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Introduction 

 

This textbook is designed for students of the first year of technical university. It 

covers one of the most important areas to be studied in the first semester: Integral Calculus 

of a Function of One Variable.   

The manual can be helpful for students who want to understand and be able to use 

standard integration techniques, apply integration for solving some tasks from geometry 

and physics and so on.  

Each part contains basic mathematical conceptions and explains new mathematical 

terms. The most important concepts of Integral Calculus are explained and illustrated by 

figures and examples.  

The first two parts deal with the concept of indefinite integrals, their properties and 

main techniques of integration: by substitution and by parts. We also considered the ways 

of integration of rational, trigonometric and irrational functions. 

The third section is concerned with the bases of definite integral: Fundamental 

Theorem of Calculus and main integration techniques for definite integral. 

Next part deals with improper integrals including using the comparison test for 

convergence of improper integrals. 

In the fifth section we take a look at some applications of integrals: determining 

area of a region, the arc length of a curve, the surface area and the volume of a solid of 

revolution, the center of mass and moments of inertia of a region and curve. 

There are also four appendices concerned with graphs of some elementary 

functions, the polar coordinates parametric representation of a function and some 

knowledge about derivatives. 
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1. The Indefinite Integral 

 

1.1 The Indefinite Integral and its properties  

 

I. The Concept of an Antiderivative 

 

Previously we considered the following problem: given a function f , find the 

derivative f  . Now let us solve the reverse problem: given a function f , find a function 

F  such that  fF = . 

Such inverse operation is called integration, that is the process of finding the 

function )(xF  that has its derivative  equal to the given function )(xf .  

Definition. Differentiable function )(xF  is called the primitive (antiderivative) of 

the function )(xf , if .)(or    )()( dxxfdFxfxF ==   

Example: Find the antiderivative for function xxf 2)( = . 

It is well known that xx 2)( 2 = , hence 2)( xxF = .  There are many other primitives 

of  x2 , such as  12 +x , 6,32 −x  and 2ln2 +x . In general, if  C  is any real number 

(arbitrary constant), then Cx +2  is an antiderivative of x2 , because xCx 2)( 2 =+ . 

 

Theorem 1.1. 

If functions )(1 xF  and )(2 xF  are two primitives of function )(xf  on the interval 

],[ ba , then the difference between them is a constant ( CxFxF =− )()( 21 ). 

Proof. 

Let us consider the function )()()( 21 xFxFx −= . 

According to definition of an antiderivative we have  

)()(

),()(

2

1

xfxF

xfxF

=

=
 

for any value of x  on the interval ],[ ba . 

Hence, 

,0)()()()()( 21 =−=−= xfxfxFxFx   ].,[ bax  

https://en.wikipedia.org/wiki/Derivative
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From 0)( = x  it follows that )(x  is a constant. 

Since )(x  is differentiable, )(x is continuous, and we can apply the Mean Value 

Theorem to the function )(x  on the interval ],[ ba : 

)()()()( caxax −=− , 

where xca  . 

Since 0)( = x , 

0)()( =− ax , 

)()( ax = . 

Thus, the function )(x  is a constant for any x  of the interval ],[ ba . 

From this theorem it follows that the primitive )(xF  is unique up to an additive 

constant and all functions CxF +)(  (C is an arbitrary constant) are primitives of )(xf  too, 

as )())(( xfCxF =+ .  

Definition. The set of primitives CxF +)(  (C is an arbitrary constant) is called the 

indefinite integral of the function )(xf  and denoted by  

,)()( CxFdxxf +=  

where C is the constant of integration. 

Function  )(xf  is called the integrand and x is the integration variable. 

 

 Properties of Indefinite Integrals: 

1. ( ) ( ) ).()()( xfCxFdxxf =


+=


  

This equation follows directly from the definition of indefinite integral. 

2. .)()( Cxfdxxf +=  

The truth of this property can easily be checked by differentiation of both sides of 

the equation 

( ) ( )

).(          )(       

                             

)()(

xfxf

Cxfdxxf

=




+=
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3. :0   ,  KK R   .)()(  = dxxfKdxxKf  

Let us differentiate both sides of the equation 

( ) ( )

( ) ).()(          )(   

                            

)()(

xKfdxxfKxKf

dxxfKdxxKf

=


=




=






 

4. ( ) .)()()()( 2121  +=+ dxxfdxxfdxxfxf  

Let us find the derivatives of both sides of the equation 

( )( ) ( )

( ) ( ) ).()()()(      )()(   

                                                    

)()()()(

212121

2121

xfxfdxxfdxxfxfxf

dxxfdxxfdxxfxf

+=


+


=+




+=


+





 

 

 

1.2 Table of Integrals. Examples 

 

According to the definition of the indefinite integral, the table of  derivatives is 

transformed into the table of  common indefinite integrals. 

Cdx =0  Cxdx +=  

C
n

x
dxx

n
n +

+
=

+


1

1

 C
x

dx
x

+−=
11

2
 

Cxdx
x

+= ln
1

 Cxdx
x

+=
2

1
 

Cedxe xx +=  
C

a

a
dxa

x
x +=

ln
 

Cxxdx +−= cossin  Cxxdx += sincos  

Cxdx
x

+= tan
cos

1
2

 Cxdx
x

+−= cot
sin

1
2

 

Cxxdx += coshsinh  Cxxdx += sincosh  

Cxdx
x

+= tanh
cosh

1
2

 Cxdx
x

+−= coth
sinh

1
2
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+−

+
=

+


Cx

Cx
dx

x arccot

arctan

1

1
2

 










+−

+

=
+


C

a

x

a

C
a

x

a
dx

ax
arccot

1

arctan
1

1
22

 

 





+−

+
=

−


Cx

Cx
dx

x arccos

arcsin

1

1

2
 










+−

+

=
−


C

a

x

C
a

x

dx
xa arccos

arcsin
1

22
 

C
ax

ax

a
dx

ax
+

+

−
=

−
 ln

2

11
22

 Caxxdx
ax

++=



22

22
ln

1
 

 

The most of these formulas have a correspondence to the formulas from the table of 

derivatives (see Appendix 4.), but some of them does not have. The truth of these formulas 

can easily be checked by differentiation. 

For example 

( )
22

111

2

1
lnln

2

1
ln

2

1

axaxaxa
axax

a
C

ax

ax

a −
=









+
−

−
=


+−−=











+

+

−
; 

=














+

++


++
=














+
+

++
=






 +++

22

22

222222

22 1
1

1
ln

ax

xax

axxax

x

axx
Caxx  

22

1

ax +
= . 

Finding indefinite integrals is often more complicated than finding derivatives. For 

some elementary functions, it is impossible to find primitives in terms of other elementary 

functions.  

Examples. 

1.  ( ) +
+

−
+

=−+−=−+−
++


13

3
11

623623
1311

5

3

35 33 xx
dxdxxdxxxdxdxxxx  

CxxxxCx
xxx

Cx
x

+−+−=+−+−=+−

+

+

+

6
4

5

4

3

2

1
6

4

5

4

3

2
6

1
5

3
2

5 842
5

8

42
1

5

3

; 

2. C
xx

C
xx

dxxdxxdx
xx

+−−=+

+−

+
+−

=+=












+

+−
+−−

−


1
2

3

5

1
2

314
55

15
3

1
2

3

14

2

3

4

34
; 
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3. C
x

x
x

dx
x

xdx
x

xx
dx

x

x
+−−=








+−=

+−
=

−


4
4

3

4
4

44)2( 3

2

2

2

24

2

22

; 

4.  =





















+








=



+
=

+ −−+

dxdxdx

xx

xx

xx

x

xx

2

1

25

1

5

1
2

52

5522

10

52 221

 

CC
xx

xx

+−−=+







+








=

2ln252

1

5ln5

2

2

1
ln

1

2

1

25

1

5

1
ln

1

5

1
2 ; 

5. Cxxdxxdx
x

+−=−=

−=

=  )sin(
2

1
)cos1(

2

1

)2cos1(
2

1
sin

formula  theusing

integrand  thetransform

2
sin

2

2
; 

6. Cxxdx
x

dx

x
x

xdx +−=−=
−=

=  tanh
cosh

1

cosh

1
1tanh

integrand  thetransform

tanh
2

2

2

2
; 

7. C
x

C
x

dx
x

dx
x

+=+=
+

=
+


5

arctan
20

1

5
arctan

5

1

4

1

5

1

4

1

1004

1
222

; 

8. C
x

x
C

x

x
dx

x
dx

x
+

−

+
=+

+

−
−=

−
−=

−


7

7
ln

72

1

7

7
ln

72

1

7

1

7

1
22

. 

 

WARNINGS. 

1. Integration variable 

The dx  tells us that we are integrating with respect to x  (all other variables in the 

integrand are considered to be constants). 

;3 32 Cxdxx +=          ;3 32 Ctdtt +=           ;sinsinsin3 32 Cxxxd +=  

.33 22 Ctxdtx +=  

2. Do not drop the dx  at the end of integral, because it shows where the integral 

ends and what is the variable of integration. 

;9)93( 32 Cxxdxx ++=+                                  ;993 32 ++=+ Cxdxx  

;)93()93( 22 Czxdzx ++=+  

problem this

solve  toimpossible isit 

n?integratio of  variable theiswhat 

integral? of end  theis where
93 2 =+ x  
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2. Techniques of  Integration 

 

 

2.1 Integration by Substitution 

 

I. For evaluating indefinite integrals it is convenient to use the following rule. 

 Let .)()( CxFdxxf +=  Then RR  baa   ,0  ,   

.)(
1

)( CbaxF
a

dtbaxf ++=+                                    (2.1) 

For proving it is enough to differentiate the left and right sides of (2.1). 

( )

( ) )()(
1

)()(
1

)(
1

      )(      

                                    

)(
1

)(

baxfabaxf
a

baxbaxf
a

baxF
a

baxf

CbaxF
a

dtbaxf

x +=+=++=


+=+













++=


+

 

The derivatives of the both sides are equal. 

Examples:   

1. C
x

C
x

dxx +
−

=+
−

=−
20

)15(

4

)15(

5

1
)15(

44
3 ; 

2.  Cedxe xx += ++


5353

3

1
; 

3. C
x

xdxxxdx +







+=+= 

2

2sin

2

1
)2cos1(

2

1
cos2 ; 

4. =+=++−=  dxxxdxxxxxxdxx )7sin(sin
2

1
))34sin()34(sin(

2

1
3cos4sin  

Cxx +







−−= 7cos

7

1
cos

2

1
; 

5. Cxxx
x

dx

xx

dx
+++++=

++
=

++
 542ln

1)2(54

2

22
; 

6. C
x

C
x

x

dx

x

dx
+=+=

+
=

+


3

2
arctan

6

1

3

2
arctan

3

1

2

1

3)2(94 222
; 

7. C
x

x
C

x

x

x

dx

xx

dx
+

+

−
=+

+−

−−
=

−−
=

−−


12

32
ln

8

1

212

212
ln

4

1

2

1

2)12(344 222
. 



