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Introduction

This textbook is designed for students of the first year of technical university. It
covers one of the most important areas to be studied in the first semester: Integral Calculus
of a Function of One Variable.

The manual can be helpful for students who want to understand and be able to use
standard integration techniques, apply integration for solving some tasks from geometry
and physics and so on.

Each part contains basic mathematical conceptions and explains new mathematical
terms. The most important concepts of Integral Calculus are explained and illustrated by
figures and examples.

The first two parts deal with the concept of indefinite integrals, their properties and
main techniques of integration: by substitution and by parts. We also considered the ways
of integration of rational, trigonometric and irrational functions.

The third section is concerned with the bases of definite integral: Fundamental
Theorem of Calculus and main integration techniques for definite integral.

Next part deals with improper integrals including using the comparison test for
convergence of improper integrals.

In the fifth section we take a look at some applications of integrals: determining
area of a region, the arc length of a curve, the surface area and the volume of a solid of
revolution, the center of mass and moments of inertia of a region and curve.

There are also four appendices concerned with graphs of some elementary
functions, the polar coordinates parametric representation of a function and some

knowledge about derivatives.



1. The Indefinite Integral

1.1 The Indefinite Integral and its properties

I. The Concept of an Antiderivative

Previously we considered the following problem: given a function f, find the
derivative f'. Now let us solve the reverse problem: given a function f , find a function
F suchthat F'=f.

Such inverse operation is called integration, that is the process of finding the

function F(x) that has its derivative equal to the given function f(x).

Definition. Differentiable function F(x) is called the primitive (antiderivative) of
the function f (x), if F'(x) = f(x) or dF = f (x)dx.

Example: Find the antiderivative for function f(x)=2x.

It is well known that (x?)' = 2x, hence F(x)=x?. There are many other primitives
of 2x, such as x°+1, x*—3,6 and x*+In2. In general, if C is any real number
(arbitrary constant), then x* +C is an antiderivative of 2x, because (x? +C)’ = 2x.

Theorem 1.1.
If functions F (x) and F,(x) are two primitives of function f(x) on the interval
[a,b], then the difference between them is a constant (F,(x) —F,(x) =C).

Proof.

Let us consider the function o(x) = F (x) — F,(x) .

According to definition of an antiderivative we have

R = F(x),
F(x) = f(x)

for any value of x on the interval [a,b].

Hence,
o'(X) = F(X) - FJ(x) = f(x)- f(x) =0, Vxe[a,b]


https://en.wikipedia.org/wiki/Derivative

From ¢'(x) =0 it follows that @(x) is a constant.

Since o(x) is differentiable, ¢(x)is continuous, and we can apply the Mean Value
Theorem to the function @(x) on the interval [a,b]:

o(x) —¢(a) = (x-a)e’(c),
where a<c<X.

Since ¢'(x) =0,

o(x)—o(a)=0,
o(x) = o(a).

Thus, the function ¢(x) is a constant for any x of the interval [a,b].

From this theorem it follows that the primitive F(x) is unique up to an additive
constant and all functions F(x)+C (C is an arbitrary constant) are primitives of f(x) too,
as (F(x)+C) = f(x).

Definition. The set of primitives F(x)+C (C is an arbitrary constant) is called the
indefinite integral of the function f(x) and denoted by

[ f(x)dx=F(x)+C,

where C is the constant of integration.
Function f(x) is called the integrand and x is the integration variable.

Properties of Indefinite Integrals:

L (] f(x)dx) =(F()+C) = f (x).
This equation follows directly from the definition of indefinite integral.
2. jf’(x)dx= f(x)+C.
The truth of this property can easily be checked by differentiation of both sides of
the equation
(I £09dx) =(f (9 +C)

U U
f'x) = f'(x).



3. VKeR, K=0: [Kf(x)dx=K[ f(x)dx.

Let us differentiate both sides of the equation

(] (x)dx)' = (K[ f (x)dx)
U U

Kf() = K] f (x)dx) = KF (x).
4. [(f,00)+ f,00)dx = [ f,(x)dx+ [ f,(x)dx.

