба виділити ділянки/процеси, які чинять найбільший вплив на загальну ресурсоефективність підприємства чи мають найгірші показники ефективності. В подальшому саме ці ділянки/процеси підлягають детальному аналізу, та саме для їх удосконалення розробляються ресурсоефективні заходи.

Відбір ділянок для детального аналізу

Для визначення місць на підприємстві, де відбувається неефективне використання ресурсів та які потребують удосконалення, можна використовувати різні способи. Одним з них є вже згадана порівняльна оцінка. Але в цьому випадку потрібно зменшити масштаб – брати до уваги не все виробництво, а конкретні його процеси/ділянки. Джерелами для порівняння можуть бути не лише посібники чи звіти, а й галузеві нормативи.

Іншим способом вибору ділянок/процесів для подальших досліджень є складання балансу, наприклад, матеріального, енергетичного, водного. Такий баланс відображає розподіл ресурсів між виробничими ділянками: кількість, вид ресурсу, маршрут, кінцеве призначення. За допомогою балансів можна не тільки відокремити ресурсоємні ділянки/процеси, але й оцінити кількість відходів, облік яких зазвичай не проводиться. Складені баланси надають вихідні дані для розрахунків і обґрунтування ресурсоефективних заходів.

ПОРЯДОК СКЛАДАННЯ БАЛАНСУ:
1. Вибрати параметри, що будуть відслідковуватися (за вартістю, доступністю, токсичністю тощо).
2. Обмежити масштаб балансу (все підприємство, цех, окремий технологічний процес) та тривалість (рік, місяць, робоча зміна, година).
3. Визначити етапи технологічного процесу.
4. Побудувати схему потоків (матеріальних, водних тощо).
5. Оцінити кількісно та відобразити на схемі ресурси та їх втрати.

На рис. 11 наведено приклад матеріального балансу процесу виготовлення картону. Так як облік продукту на виході здійснювався в квадратних метрах, лише складання балансу дозволило оцінити справжню кількість відходів. Після цього було проведено заміну обладнання для різання на більш сучасне і ефективне.
Пошук ділянок з неефективним використанням ресурсів завжди вимагає комунікації з персоналом підприємства, адже працівники найкраще обізнані з роботою підприємства та його проблемами. Вони можуть одразу порекомендувати на що звернути увагу. Втім, такі рекомендації не скасовують необхідності застосування системного підходу (наприклад, із розробкою балансів), адже часто працівники оцінюють виробництво у рамках своїх обов’язків, компетенції та кваліфікації, не оцінюючи загальну картину/ситуацію на підприємстві.

На що звернути увагу?

Із досвіду проведення оцінок підприємств Центром ресурсоекономічного та чистого виробництва, існують певні процеси, які найчастіше пов’язані з неефективним використанням ресурсів. Вони потребують додаткової уваги. Далі наведені приклади таких процесів.

Процеси та обладнання, які пов’язані з нагріванням чи охолодженням. Зазвичай це енергоємні процеси, ефективність яких залежить від правильності підбору режимів
роботи, конструкції обладнання, стану ізоляції тощо. Навіть найпростіші заходи, такі як облаштування ізоляції чи регулювання часу обробки, можуть давати значний ефект при невеликих інвестиціях.

Використання стиснутого повітря. Загалом близько 5-6 % енергії, що підводиться до компресорів, корисно використовується кінцевим споживачем стиснутого повітря. Тому рекомендується за можливості замінювати пневмоінструмент електричним. Близько третини заощаджень у системах стиснутого повітря досягається шляхом усунення витоків у мережах та обладнанні.

Потужні електроприводи. Важливу роль у ефективності роботи електроприводу відіграє налаштування його під конкретні вимоги. Наприклад, при зниженні коефіцієнта завантаження електродвигуна відбувається зменшення його коефіцієнту корисної дії, а також коефіцієнта потужності, що призводить до збільшення споживання реактивної енергії. Тому важливо правильно підбирати електродвигун, а якщо ж умови роботи змінні, то електропривод має передбачати можливість регулювання.

Транспортування. Значна кількість матеріалів може втрачатися в процесах транспортування, за/роз/перевантаження. Особливо у вагу треба приділити вартісним ресурсам, наприклад, цементу, клею, в’яжучим матеріалам. Також треба звертати увагу на способ транспортування, наприклад, уникати пневмотранспорту.

Нанесення покриттів. Ключовим завданням процесу є забезпечення достатньої товщини покриття з уникненням перевитрат. Розглядаючи альтернативні варіанти, обов’язково слід брати до уваги підготовчі етапи обробки поверхні.

Системи освітлення. Система освітлення може бути значним споживачем електроенергії, якщо вона використана лампами розжарювання чи іншими неефективними джерелами світла.

Система електропостачання. При аналізі системи потрібно перевірити відповідність її пропускної здатності (мережі, трансформаторів) до фактичного навантаження. Відсутність компенсаторів реактивної потужності або їх недостатня автоматизація може також призводити до перевитрат для підприємства, а також чинити додаткове навантаження на розподільче обладнання.

Поводження з відходами. Відходи підприємства можуть мати високу вартість, особливо якщо оцінювати їх за вартістю вхідної сировини. Тому рекомендується аналізувати відходи для розробки заходів із запобігання їх утворенню чи їх корисного використання на підприємстві.

Миття. Недосконалі організація процесів миття призводить до значних перевитрат води, миючих засобів, а також до утворення великої кількості стоків, які потребують додаткового очищення.
Розробка ресурсоефективних рішень та їх обґрунтування

Розробка ідей

Пошук ідей щодо вирішення виявлених проблем є творчим процесом і має ключове значення в успішному впровадженні ресурсоефективних рішень. При розробці ідей потрібно мати чітке уявлення про проблему, тому в процесі підготовки проводяться роботи зі збору необхідних даних включно з технічними вимірюваннями. Надалі збираються думки щодо проблеми та пропонуються варіанти рішень. Кінцевим етапом є оцінка згенерованих пропозицій, відбір найбільш відповідних і реалізація.

Рисунок 12. Стадії креативного пошуку вирішення проблем

Сам процес пошуку ідей може бути впорядкований різними способами. Це може бути індивідуальна робота, але перевага надається все ж груповій, оскільки кожен учасник може запропонувати свій погляд і підхід до встановленої проблеми.

Однією з популярних форм групової роботи є «мозковий шторм» (brainstorming), під час якого робоча група розглядає питання та намагається запропонувати якомога більше різноманітних рішень. Згодом, у процесі аналізу, відбираються найбільш відповідні. 4 основні принципи «мозкового штурму»:
› не критикувати ніякі ідеї та не засуджувати будь-який підхід;
› не обмежувати фантазію;
› приймати ідеї інших учасників і намагатися їх розвивати;
› кількість ідей важливіша за їх якість.