10 

 

 

II. Integration by Changing of Variable 

Let .)()( CxFdxxf +=  Consider the differentiable function )(tuu = . Then 

.))(()())(()())(( CtuFtdutufdttutuf +==                          (2.2) 

or (another way of notation) 

.))(()()(
)(

)(
)())(( CtuFCxFdxxf

dttudx

tux
dttutuf +=+==

=

=
=   

This formula is based on the chain rule for derivatives and used to transform one 

integral into another that is easier to be solved.  

 Example: 

1. CeCedue
xdxdu

xu
dxxe xuux +=+==

=

=
= 

22

2
2

2

 

or  Cedxexdxedxxe xx

dx

xx +=== 
22

2

22 222 ; 

2. C
x

C
u

duu
dx

x
du

xu

dx
x

x
+=+==

=

=

= 
6

ln

6
1

ln
ln 66

5
5

 

or  


C
x

xxddx
x

xdx
x

x

xd

+=== 
6

ln
lnln

1
ln

ln 6
5

ln

5
5

; 

3. CexCudu
udxedu

exu
dx

ex

e x

x

x

x

x

++=+==
+=

+=
=

+

+
 lnln

1

)1(

1
 

or Cexexd
ex

dxe
ex

dx
ex

e xx

x

exd

x

xx

x

x

++==+
+

=+
+

=
+

+


+

ln)(
1

)1(
11

)(

 ; 

4. =+=+=+=

=

=+

−=

=−  duuuduuuuduuu

dxudu

xu

xu

dxxx )2(2)2(22)2(

2

2

2

2 242222  

C
xx

C
uu

+
−

+
−

=+









+=

3

)2(4

5

)2(2

3

2

5
2

3535

. 

The method of substitution is one of the basic methods of integration. Often when we 

use another method, we resort to substitution in the intermediate stages of integration. The 

success of  calculation depends on choosing the appropriate substitution (it should simplify 

the given integral).  
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2.2 Integration by Parts 

 

Let functions )(xu  and )(xv  be differentiable, consider 

( ) )()()()()()( xvxuxvxuxvxu +=


 . 

Integrate both sides with respect to x 

( ) .)()()()()()( dxxvxuxvxudxxvxu +=


   

Apply the definition of indefinite integral 

.)()()()()()( dxxvxudxxvxuxvxu  +=  

Then we obtain the formula of integration by parts 

.)()()()()()( dxxuxvxvxudxxvxu  −=  

or 

.duvuvudv  −=                                                   (2.3) 

This formula makes it possible to calculate the integral of the product of two 

functions. 

On practice we should make the following steps: 

1. Choose correctly u and dv; 

2. Calculate the differential du: dxxudu )(= ; 

3. Find )(xv : = dvxv )( ; 

4. Use the formula duvuvudv  −= ; 

5. Simplify and calculate. 

 

There are several rules for choosing correctly u and dv . 

 

I. For integrals of the form  

 dxex axk  

 dxbx axk  

 axdxxk sin  

 axdxxk cos  

 axdxxk sinh  

 axdxxk cosh  

we  choose 
kxxu =)( .   

https://en.wikipedia.org/wiki/Indefinite_integral
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Examples:    

1. .Cexedxexe
edxevdxedv

dxduxu
dxxe xxxx

xxx
x +−=−=

===

==
= 


  

2. It is possible to use formula (2.3) several times.  

−=
−===

==
=




2

2cos

2

2cos
2sin2sin

2
2sin 2

2

2 x
xx

xdxvxdxdv

xdxduxu
xdxx  

=
===

==
=+=

−
−


2

2sin
2cos2cos

2cos
2

2cos
2

2

2cos 2

x
xdxvxdxdv

dxduxu
xdxx

xx
dxx

x

              C
xxxxx

dx
xx

x
xx

+++=−+= 
4

2cos

2

2sin

2

2cos

2

2sin

2

2sin

2

2cos 22

. 

 

II. For integrals of the form  

 xdxxk ln  

 xdxxk arctan  

 xdxxk arcsin  

 xdxxk arccos  

 

 

we  choose dxxdv k= .   

Examples:    

1.  .lnln
1

ln

1
ln

ln Cxxxdxxxdxx
x

xx

xdxvdxdv

dx
x

duxu
xdx +−=−=−=

===

==
= 


  

2. =
+

−=

===

+
==

= 


 dx
x

x
x

x

x
xdxvxdxdv

dx
x

duxu

xdxx
1

1

2
arctan

2

2

1

1
arctan

arctan
2

22

2

2

 

=








+
−−=

+

−+
−=  dx

x
x

x
dx

x

x
x

x

1

1
1

2

1
arctan

21

11

2

1
arctan

2 2

2

2

22

 

( ) Cxxx
x

+−−= arctan
2

1
arctan

2

2

. 
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2.3 Integration of Rational Functions  

 

I. Integration of Simplest Rational Functions 

1. Cbax
a

dx
bax

++=
+

 ln
11

; 

2. C
baxma

dx
bax mm

+
+−

−=
+ − 1))(1(

1

)(

1
; 

3. ==
++

+
 rdenominato  in  the  square    thecomplete

2

)(
2 baxx

dxBAx
 

=
−++

−
+

−++

+

=
−++

−++
= 

)()(

)(

)(

)(2
2

)(

)(
222222 abax

dxaAB

abax

dxax
A

dx
abax

aABaxA
 

=+
−++

−+
++

++
=  )(

)()(

1
)(

2

)2(

2 222

2

axd
abax

aAB
baxx

baxxdA
 













−+
−++

−−+

−

−
+++

−+
−

+

−

−
+++

=

.0   ,ln
2

)(
2ln

2

;0   ,arctan
)(

2ln
2

2

2

2

2

2

2

22

2

abC
baax

baax

ba

aAB
baxx

A

abC
ab

ax

ab

aAB
baxx

A

 

Examples: 

1. Cxdx
x

+−=
−

 25ln
5

1

25

1
; 

2. C
x

dx
x

+
+

−=
+

 45 )43(12

1

)43(

1
; 

3. =
++

−
++

+
=

++

−+
=

++

+


4)1(
2

4)1(

)1(2

2

3

4)1(

2)1(3

52

)13(
2222 x

dx

x

dxx
dx

x

x

xx

dxx
 

C
x

xx
x

xd

xx

xxd
+

+
−++=

++

+
−

++

++
= 

2

1
arctan52ln

2

3

4)1(

)1(
2

52

)52(

2

3 2

22

2

; 

4.   =
−−

+
−−

−
=

−−

+−
=

−− 9)2(
2

9)2(

)2(2

2

1

9)2(

2)2(

54 2222 x

dx

x

dxx

x

dxx

xx

xdx
 

C
x

x
xx

x

xd

xx

xxd
+

+

−
+−−=

−−

−
+

−−

−−
=  

1

5
ln

3

1
54ln

2

1

9)2(

)2(
2

54

)54(

2

1 2

22

2

; 
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II. Integration of Rational Functions 

If we have to compute the integral ,
)(

)(
 dx

xQ

xP

m

n  where ),(xPn  ),(xQm  mn   are the 

polynomials, the fraction 
)(

)(

xQ

xP

m

n  needs to be expressed in partial fractions and reduced to 

the three simplest types of integrals of rational functions. 

Example.   
+

+
dx

xx

x

)1(

2
2

2

 

The integrand  
)1(

2
2

2

+

+

xx

x
 is a proper rational fraction. Let us use the partial-fraction 

decomposition. 

 
)1(

)()(

)1(

)1()1(

1)1(

2
2

2

2

2

22

2

+

++++
=

+

++++
=

+
++=

+

+

xx

BxBAxCA

xx

CxxBxAx

x

C

x

B

x

A

xx

x
 

Whence, equating the numerators, we obtain the system of equations for 

determining the coefficients 

.2
,0
,1

  1
    

2

=
=+
=+

B
BA
CA

x
x

 

Solving the system we find   .3      ;2      ;2 ==−= CBA  

Thus, 

Cx
x

xdx
xxx

dx
xx

x
+++−−=









+
++

−
=

+

+
 1ln3

2
ln2

1

322

)1(

2
22

2

. 

Note. If the given integrand 
)(

)(

xQ

xP

m

n  is an improper fraction ( mn  ), we represent it as 

a sum of a polynomial and the proper rational fraction. 

Example. 

Cxxx
x

dx
x

xx

dx
x

xxx

++−−=

=








+
+−−=

=
+

+−−





arctan3
3

1

3
12

1

222

2
3

2

2

2

34

 

  3                           
1                 

2              

22       

222    

12                              

1           222

2

2

3

23

224

234

−−

+−

−−

+−−−

−−+

++−−

x

x

xx

xxx

xxxx

xxxx
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2.4 Integration of Trigonometric Functions 

 

I. General Trigonometric Substitution  

Integrals of the form  dxxxR )cos,(sin  where is a rational function of xsin  and 

xcos  are reduced to integrals of rational expression by so-called general trigonometric 

substitution 

( )−= xt
x

      
2

tan . 

Express xsin  and xcos  in terms of 
2

tan
x

 and  t : 

.
1

1

2
tan1

2
tan1

cos                 ,
1

2

2
tan1

2
tan2

sin
2

2

2

2

2
2 t

t

x

x

x
t

t

x

x

x
+

−
=

+

−
=

+
=

+

=  

And 

.
1

2
     ,arctan2

2t

dt
dxtx

+
==  

Here xsin , xcos  and dx  are expressed rationally in terms of t .  By substituting the 

expressions obtained into the original integral we get an integral of a rational function 

22

2

2 1

2

1

1
,

1

2
)cos,(sin

t

dt

t

t

t

t
RdxxxR

+










+

−

+
=  . 

Examples.  

1. C
x

Ct
t

dt

t

t
t

dt

dx
x

+=+==

+

+=  
2

tanlnln

1

2
1

2

sin

1

2

2

; 

2. C
x

dx

x

dx
x

+







−


−=









−


= 

24
tanln

2
sin

1

cos

1
; 

3. =
+−+

=

+

−−+

+=

+

−
−

+=
−

  22

2

22

2

2

2

2

33221

2

1

)1(3)1(2

1

2

1

1
32

1

2

cos32 tt

dt

t

tt

t

dt

t

t

t

dt

x

dx
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C
x

x

C
t

t

t

dt
+

+

−

=+
+

−
=

−
= 

1
2

tan5

1
2

tan5

ln
5

1

15

15
ln

5

1

15

2
2

. 

General trigonometric substitution enables us to calculate any integrals of the form  

 dxxxR )cos,(sin , but it often leads to very cumbersome expressions. There are some 

cases when the aim can be achieved with the aid of more convenient substitutions.    