Let us find the derivatives of both sides of the equation

(1(R,00-+ £,00)x) = ([ £,00d+ [ £,00x)
I I

L0+ F,00 = (f f,(x)dx) +f £,(0)dx) = £,00 + £,(x).

1.2 Table of Integrals. Examples

According to the definition of the indefinite integral, the table of derivatives is

transformed into the table of common indefinite integrals.

dex:C jdx=x+C
n+1 1 1
jx”dx:x +C [Fdx=-=+C
n+1 X X
jldx=ln\x\+c jidx:\/}+c
X 2.x
[e*dx=e*+C [adx= at o
Ina
J’sin xdx = —cos X +C jcosxdx:sin X+C
1
[——dx=tanx+C [———dx=—cotx+C
cos? X sin? x
jsinh xdx = cosh x+C Icosh xdx = sin x + C
1 1
[——5—dx=tanhx+C [——5—dx=—cothx+C
cosh” x sinh“ x




1 X
—arctan—+C
1 arctan x +C 1 _Ja a
.[ 2 d = .[ 2 ZdX_ 1
X +1 —arccotx+C X" +a __arccoti.kc
a a
) arcsin§+C
I 1 dy arcsinx+C I 1 dx — a
1-x*  |-arccosx+C Ja® —x* —arccos > +C
a
j 21 2dx:ilnx;a+c j#dx:ln‘x+\/x2ia2+c
X°—a 2a |X+a VX2 + a2

The most of these formulas have a correspondence to the formulas from the table of
derivatives (see Appendix 4.), but some of them does not have. The truth of these formulas

can easily be checked by differentiation.

For example
(ilnx;a+cj :i(ln\x—a\—ln\x+a\),:i( 1 1 jz 21 5
2a |x+a 2a 2a\x—a X+a)/ x“-a

(In‘x+\/x2 +a?

+C)’: 1 -(1+ X j: 1 [Vx*+a® +x _
X++/%x% +a’ x2+a’) x++x?+a’ Jx? +a?
1

Finding indefinite integrals is often more complicated than finding derivatives. For

some elementary functions, it is impossible to find primitives in terms of other elementary

functions.
Examples.
3 X1+1 X3+1
1. j(x—3x3+ZW—6)1x:jxdx—3jx3dx+2jx5dx—6jdx: -3 +
1+1 3+1
3. 8
5 2 4 5
12X —6x+C:X——3L+5L—6x+c=1x2—§x4+§W—6x+C;
3., 2 4 4 2" 4" T4
5

3 o
2| 2+ -1 lax=5[x“dx+ [x 2ax=55 —+ X sc=-> 21 .c;
x* 3 —4+1 3 3 Jx
2



NG X 3 X

x+1 X—2 X -2 X X X
4. j—z 5 dx=j2'2 55 dx=| 2(1) +i(1j dx =
10* 2% .5% 5 25 \ 2

X X
_ (1) .L+i.(1) A2 1 ¢
25 \ 2 1 5%In5 2*25In2

1
2

2 2 4 2 3
3. j@dx:jwdx:jtxz—4+i2]dx:x——4x—ﬂ+C;

transform the integrand . .
5. jsinzgdx: using the formula :Ej(l—cosx)dx:i(x—sin X)+C:

sino = %(1—(:03200

transform the integrand

2 oo e 1 Y .

6. [tanh de_tanhzx:l— 12 = [dx Icoshzxdx_x tanhx+C:
cosh” x
7. j— ——j 2 ~d :E-larctan§+c=iarctan5+c;
4x? +100 +5 20 5
T |x \/_| |x+\/_|

8'I7—x2dx_ Ix2—7dx_ ‘x+\/_‘ 2\/_ ‘x \/—‘
WARNINGS.

1. Integration variable
The dx tells us that we are integrating with respect to x (all other variables in the

integrand are considered to be constants).
[3x%dx =x®+C; [3t?dt=t>+C; [3sin? xd sin x =sin® x +C;
[3x*dt =3x*t +C.
2. Do not drop the dx at the end of integral, because it shows where the integral

ends and what is the variable of integration.
[ (3x* +9)dx = x* +9x+C; [3x%dx+9=x°+C+9;

[ (3x* +9)dz = (3x* +9)z+C;

itisimpossible tosolve

this problem

j 332 49— where is the end of integral?
~ |what is the variable of integration?