У процесі пошуку ідей треба звертати увагу на 8 підходів ресурсоефективного та більш чистого виробництва[^1].
<table>
<thead>
<tr>
<th>ПІДХІД</th>
<th>ОПИС</th>
</tr>
</thead>
<tbody>
<tr>
<td>Належне господарювання</td>
<td>регулярне проведення у господарській діяльності підприємства дій, які стосуються підтримки необхідного робочого стану та режимів роботи обладнання, його обслуговування та поточного ремонту з метою уникнення перевитрат ресурсів і забезпечення належних умов праці персоналу.</td>
</tr>
<tr>
<td>Зміна вхідних ресурсів</td>
<td>пошук та вибір вторинних матеріалів, придатних для заміни первинної сировини, застосування менш шкідливих чи токсичних речовин у процесі виробництва, використання альтернативних видів палива для покращення екологічних характеристик продукції та зменшення впливу на навколишнє середовище.</td>
</tr>
<tr>
<td>Покращення контролю за технологічними показниками</td>
<td>застосування систематичних заходів з метою обліку споживання ресурсів та утворення відходів і стоків, визначення та контролю технологічних показників і робочих режимів обладнання на всіх виробничих етапах.</td>
</tr>
<tr>
<td>Модифікація обладнання</td>
<td>процес удосконалення, модернізації та оновлення техніко-технологічної бази підприємства для досягнення оптимальних параметрів роботи обладнання, подовження терміну корисної експлуатації об’єкта, забезпечення надійної роботи та кращих показників продуктивності виробництва.</td>
</tr>
<tr>
<td>Технологічні зміни</td>
<td>заміна способу обробки та перетворення вхідних ресурсів (матеріалів, енергії, води тощо) на різні етапах виробництва продукції з метою покращення її якісних характеристик або скорочення обсягів споживання ресурсів.</td>
</tr>
<tr>
<td>Переробка та повторне використання ресурсів</td>
<td>здійснення підприємством технологічних операцій, пов’язаних зі зміною фізичних, хімічних або біологічнихластивостей відходів виробництва з метою їх подальшого застосування або повернення у технологічний процес у вигляді вторинних ресурсів (сировинних, енергетичних, водних).</td>
</tr>
<tr>
<td>Виробництво супутньої продукції</td>
<td>отримання додаткових видів продукції, які мають комерційну привабливість для споживачів, із залишків матеріалів або відходів виробництва основного продукту.</td>
</tr>
<tr>
<td>Модифікація продукції</td>
<td>зміни у продуктах, що виробляються, для удосконалення їх характеристик (механічних, фізичних чи хімічнихластивостей), підвищення екологічної та економічної привабливості товарів, спрощення способів їх утилізації та подовження життєвого циклу.</td>
</tr>
</tbody>
</table>
При розробці ресурсоєфективних рішень можна користуватися різними креативними прийомами, які дозволяють подивитися на проблему з іншого боку:

1. «Чому, чому, чому?» — постійно ставити запитання до перебігу процесу, будуячи ланцюжок до кореня проблеми.
2. «Вивчення невідповідностей» — зібрати думки про технічний процес різних людей, порівняти дані, отримані різними способами, співставити результати однакової послідовності дій.
3. «Індикатори і порівняльний аналіз» — намагатися досягнути найкращих показників у галузі.
4. «Супер-суперідеально» — оцінити найменшу кількість ресурсів, необхідну для випуску продукції, порівняти її з фактичним середнім значенням і встановити причину невідповідності.
5. «Метод 10 %» — розглянути, що буде з досліджуваним процесом, якщо знизити споживання якогось ресурсу на 10 %.
6. «Вилучення» — розглянути, що буде з досліджуваним процесом, якщо взагалі відмовитись від якогось ресурсу.

Розрахунок окупності ресурсоєфективного заходу

Економічні вигоди від ресурсоєфективних заходів є одними з головних чинників їх подальшого впровадження. Тому до розрахунку економічного ефекту треба підходити достатньо серйозно. Доцільно порівнювати одразу декілька варіантів вирішення однієї проблеми, щоб вибрати найкращий варіант.

Інвестиції на впровадження заходу повинні включати капітальні витрати (включаючи придбання обладнання, його установку і налаштування тощо). Для оцінки інвестицій потрібно зв’язатися з постачальниками послуг і обладнання. Річний економічний ефект розраховується як різниця між базовим та новим варіантом у експлуатаційних витрахах, споживанні сировини, платежах за відходи, створенні додаткового доходу. Вихідними даними для оцінки економічного ефекту є технічні розрахунки.

Найпростішим показником економічної доцільності впровадження ресурсоєфективного заходу є термін окупності — відношення між інвестиціями до річного економічного ефекту. Термін окупності відображає час, за який повернуться вкладені інвестиції. Простий термін окупності доцільно використовувати для невеликих проектів зі швидкою окупністю, бо він не враховує зміну вартості грошей у часі. В принципі, розрахунок простого терміну окупності цілком достатньо для обґрунтування впровадження невеликого проекту за власні кошти підприємства.

Більш точними показниками для оцінки інвестиційної привабливості проекту з впровадження ресурсоєфективного заходу є чиста приведена вартість, внутрішня норма дохідності та індекс рентабельності. Для визначення цих показників потрібно спочатку проаналізувати грошові потоки, тобто часовий розподіл доходів і витрат. Після чого можна привести (перерахувати) ці показники до певного (базового) року. На рис. 13 наведений приклад грошових потоків проекту зі складним розподілом інвестицій та доходів за роками.
Чиста приведена вартість (NPV або net present value) є різницею між доходами і витратами, приведеними до поточного часу. У випадку, якщо витрати здійснюються лише на початковому етапі впровадження заходу, чисту приведену вартість можна обрахувати за формулою:

\[
NPV = -CF_0 + \frac{CF_1}{(1+r)^1} + \frac{CF_2}{(1+r)^2} + \ldots + \frac{CF_n}{(1+r)^n},
\]

де \(CF\) – грошовий потік у році, грн;

\(r\) – відсоткова ставка, в.о.

Відсоткова ставка приймається як актуальна відсоткова ставка депозитів для підприємств. Таким чином визначається, чи вигідному підприємству впроваджувати ресурсоєфективний захід у порівнянні з простим розміщенням доступних коштів у банку. Умовою впровадження заходу є додатня чиста приведена вартість (\(NPV>0\)) за вибрану кількість років.

Внутрішня норма дохідності (IRR або internal rate of return) визначає прибутковість проекту. IRR можна визначити із формули для чистої приведеної вартості, прирівнявши її до нуля і вирішивши відносно \(r\). У випадку залучення зовнішніх інвестицій внутрішня норма дохідності повинна бути більшою за ставку, за якою залучаються гроші.

Індекс рентабельності (PI або profitability index) є відношенням суми приведених грошових потоків до початкових витрат. У випадку, якщо витрати здійснюються лише на початковому етапі впровадження заходу, індекс рентабельності можна обрахувати за формулою:

\[
PI = \left(\frac{CF_1}{(1+r)^1} + \frac{CF_2}{(1+r)^2} + \ldots + \frac{CF_n}{(1+r)^n} \right) / CF_0
\]

Індекс рентабельності повинен бути більшим за одиницю.
Приклад: встановлення станка для нарізання арматури з котушок. У порівнянні з базовим варіантом (нарізання зі стрижневої арматури) зменшиться споживання металопрокату (i кількість відповідних відходів) на 13,3 т. Також покращатиметься умови праці: механізований процес не вимагає присутності робітника в момент нарізання.