1) ( )dttR
dtxdx

tx
xdxxR  =

=

=
=

cos

sin
cos)(sin ; 

2) ( )dttR
dtxdx

tx
xdxxR  −=

=−

=
=

sin

cos
sin)(cos ; 

3) ( )
2

2
1

1

tan

)(tan
t

dt
tR

t

dt
dx

tx

dxxR
+

=

+
=

=

=  ; 

4) 
222

2

22

2

2

2

2

2
2

2

22

11

1
,

1

1

1

tan1

1
cos

1tan1

tan
sin

1
    tan

)cos,(sin
t

dt

tt

t
R

tx
x

t

t

x

x
x

t

dt
dxtx

dxxxR

mn

mn

+





















+










+
=

+
=

+
=

+
=

+
=

+
==

=  . 

 Example. 

 1)  =
+

−
−=

=−

=
=

+

−
=

+
=

+ t

dtt

dtxdx

tx

x

xdxx

x

xdxx

x

xdx

2

)1(

sin

cos

cos2

sin)cos1(

cos2

sinsin

cos2

sin 2223

 

Cxx
x

Ctt
t

dt
t

tdt
t

t
+++−=+++−=

+
+−=

+

−
=  2cosln3cos2

2

cos
2ln32

22

3
2

2

1 222

; 

 2)  =
+

=

+










+
−

=

+
=

=

=
− 2

2

2

2
2

2 2
)1(

1
21

tan

sin2 t

dt

t
t

t

dt

t

dt
dx

tx

x

dx
 

C
x

C
t

+=+=
2

tan
arctan

2

1

2
arctan

2

1
. 
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II. Integrals of the form ,cossin xdxx nm  where nm  ,  are rational numbers. 

• If the power n of the cosine is odd (the power m of the sine can be arbitrary), then 

the substitution xt sin= is used; 

Example. 

=
=

=
=−== 

dtxdx

tx
xdxxxxdxxxxdxx

cos

sin
cos)sin1(sincoscossincossin 222232  

C
xx

C
tt

dtttdttt +−=+−=−=−= 
5

sin

3

sin

53
)()1(

5353
4222 . 

• If the power m of the sine is odd, then the substitution  xt cos=  is used. 

Example. 

=
=−

=
=−== 

dtxdx

tx
xdxxxdxxxdx

sin

cos
sin)cos1(sinsinsin 223  

Cx
x

Ct
t

dttdtt +−=+−=−=−−=  sin
3

sin

3
)1()1(

33
22 . 

• If both powers m and n are even, then use the double angle formulas to reduce the 

powers of the sine or cosine in the integrand 

)2cos1(
2

1
sin   ),2cos1(

2

1
cos 22 xxxx −=+= . 

=−=+−=  dxxdxxxxdxx )2cos1(
4

1
)2cos1(

2

1
)2cos1(

2

1
cossin 222  

C
x

xdxxdxx +







−=−=








+−= 

4

4sin

8

1
)4cos1(

8

1
)4cos1(

2

1
1

4

1
. 

• If nm+  is even 






 −
+

+
integeran   

2

1

2

1 nm
, then the substitution  xt tan=  is used. 



 ==

==

−=−−=+−=−=

=
3 114

2

even

3 11 tancos

cos
        ,tan             

4
3

1

3

11

3

1
  ,

3

11

cossin xx

dx

dt
x

dx
tx

nmnm

xx

dx
 

C
xx

Cttdtttdt
t

t
+−−=+−−=














+=

+
=

−−−−

 3 23 8

3

2

3

8

3

5

3

11

3 11

2

tan2

3

tan8

3

2

3

8

31
. 

http://www.math24.net/double-and-multiple-angle-formulas.html
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III. Integrals of the form  xdxntan  or  xdxncot , where n  is positive integer. 

We can reduce the power of the integrand using 

 1
sin

1
cotor   1

cos

1
tan

2

2

2

2 −=−=
x

x
x

x  and the reduction formula 

 1
cos

1
tantantantan

2

222 =







−== 

−− dx
x

xxdxxxdx nnn  

.tan)(tantantan
cos

tan 222

2

2


−−−− −=−= xdxxxdxdx
x

dx
x nnnn  

Example. 

 tan
cos

tan1
cos

1
tantantantan

22

23 =−=







−==  xdx

x

dx
xdx

x
xxdxxxdx  

Cxx
x

xd
x

x

xdx
xxd ++=+=−=  coslntan

2

1

cos

cos
tan

2

1

cos

sin
)(tantan 22 . 

IV. Integrals of the form 
x

dx
x

m

n

2cos
tan  or 

x

dx
x

m

n

2sin
cot , where n  and m are 

positive integer. 

We can reduce the power of the integrand using 

 1cot
sin

1
or  1tan

cos

1 2

2

2

2
+=+= x

x
x

x
. 

Examples. 

1. C
xx

xdxx
x

dx

x
x

x

dx
x ++=+== 

2

tan

4

tan
tan)1(tantan

coscos

1
tan

cos
tan

24
2

224
; 

2. ( ) +−−−=+−=







= Cx

xx
xdx

x

dx

xx

dx
cot

3

cot2

5

cot
cot1cot

sinsin

1

sin

35
22

2

2

26
. 

 

NOTE. Functions rationally depending on hyperbolic functions are integrated in the 

same fashion as trigonometric functions. 

;1sinhcosh 22 =− xx    ;
cosh

1
tanh1

2

2

x
x =−     ;

sinh

1
coth1

2

2

x
x =−  

;sinhcosh2cosh 22 xxx +=     ;sinhcosh22sinh xxx =  

;sinh212cosh 2 xx =−              ;cosh212cosh 2 xx =+  

;sinhsinhcoshcosh)cosh( yxyxyx =      ;sinhcoshcoshsinh)sinh( yxyxyx =  

http://www.math24.net/reduction-formulas-for-integrals.html
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2.5 Integration of Irrational Functions  

 

I. Integrals of the form  dxxxxR s

p

n

m

),,(  , where R  is a rational function of its 

arguments, reduce to the integral of a rational function by means of substitution: 

,        , 1dtktdxtx kk −==  

where k  be a common denominator of the fractions 
s

p

n

m
, . 

Example. 

=
+

=
+

=

==

=

+

=
+


1

4
1

4

4        ,    

  so 4,  is  
4

3
  ,

2

1
 fractions the

ofr denominatocommon  the

1
1

3

5

4 12

34

34
4

3

2

1

4 3 t

dtt

t

dttt

dttdxtx
x

dxx

x

dxx
 

CxxCtt
t

dt
dttdt

t

t
t +














+−=++−=

+
−=











+
−=  1ln

3

4
1ln

3

4

3

4

13

4
4

1
4 4

3

4

3

33

3

3
2

3

2
2 . 

NOTE. For integrals of the form 

























+

+









+

+
dx

dcx

bax

dcx

bax
xR

s

p

n

m

,,  we make the 

substitution ,

k

dcx

bax
x 









+

+
=   where k  be a common denominator of the fractions 

s

p

n

m
, . 

 

II. Euler’s Substitutions 

Integrals of the form  ++ dxcbxaxxR ),( 2  are reduced to the integral of a rational 

function of a new variable with the aid of one of the following substitutions: 

•  First Euler Substitution  

axtcbxax =++2
 if 0a . 

For the sake of definiteness we take the plus sign in front of ax . Then 

( ) ,2 2222 txtaaxaxtcbxax ++=+=++  

whence x  is determined as a rational function of t : 
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tab

ct
x

2

2

−

−
=  

thus, dx  will be expressed rationally in terms of t . Lastly 

tab

ct
atcbxax

2

2
2

−

−
+=++ . 

Since x , dx  and cbxax ++2  are expressed rationally in terms of t , the original 

integral is transformed into an integral of rational function of t . 

Example.  Calculate the integral 
+

=
42x

dx
I . 

Here 01=a  therefore xtx −=+ 42
.  

Then  

222 24 xxttx +−=+  

whence 

dt
t

t
dx

t

t
x

2

22

2

4
    ,

2

4 +
=

−
=  

and  

t

t

t

t
tx

2

4

2

4
4

22
2 +

=
−

−=+ . 

Consequently  

CxxCt
t

dt

t

t

dt
t

t

I +++=+==
+

+

=  4lnln

2

4

2

4

2

2

2

2

. 

 

•  Second Euler Substitution  

ctxcbxax =++2
 if 0c . 

Then 

cxtcxtcbxax ++=++ 2222
  

(for the sake of definiteness we take the plus sign in front of c ), 

whence x  is determined as a rational function of t : 
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2

2

ta

btc
x

−

−
= . 

Since x , dx and cbxax ++2  are also expressed rationally in terms of t , the 

original integral is transformed into an integral of rational function of t . 

Example.  Calculate the integral 
+

=
42x

dx
I . 

Here 04 =c  therefore 242 +=+ txx .  

Then  

444 222 ++=+ xttxx  

whence 

dt
t

t
dx

t

t
x

22

2

2 )1(

44
    ,

1

4

−

+
=

−
=  

and  

2

2
2

1

22
4

t

t
x

−

+
=+ . 

Consequently  

=+
−

+
=

−
=

−

+

−

+

=  C
t

t

t

dt

t

t

dt
t

t

I
1

1
ln

1
2

1

22

)1(

44

2

2

2

22

2

=+

−
−+

+
−+

C

x

x

x

x

1
24

1
24

ln
2

2

 

( )( )
( )( )

=+
+−++−+

−−++−+
=+

−−+

+−+
= C

xxxx

xxxx
C

xx

xx

)2(4 )2(4

24 24
ln

24

24
ln

22

22

2

2

 

1
22

22

4ln2ln4ln
4

422
ln CxxCxxC

x

xxx
+++=+−++=+

++
= . 

Note. We have solved the integral 
+

=
42x

dx
I  in two ways by first and second 

Euler Substitutions. The results coincide with the tabular value however the second Euler 

Substitution leads to the more cumbersome transformations of expressions obtained. 

 



22 

 

 

• Third Euler Substitution  

txcbxax )(2 −=++  if ))((2 −−=++ xxacbxax , where R },{ . 

Therefore 

( ) ( )2
2

)())(( txxxa −=−− , 

22)())(( txxxa −=−− , 

2)()( txxa −=− . 

Whence we find x  as a function of t : 

2

2

ta

ta
x

−

−
= . 

Since x , dx and cbxax ++2
 depend rationally upon t , the original integral is 

transformed into an integral of rational function of t . 

Example. Calculate the integral  
−+

=
432 xx

dx
I . 

Since )1)(4(432 −+=−+ xxxx , we put  

txxx )4()1)(4( +=−+ . 

Then 

22)4()1)(4( txxx +=−+ , 

2)4()1( txx +=− , 

2

2

1

41

t

t
x

−

+
= ,    dt

t

t
dx

22 )1(

10

−
=  

and 

2

2

1

5
43

t

t
xx

−
=−+ . 