2. Techniques of Integration

2.1 Integration by Substitution

I. For evaluating indefinite integrals it is convenient to use the following rule.

Let [ f(x)dx=F(x)+C. Then V aeR, a=0, beR

[ f(ax+b)dt = i F(ax+b)+C. 2.1)

For proving it is enough to differentiate the left and right sides of (2.1).

!

f(ax+b)dt,= 1F(ax+b)+C
{ )
a
U U

f(ax+b) = i(F(ax+b))X’=§f(ax+b)-(ax+b)’=§f(ax+b)-a:f(ax+b)

The derivatives of the both sides are equal.

Examples:

4 4
1, j(5x_1)3dx:1.w+czw+c-
5 20

2 J'63X+5dx — le3X+5 +C :

3. [ cos? xdx:lj(1+ cos2x)dx = 1(x+ Sl 2X)+C ;
2 2 2

4. [sin 4xcos3xdx:%j(sin(4x—3x)+sin(4x+3x))dx:%j(sin X+sin7x)dx =

:1(—cosx—l0037xj+c;
2 7

dx dx
5. = =In‘x+2+x/x2+4x+5‘+c;
I\/x2+4x+5 Iw/(x+2)2+1

6.j gix :j le 2:l-larctan%+c:Earctan%+c;
42 +9 (20243 23 3 6 3

dx dx 11

2x—1-2
IJ 2 :I 2 o2 o
4x°—4x-3 “(2x-1)°-2° 2 4

2Xx—1+2

2X—3
2X+1

+C:1m
8

In +C.
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I1. Integration by Changing of Variable
Let f f (x)dx = F(x)+C. Consider the differentiable function u =u(t). Then

[ fu@)u't)dt =] f(u(t))du(t) = F(u(t))+C. (2.2)

or (another way of notation)

[ f @)Ut = XX: i ‘:j f (x)dx= F(x)+C = F(u(t)) + C.

dx=u'(t)dt

This formula is based on the chain rule for derivatives and used to transform one

integral into another that is easier to be solved.

Example:
U= X2 )
1. j2xe dx=|" = [e"du=e"+C=¢" +C
du = 2xdx
orj2xex2dx:jeX 2%><,(1_I3<:jexzdx2:ex2 +C;
dx?
: u=Inx 5 6
In” x X = 1 :jusdu:u—+C:In Xic
X du==dx 6 6
X
6
or j'”—xd ~ i x-Lax=[InexdInx="""* ¢
L 6
dInx
x u=x+e"
3. je +1dx= =j1du=ln\u\+C: +C
X+e du=(1+e*)dx "u
X
or [ +1dx:j _(L+e)dx = j—d(x+e )==In| +C:
X+e X+ e S———
d(x+e*)
U=+X-2
4. [xx—2dx=lu?+2=x|=[u(u®+2)2udu=2[u?(u®+2)du=2[ (u* +2u*)du =
2udu = dx
5 3 \G 3
_o U, 2u” C_2 (x—2) +4 (x—2) c
5 5 3

The method of substitution is one of the basic methods of integration. Often when we
use another method, we resort to substitution in the intermediate stages of integration. The
success of calculation depends on choosing the appropriate substitution (it should simplify

the given integral).
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2.2 Integration by Parts

Let functions u(x) and v(x) be differentiable, consider

(U0 v(9) =U" V() +U() V().
Integrate both sides with respect to x
[(u(x) -v(x))'dx = [u(x)"- v(x) +u(x) - v'(x)dx.

Apply the definition of indefinite integral

U(X) - v(x) = [u(x)"-v(x)dx+ [u(x) - v'(x)dx.

Then we obtain the formula of integration by parts

Ju()-v'(x)dx = u(x) - v(x) — [ v(x) -u'(x)dx.

or
Judv =uv— [vdu. (2.3)

This formula makes it possible to calculate the integral of the product of two
functions.