Інвестиції в проект становлять 400 тис. грн. Річний економічний ефект оцінено в 126,35 тис. грн. Простий період окупності: 400 000/126 350 = 3,16 р.

Грошові потоки проекту, розрахованого на п’ять років, включають одноразову інвестицію при придбанні й встановленні станків:

\[
\begin{array}{c}
\text{126350} \\
\text{126350} \\
\text{126350} \\
\text{126350} \\
\text{126350} \\
\end{array}
\]

Чиста приведена вартість:

\[
\text{NPV} = -400000 + \frac{126350}{(1+r)} + \frac{126350}{(1+r)^2} + \frac{126350}{(1+r)^3} + \frac{126350}{(1+r)^4} + \frac{126350}{(1+r)^5} = 13 340 \text{ грн}
\]

Для малих підприємств процентна ставка складає \(r = 16 \% \).

Внутрішня норма дохідності (IRR) отримується із рівняння:

\[
0 = -400000 + \frac{126350}{(1+r)} + \frac{126350}{(1+r)^2} + \frac{126350}{(1+r)^3} + \frac{126350}{(1+r)^4} + \frac{126350}{(1+r)^5}.
\]

Рішенням цього рівняння є \(r = 0,175 \). Тобто IRR = 17,5 %

Індекс рентабельності інвестицій:

\[
\text{PI} = 413200/400000 = 1,033
\]

Таким чином, проект є відносно привабливим для інвестування.

Оцінка екологічних та соціальних переваг

Оцінюючи запропоновані ресурсоефективні заходи, не варто покладатися лише на економічні показники, треба брати до уваги також їх екологічні та соціальні складові. Доцільно врахувати, як даний захід впливає на споживання невідновлюваної сировини, енергії, як змінюються обсяги і склад відходів, стоків і викидів, чи замінюються токсичні речовини безпечними аналогами, чи покращуються умови праці.

Споживання енергії завжди пов’язане з викидами в атмосферу, що впливають на глобальне потепління. Коефіціенти для приведення енергії від різних джерел до еквівалентних викидів наведено в таблиці[12].
Таблиця 2. Викиди, що утворюються при використанні енергоносіїв (для України)

<table>
<thead>
<tr>
<th>№</th>
<th>ЕНЕРГОНОСІЙ</th>
<th>ОДИНИЦІ ВИМІРЮВАННЯ</th>
<th>КОЕФІЦІЄНТ ДЛЯ ПЕРЕРАХУНКУ В КВТ-ГОД</th>
<th>КОЕФІЦІЄНТ ДЛЯ ПЕРЕРАХУНКУ В Т СО₂-ЕКВ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Електроенергія</td>
<td>кВт•год</td>
<td>1</td>
<td>0,0013170</td>
</tr>
<tr>
<td>2</td>
<td>Природний газ</td>
<td>кВт•год</td>
<td>1</td>
<td>0,0002019</td>
</tr>
<tr>
<td></td>
<td></td>
<td>м³</td>
<td>9,5</td>
<td>0,0019181</td>
</tr>
<tr>
<td>3</td>
<td>Вугілля</td>
<td>кВт•год</td>
<td>1</td>
<td>0,0003405</td>
</tr>
<tr>
<td></td>
<td></td>
<td>т</td>
<td>5 997</td>
<td>2,0419785</td>
</tr>
<tr>
<td>4</td>
<td>Антрацит</td>
<td>кВт•год</td>
<td>1</td>
<td>0,0003537</td>
</tr>
<tr>
<td></td>
<td></td>
<td>т</td>
<td>5 997</td>
<td>2,1211389</td>
</tr>
<tr>
<td>5</td>
<td>Бензин</td>
<td>кВт•год</td>
<td>1</td>
<td>0,0002494</td>
</tr>
<tr>
<td></td>
<td></td>
<td>т</td>
<td>12 444</td>
<td>3,1035336</td>
</tr>
<tr>
<td></td>
<td></td>
<td>л</td>
<td>9,22</td>
<td>0,0022995</td>
</tr>
<tr>
<td>6</td>
<td>Дизельне паливо</td>
<td>кВт•год</td>
<td>1</td>
<td>0,0002666</td>
</tr>
<tr>
<td></td>
<td></td>
<td>т</td>
<td>12 036</td>
<td>3,2087976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>л</td>
<td>10,157</td>
<td>0,0027079</td>
</tr>
<tr>
<td>7</td>
<td>Мазут</td>
<td>кВт•год</td>
<td>1</td>
<td>0,0002798</td>
</tr>
<tr>
<td></td>
<td></td>
<td>т</td>
<td>11 163</td>
<td>3,1234074</td>
</tr>
</tbody>
</table>

Сучасні компанії контролюють рівні своїх викидів, стоків, споживання ресурсів тощо і беруть на себе соціальні зобов'язання щодо їх скорочення. Це не лише є джерелом додаткового прибутку та покращує імідж компанії, а й впливає на стан довкілля та добробут громади на місцевому рівні.
Відбір пріоритетних заходів

ПРОЦЕДУРА ВІДБОРУ ЗАХОДІВ

1. Попередній відбір заходів з відхилення опцій, які неможливо виконати або які потребують подальшого доопрацювання

2. Аналіз заходів, розрахунок економічного та екологічного ефектів

3. Встановлення рейтингової шкали для порівняння опцій

4. Розстановка опцій за їх рейтингом

5. Складання переліку впровадження заходів із зазначенням відповідальних осіб і термінів

Відбір ресурсоєфективних заходів для подальшого впровадження проводиться за чотирма критеріями: економічним, екологічним, технічним і організаційним. Рейтингова шкала для оцінки заходів вибирається підприємством, зважаючи на його розмір, можливості, поточний стан і плани розвитку.
<table>
<thead>
<tr>
<th>КРИТЕРІЙ</th>
<th>РЕЙТИНГ</th>
<th>ХАРАКТЕРИСТИКИ ЗАХОДУ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Економічний</td>
<td>4★★★★</td>
<td>Термін окупності менше року або висока внутрішня норма дохідності (наприклад, понад 0,3). Інвестиції невеликі (менше 30 тис. грн) або не потрібні. Експлуатаційні витрати незначні.</td>
</tr>
<tr>
<td>3★★★</td>
<td>Середній термін окупності (1-3 роки). Помірні інвестиції (30-300 тис. грн). Експлуатаційні витрати такі ж, як і в базовому варіанті.</td>
<td></td>
</tr>
<tr>
<td>2★★</td>
<td>Термін окупності вище середнього (3-6 років). Інвестиції до 1,5 млн грн. Експлуатаційні витрати такі ж, як і в базовому варіанті.</td>
<td></td>
</tr>
<tr>
<td>1★</td>
<td>Великий термін окупності (понад 6 років). Великі інвестиції понад 1,5 млн грн. Високі експлуатаційні витрати.</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>Розмір інвестицій завеликий для підприємства.</td>
<td></td>
</tr>
<tr>
<td>Екологічний</td>
<td>4★★★★</td>
<td>Зниження обсягів відходів, викидів, стоків чи використання шкідливих речовин понад 25 %.</td>
</tr>
<tr>
<td>3★★★</td>
<td>Зниження обсягів відходів, викидів, стоків чи використання шкідливих речовин на 10-25 %.</td>
<td></td>
</tr>
<tr>
<td>2★★</td>
<td>Зниження обсягів відходів, викидів, стоків чи використання шкідливих речовин на 5-10 %.</td>
<td></td>
</tr>
<tr>
<td>1★</td>
<td>Зниження обсягів відходів, викидів, стоків чи використання шкідливих речовин на 0-5 %.</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>Недоцільно з екологічної точки зору. Заборонено нормативами.</td>
<td></td>
</tr>
<tr>
<td>Технічний</td>
<td>4★★★★</td>
<td>Організаційний захід. Не потрібні технологічні зміни. Найкраща доступна технологія.</td>
</tr>
<tr>
<td>3★★★</td>
<td>Прості та широковідомі технологічні зміни. Не потребує додаткових витрат на експлуатацію та обслуговування.</td>
<td></td>
</tr>
<tr>
<td>2★★</td>
<td>Випробувана технологія. Технологічні зміни не прості, але здійснені. Необхідне періодичне обслуговування.</td>
<td></td>
</tr>
</tbody>
</table>
Після оцінювання запропонованих заходів, за їх сумарним рейтингом складається перелік пріоритетних заходів для їх подальшого впровадження.