Putting the expressions obtained into the original integral, we have 

.
41

41
ln

1
4

1

1
4

1

ln
1

1
ln

1

1
2

)1(5

)1(10
222

2

C
xx

xx
C

x

x

x

x

C
t

t
dt

t
dt

tt

tt
I +

+−−

++−
=+

−
+

−

+
+

−

=+
−

+
=

−
=

−

−
=   
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The Euler substitutions often lead to rather cumbersome calculations, therefore we 

apply them only when it is difficult to find another method for solving given integral. 

There are simpler methods for calculating some integrals of the form 

 ++ dxcbxaxxR ),( 2 . 

III.  Integrals of the form 
++

+

baxx

dxBAx

2

)(

2
. 

• =
−++=++

=
++

+


)()(2

rdenominato  in  the  square    thecomplete

2

)(
2222 abaxbaxxbaxx

dxBAx
 

=
−++

−
+

−++

+

=
−++

−++
= 

)()(

)(

)(

)(2
2

)(

)(

222222 abax

dxaAB

abax

dxax
A

dx
abax

aABaxA
 

=+
−++

−+
++

++
=  )(

)()(

1
)(

2

)2(

2 222

2

axd
abax

aAB
bax

baxdA
 

 2ln)(2 22 CbaxxaxaABbaxxA +++++−+++= . 

Example.   =
++=++

=
++

+


2)1(32

rdenominato  in  the  square    thecomplete

32

)15(
222 xxxxx

dxx
 

−
++

++
=

++
−

++

+
=

++

−+
= 

32

)32(

2

5

2)1(
4

2)1(

)1(2

2

5

2)1(

4)1(5

2

2

222 xx

xxd

x

dx

x

dxx
dx

x

x
 

Cxxxxxxd
x

+++++−++=+
++

−  321ln4325)1(
2)1(

1
4 22

2
. 

• =
−−+=+−−=++−

=
++−

+
 22222 )()()2(2

rdenominato  in  the  square    thecomplete

2

)(

axabbaxxbaxxbaxx

dxBAx
 

=
−−+

+
+

−−+

−

=
−−+

++−
=  222222 )()(

)(

)()(

)(2
2

)()(

)(

axab

dxaAB

axab

dxax
A

dx
axab

aABaxA
 

=−
−−+

++
++−

++−
−=  )(

)()(

1
)(

2

)2(

2 222

2

axd
axab

aAB
baxx

baxxdA
 

C
ab

ax
aABbaxxA +

+

−
++++−−=

2

2 arcsin)(2 . 
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Example.   =
−−=+−−=++−

=
++−

+
 2222 )1(87)2(72

rdenominato  in  the  square    thecomplete

72

)3(

xxxxxxx

dxx
 

+
++−

++−
−=

−−
+

−−

−
=

−−

+−
= 

72

)72(

2

1

)1(8
4

)1(8

)1(2

2

1

)1(8

4)1(

2

2

222 xx

xxd

x

dx

x

dxx
dx

x

x
 

C
x

baxxxd
x

+
−

+++−−=−
−−

+ 
8

1
arcsin42)1(

)1(8

1
4 2

2
. 

IV. Integrals of the form  
++− baxaxx

dx

2)( 2
 are transformed into an integral 

of type discussed in III. by means of the substitution 
t

x
1

)( =− . 

Example. 

=
+−

−=

+−

−=

+−

−

=

−=

=

=
+−


521

25
1

251

1

1

1

125 2

22

2

2

2 tt

dt

tt
t

dt

ttt

dt
t

dt
t

dx

t
x

xxx

dx
 

=++−+−−=++−+−−=
+−

−=  C
xxx

Cttt
t

dt
5

21
1

1
ln521ln

4)1(
2

2

2
 

C
x

xxx
+

+−+−
−=

1251
ln

2

. 

 

V. Integration of binomial differentials. 

 

Definition. An expression of the form dxbxax pnm )( + , where bapnm   ,  ,  ,  ,  are 

constants is called a  binomial differential. 

Theorem 2.1 (Chebyshev’s). 

Integrals of the form  + dxbxax pnm )( , where pnm   ,  ,  are rational numbers, is 

reduced to an integral of a rational function ONLY in the following cases: 

Case 1. if  p  is an integer. Then, if 0p , the integrand is expanded by the formula 

of the Newton binomial; but if 0p , then we make the substitution  
ktx = , where k  is  a 

common denominator of the fractions m  and n . 
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Case 2.  if  
n

m 1+
 is an integer. Then, we put )( ns bxat += , where s  is a 

denominator of the fraction p . 

Case 3. if  p
n

m
+

+1
 is an integer.  Then, we make the substitution  









 +
=

n

n
s

x

bxa
t , 

where s  is a denominator of the fraction p . 

Examples. 

1.  
−

−

+=
+

= dxxx
xx

dx
I 54

1

2

1

54
)1(

)1(
. 

Here 5  ,
4

1
  ,

2

1
−==−= pnm . Since p  is integer we have Case 1.  

We make the substitution  4tx = . Then  dttdx 34= . 

Hence, 

=
+

−+
=

+
=

+
=+= 

−
−

dt
t

t

t

tdt

tt

dtt
dttttI

5552

3
354

1

42

1

4

)1(

11
4

)1(
4

)1(

4
)4())(1()(  

C
ttt

dt

t

dt
+

+
+

+
−=

+
−

+
=  4354 )1(

1

)1(3

4

)1(
4

)1(
4 . 

Returning to x ,  we get 

C
xx

I +
+

+
+

−=
4434 )1(

1

)1(3

4
. 

2. 
−

−=
−

= dxxx
x

dxx
I 2

3

23

32

3

)1(
)1(

. 

Here 
2

3
  ,2  ,3 −=== pnm . Since  2

2

131
=

+
=

+

n

m
is integer we have Case 2.  

222 11 txtx −==− ; 

21
22

t

tdt
dxtdtxdx

−
−==− . 

Hence, 

( ) C
t

t
t

dt
dtdt

t

t

t

tdt
ttI ++=−=

−
−=

−
−−= 

− 1
 

1

1
)(1

22

2

2

2

3

2
3 

2 . 



26 

 

 

Returning to x ,  we get 

C
x

xI +
−

+−=
2

2

1

1
1 . 

3. 
−

− +=
+

= dxxx
xx

dx
I 2

1

411

411
)1(

1
. 

Here 
2

1
  ,4  ,11 −==−= pnm . Since p  and 

2

5

4

1111
−=

+−
=

+

n

m
 are fractions, but 

3
2

1

2

51
−=−−=+

+
p

n

m
 is integer we have Case 3.  

4 24

4
2

1

11

−
=

+
=

t
x

x

x
t ;           

4 52 )1(2 −
−=

t

tdt
dx . 

Hence, 

=−










−
−−=















−

−





























−
+














−
=

−
−

−
−

 tdtt
t

t
t

t

tdt

tt
I 4

5

2
2

1

2

2

4

11
2

4 52

2

1
4

4 2

11

4 2
)1(

1
)1(

2

1

)1(21

1
1

1

1

C
ttt

dtt +−+−=−−= 
2310

)1(
2

1 35
22 . 

Returning to x ,  we get 

Cx
x

x
x

x
x

I ++−+++−= 4

2

34

6

54

10
1

2

1
)1(

3

1
)1(

10

1
. 

 

VI. Integration by Trigonometric or Hyperbolic Substitution 

 

Integration of functions rationally depending on x  and one of expressions 

22 xa + , 
22 xa −  or 

22 ax −  can be reduced to integrals of functions with respect to 

sine or cosine (ordinary or hyperbolic) by corresponding substitution. 

1. For integrals of the form ( ) − dxxaxR 22,  let us put  

= tax sin tataxa cos)sin1( 2222 =−=−  

or  

= tax tanh
t

a
taxa

cosh
)tanh1( 2222 =−=− . 
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2. For integrals of the form ( ) xdxaxR + 22,  we use substitution  

= tax tan
t

a
xaxa

cos
)tan1( 2222 =+=+  

or 

= tax sinh .cosh)sinh1( 2222 taxaxa =+=+  

3. Integrals of the form ( ) − dxaxxR 22,  can be solved by means of substitution 

=
t

a
x

sin
ta

t
aax cot1

sin

1
2

222 =







−=−  

or 

= tx cosh ( ) .sinh1cosh 2222 tataax =−=−  

Example. 
+

=
42xx

dx
I  

Let us use the substitution  

= tx tan2
t

xx
cos

2
)tan1(44 22 =+=+  

and  

dt
t

dx
2cos

2
= . 

Therefore 

=+
−

−
−=+===

+
=  C

t

t
C

x

t

dt

t
t

t

dt

xx

dx
I

cos1

cos1
ln

4

1

2
tanln

2

1

sin2

1

cos

2
tan2

cos

2

4

2

2
 

=+−=+
−

=+
−

= Ct
t

C
t

t
C

t

t
cot

sin

1
ln

2

1

sin

cos1
ln

2

1

sin

)cos1(
ln

4

1
2

2

 

C
x

x
C

xx
C

tt
+

−+
=+−+=+−+=

24
ln

2

124
1ln

2

1

tan

1

tan

1
1ln

2

1 2

22
. 
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3. The Definite Integral 

 

3.1 The Definite Integral and Its Properties 

 

 Let the function )(xfy =  be positive, defined and continuous on the interval ],[ ba . 

Find the area between the graph of )(xfy = , x-axis and the lines bxax ==   ,  (the area of 

a curvilinear trapezoid). 

Let us find the area approximately. Partition the 

interval ],[ ba  into small intervals by points 

bxxxxxxxa nnkk == −+   ,  ,  ,  ,  ,  , 11210  . In each 

interval ] ,[ ], ,[ ], ,[ ], ,[ 112110 nnkk xxxxxxxx −+   take 

a point and denote them 110    ,  ,  , − nk  . At 

each of these points calculate the value of the function 

)(  ),(  ),( 10 − nk  fff   (Fig. 1).  

 

Figure 1. 

Express the area as a combination of many vertically-oriented rectangles (the 

width= kkk xxx −= +1 , the height= )( kf  )  


−

=


1

0

)(
n

k
kkn xfS . 

This sum is called the integral sum of the function )(xfy =  on the interval ],[ ba . 

If we chose the partition of ],[ ba  small enough, then 

the area gets better (Fig. 2).  

And  as  the  width  of  rectangles  approaches  zero  

( →n ),  then  the  sum  gives  the  area  under  the  curve 

exactly. This idea leads to the concept of the definite 

integral. 

 

Figure 2. 

Definition. If for any partition of the interval ],[ ba  such that 0max → kx  and for 

any choice of points k  it exists the limit n
x

S
k 0max

lim
→

, then that limit is called the definite 

integral of the function )(xf  from a to b  and denoted by 


−

=→
=

1

00max
)(lim)(

n

k
kk

x

b

a

xfdxxf
k

.                              (3.1) 
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In this case the function )(xf  is called integrable on the interval ],[ ba . The 

numbers a and b are called the lower and the upper limits of the integral and interval ],[ ba  

– the interval of integration. 

Notes.  