On practice we should make the following steps:

1. Choose correctly uand dv;

2. Calculate the differential du: du=u'(x)dx;

3. Find v(x): v(x) = [dv;
4. Use the formula [udv=uv— [vdu;

5. Simplify and calculate.
There are several rules for choosing correctly uand dv.

I. For integrals of the form
jx"eaxdx jx" sin axdx jx" sinh axdx
jx"baxdx jx" cos axdx jxk cosh axdx

we choose u(x) = x*.


https://en.wikipedia.org/wiki/Indefinite_integral

12
Examples:

u=x du =dx

1 jxexdx: dv =e*dx v:jexdx:eX

= xe* —jexdx: xeX —e* +C.

2. It is possible to use formula (2.3) several times.

2
u=x du = 2xdx
2 o _ B 2.0032x_
IX Sin 2xdx = dv =sin 2xdx v:jsin2xdx:—COS2X =X
—C0S2X X2 cos 2X u=X du=dx
_j '2XdXZT+JXC052XdXZ dv = cos 2xdx v:jc3052xdx=SInZX -

X2 COS 2X sin2x  .sin2x X2 C0S2X XSin2x cos2x
== """C 4. - _ + + +

dx C.
2 2 2 2 2 4
I1. For integrals of the form
[ xIn xdx [ x“arcsin xdx

j xX arctan xdx j x¥ arccos xdx

we choose dv = x*dx .

Examples:
u=Inx du—ldx 1
1. jlnxdx: B X :xlnx—j—-xdx:xlnx—jdx:xlnx—x+C.
dv = dx v:jdx:x X
1
u=arctanx du= 5 dx 2 21
2. [ xarctan xdx = X +1x2 :—arctanx—j7-2—dx:
dv = xdx v:jxdx:? X*+1

2 2 1 2
:X—arctanx—ljX 1 1dx=X—arctanx—lf 1- 1 dx =
2 2 2

X2 +1 X2 +1
X’ 1
=~-arctan x—E(x—arctan X)+C.
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2.3 Integration of Rational Functions

l. Integration of Simplest Rational Functions

L[>

ax+b

EIn\ax+b\+C;
a

1

2 f g
(ax+hb)™

S B

(Ax+ B)dx
X2 +2ax+b

:IA(x+a)+B—aA
(x+a)’+b-a

2 dX:j

+
a(m-1(ax+b)™*

=|complete the square in the denominator|=

A
E.2(x+a)dx +j (B — aA)dx

(x+a)2+(b—a2):

(x+a)*+b-a’

A d(x +2ax+b) 1
= d =
J x? +2ax+b +(B- )I(x+a)2+(b—a2) (x+a)
X+a
—Inx +2ax+b|+ arctan +C, b—a?>0;
‘ ‘ Vb —-a? Vvb-a®
1A, (B—aA) , |x+a—+a’—b| ,
—In|x® + 2ax+b|+ In +C, b-a“<0.
2 ‘ ‘ 2va® - ‘x+a+\/a - ‘
Examples:
1.j 1 dx=lln\5x—2\+c;
5x —2 5
2. | ! 5dx:—;4+c
(3x+4) 12(3x+4)
3 I(3x+1)dx IB(X+1) 2 _3j 2(x +1)dx ZI dx _
Ux242x+5 Y (x+1)° +4 27 (x+1)*+4 7 (x+1)?>+4

2

_3 d(); +2X+5)—ZJd(X—J;l):gln‘xz+2x+5‘—arctanX—+1+C;

2° X°+2x+5 (x+1)°+4 2
(x—2)+2dx 1, 2(x-2)dx dx

4'I 2 a1y :I N2 :_I Y +2.[ "2 _ o
X“—4x-5 (x-2)°-9 2°(x-2)°-9 (x—2)°-9
. d(x ~Ax=9) o X2 Ly gy 5\+_|nx >ic;
2 —4x-5 x-2)°-9 2 x+1
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Il. Integration of Rational Functions

If we have to compute the integral jmdx, where P,(x), Q,(x), n<m are the
X

m

polynomials, the fraction R&)

0. (x) needs to be expressed in partial fractions and reduced to
X
m

the three simplest types of integrals of rational functions.
X2 +2
x2(x+1)
2

> Is a proper rational fraction. Let us use the partial-fraction
X“(x+1)

Example.