Таблиця 4. Приклад пріоритетності заходів

<table>
<thead>
<tr>
<th>ЗАХІД</th>
<th>КРИТЕРІЙ</th>
<th>ЕКОНО-</th>
<th>ЕКОЛО-</th>
<th>ТЕХНІ-</th>
<th>ОРГАНИЗА-</th>
<th>СУМА</th>
<th>ПРИОРІТЕТ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>МІЧНИЙ</td>
<td>ГІЧНИЙ</td>
<td>ЧНІЙ</td>
<td>ЦІЙНИЙ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Модернізація сушила</td>
<td></td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Заміна газу на тверде паливо</td>
<td></td>
<td></td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>Відхилено</td>
</tr>
<tr>
<td>Рекуперація тепла на сушилі</td>
<td></td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>2</td>
</tr>
</tbody>
</table>
ВПРОВАДЖЕННЯ РЕСУРСОЕФЕКТИВНИХ РІШЕНЬ

Процес впровадження

Після вибору пріоритетних заходів із підвищення ресурсоєфективності складається План дій (План впровадження ресурсоєфективних заходів). Цей План містить:
› короткий опис заходу;
› запланований економічний ефект від заходу (річна економія, термін окупності);
› запланований екологічний ефект від заходу (зниження споживання ресурсів – енергії, матеріалів, води, чи утворення викидів, стоків, відходів);
› конкретні задачі (етапи) впровадження із зазначеними відповідальними особами та термінами виконання.

Перед впровадженням заходу треба зафіксувати поточні показники ресурсоєфективності обладнання/ділянки/виробництва. А після впровадження необхідно провести моніторинг, щоб визначити зміну цих показників (важливо проводити оцінку в схожих до базового варіанту умовах). Це дозволить встановити реальний ефект від впровадження заходів, що є важливою інформацією для подальшого планування робіт із підвищення ресурсоєфективності.

Проводьте фотофіксацію впровадження заходів (фото до, після та в процесі виконання). Такі фото в подальшому дозволять наочно демонструвати успіхи компанії в звітах, презентаціях і промоматеріалах.

Джерела фінансування

Однією з основних перешкод на шляху модернізації виробництв є брак у підприємств фінансових ресурсів для впровадження ресурсоєфективних заходів. Опитування у рамках демонстраційного проекту «Ресурсоєфективне та чисте виробництво» програми «Екологізація економіки країн Східного Партнерства ЄС» показало, що вітчизняні підприємства воліють використовувати власні фінансові ресурси для розвитку підприємства без залучення зовнішніх джерел[13]. Отримані результати збігаються і з даними Державної служби статистики України. Так, у січні-березні 2017 р. підприємствами освоєно 64,8 млрд. грн капітальних інвестицій, при цьому основним джерелом фінансування були внутрішні кошти підприємств та організацій – 68 %[14]. Інші джерела фінансування, такі як кредити, ресурси державних та місцевих бюджетів тощо, крім коштів населення на будівництво житла, не перевищують позначки у 5 %. Все це виливається в низьку активність малого та середнього бізнесу у впровадженні ресурсоєфективних заходів. Внутрішніх фінансових ресурсів зазвичай вистачає лише на впровадження організаційних чи маловитратних рішень із терміном окупності менше трьох років.
Чого не вистачає для впровадження ресурсоєфективних заходів?

<table>
<thead>
<tr>
<th>Заходи</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Покриття забов'язань компанії</td>
<td>13%</td>
</tr>
<tr>
<td>Розширення підприємства</td>
<td>38%</td>
</tr>
<tr>
<td>Впровадження нової технології</td>
<td>31%</td>
</tr>
<tr>
<td>Закупівля сировини</td>
<td>19%</td>
</tr>
<tr>
<td>Впровадження вигідного бізнес-плану</td>
<td>19%</td>
</tr>
<tr>
<td>Інше</td>
<td>19%</td>
</tr>
</tbody>
</table>

Що спонукає залучати кредити?

<table>
<thead>
<tr>
<th>Причини</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Не довіряю банкам</td>
<td>20%</td>
</tr>
<tr>
<td>Ставки по кредитам є високими</td>
<td>35%</td>
</tr>
<tr>
<td>Банки не надають підприємству кредит</td>
<td>15%</td>
</tr>
<tr>
<td>Небажання ризикувати</td>
<td>35%</td>
</tr>
<tr>
<td>Не можу відповісти</td>
<td>25%</td>
</tr>
<tr>
<td>Інше</td>
<td>15%</td>
</tr>
</tbody>
</table>

Що стримує від користування кредитами?

Проблема нестачі внутрішніх фінансових ресурсів може бути вирішена шляхом залучення фінансування із зовнішніх джерел, найпоширенішими з яких є кредитування. Основними кредиторами заходів з підвищення ресурсоєфективності для підприємств є комерційні банки та міжнародні фінансові інституції. Поточне зростання попиту на кредитування скоріше пов'язане з потребою бізнесу в оборотному капіталі та необхідності в реструктуризації наявної заборгованості, аніж інвестуванням у ресурсоєфективні технології. Вітчизняні підприємства зазвичай намагаються уникати
кредитів, якщо є така можливість. Так, серед опитаних підприємств тільки третина розглядала можливість залучення кредитних коштів, і лише третина з них планувала використати ці кошти на впровадження ресурсоекономічних заходів[13]. Серед бар’єрів зазначалися відсутність розуміння вимог банків, нестача персоналу з необхідною кваліфікацією та, найчастіше, високі ставки за кредитами. Середні ставки за кредитами для підприємств в Україні є найвищими у порівнянні з іншими країнами Східного партнерства ЄС. Хоча існують «зелені» програми підтримки бізнесу задля підвищення ресурсо- та енергоефективності підприємств з більш привабливими умовами. Основна частина цих кредитних ліній пропонується вітчизняними банками за підтримки міжнародних фінансових інституцій.