1. If )(xfy =  is positive on the interval ],[ ba , 

then the area of a curvilinear trapezoid (Fig. 3) is 

dxxfS
b

a

= )(  
 

Figure 3. 

2. If f  is a constant function defined by Ky =  for every point from ],[ ba , then 

)(limlim

],[ interval  theoflength  the

1

00max

1

00max
abKxKxKdxK

ba

n

k
k

x

n

k
k

x

b

a kk

−=== 
−

=→

−

=→


. 

Properties of the Definite Integral: 

 

Theorem 3.1 

If a function f  is continuous on ],[ ba , then it is integrable on this interval. 

A proof of statement may be found in texts on advanced calculus. 

 

Theorem 3.2 

,)()( dxxfdxxf
a

b

b

a

 −=     .0)( = dxxf
a

a

                                  (3.2) 

A proof of property follows from the definition of definite integral. 

The second equality is natural from the geometric standpoint, because the length of 

the base of a curvilinear trapezoid is equal to zero; consequently, its area is zero too. 

 

Theorem 3.3 

:0   ,  KK R  .)()( dxxfKdxxKf
b

a

b

a

 =                                (3.3) 

Proof. According to definition 

dxxfKxfKxKfdxxKf
b

a

n

k
kk

x

n

k
kk

x

b

a kk
 ===

−

=→

−

=→
)()(lim)(lim)(

1

00max

1

00max
. 
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Theorem 3.4  

( ) .)()()()( 2121 dxxfdxxfdxxfxf
b

a

b

a

b

a

 =                                 (3.4) 

Proof.  From the definition 

( ) ( ) == 
−

=→

1

0
21

0max
21 )()(lim)()(

n

k
kkk

x

b

a

xffdxxfxf
k

 

dxxfdxxfxfxf
b

a

b

a

n

k
kk

x

n

k
kk

x kk
 ==

−

=→

−

=→
)()()(lim)(lim 21

1

0
2

0max

1

0
1

0max
. 

 

Theorem 3.5 

If bca  , then 

dxxfdxxfdxxf
b

c

c

a

b

a

 += )()()( .                                        (3.5) 

Proof.  Since the limit of the integral sum is independent of the partition, let us 

choose point c  as one of the division points: 11  , −= nmxc m .  

Hence  

=







+== 

−

+==→

−

=→

1

100max

1

00max
)()(lim)(lim)(

n

mk
kk

m

k
kk

x

n

k
kk

x

b

a

xfxfxfdxxf
kk

 

dxxfdxxfxfxf
b

c

c

a

n

mk
kk

x

m

k
kk

x kk
 +=+=

−

+=→=→
)()()(lim)(lim

1

10max00max
. 

Note. If 0)( xf , this property is illustrated 

geometrically (Fig. 4). 

The area of a curvilinear trapezoid with the base 

],[ ba  is a sum of areas of a curvilinear trapezoids with the 

base ],[ ca  and with the base ],[ bc . 

 

Figure 4. 

 

Theorem 3.6 

If the functions )(xfy =  and )(xgy =  satisfy the condition )()( xgxf   on the 

interval ],[ ba , then  

.)()( dxxgdxxf
b

a

b

a

                                                    (3.6) 

Proof. Let us consider the difference  

( ) ( )
−

=→
−=−=−

1

00max
)()(lim)()()()(

n

k
kkk

x

b

a

b

a

b

a

xfgdxxfxgdxxfdxxg
k

. 
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Since 0)()( − kk fg , 0 kx , each term of the sum is nonnegative, the entire 

sum is nonnegative, and its limit is nonnegative. 

Thus  

0)()( −  dxxfdxxg
b

a

b

a

 

or 

.)()( dxxgdxxf
b

a

b

a

   

Note. If 0)( xf , this property could be 

illustrated geometrically (Fig. 5). 

The area of a curvilinear trapezoid under the 

function )(xfy = is less than the area of a 

curvilinear trapezoid under the function )(xgy = . 

 

 

Figure 5. 

 

Theorem 3.7 

If m  and M  are the smallest and the greatest values of the function )(xfy =  on the 

interval ],[ ba , ba  , then 

).()()( abMdxxfabm
b

a

−−                                        (3.7) 

Proof. Since Mxfm  )( , we can use property 6 and note 2: 

)()()(

)(

abMdxxfabm

dxMdxxfdxm

b

a

b

c

b

a

b

a

−−










 

Note.  

If 0)( xf , this property is clearly illustrated 

geometrically (Fig. 6). 

The area of a curvilinear trapezoid is between the 

areas of bigger and smaller rectangles. 

 

Figure 6. 
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Theorem 3.8 (Mean-value theorem) 

If a function )(xf  is continuous on the interval ],[ ba . then there exists a point 

],[ bac  such that 

)()()( cfabdxxf
b

a

−= .                                          (3.8) 

Proof.  According to property 7  we have 

Mdxxf
ab

m
b

a


−

  )(
1

. 

Whence 

=
−

 dxxf
ab

b

a

)(
1

, 

where Mm  . 

Since )(xf  is continuous, it takes on all intermediate values between m  and M . 

Therefore, there exists a point ],[ bac  such that )(cf= , and 

)()()( cfabdxxf
b

a

−= . 

 

 

3.3 Fundamental Theorem of Calculus (Newton-Leibniz Formula) 

 

Let us consider the definite integral  

dttf
x

a

 )( , 

where the lower a  limit is fixed and the upper limit x  vary (to avoid confusion, we shall 

use t as the independent variable). 

Then the value of the integral will vary as well and the integral is a function of 

upper limit 

dttfx
x

a

= )()( . 
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To obtain a geometric interpretation of )(x , 

suppose that  0)( tf  for every t  in ],[ ba . In this case we 

have that )(x  is the area of the region under the graph of 

)(tf  from a  to x  (Fig. 7). 
 

Figure 7. 

 

Let us find the derivative of this function with respect to x . 

 

Theorem 3.9 

If  function )(xf  is continuous function and dttfx
x

a

= )()( , then we have 

)()()( xfdttfx
x

a

=











=  .  

Thus, by definition of primitive (see 1.1 p. 4), )(x  is an antiderivative of  )(xf . 

A proof of statement may be found in [1]. 

 

Theorem 3.10 (Fundamental Theorem of Calculus) 

Let  function )(xF  is any antiderivative of function )(xf  on the interval ],[ ba , then  

).()()()( aFbFxFdxxf
b

a

b

a

−==                                      (3.10) 

(Newton–Leibniz Formula) 

Proof.  Let )(xF  be some antiderivative of )(xf . According the theorem 3.9, the 

function dttfx
x

a

= )()(  is also an primitive of )(xf . From theorem 1.1 we know that the 

difference between them is a constant. 

Thus for every x  in ],[ ba  

CxFx += )()(  

or 

CxFdttf
x

a

+= )()( . 
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Let us put ax =  and use the result of  theorem 3.2 

CaFdttf
a

a

+= )()( , 

+= CaF )(0 )(aFC −= . 

Hence,  

)()()( aFxFdttf
x

a

−= . 

Finally, we substitute b  for x  and obtain Newton–Leibniz formula: 

).()()()( aFbFxFdxxf
b

a

b

a

−==  

Example: 

.4)11()22()(

 )(

 is )12(for  

primitive the

)12( 22
2

1

2

2

2

1

=+−+=+=

+

+=+ xx

xx

xdxx  

 

  

3.4 Techniques of Evaluating Definite Integrals 

 

I. Integration by Parts 
 

The method of integration by parts developed for indefinite integrals may also be 

used to evaluate a definite integral.  

Let functions )(xu  and )(xv  be differentiable. Then 

 −=
b

a

b

a

b

a

vduuvudv )( .                                             (3.11) 

Examples. 

1. =−=−=
==

==
= 

1

0

2

1

0

2
1

0

2

1

0

2
22

1

0

2

4

1

2

1

2

1

2

1

2

1 xxxx
xx

x exedxexe
evdxedv

dxduxu
dxxe  

4

1

4

1

4

1

2

1

4

1

4

1
0

2

1
1

2

1 2
2202120212 +

=+−=







−−−=  e

eeeeee . 



35 

 

 

2.  =−=−=

==

==

= 
3

1

3

1

23

1

2
3

1

2

2

3

1 2

1
ln

22

1
ln

2

2

1
ln

ln xdxx
x

dx
x

x
x

x

x
vxdxdv

dx
x

duxu

xdxx  

23ln9
4

1

4

3
1ln

2

1
3ln

2

3

4
ln

2

2222
3

1

2
3

1

2

−=









−−−=−=

x
x

x
. 

 

II. Integration by the Substitution 
 

The method of substitution is also useful when calculating a definite integral. We 

could use this idea to find an antiderivative and then apply the Newton–Leibniz formula.  

Another method, which is often shorter, is to change the limits of integration. In this 

case we do not need to return to the old variable 

Let the function )(xf  be continuous on the interval ],[ ba  and let us evaluate the 

integral  

dxxf
b

a

 )( . 

Let us make a substitution )(ux = , where u  is a new variable. The function )(u  

is such that 

1. a= )(  and b= )( ; 

2. )(u  and )(u  are continuous on ],[  ; 

3. ))(( uf   is defined and continuous on ],[  . 

Hence,  






= duuufdxxf
b

a

)())(()( .                                         (3.12) 

Examples.   

1. Evaluate  the integral  dx
x

x

+

3

1 1
. 

Make a substitution  
2tx = , tdtdx 2= . 

Determine the new limits  

if 1=x , then 1=t , 
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if 3=x  , then 3=t . 

Thus  








 
+−=−==









+
−=

+
=

+


12
132)arctan(2

1

1
12

1

2

1

3

1

3

1
2

3

1
2

23

1

ttdt
t

dt
t

t
dx

x

x
. 

2. Compute  the integral  



+

2

0 cos2

sin

x

xdx
. 

Apply the substitution  

txxt arccoscos == , dtxdx=−sin . 

Determine the new limits  

if 0=x , then 1=t , 

if 
2


=x  , then 0=t . 

Thus  

2ln1ln2ln1ln
22cos2

sin 1

0

1

0

0

1

2

0

=−=+=
+

=
+

−=
+





t
t

dt

t

dt

x

xdx
. 
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4. Improper Integrals 

 

Previously we studied the definite integral of a function )(xf  for the case when 

)(xf  is a bounded function defined on a closed interval ],[ ba . Is it possible to integrate 

functions over infinite intervals? Could we integrate unbounded functions? Let us consider 

a notion of integral, called improper integral, in a few cases. 

 

4.1 Improper Integrals with Infinite Limits  

 

A definite integral, that has either or both limits infinite: 




−−

+

dxxfdxxfdxxf
b

a

)(or     )(   ,)( , 

is called an improper integral of the first type. 