The integrand

decomposition.

x2(X+1)

B, C _AX(X+D)+B(x+1)+Cx*  (A+C)X* +(A+B)x+B

x?+2 A B
~ T3 - 2 2
X x° X+1 X (Xx+1) X (x+1)

Whence, equating the numerators, we obtain the system of equations for
determining the coefficients

x’> |A+C =1,
X |A+B=0,
1 B=2.
Solving the systemwe find A=-2; B=2, C=3
Thus,
2
;( +2 dx=j(_—2+£2+i)dx:—2In\x\—3+3ln\x+u+c.
X“(x+1) X x° X+1 X

i : P.(x) . : i i
Note. If the given integrand R Is an improper fraction (n>m), we represent it as

m

a sum of a polynomial and the proper rational fraction.

E><lelmlolt9-3 x*—2x% —2x+ 2 x*+1
Ix —2x2—2x+2dX: x4 1+ x2 x?—2x-1
x“+1 —2x3—x?—2x+2
:IQXZ_ZX_H S jdx: S —2x®—2x
X“+1 242
=~ —x?—x+3arctanx+C T2 1
3 3
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2.4 Integration of Trigonometric Functions

I. General Trigonometric Substitution

Integrals of the form jR(sin x,cos x)dx where is a rational function of sinx and

cosx are reduced to integrals of rational expression by so-called general trigonometric

substitution

tangzt (-n<x<m).

: : X
Express sin x and cos x in terms of tanE and t:

X 5 X
sinx = v 5 COSX = v 5
1+tan? 1+t 1+tan2 1+t
2 2
And
X =2arctant, dx= 2dt2_
1+t

Here sin X, cosx and dx are expressed rationally in terms of t. By substituting the

expressions obtained into the original integral we get an integral of a rational function

. 2t 1-t%) 2dt
R(sinx,cosx)dx=| R , :
I ( ) I [1+t2 1+t2J1+t2
Examples.
2dt
1 1_|_t2 dt X
1. | —dx=|==%—=|—=Int|+C =Intan=|+C:
Isinx 2t It i 2
1+1t2

2. fidx:j;dx=—ln +C:

cos X sin(n—xj
2

T X
tan| — - =
(4 2)

2dt 2dt
3. dx ¢ 14¢? - 1+12 - 2dt _
15T ~ 2 2\ a1 12 2 _ 2
2 _3c0sX 1-t2  o(+t2)—3(—t?) 21+2t2-3+3t

2-3
1+1t2 1+1t2
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X
2dt 1 |\Bt—1) p  [V5tan -1
=[5 =\/§In‘\/g 1‘+C:\/§In ‘—+C.
ot =1 t+ x/gtan2+1

General trigonometric substitution enables us to calculate any integrals of the form

j R(sin x,cos x)dx, but it often leads to very cumbersome expressions. There are some

cases when the aim can be achieved with the aid of more convenient substitutions.

sinx=t
1) | R(sin x)cos xdx = = | R(t dt:
)I (sinx) cosxdx:dt‘ I (tp
cosx =t
2) | R(cos x)sin xdx = =—|R(tdt;
)I (cosx) —sinxdx:dt‘ J (tx
fanx =t dt
3) | R(tan x)dx = = | R(t :
) [R@noe=y, o =[RS
t°+1
tanx=t dx= 2dt
t°+1
. . tan?x  t2 2 ) ( 1\ dt
4) [R(sin?" x,cos®™ x)dx =[sin? x = = =R ( ) .
)j( ) 1+tan®x  1+t? J 1+t% ) \1+t? ) |1+t2
5 1 1
COS“ X = 5 = 5
l1+tan“x 1+t
Example.
Isin3 xdx _jsin2 X sin xdx _J (L-cos® x)sinxdx |cosx =t | @L-t?)dt
2+ COS X 2+ COS X 2+ COS X —sin xdx =dt 2+t
2 2 2
:jt 1dt:jt—2+idt:t——2t+3ln\t+2\+c:COS X—2cosx+3|n\cosx+2\+C;
t+2 t+2 2
tanx =t
dx dt dt
2)IZ—sinzx:dx: dt :I t2 :I2+t2:
1+t? (2— 2j(1+t2)
1+t
:iarctanL+C:iarctantaﬂ+C.