Пряме фінансування від міжнародних фінансових інституцій складніше виконувати через безпосереднє кредитування через міжнародні фінансові інституції, але міжнародна співпраця призводить до зростання процентних ставок, використання кредитних ліній у валюті супроводжується великими ризиками та є прийнятним виключно для орієнтованих на експорт підприємств.

Ще однією можливістю для підприємств залучити фінансування на впровадження ресурсоекономічних рішень є участь в грантових програмах, що передбачають залучення грантових коштів від міжнародних організацій та фондів. Цей шлях потребує наявності на підприємстві спеціалістів з міжнародної співпраці або ж залучення фахівців консалтингових компаній.

Державна підтримка та фінансування малих і середніх підприємств здійснюється переважно на регіональному рівні через місцеві програми розвитку підприємництва. На думку представників підприємств, даний механізм не є привабливим через малью обсяги ресурсів (200-500 тис. грн) та додаткову увагу контролюючих органів при роботі з бюджетними коштами.

Щодо використання альтернативних джерел фінансування, таких як краудфандинг, залучення бізнес-ангелів чи імпакт-інвесторів, то, за даними проведеного у проекті опитування[13], менше 15% вітчизняних МСП знайомі з такими поняттями та принципами співпраці.
ПРИКЛАДИ ЗАХОДІВ ІЗ РЕСУРСОЗБЕРЕЖЕННЯ НА ВІТЧИЗНЯНИХ ПІДПРИЄМСТВАХ

У цьому розділі наведено приклади ресурсоефективних заходів, впроваджених на українських підприємствах. Всі ці підприємства проходили оцінку за методикою ресурсоефективного та чистого виробництва (РЕЧВ), яку виконували експерти національного Центру РЕЧВ. Результатами оцінок були запропоновані заходи для підвищення ефективності ресурсокористування. За необхідності, підприємствам надавалася допомога у реалізації цих заходів.

Рисунок 15. Результати ресурсоефективних заходів, розроблених Центром РЕЧВ для українських підприємств у 2013-2017 роках

Заходи в цьому розділі підібрані таким чином, щоб продемонструвати різноманіття підходів у збереженні ключових ресурсів і зменшенні кількості відходів. Насправді, у кожному випадку було розроблено 5-10 ресурсоефективних заходів, часто більш економічно вигідно, ніж наведені тут.

Харчова галузь

Зменшення споживання води на хлібозаводі

Проектна потужність заводу складає близько 34 000 тон хліба та хлібобулочних виробів на рік. Середньодобовий випуск продукції складає 47 тон хліба та хлібобулочних виробів (підприємство завантажене на 50 %). Кількість працівників на підприємстві – 320 осіб.

Рисунок 16. Випікання хліба
Підприємство застосовує традиційні технології виготовлення тіста на основі рідкої опари. Основні операції підготовки тіста механізовані, для випікання використовується тунельна газова піч.

Результати обстеження показали, що 14 % тепла від печі викидається після процесу випікання з димовими газами (температурую 275 °C), 21 % тепла йде в приміщення хлібопекарського цеху з поверхні печі і з готовою продукцією. Також 38 % тепла викидається з пароповітряною сумішшю (115 °C), при цьому в атмосферу викидається близько 5 м³/добу води.

Для зменшення споживання води було запропоновано замінити старі зрошувальні пристрої на шарові форсунки, а також використовувати конденсовану паро-повітряну суміш для потреб гарячого водопостачання. Це дозволило зекономити 6 700 м³ води або 57 тис. грн на рік. Термін окупності заходів склав менше року.

Ізоляція трубопроводів на цукровому заводі

Підприємство виробляє 10 800 т цукру на рік. Побічним продуктом компанії є теплова енергія, електроенергія, вапно, меляса та жом. Компанія має два газові котли для виробництва пари, а також ТЕЦ для виробництва електроенергії з газотурбінною установкою та двома турбогенераторами.

Виробнича система підприємства є типовою для країн СНД у 80-х роках, але на сьогоднішній день є застарілою. Вдосконалення теплових схем на підприємстві може знизити питому витрату пари, однак для досягнення рівня передових підприємств необхідно було провести комплексну й високовартісну модернізацію заводу. Тому
підприємству було запропоновано впровадити низьковитратний захід – ізоляцію трубопроводів зворотнього конденсату випарних установок. Це дозволили скоротити споживання газу на 9 600 м³, пов’язані викиди – на 19,4 т СО₂-екв. Річна економія становила близько 110 тис. грн, а термін окупності – один рік.

Виробництво будівельних матеріалів

Рекуперація тепла при виробництві вогнетривів

Підприємство є лідером шамотного виробництва. Паралельно виготовляються магнезіальні, високоглиноземні та карбідокремнієві матеріали. Потужність виробництва становить близько 150-200 тис. т на рік, кількість співробітників – 2 503.

Основним енергетичним ресурсом для шамотного виробництва є природний газ. Відповідно до складеного під час оцінки теплового балансу потенціал скорочення його споживання становив 27-30 %. Підприємству було запропоновано облаштувати рекуперативний підігрів повітря, що подається на пальник тунельної печі, а також утилізацію тепла димових газів тунельної печі. Це дозволило зберегти 122 тис. м³ газу або близько мільйона гривень. Термін окупності одного із запропонованих заходів становить менше року, іншого – 2,5 роки.

Оптимізація використання бітуму при виготовленні покрівельних та ізоляційних матеріалів

Основною продукцією підприємства є фольгоізол гідроізоляційний, термоізол, пергамін покрівельний, папір обгортковий бітумований. Потужність підприємства – 293 т продукції за рік, кількість працівників – 67.
Технологічні процеси виробництва є енергоємними, що пов’язано з необхідністю тривалого нагрівання сировини до 200 °С. Оцінка показала, що частка енергії, яка йде на нагрівання, становить 74 %, інші ж 26 % випромінюються з поверхні обладнання. Також зафіксовані необґрунтовані витрати до 6 % сировини. Вони зумовлені використанням невідповідної сировини, а також застарілим дозувальним обладнанням. Використання бітуму високої марки та точніше дозування бітумної суміші дозволило підприємству зекономити 12 т бітуму або 120 тис. грн на рік. При цьому термін окупності становив менше півроку.

Рисунок 19. Виробництво покрівельних матеріалів

Машинобудування та металообробка

Технологічні зміни при виробництві запірно-пломбуючих пристроїв

Основна продукція підприємства – запірно-пломбуючі пристрої (ЗПП), а також автостропи, грейфери, рейкові та стрілочні з’єднувачі – загалом понад 50 найменувань. На підприємстві працює 332 робітники.