Let )(xf  be defined on ],[ +a  and integrable on ],[ ba  for all ab  . If there exists 

a finite limit 


+→

b

a
b

dxxf )(lim , 

then the improper integral 
+

a

dxxf )(  is called convergent and  


+→

+

=
b

a
b

a

dxxfdxxf )(lim)( .                                            (4.1) 

If such a limit is not finite then the improper integral does not exist and is called 

divergent. 

The geometric meaning of an improper integral is obvious 

when the function )(xf  is positive. Since the integral 
b

a

dxxf )(  

expresses the area of curvilinear trapezoid we can consider the 

improper integral 
+

a

dxxf )(   as  an  area of unbounded region 

lying between the lines )(xfy = , ax =  and x-axis (Fig. 8). 

 

Figure 8. 
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Similarly, we define the improper interval over other infinite intervals: 


−→

−

=
b

a
a

b

dxxfdxxf )(lim)( ,                                      (4.2) 


+→−→



−



−

+=+=
b

c
b

c

a
a

c

c

dxxfdxxfdxxfdxxfdxxf )(lim)(lim)()()( ,             (4.3) 

where c  is any number ( 0=c  is often convenient). Note that this requires both of the 

limits to be finite in order for the integral to be also convergent. If either of two limits does 

not exist then the integral is divergent. 

Examples. 

1. Find out at which values  of  m  the integral 
+

1

1
dx

xm
 is convergent and at which 

it is divergent.  

If 1m , then 01 −m  and 

( ) +=−
−

=
−

== −

+→

−

+→

−

+→

+

 1
1

1
lim

1
limlim

1 1

1

1

11

m

b

b
m

b

b
m

bm
b

mm

x
dxxdx

x
. 

If 1=m , then  

( ) +=−===
+→+→+→

+

 1ln||lnlim||lnlim
1

lim
1

1
11

bxdx
x

dx
x b

b

b

b

b
. 

If 1m , then 01−m  and 

1

1
1

1

1

1
lim

)1(

1
limlim

1
1

1

1
11 −

=







−

−

−
=

−

−
==

−+→−+→

−

+→

+


mbmxm

dxxdx
x mb

b

mb

b
m

bm
. 

Consequently, the integral 
+

1

1
dx

xm
 converges if 1m  and it diverges when 1m .  

2. Calculate 
+

− +
dx

x 1

1
2

. 

According to the definition  

=
+

+
+

=
+

+
+

=
+


+→−→

+

−

+

−

b

b
a

a
dx

x
dx

x
dx

x
dx

x
dx

x 0
2

0

2
0

2

0

22 1

1
lim

1

1
lim

1

1

1

1

1

1
 

=


+


=+−=+=
+→−→+→−→ 22

arctanlimarctanlimarctanlimarctanlim
0

0
baxx

ba

b

baa
. 
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In some cases it is sufficient to determine whether the integral converges or 

diverges, and estimate the value. The following test can help us. 

Comparison test.  

1. Let functions )(xf  and )(x  be defined for all ax   and integrable on each 

interval ],[ ba  for all ab  . If )()(0 xxf   for all ax  , then from convergence of the 

integral 
+


a

dxx)(  it follows that the integral 
+

a

dxxf )(  is convergent, and 


++


aa

dxxdxxf )()( ; from divergence of the integral 
+

a

dxxf )(  it follows that the integral 


+


a

dxx)(  is also divergent. 

2. Let function )(xf  be defined for all ax  . If the integral 
+

a

dxxf )(  converges, 

then the integral 
+

a

dxxf )(  also converges and is called absolutely convergent. 

If the integral 
+

a

dxxf )(  converges, and 
+

a

dxxf )(  diverges, then the integral 


+

a

dxxf )(  is called conditionally convergent. 

Examples.  

1. Investigate the integral 
+

+1
2 )1( xex

dx
 for convergence. 

Since  

22

1

)1(

1

xex x


+
 for 1x , 

and  

11
1

lim
1

lim
1

lim
11

2
1

2
=








−−=−==

+→+→+→

+


bx

dx
xx

dx

b

b

b

b

b
,  

Figure 9. 

we obtain that the integral 
+

+1
2 )1( xex

dx
converges ant its value is less than 1 (Fig. 9). 
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2. Find out whether the integral 
+ +

1
3

1
dx

x

x
 converges 

It will be noted that  

xx

x

x

x 11

33
=

+
. 

But  

+==
+→

+


b

b
xdx

x 1
1

2lim
1

. 

Whence the original integral is divergent. 

3. Investigate the convergence of the integral dx
x

x

+

1
2

sin
. 

Since 

222

11sin

xxx

x
=  for all 1x  

and 

1
1

lim
1

11
2

=
−

=
+→

+



b

b x
dx

x
, 

it follows that the integral dx
x

x

+

1
2

sin
 converges and  dx

x

x

+

1
2

sin
 is absolutely convergent. 

 

4.2 Improper Integrals of Discontinuous Functions 

 

Definite integral that has an integrand that approaches infinity at one or more points 

in the range of integration is called an improper integral of the second type. 

If the function )(xf  is defined for all bxa  , integrable on any interval ],[ −ba , 

ab−0  and unbounded to the left of the point b . 

Let us consider 


−

+→
=

b

a

b

a

dxxfdxxf )(lim)(
0

.                                           (4.4) 

If this limit is existent and finite, then the improper integral is called convergent. 

Otherwise, it is called divergent. 
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Analogously, if the integrand )(xf  is unbounded to the right from the point a , then  


+

+→
=

b

a

b

a

dxxfdxxf )(lim)(
0

.                                           (4.5) 

Finally, if the function is unbounded in the neighborhood of an interior point c  of the 

interval ],[ ba , then  


+

+→

−

+→
+=+=

b

c

c

a

b

c

c

a

b

a

dxxfdxxfdxxfdxxfdxxf

2
2

1

1

)(lim)(lim)()()(
00

.           (4.6) 

Examples. 

1. Find out at which values  of  m  the integral 
1

0

1
dx

xm
 is convergent and at which it 

is divergent. The integrand 
mx

1
 is defined for all 10  x  and unbounded to the right of 

the point 0. 

If 1m , then 01 −m  and 

( )
mmm

x
dx

x
dx

x

m
m

mm −
=+−

−
=

−
== −

→
+

−

→
+

→


1

1
)0(1

1

1
lim

1
  lim

1
lim

1 1

0

1

0

1

0

1

0
0

1

0

. 

If 1=m , then  ( ) +=+−===
→+→

+
→

 |0|ln1lnlim||ln  lim
1

 lim
1

0

1

00

1

0
0

1

0

xdx
x

dx
x

. 

If 1m , then 01−m  and 

+=








+
−

−

−
=

−

−
==

−→
+

−→
+

→
 10

1

0

10

1

0
0

1

0 )0(

1
1

1

1
lim

)1(

1
lim

1
lim

1
mmmm mxm

dx
x

dx
x

. 

Consequently, the integral 
0

1

1
dx

xm
 converges if 1m  and it diverges when 1m .  

2.  Investigate the integral 
−

1

3
1 ln

e
xx

dx
 for convergence. 

The function 
xx 3ln

1
 is unbounded to the left of the point 1. 

2

1

ln2

1

)1(ln2

1
lim

ln2

1
  lim

ln

ln
lim

ln 1220

1

20

1

30

1

3
111

=






 −
−

−

−
=

−
==

−→

−

→

−

→ −−−


exx

xd

xx

dx

eee

. 

Therefore the integral converges. 
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For the functions defined and positive on the interval convergence tests are 

analogous to the comparison tests for improper integrals with infinite limits. 

Comparison test.  

1. Let functions )(xf  and )(x  be defined on the interval ),[ ba  and discontinuous 

at the point b . If )()(0 xxf   at all points of interval ),[ ba , then from convergence of 

the integral 
b

a

dxx)(  it follows that the integral 
b

a

dxxf )(  is convergent; from divergence 

of the integral 
b

a

dxxf )(  it follows that the integral 
b

a

dxx)(  is also divergent. 

2. Let )(xf  be an alternating function on the interval ],[ ba  and discontinuous only 

at the point b . If the integral 
b

a

dxxf )(  converges, then the integral 
b

a

dxxf )(  also 

converges and is called absolutely convergent. 

If the integral 
b

a

dxxf )(  converges, and 
b

a

dxxf )(  diverges, then the integral 


b

a

dxxf )(  is called conditionally convergent. 

Analogous tests are also valid for improper integrals 
b

a

dxxf )( , where )(xf  is 

unbounded to the right from the point a . 

Example.   

Investigate the integral 
−

1

0
3

2

1

cos

x

xdx
 for convergence. 

The integrand is unbounded to the right of the point 1. 

Since 1cos x , we have 
33

2

1

1

1

cos
0

xx

x

−


−
 . The integral 

−

1

0
3 1 x

dx
 is convergent 

according the first example of this chapter. Hence, the original integral converges. 
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5. Application of the Definite Integral 

 

5.1 The Area of a Region 

 

I. The Area of a Curvilinear Trapezoid 

Let the function )(xfy =  be positive, defined and continuous on the interval ],[ ba .  

 

Figure 10. 

As we know from the chapter 3.1 the area between the 

graph of )(xfy = , x-axis and the lines ax =  and bx =  

(Fig. 10 ) 

dxxfS
b

a

= )( .                            (5.1) 

 

Example.  

Compute the area of the region bounded by xey = , 

x-axis and the lines 1−=x  and 1=x  (Fig.11). 

Let us use the formula (5.1): 

e

e
eeedxeS xx 12

1
1

1

1

1

−
=−=== −

−
−

  (units2). 
 

Figure 11. 

 

If the curvilinear trapezoid is bounded by the curve represented by equations in 

parametric form  

21  
),(

),(
ttt  

tyy

txx






=

=
 

and 

btxatx == )(   ,)( 21 . 

Let us use the formula (5.1) to compute the area 

dxydxxfS
b

a

b

a

 == )( . 

Change the variable in the integral 

).())(()(

,       ,)(       ),( 21

tytxfxfy

tttdttxdxtxx

===

==
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Hence 

dttxtyS

t

t

 =
2

1

)()( .                                                   (5.2)  

Example.  

Compute the area of the region bounded by ellipse  1
2

2

2

2

=+
b

y

a

x
 (Fig.12). 

Let us use the parametric equations of ellipse 

 
.sin

,cos
  

tby

tax





=

=
 

Since the region is symmetric about the coordinate 

axes, we compute the area of one quarter. Here  x  varies 

from 0 to a , and so t varies between 
2

1


=t  and 02 =t . 

 According to the formula (5.2):  

 

Figure 12. 

==−== 





dttabdttbtadttatbS
2

0

2
0

2

0

2

sin4)sin(sin4)cos(sin4   

abab
t

tabdttab =







+−


−


=








−=−=




2

0sin
0

2

sin

2
2

2

2sin
2)2cos1(2

2

0

2

0

 (units2).  

Thus, the area of the region bounded by ellipse 1
2

2

2

2

=+
b

y

a

x
 is 

 abS = .                                                           (5.3) 

 

 

 
 

 

Figure 13. 