V2 V2 V2 V2
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I1. Integrals of the form jsin M xcos" xdx, where m, n are rational numbers.

e If the power n of the cosine is odd (the power m of the sine can be arbitrary), then

the substitution t =sin x is used:;

Example.
02 3 ) 2 .2 02 sinx =t
[sin® xcos® xdx = [ sin? xcos® xcos xdx = [sin x(1—sin® x) cos xdx = =
cos xdx = dt
3 5 ] 05
= [Pa-t)dt= [~ thydt=— -4 =TT X ST X, ¢
3 5 3 5
e If the power m of the sine is odd, then the substitution t=cosx is used.
Example.
cosx =t
[sin® xdx = [sin® xsin xdx = [ (1—cos® x)sinxdx =" =
—sin xdx =dt
2 2 t3 Sin3X .
=—[@-t*)dt=[{(t —1)dt:§—t+C= —sinx+C.

e If both powers m and n are even, then use the double angle formulas to reduce the

powers of the sine or cosine in the integrand

coszx:%(1+coszx), sinzx:%(l—coszx).
L 1 1 1 )
[sin® xcos xdx:jE(l—COSZX)-E(1+c052x)dx:zj'(1—cos 2X)dx =

j+C.
m+1 n-1

o If m+niseven (—+T an integerj, then the substitution t=tanx is used.

:1[(1—2(1+ cos4x)jdx: lf(l—cos4x)dx: l(x— sin4x
4 2 3 5 ;

11 1 11 1
m=-"",N=—>=SmM+N=-"-==—
dx 3 3 3 3 oo dx

j?’\/sin” X COS X dx dt J cos” x3/tan*! x

tan x =1, >
COS™ X

1412
=

s 3 & 3.2 3 3
dt=[|t 3+t 3 |dt=—=t 3—=t 34+C=- - +C.
Ittt I[ J 8 2 gitan® x  2¥/tan? x


http://www.math24.net/double-and-multiple-angle-formulas.html
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I11. Integrals of the form jtan” xdx or jcot” xdx, where n is positive integer.

We can reduce the power of the integrand using

——1 or cot® X = — >— —1 and the reduction formula
COS“ X sin“ X

tan® X =

jtan” xdx = jtan”‘2 x tan? xdx = jtan”‘2 x( 12 —1)dx=
cos? x

= [tan""* x —jtan” ? xdx = [ tan""* xd (tan x) — [ tan"~* xdx.

cos? x

Example.

jtan3 xdx = jtan x tan? xdx = jtan x( 12 —1)dx: jtan X —jtan xdx =

COS™ X cos? x

sinxdx 1 Idcosx 1

= [tan xd (tan x) - j :—tan2x+ . =—tan®x+Injcos x|+ C.

IV. Integrals of the form [tan" x

2m

dx
o— Or jcot” X————, wWhere n and m are
X

Cos™ X sin
positive integer.
We can reduce the power of  the integrand using
12 =tan® x+1or —— =cot” x+1.
COS™ X SIN‘ X
Examples.
4 2
1. [tanx = [tanx—, = [ tan x(tan x+1)dtanx_tan X tan XiC:
cos* x cos” X cos” X 4 2

5 3
2. | dx —j( ) —j(cot2x+1)2dcotx:—COt X_200UX _ oix+C.
sin® x sin?x ) sin®x 5 3

NOTE. Functions rationally depending on hyperbolic functions are integrated in the

same fashion as trigonometric functions.

cosh? x—sinh?x =1, 1—tanh®x= —; 1l-coth’x=—=>
cosh” x sinh“ x
cosh 2x = cosh? x +sinh? x;  sinh2x = 2cosh xsinh x;
cosh 2x —1=2sinh? x; cosh 2x+1=2cosh? x;

cosh(x = y) =cosh xcosh y sinhxsinhy;  sinh(x= y) =sinh xcosh y +cosh xsinh'y;


http://www.math24.net/reduction-formulas-for-integrals.html
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2.5 Integration of Irrational Functions
m P