Найбільшу частку у продукції займають ЗПП. Їх корпуси виготовляють шляхом виточування з прокату круга на автоматичних шестишпиндельних станках. Корпуси вкривають захисним покриттям та наносять маркування. Така технологія веде до значних втрат прокатного металу та негативного впливу на довкілля внаслідок нераціонального використання цинку, втрат енергії від нетеплоізольованого обладнання, перевитрати води. Так, 42 % сталі втрачається внаслідок недосконалої технології виготовлення ЗПП.
Після обстеження підприємству було запропоновано замінити технологію виготовлення корпусів ЗПП. Інвестиції в цей проект значні, але його впровадження дасть змогу заощаджувати близько 400 т металопрокату або 8 млн грн на рік. Термін окупності – 1,5 року.

Заміна різального обладнання при металообробці

Компанія спеціалізується на різці та обробці металевих листів. Вона виробляє парапетні котли та бойлери, газові пальники та газозварювальне обладнання для металообробки в машинобудівній галузі. В компанії працює 120 робітників.

У технологічному процесі різання металевих пластин підприємство використовує газорізальне обладнання. Це призводить до значних втрат металу, високого споживання газових сумішей та негативного впливу на довкілля та здоров’я людини. Такий тип різання також потребує значних витрат праці, пов’язаних з підгонкою, фінішною та іншою обробкою деталей через значні відхилення у їхніх розмірах.
Заміна застарілих газорізальних приладів на ітербієво-волоконне лазерне обладнання дозволить зменшити річне споживання енергії на 955 000 кВт•год, металопрокату — на 12 т. Також на третину скоротяться витрати праці, пов’язані з підгонкою, відходи зменшаться на 0,75 т, а викиди — приблизно на 70 т CO₂-екв. Зменшення кількості металевих відходів оцінюється приблизно у 600-750 кг/рік. Річна економія становить 1,6 млн грн, а термін окупності — 3 роки.

Легка промисловість

Спальняння відходів при виробництві тканин

Фабрика випускає тканини для виготовлення хусток, шарфів і ковдр, для пошиття взуття та спецодягу працівникам металургійної й хімічної промисловості, виготовляє вовняні та напіввовняні пледи, а також надає послуги з виробництва вовняних тканин і виробів із матеріалів замовника. Щорічно суконна фабрика виготовляє 700 000 м² вовняних тканин.

У технологічному процесі овечі вовна проходить три рівні очищення миючими засобами з температурним режимом від 20 до 54 ºC (для вовни), процес сушіння та карбонізації для руйнування рослинних речовин (залишків сіна, соломи). Для фарбування вовни використовують центрифугу, завдяки якій хімічні барвники та закріплювач (оцтова кислота) подаються під тиском, а також апарат Козлова, що слугує для додавання та ретельного перемішування хімічних волокон. На ткацьких верстатах виробляються тканини різного типу. Тканини можуть просочувати вогне- або хімічностійкими реактивами. Всі тканини проходять повторні миття та сушіння. Готові вироби після пакувального цеху відправляються на склад готової продукції.

Рисунок 22. Виробництво тканини

Під час оцінки експерти звернули увагу на пил від суконного виробництва, який являє собою дегідратовані рештки рослинної органіки та є гарним паливом. Тому було запропоновано не викидати його у відходи, сплачувачи за їх утилізацію, а спалювати в наявному на підприємстві котлі для отримання теплової енергії та заміщення газу. Це дозволило підприємству без вкладення коштів зменшити кількість відходів на 30 т і заощадити 80 000 грн на рік.
Заміна сушил та активаторів при виробництві взуття

Асортимент фабрики включає повсякденне, спортивне взуття, а також спеціальне взуття для виробничих потреб підприємств зі шкіри, замші, нубуку, текстилю та льону. На підприємстві працює понад 250 спеціалістів. Щорічно на фабриці виготовляється 580 тис. пар взуття.

Технологія виробництва взуття передбачає операції, пов'язані з впливом тепла і волого на виріб чи його деталі. Сушіння є найбільш енергоємним процесом взуттєвого виробництва. На підприємстві використовувалися конвективні сушила, в яких процес сушіння проходить шляхом примусової подачі повітря без попереднього обігріву або із незначним підігрівом, з подальшою активацією клейової плівки під дією високої температури.

За результатами РЕЧВ-оцінки підприємство прийняло рішення замінити обладнання більш енергоефективним. Так, два вертикальні сушила (потужністю по 0,55 кВт) та два термоактиватори (по 12 кВт) було замінено на тунельні надконвеєрні сушила та активатор з інфрачервоним обігрівачем потужністю 5,2 кВт. При цьому без погіршення якості кінцевого продукту було досягнуто економії 15 000 кВт·год електроенергії на рік або близько 30 000 гривень.

Рисунок 23. Заміна сушил
Комунальний сектор

Погодозалежне регулювання теплоспоживання в коледжі

У коледжі навчається 790 студентів денної форми та 446 заочної форми навчання. Кількість працівників (викладачі та персонал) – 134.

Основними проблемами у системі теплопостачання були низька температура в приміщеннях у зимовий період і перегрів приміщень при працюючій системі опалення в весняний та осінній період. Останнє призводило до необхідності збільшення вентиляції приміщень, а значити – до перевитрат енергоносіїв.

Обстеження та розрахунки системи теплопостачання коледжу виявили, що внутрішня система теплопостачання не відповідає параметрам централізованої системи теплопостачання району міста та не має засобів керування теплопостачанням будівлі.

Рисунок 24. Змішувальний вузол до реконструкції та після реконструкції

За розробленим проектом модернізації системи теплопостачання будівлі було змонтовано індивідуальний тепловой пункт системи опалення з погодозалежним регулюванням і можливістю керування через мережу Інтернет. Впровадження даної системи дозволило підтримувати комфортні умови, зменшити річне споживання енергії на 133,5 МВт-год та пов’язані викиди на 26 т CO₂-екв. Річна економія склала 180 тис. гривень, а термін окупності – 2 роки.

Модернізація освітлення в закладі харчування

Ресторан спеціалізується на приготуванні та продажу страв італійської кухні з можливістю доставки їжі на замовлення. На обсяги випуску готової продукції впливають пора року, час доби, святкові та вихідні дні.
Під час оцінки підприємства було розглянуто його ресурсоємні робочі операції (миття, термічна обробка, опалення тощо) з метою скорочення споживання електроенергії та води, впорядкування процесу утилізації відходів. Також було звернуто увагу на систему освітлення як на одного з найбільших споживачів електроенергії. Виявилося, що вона була представлена, в основному, загальним освітленням, до того ж, виконана неефективними лампами. Заміна люмінесцентних ламп на лампи LED зі встановленням локальних вимикачів на світильники над столами забезпечила економію 35 400 кВт•год електроенергії та 46,6 т CO₂-екв. Річна економія склала 38 тис. грн, а термін окупності – менше півроку.