If )(xf  changes sign on the interval ],[ ba  a finite 

number of times (Fig.13),  then 

       dxxfS
b

a

= )(                                
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II. The Area Between Two Curves 

Let the functions )(xfy =  and )(xgy =  be positive, defined and continuous on the 

interval ],[ ba  and for every ],[ bax   )()( xfxg  .  

 

 

Figure 14. 

Then the area of the region bounded by the curves  

)(xfy = , )(xgy =  and the lines bxax ==   ,  (Fig. 14 ) is 

dxxgdxxfS
b

a

b

a

 −= )()( , 

dxxgxfS
b

a

))()(( −=  .                    (5.4) 

Example. 

Evaluate the area of the region between the curves 

24 xy −=  and 122 +−= xxy . 

Solving the system of equation 







+−=

−=

,12

,4

2

2

xxy

xy
  

find the abscissas of the points of intersection of the 

curves. Then eliminating y  we obtain 

124 22 +−=− xxx , 

whence 11 −=x  and 22 =x . 

 

Figure 15. 

As it seen from the figure 15, 124 22 +−− xxx  on the interval ]2,1[− . 

Consequently, 

=









+−=+−=+−−−=

−−−



2

1

2
32

1

22
2

1

2

3

2
3))223())12()4(( x

x
xdxxxdxxxxS  

61
3

2
34

3

16
6 =








++−−








+−=  (units2). 
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III. The Area of a Curvilinear Sector in Polar Coordinates 

Consider a curve defined in polar coordinates by the equation  

=      ),( , 

where )(  is a continuous function for ],[  .  

Let us find the area inside of polar curve )(=  between the radius vectors  

=  and = . The idea is the same as with the area of a curvilinear trapezoid: find an 

approximation that approaches the true value.  

Partition the sector ],[   into small subsectors by 

radius vectors  == −+ nnkk   ,  ,  ,    ,  , 1110  . 

In  each  part )1( ,0  ], ,[ 1 −= + nkkk   take  an  angle 

k  and calculate the value of the function )( k  (Fig. 13).  

We approximate the region using sectors of circles 
 

Figure 13. 

)1( ,0  , )(
2

1
) )((

2

1
 2

1
2 −==−= + nkS kkkkkk  . 

Thus,  the sum 

kk

n

k

n

k
kS S == 

−

=

−

=

 )( 
2

1 2
1

0

1

0

 

give the approximation of the area of the region. 

Since this sum is an integral sum, its limit as 0 max → i , is the definite integral, 

and we obtain the formula for the area of a curvilinear sector  

= 




dS )(
2

1 2
.                                                   (5.5) 

Example. 

Find the area of a region enclosed by the portion 

of  Archimedean spiral  
2

3
0   ,


=  (Fig. 14). 

Use the formula (5.5) 

8

9

83

)3(

32

1 332

3

0

22

3

0

2 
=




=


==



 dS   (units2). 

 

Figure 14. 
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5.2 The Arc Length of a Curve 

 

I. The Arc Length of a Curve in Rectangular Coordinates 

Let us find the length of the arc of a curve between points A  and B . The curve is 

given by the equation )(xfy =  such that functions )(xf  and )(xf   are continuous on the 

interval ],[ ba . 

Divide the interval up into n  subintervals by 

the points 

 BMMMMMMA nnkk == −+ ,,,,, 1110  . 

Approximately the length of the curve is a sum of 

segments connecting these points (Fig. 15) 


−

=
+

1

0
1

n

k
kkAB MML . 

 

Figure 15. 

The length of each segment we can find using Pythagorean theorem 

2

22
1 1)()( 












+=+=+

k

k
kkkkk

x

y
xyxMM . 

Since, by the Lagrange’s theorem  

1

1

1    ),(
)()(

+

+

+ =
−

−
=




kkkk

kk

kk

k

k xxf
xx

xfxf

x

y
, 

we have 

( )21 )(1 kkkk fxMM +=+  

and 

( )
−

=

+
1

0

2
)(1

n

k
kkAB fxL . 

Therefore, this is integral sum for the continuous function 
2))((1 xf +  and a limit 

as 0max → kx  give us the formula for computing the length of arc 

dxxfL
b

a

AB  +=  ))((1 2
                                             (5.6) 
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Example. 

Evaluate the length the curve 3)1( −= xy  between the points )0 ,1(  and )8 ,5( . 

Find the derivative of the function 

( ) 1
2

3
)1( 3 −=


−= xxy . 

Hence, 

=







−=−=








−+= 

5

1

35

1

5

1

2

4

5

4

9

9

4

3

2
 

4

5

4

9
 1

2

3
1 xdxxdxxL  

)11010(
27

8

4

5

4

9

4

5

4

45

27

8
33

−=





















−−








−=   (units). 

 

Figure 16. 

 

II. The Arc Length of a Curve Represented Parametrically 

Let a curve be given by the equations in the parametric form  

),(     ),( tyytxx ==   

and the derivatives )(  ),( tytx   be continuous on the interval ],[ 21 tt . 

In this case we can use formula (5.6), where  

)(

)(
)(

tx

ty

x

y

dx

dy
xf

t

t




=




== ,   dttxdx )(=    and   btxatx == )(   ,)( 21 . 

Hence, 

dttx
tx

ty
L

t

t

AB )( 
)(

)(
1

2

1

2













+=  . 

Finally,  

( ) ( ) dttytxL

t

t

AB  +=
2

1

 )()(
22

.                                         (5.7) 

Note: If the space curve is represented parametrically  

],,[     ),(    ),(     ),( 21 ttttxxtyytxx ===  

then 

( ) ( ) ( ) dttztytxL

t

t

AB  ++=
2

1

 )()()(
222

. 
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Example. 

Find the length of one arc of cycloid  ]2 ,0[ 
),cos1(

),sin(






−=

−=
t

tay

ttax
. 

Let us find the half of curve as ],0[ t . 

Differentiating with respect to t , we obtain  





=−=

−=−=

.sin)cos1(

),cos1()sin(

tatay

tattax
 

Hence, 

 

Figure 17. 

( ) ( ) =++−=+−= 


dttttadttataL
0

222

0

22
 )sincoscos21(2 sin)cos1(2  

=−===−=




000

2

0 2
cos8 

2
sin4 

2
sin42 cos222

t
adt

t
adt

t
adtta  

aaa 80cos8
2

cos8 =+


−=    (units). 

 

III. The Arc Length of a Curve in Polar Coordinates 

If a smooth curve is given by the equation ,   ),( =  in polar 

coordinates. 

Let us use the formulas for converting polar coordinates to Cartesian coordinates 





=

=

.sin

,cos

y

x
 

Since )(= , we put this expression in place of   and obtain 

.   
,sin)(

,cos)(






=

=

y

x
 

These equations are regarded as parametric equations of the curve. Applying 

formula (5.7) we obtain 

( ) ( ) ( ) ( ) =+=+= 








ddyxLAB  )sin)(()cos)(( )()(
2222

 

( ) ( ) =++−= 




d cos)(sin)(sin)(cos)(
22
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( ) ( ) =++++−= 




d coscossin2sinsincossin2cos 22222222

( ) ( ) ( ) ( ) .  cossinsincos 22222222
+=+++= 









dd  

Hence, 

( ) ( ) += 




dLAB  )()(
22

.                                         (5.8) 

Example.  

Find the length of the cardioid  )cos1( −= a  (Fig. 18). 

This curve is symmetrical about polar axis, that’s why we 

varying  the angle from 0 to   and multiplying the integral by 2. 

Here, = sina . 

Hence, 

( ) ( ) =−+= 


daaLAB

0

22
 )cos1(sin2  

 

Figure 18. 

=


=−=+−+= 


dadada
0

2

00

22  
2

sin42 cos222 coscos21sin2  

aaaada 80cos8
2

cos8
2

cos8 
2

sin4
00

=+


−=


−=


=



   (units). 
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5.3 Volume of a Solid  

 

I. Volume of a Solid From the Areas of Parallel Sections 

Suppose we have a solid. Assume that we know the area of any section of the solid 

by the plane perpendicular to the x -axis (Fig. 19) and this area is a function of x : 

)(xSS = .  

Cut the solid by planes ,ax =  1xx = ,… kxx = , 

1+= kxx ,… bx =  into n  layers. Each layer is a 

cylindrical body, which volume is a product of the area 

of the base ( ))( kSS =  and the altitude ( )kx : 

kkk xSV = )( . 

The volume of all the cylinders will be 

k

n

k
k

n

k
k xSVV = 

−

=

−

=

1

0

1

0

)( . 

 

 

Figure 19. 

It is the integral sum of the continuous function )(xS on the interval bxa   and, 

finally, we obtain the formula for the volume of a solid 

dxxSV
b

a

)(= .                                                    (5.9) 

Example.  

Evaluate the volume of ellipsoid  1
2

2

2

2

2

2

=++
c

z

b

y

a

x
 (Fig. 20). 

Let us make a section of ellipsoid by the plane 

0xx =   parallel to the yz-plane. Here we have the ellipse 

2

2

0

2

2

2

2

1
a

x

c

z

b

y
−=+  

or 

1

11
2

2

02

2

2

2

02

2

=














−

+














−

a

x
c

z

a

x
b

y
. 

 

Figure 20. 
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According to formula (5.3), the area of this ellipse is 














−=−−=

2

2

0

2

2

0

2

2

0
0 111)(

a

x
bc

a

x
c

a

x
bxS . 

Hence, the volume of ellipsoid is 

abc
a

x
xbcdx

a

x
bcdxxSV

a

a

a

a

a

a

=









−=










−==

−−−


3

4

3
1)(

2

3

2

2

 (units)3. 

 

II. The Volume of a Solid of Revolution  

Consider the solid generated by revolution about 

the x-axis of the curvilinear trapezoid bounded by the 

curve )(xfy = ( 0)( xf ), the x-axis and the straight 

lines ax =  and bx =  (Fig. 21). 

An arbitrary section of this solid made by plane 

perpendicular to the x-axis is a circle of radius )(xf  and 

its area is  

 

 

Figure 21. 

2))(()( xfxS = . 

Let us use formula (5.9) and obtain the formula of volume of a solid of revolution 

about the x-axis 

dxxfV
b

a

ox
2))((= .                                               (5.10) 

Example. 

Find the volume of a solid obtained by revolving about the x-axis of the figure 

bounded by the first arc of the sinusoid xy sin=  (Fig. 22). 

=−


== 


dxxdxxVox )2cos1(
2

)sin(
0

2

0

 

22

2sin

2

2

0


=








−


=


x

x   (units)3. 

 

Figure 22. 
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dxxfxV
b

a

oy )( 2 = .                                                (5.11) 

Example. 

The figure bounded by the arc of the sinusoid xy sin= , the x-axis and the straight 

line 
2


=x  revolves about the y-axis (Fig. 24). Compute the volume of the solid of 

revolution thus obtained. 