I. Integrals of the form jR(x,xn ,...x%)dx, where R is a rational function of its

arguments, reduce to the integral of a rational function by means of substitution:

x=t%  dx=kt“dt,

where k be a common denominator of the fractions m,...E.
n s
Example.
1 the common denominator of
5 3 t5
| Jxdx _ dx _ the fractions =, > is 4,0 jfzﬂ at_ js—dtz
i ° 2 . 2" 4 241 4l
Il x=th, dx=4tidt

3

_4j( o ]dt_4jt dt——jt3+1—gt3 |n\t3+q+czg[x4—ln

3

X4 +AU+C.
m P

ax+bjn (ax+b s

) ) dx we make the
cx+d cx+d

NOTE. For integrals of the form IR x,(

k
substitution x :(ax+3j . where k be a common denominator of the fractions m,...
CX + n

P
S
1. Euler’s Substitutions

Integrals of the form jR(x, Vax® +bx+c)dx are reduced to the integral of a rational

function of a new variable with the aid of one of the following substitutions:

e First Euler Substitution

Jax’ +bx+c=t+xJa ifa>0.

For the sake of definiteness we take the plus sign in front of x~/a . Then

ax? +bx+c=(t+x\/5)2 = ax® + 2Jaxt +t2,

whence X is determined as a rational function of t:
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t?2 —¢
P
b—2+/at

thus, dx will be expressed rationally in terms of t. Lastly

2_
ax? +bx+c=t+Ja_t —C |
b —2+/at

Since x, dx and vax?+bx+c are expressed rationally in terms of t, the original

integral is transformed into an integral of rational function of t.
dx

X2 +4

Example. Calculate the integral Izj

Here a=1>0 therefore Vx> +4 =t —x.

Then
X% +4=t%-2xt + x*
whence
><:t22‘t4 d :t22t+24dt
and

2t 2t
Consequently
t2+4dt
2t° dt 2
= 2—:I—:In\t\+C:In‘x+\/x +4‘+C.
t°+4 t
2t

e Second Euler Substitution

Jax? +bx+c=tx++/c if ¢c>0.

Then
ax? +bx+c=t2x% +2Jext + ¢

(for the sake of definiteness we take the plus sign in front of v/c),

whence X is determined as a rational function of t:
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2\Jct —b

X =
a—t?

Since x, dx and vax®+bx+c are also expressed rationally in terms of t, the

original integral is transformed into an integral of rational function of t.

: dx

Example. Calculate the integral I:j :
2

VX®+4

Here ¢ =4 >0 therefore Vx> +4 =tx+2.

Then
X2 +4 = X°t? + 4xt + 4
whence
4t A% + 4
X= "7 Ux=_—535
1-t (1-t°)
and

\/272t2+2
X rd=" 5

Consequently

AT+ VXP+4-2
St

_j(l ) :2j1t_||t+1| C=lInl——X +C=

242 el I+a-2
X

1—t2

e 2+x\ \ (Wieva—24x)Vxera-2-x) |
\/x +4-2— x‘ ‘(\/x2+4—(2+x))(\/x2+4—(2+x)l

2 [ 2
:In}ZX +2:XX +4}+C:In‘x+\/x2+4‘—In2+C:In‘x+\/x2+4‘+C1.

Note. We have solved the integral | =

+C =

in two ways by first and second

dx
Vx%+4
Euler Substitutions. The results coincide with the tabular value however the second Euler

Substitution leads to the more cumbersome transformations of expressions obtained.
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e Third Euler Substitution
vax? +bx+c¢ = (x—a)t if ax? +bx+c=a(x—a)(x—p), where {a, f}c R.

Therefore

(Vatx=a)x=p)f =((x-ot)’,
a(x—a)(x—B) = (x—a)*t?,
a(x—p) = (x—o)t?.
Whence we find x as a function of t:

2
(- ap-at’
a—t

Since x, dx and +ax?+bx+c depend rationally upon t, the original integral is

transformed into an integral of rational function of t.
dx

I'\/x2+3x—4'

Since x* +3x—4=(x+4)(x-1), we put

Example. Calculate the integral | =

JX+8)(x-1) = (x+ 4)t.