Рисунок 25. Зал ресторуна
КОРІСНА ЛІТЕРАТУРА

Принципи та практики ресурсоєфективного виробництва: посібник для кращого бізнесу

Посібник з впровадження методики ресурсоєфективного та більш чистого виробництва

Довідник «Кращі практики з підвищення ресурсоєфективності»

Впровадження низьковитратних заходів

Вода як інструмент концепції більш чистого виробництва

Довідник з ресурсоєфективного виробництва для галузі будівельних матеріалів

Довідник з ресурсоєфективного виробництва для молочної галузі
Довідник з ресурсоєфективного виробництва при поводженні з хімічними речовинами

Ресурсоєфективні методи господарювання в виробництві бетону в Україні

Впроваджені на підприємствах України заходи з ресурсоєфективного та чистого виробництва: за результатами демонстраційного РЕЧВ-проекту програми EaP GREEN

Впровадження ресурсоєфективного та чистого виробництва на підприємствах України 2015-2016

Впровадження ресурсоєфективного та чистого виробництва на підприємствах України 2014

Оцінка ресурсоєфективності підприємств
ПОСИЛАННЯ

Цей перелік питань з РЕЧВ для самостійної оцінки був розроблений на основі:

› ОЕСР (2012). Інструмент з екологічно раціонального виробництва.

Належне господарювання

<table>
<thead>
<tr>
<th>ПИТАННЯ</th>
<th>ЗАПРОПОНОВАНІ ЗАХОДИ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Чи підтримується чистота робочих місць?</td>
<td></td>
</tr>
<tr>
<td>Чи здійснюється належний контроль (облік) над ресурсами, що споживаються?</td>
<td></td>
</tr>
<tr>
<td>Чи проводилась інвентаризація?</td>
<td></td>
</tr>
<tr>
<td>Чи проводяться регулярні навчання персоналу?</td>
<td></td>
</tr>
<tr>
<td>Чи існує план регулярного профілактичного обслуговування обладнання?</td>
<td></td>
</tr>
<tr>
<td>Чи усуваються витоки в технологічних системах?</td>
<td></td>
</tr>
<tr>
<td>Чи ведеться облік і аналіз утворення відходів?</td>
<td></td>
</tr>
<tr>
<td>Чи виконується належне маркування всіх сировинних матеріалів і готової продукції?</td>
<td></td>
</tr>
<tr>
<td>Чи зберігаються матеріали поблизу місць їх використання?</td>
<td></td>
</tr>
</tbody>
</table>
Використання електроенергії

<table>
<thead>
<tr>
<th>ПИТАННЯ</th>
<th>ЗАПРОПОНОВАНІ ЗАХОДИ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Чи використовуються автоматизовані системи виробництва?</td>
<td></td>
</tr>
<tr>
<td>Чи проводився аналіз втрат у системі електропостачання?</td>
<td></td>
</tr>
<tr>
<td>Чи ведеться розосереджений облік споживання енергії на виробничих ділянках?</td>
<td></td>
</tr>
<tr>
<td>Чи є компенсатори реактивної потужності?</td>
<td></td>
</tr>
<tr>
<td>Чи встановлено оптимальний режим роботи обладнання?</td>
<td></td>
</tr>
<tr>
<td>Чи використовується на виробництві застаріле обладнання?</td>
<td></td>
</tr>
<tr>
<td>Чи розглядаються альтернативні джерела енергії, відновлювані джерела?</td>
<td></td>
</tr>
<tr>
<td>Чи проводився аналіз відповідності двигунів їх реальному навантаженню?</td>
<td></td>
</tr>
<tr>
<td>Чи використовуються пристрої плавного пуску, стабілізатори напруги та інше подібне обладнання?</td>
<td></td>
</tr>
<tr>
<td>Чи використовується частотнорегульований привод у механізмах зі змінним навантаженням?</td>
<td></td>
</tr>
<tr>
<td>Двигуни якого класу ефективності використовуються?</td>
<td></td>
</tr>
<tr>
<td>Чи вивчалося питання про спільне виробництво електричної та теплової енергії (когенерація)?</td>
<td></td>
</tr>
</tbody>
</table>
Використання тепла

<table>
<thead>
<tr>
<th>ПИТАННЯ</th>
<th>ЗАПРОПОНОВАНІ ЗАХОДИ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Чи проведено ізоляцію обладнання, накопичувальних ємностей, трубопровідів (з гарячею водою, парою і конденсатом), фланців, клапанів тощо?</td>
<td></td>
</tr>
<tr>
<td>Чи виконано демонтаж або перекриття всіх невикористовуваних трубопровідів і тупикових відводів?</td>
<td></td>
</tr>
<tr>
<td>Чи усунуто всі витоки?</td>
<td></td>
</tr>
<tr>
<td>Чи відремонтовано всі стики, манжети, клапани тощо?</td>
<td></td>
</tr>
<tr>
<td>Чи забезпечено оптимальний режим теплової обробки?</td>
<td></td>
</tr>
<tr>
<td>Чи розраховано тепловий баланс процесів теплової обробки?</td>
<td></td>
</tr>
<tr>
<td>Чи максимально зменшено періоди простою обладнання?</td>
<td></td>
</tr>
<tr>
<td>Чи використовується для опалення чи підігріву вхідних матеріалів/живильної води котлів тепло, що відходить від обладнання?</td>
<td></td>
</tr>
<tr>
<td>Чи підтримується оптимальний коефіцієнт згоряння в котлах?</td>
<td></td>
</tr>
<tr>
<td>Чи використовуються котли з максимальним ефективним завантаженням?</td>
<td></td>
</tr>
<tr>
<td>Чи використовується повторно конденсат?</td>
<td></td>
</tr>
<tr>
<td>Чи видаляється повітря із систем гарячого водопостачання?</td>
<td></td>
</tr>
<tr>
<td>Чи є накип на робочих поверхнях нагрівальних елементів?</td>
<td></td>
</tr>
<tr>
<td>Чи проводиться очищення живильної води?</td>
<td></td>
</tr>
<tr>
<td>Чи підтримується чистота котла (здійснюються заходи з попередження накопичення нагару)?</td>
<td></td>
</tr>
<tr>
<td>ПИТАННЯ</td>
<td>ЗАПРОПОНОВАНІ ЗАХОДИ</td>
</tr>
<tr>
<td>--</td>
<td>---------------------</td>
</tr>
<tr>
<td>Чи забирається для процесів горіння тепле повітря?</td>
<td></td>
</tr>
<tr>
<td>Чи встановлено автоматичний детектор витоку газів?</td>
<td></td>
</tr>
<tr>
<td>Чи встановлено рекуператори тепла, економайзери тощо?</td>
<td></td>
</tr>
</tbody>
</table>

Використання стиснотого повітря

<table>
<thead>
<tr>
<th>ПИТАННЯ</th>
<th>ЗАПРОПОНОВАНІ ЗАХОДИ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Чи можна відмовитися від використання стиснотого повітря?</td>
<td></td>
</tr>
<tr>
<td>Чи вимикається обладнання, що не використовується?</td>
<td></td>
</tr>
<tr>
<td>Чи усунуто витоки в мережах?</td>
<td></td>
</tr>
<tr>
<td>Чи видаляється з пневмопроводів конденсат?</td>
<td></td>
</tr>
<tr>
<td>Чи використовується максимально низький робочий тиск?</td>
<td></td>
</tr>
<tr>
<td>Чи виконано розподіл ліній за тиском?</td>
<td></td>
</tr>
<tr>
<td>Чи здійснюється регулярна перевірка необхідного тиску?</td>
<td></td>
</tr>
<tr>
<td>Чи проводиться контроль споживання стиснотого повітря?</td>
<td></td>
</tr>
<tr>
<td>Чи виконується регулярне очищення фільтра повітрязабірника?</td>
<td></td>
</tr>
<tr>
<td>Чи використовується повітря на всмоктуванні з максимально низькою температурою?</td>
<td></td>
</tr>
<tr>
<td>Чи задіюється невеликий компрессор у періоди непікового попиту?</td>
<td></td>
</tr>
<tr>
<td>Чи встановлено стандартний рекуператор тепла?</td>
<td></td>
</tr>
<tr>
<td>Чи використовується регулювання роботи компрессорів (частотне і т.д.)?</td>
<td></td>
</tr>
<tr>
<td>Чи виконано заміну пневматичного інструменту на електричний?</td>
<td></td>
</tr>
</tbody>
</table>
Використання матеріалів і зменшення відходів