=
−==
==

== 



xvxdxdv
dxduxu

xdxxVoy cossin
sin2

2

0

 

=
















+−= 




dxxxx
2

0

2
0

coscos2  

==



2sin2 2
0

x   (units)3. 

 

Figure 24. 

 

 

If the solid of revolution is generated by the rotation of the curvilinear trapezoid 

bounded by the parametric curve ,  
),(

),(
21 ttt

tyy

txx






=

=
 then  

dttxtyV

t

t

ox )()(
2

1

2 =  .                                              (5.12) 

dttxtytxV

t

t

oy )()( )(2
2

1

=  .                                          (5.13) 

The volume of the solid of revolution of polar curve ,  ),( = t  about the 

polar-axis is  

= 




 dV sin)(
3

2 3 .                                          (5.14) 

Let us consider the solid of revolution about 

the y-axis of the curvilinear trapezoid bounded by 

the curve )(xfy = , the x-axis and the straight lines 

ax =  and bx =  (Fig. 23). 

The volume of a solid of revolution about the 

y-axis 

 

Figure 23. 
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5.4 The Surface of a Solid of Revolution 

 

Let us consider the arc of the smooth nonnegative function )(xfy =  and the 

surface generated by revolving this arc about the x-axis (Fig. 25). Determine the area of 

this surface. 

Subdivide the interval into n  parts by the points 

BMMMMMMA nnkk == −+ ,,,,, 1110  . 

Draw the chords BMMMAM nkk 111   ,  , −+  , 

whose lengths are determined as follows (see 5.2 I) 

( )2)(1 kkk fxS +=  

Each chord of length describes (during the rotation) 

a truncated cone whose surface is  

 

Figure 25. 

( ) ( ) kkkkk
kk

k xfxfxfS
xfxf

P +−=
−

= +
+ 2

1
1 )(1)()(

2

)()(
2 . 

Thus, the surface describes by the broken line is equal to the sum 

( ) ( ) kkkk

n

k

n

k
kox xfxfxfPP +−= +

−

=

−

=


2

1

1

0

1

0

)(1)()( . 

The limit of this sum, when the largest segment kS  approaches zero gives a 

formula of the area of the surface of revolution 

( ) ( ) ( ) kkk

n

kx
kkkk

n

kS
ox xffxfxfxfP

kk

+=+−= 
−

=→
+

−

=→

2
1

00

2

1

1

00
)(1)(2lim)(1)()(lim . 

( ) dxxfxfP
b

a

ox

2
)(1)(2 +=  .                                      (5.15) 

The surface generated by revolving of the arc about the y-axis 

( ) dxxfxP
b

a

oy

2
)(12 +=  .                                         (5.16) 

If the surface of revolution is generated by the rotation of the parametric curve 

,  ),(  ),( 21 ttttyytxx ==  then  

( ) ( ) dttytxtyP

t

t

ox  +=
2

1

 )()()(2
22

,     ( ) ( ) dttytxtxP

t

t

oy  +=
2

1

 )()()(2
22

        (5.17) 
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Example. 

1. Compute the surface of revolution of the curve 3xy =  between the straight lines 

3

2
−=x  and 

3

2
=x . 

Let us use the formula (5.17).  

=+=+=  dxxxdxxxPox

3

2

0

43
3

2

0

233  914 ))((122  

=+


=++


= 
3

2

0

344
3

2

0

4 )91(
3

2

9
)91( 91

9
xxdx  

729

196
=  (units)2. 

 

Figure 26. 

2. Find the surface of revolution of the first arc of cycloid   

]2 ,0[ 
),cos1(

),sin(






−=

−=
t

tay

ttax
. 

Let us use the formula (5.17).  

( ) ( ) =+−−= 


dttatataPox
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0

22
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Figure 27. 

=







−==−= 



dt
tt

adt
t

adt
t

ta
2

0

22
2

0

32
2

0

22  
2

sin
2

cos18 
2

sin8 
2

sin4)cos1(2  
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5.5  Physical Application of the Definite Integral  

 

I. Work of the Variable Force 

Suppose a force F  moves an object along the x-axis, and the direction of the force 

coincides with the direction of motion. Let us determine the work done by the force F  as 

the body is moved from the point ax =  to the point bx = . 

The work done by a constant force in moving an object a distance is equal to the 

product of the force and the distance moved. That is, if the force F  is constant, then 

)( abFW −= . 

But in most cases the applied force is not constant, but varies depending on the 

position of material point. Assume that the force )(xF  varies continuously from a  to  b .  

In order to find the total work divide the interval ],[ ba  into n  arbitrary parts by 

points bxxxxa n ==   ,  ,  ,  , 210   of length nxxx    ,  ,  , 21  . In each part ),,( 1+kk xx  

nk ... ,1 ,0 =   choose an arbitrary point k  and evaluate the work of the force on each part  

kkk xFW = )( , nk ... ,1 ,0 = . 

Hence, the total work is approximately 

kk

n

k

n

k
k xFWW = 

−

=

−

=

)(
1

0

1

0

. 

Obviously, this expression is an integral sum of the function )(xF  on the interval 

],[ ba . The limit of this sum as 0max → kx  exists and leads to the work of the force 

)(xF   over the path from the point ax =  to the point bx =  

dxxFW
b

a

= )( .                                                    (5.18)  

 

Example.  

The compression S  of a helical spring is proportional to 

the applied force F . Compute the work of the force F  when 

the spring is compressed 5 cm, if a force of one kilogram is 

required to compress it  1 cm. 
 

Figure 28. 
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It is given that the force F  and the distance covered  S  are connected by the 

relation  kSF = , where k  is a constant. 

Let us express S  in meters and F  in kilograms. When 01,0=S , 1=F , that is, 

01,01 = k , whence 100=k , SF 100= . 

By formula (5.18) we have 

125,0
2

100100

05,0

0

205,0

0

=== 
S

dSSW  kilogram-meter. 

 

II. Mass, Coordinates of the Centre of Gravity and Moments of Inertia 

Suppose on an xy-plane there is a system of material points 

)  ,(  ,)  ,(  ),  ,( 2211 nn yxPyxPyxP   

with masses nmmm   ,  ,  , 21  . 

The product kk mx  and kk my are called the static moments of the mass relative to the 

y- and x-axis. According to well-known formulas from mechanics, the coordinates of the 

centre of gravity of this material system will be defined by the formulas 
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Rotational inertia is a property of an object which can be rotated. It is also known 

as moment of inertia. It is also sometimes called the second moment of mass. It is possible 

to calculate the total rotational inertia for the system of material points  

about the x-axis        
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=
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k
kkx mxI
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2 ,  

about the y-axis       
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n

k
kky myI

1

2 ,                                    (5.20) 

about the origin      ( )
=

+=
n

k
kkk myxI

1

22
0 . 

We use these formulas in finding physical characteristics of various objects. 
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1. The mass, the centre of gravity and moments of inertia of a material line 

Consider the arc of the material curve )(xfy = , bxa  , and let linear density 

(mass per unit lenght) of this material curve be  . We assume that linear density is the 

same in all points of the line. Objects whose mass is uniformly distributed throughout the 

object are called homogeneous. 

Divide the interval ],[ ba  into n parts by points nxxx   ,  ,  , 21  .  This partition divide 

the curve into n parts of length nlll    ,  ,  , 21  . The masses of these parts are 

nn lmlmlm ===   ,  ,  , 2211  . Choose the point k  in each part ),,( 1+kk xx  

nk ... ,1 ,0 = . 

Then the total mass is 
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. 

Hence, the mass of a material line is 

( ) dxxfm
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)(1 .                                             (5.21) 

According to formulas (5.19) and (5.20) we obtain 
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That’s leads to formulas of the centre of gravity of a material line 
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Here, oyM  and  oxM  are the static moments of the curve relative to the y- and x-

axis. 
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Moments of inertia of a material line 

about the x-axis        ( ) dxxfxfI
b

a

x  +=
22 )(1)( ,                        (5.23) 

about the y-axis       ( ) dxxfxI
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y  +=
22 )(1 ,                               (5.24) 

                      about the origin      ( ) ( ) dxxfxfxI
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a

o  ++=
222 )(1)( .                 (5.25) 

Example. 

Determine the coordinates of the center of gravity 

of a homogeneous arc of curve 
a

x
ay cosh= , axa −  

(Fig. 29).  

Since the arc is symmetric about the y-axis, the 

center is on the y-axis, that is 0=cx . 

 

Figure 29. 

By the second of formulas (5.22) 
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Finally, the center of gravity is  
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2. The mass and the centre of gravity of a material plane figure 

Let us consider a curvilinear trapezoid bounded by the line )(xfy = , bxa  , 

which is a material plane figure (lamina). Suppose that lamina is homogeneous, that is, the 

area density (mass per unit area) is constant  . 

The mass of a material plane figure 

dxxfm
b

a

 = )( .                                                  (5.26) 

The centre of gravity of a material plane figure 
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Here, oyM  and  oxM  are the static moments of the material plane figure relative to 

the y- and x-axis. 

Moments of inertia of a material plane figure 

about the x-axis        ( ) dxxfxfI
b

a

x  +=
22 )(1)( ,                         (5.28) 

about the y-axis       ( ) dxxfxI
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y  +=
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                      about the origin      ( ) ( ) dxxfxfxI
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222 )(1)( .                (5.30) 

Example. 

Find the coordinates of the center of gravity of homogeneous lamina bounded by the  

curve ayx =+  and lines 0  ,0 == yx . 

Since the figure is symmetric about the bisector of first 

quarter, the center is on the line xy = , that is cc yx = . 

Let us apply the formulas (5.27) 
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Figure 30. 
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Appendix 1. Graphs of Certain Functions in Cartesian Coordinates 

 

 

0  ,2 ++= acbxaxy  

(Parabola) 

Power Function 

nxy = , n  is  even (2, 4, 

6…) 

 

nxy = , n  is  odd (3, 5, 7…) 

 

 
Hyperbola 

x

k
y =  

 

Inverse Power Functions 

n xy = , n  is  even (2, 4, 

6…) 

 

n xy = , n  is  odd (3, 5, 7…) 

 

xy sin=   

 
 

xy cos=  

 

xy tan=   

 

xy cot=   
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xy arcsin=   

 

xy arccos=   

 

xy arctan=   

 

xay = , 1a  

 

xay = , 10  a  

 

xey =  

 
 

 

xy alog= , 1a  

 

xy alog= , 10  a  

 

xy ln=  

 
xy sinh=  

 

xy cosh=  

 

xy tanh=  

 

xy coth=  
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Appendix 3. Graphs of Certain Functions in Polar Coordinates 
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Lemniscate of Bernoulli 
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https://en.wikipedia.org/wiki/Cardioid
https://en.wikipedia.org/wiki/Lemniscate_of_Bernoulli
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Appendix 3. Graphs of Certain Functions in Parametric Form 
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Appendix 4. The table of derivatives. Properties of derivatives 
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