<table>
<thead>
<tr>
<th>ПИТАННЯ</th>
<th>ЗАПРОПОНОВАНИ ЗАХОДИ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Чи контролюється якість на всіх етапах процесу?</td>
<td></td>
</tr>
<tr>
<td>Чи ведеться облік вхідних матеріалів і аналіз їх споживання?</td>
<td></td>
</tr>
<tr>
<td>Чи проводилась оцінка та аналіз втрат сировини у виробничому процесі (на всіх етапах)?</td>
<td></td>
</tr>
<tr>
<td>Чи розроблявся матеріальний баланс виробництва?</td>
<td></td>
</tr>
<tr>
<td>Чи розглядалася можливість заміни сировини на більш екологічну, менш токсичну тощо?</td>
<td></td>
</tr>
<tr>
<td>Чи використовуються автоматичні системи подачі (наприклад, дозування)?</td>
<td></td>
</tr>
<tr>
<td>Чи встановлено норми споживання для кожного процесу?</td>
<td></td>
</tr>
<tr>
<td>Чи використовуються відходи повторно?</td>
<td></td>
</tr>
<tr>
<td>Чи використовуються відходи з інших виробництв у якості сировини?</td>
<td></td>
</tr>
<tr>
<td>Чи розділяються відходи, в тому числі для подальшого використання?</td>
<td></td>
</tr>
<tr>
<td>Чи використовуються біорозчинні тверді відходи для виробництва компосту або біогазу?</td>
<td></td>
</tr>
</tbody>
</table>

Зменшення викидів

<table>
<thead>
<tr>
<th>ПИТАННЯ</th>
<th>ЗАПРОПОНОВАНИ ЗАХОДИ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Чи виконується оцінка загальних (приведених) викидів парникових газів?</td>
<td></td>
</tr>
<tr>
<td>Чи використовуються транспортні засоби з високим рівнем шкідливих викидів?</td>
<td></td>
</tr>
<tr>
<td>Чи оптимізовано шляхи транспортування?</td>
<td></td>
</tr>
</tbody>
</table>
Чи проводиться перевірка рівня запиленості всередині/ззовні будівлі?

Чи проводилося вимірювання викидів із димових труб в атмосферу?

Чи встановлено на димових трубах системи для уловлювання пилу/диму?

Використання води та поводження зі стоками

<table>
<thead>
<tr>
<th>ПИТАННЯ</th>
<th>ЗАПРОПОНУВАНІ ЗАХОДИ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Чи встановлено лічильники на виробничих ділянках і в адміністративних будівлях?</td>
<td></td>
</tr>
<tr>
<td>Чи проводиться аналіз загального водоспоживання із розбивкою за джерелами?</td>
<td></td>
</tr>
<tr>
<td>Чи є система рециркуляції води?</td>
<td></td>
</tr>
<tr>
<td>Чи вивчаються випадки і причини підвищення водоспоживання?</td>
<td></td>
</tr>
<tr>
<td>Чи автоматизовано процес миття?</td>
<td></td>
</tr>
<tr>
<td>Чи використовується CIP-миття?</td>
<td></td>
</tr>
<tr>
<td>Чи проводиться інструктаж з економії води і мінімізації її втрат?</td>
<td></td>
</tr>
<tr>
<td>Чи обладнано шланги кінцевими відсікачами і насадками?</td>
<td></td>
</tr>
<tr>
<td>Чи використовуються душові розпилювачі та змішувачі, які економлять воду?</td>
<td></td>
</tr>
<tr>
<td>Чи реалізовано часове керування водоспоживання (перекриття ділянок, зменшення тиску)?</td>
<td></td>
</tr>
<tr>
<td>Чи мінімізовано використання миючих засобів?</td>
<td></td>
</tr>
<tr>
<td>Чи використовується технічна вода повторно після очищення?</td>
<td></td>
</tr>
<tr>
<td>Чи є система збору дощової води?</td>
<td></td>
</tr>
<tr>
<td>ПИТАННЯ</td>
<td>ЗАПРОПОНОВАНІ ЗАХОДИ</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Чи є водоочисні установки?</td>
<td></td>
</tr>
<tr>
<td>Чи виконувалося планування стоків для усереднення навантаження на очисні споруди?</td>
<td></td>
</tr>
</tbody>
</table>

Експлуатація будівель

<table>
<thead>
<tr>
<th>ПИТАННЯ</th>
<th>ЗАПРОПОНОВАНІ ЗАХОДИ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Чи всі опалювані приміщення використовуються?</td>
<td></td>
</tr>
<tr>
<td>Чи проведено ущільнення всіх вікон для мінімізації втрат теплого повітря?</td>
<td></td>
</tr>
<tr>
<td>Чи є зонування на опалювані та неопалювані зони з дверима і повітряними шлюзами?</td>
<td></td>
</tr>
<tr>
<td>Чи використовується радіаційне нагрівання за великих розмірів цеху?</td>
<td></td>
</tr>
<tr>
<td>Чи використовується витяжна вентиляція?</td>
<td></td>
</tr>
<tr>
<td>Чи використовується погодне регулювання опалення?</td>
<td></td>
</tr>
<tr>
<td>Чи виконано екранування радіаторів?</td>
<td></td>
</tr>
<tr>
<td>Чи виконується рекуперація тепла відпрацьованого повітря?</td>
<td></td>
</tr>
<tr>
<td>Чи проводиться зменшення обсягу вентильованого повітря за рахунок встановлення датчиків?</td>
<td></td>
</tr>
<tr>
<td>Чи використовуються найбільш енергоефективні джерела світла?</td>
<td></td>
</tr>
<tr>
<td>Чи використовується природнє освітлення?</td>
<td></td>
</tr>
<tr>
<td>Чи виконується чищення ламп і світильників?</td>
<td></td>
</tr>
<tr>
<td>Чи вимикається освітлення в місцях, де воно не потрібне (в тому числі автоматично)?</td>
<td></td>
</tr>
<tr>
<td>Чи пофарбовано стіни у світлий колір?</td>
<td></td>
</tr>
<tr>
<td>Чи використовується групування освітлення?</td>
<td></td>
</tr>
<tr>
<td>Чи оптимальний рівень освітленості?</td>
<td></td>
</tr>
<tr>
<td>Чи використовується місцеве освітлення?</td>
<td></td>
</tr>
</tbody>
</table>