Then
(x+4)(x—1) = (x + 4)?t?,
(x=1) = (x+4)t?,
1+ 4t2 10t
X="—7%, WX="—55
1t 1-1?)
and

VX2 +3x—4 = 5t2 .
1

Putting the expressions obtained into the original integral, we have

x-1
—t2 —+1 —
I;j%dtzzj 12dt:InE+C:|n X+4 | o X 1+\/X+4|+C.
5t(1-t°) 1-t t— X1 N St
X+4
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The Euler substitutions often lead to rather cumbersome calculations, therefore we
apply them only when it is difficult to find another method for solving given integral.

There are simpler methods for calculating some integrals of the form

[R(x,vax® +bx+c)dx.

(Ax+ B)dx

I11. Integrals of the form :
JEX2 +2ax+D

(Ax+B)dx [complete the square in the denominator

J.q/)(2-|-2ax-|-b - x2+2ax+b:(x+a)2+(b—a2)

é 2(x+a)dx

:JA(x+a)+B—aA j N (B—-aA)dx _
J(x+a)? +b—a? Jx+a)?+b-a? "’ (x+a)?+(b-a?)

Ajd(x +2a+b) 1

+(B—aA)
X% +2a+b IJu+af4{b—aﬁ
:A\/xz+2ax+b+(B—aA)In‘x+a+\/x2+2ax+b‘+C .

(5x+1)dx  |complete the square in the denominator

I'\/x2+2x+3 -

d(x+a)=

Example.

X2 +2X+3=(Xx+1)%+2

5(x +D-4 2(x +1)dx 5.d(x* +2x+3)

dx
—4 == —
\/(x+1) +2 w/(x+1) +2 Iw/(x+1)2+2 Zj VX2 +2x+3
1
—4 d(x+1)=5VXx? +2Xx+3—4lnx+1+/x> +2x+3[+C.
jw/(x+1)2+2 O ‘ ‘

(Ax+ B)dx
J-x?+2ax+b

complete the square in the denominator

—x?+2ax+b=—(x*-2ax)+b=(b+a%) - (x— a)

A
:J A(x—a)+B+aA — " 2x-a)dx (B +aA)dx

Jm+a6-(x—m I\/(b+a) (x —a)? Jm+a) (x—a)? )
CAd(= x? + 2ax +b) (B4 aA 1
27 S5 2ax+b + JJm+a%—(x—@2

d(x—a) =

—a +C.

Vb+a

= —AV-x% +2ax+D + (B +aA)arcsin
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J (x +3)dx complete the square in the denomlnator
JoxP12x+7 X2 42x+7=—(x*—-2x)+7=8-(x-1)?

Example.

(X D+a | 2(X L)dx C1d(=x +2x+47)

dx
Y A
Wm (x—1)2 «B (x—1)2 IJs—(x—l)z 27 X%y 2x+7
+4j;
\8—(x-1)°

IV. Integrals of the form

d(x—1)=—x/—x2+2ax+b+4arcsinx—_1+C.

J8

dx
(x—a)vax? +2ax +b

are transformed into an integral

of type discussed in I11. by means of the substitution (x—a) = %

Example.
1 1
X=- _
J‘ t _J‘ tzdt :_J‘ dt :_I dt _
X+/5x> “ox+l 1 1/5 2 5 2 t2-2t+5
dx———zd ¢ t—2—¥+1 t ?_?+1

=—h¢—1+vﬁ—2t+j+czy4n1 L 2.54c-

—=1+ |—5—-—+5
X X° X

I S
) IJ@—DZ+4

1— X ++/5x% —2x +1
:—In} }+C
X

V. Integration of binomial differentials.

Definition. An expression of the form x™(a+bx")?dx, where m, n, p, a, b are

constants is called a binomial differential.
Theorem 2.1 (Chebyshev’s).

Integrals of the form jxm(a+bx”)pdx, where m, n, p are rational numbers, is

reduced to an integral of a rational function ONLY in the following cases:

Case 1. if p isaninteger. Then, if p>0, the integrand is expanded by the formula

of the Newton binomial; but if p <0, then we make the substitution x =t*, where k is a

common denominator of the fractions m and n.
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Case 2. |if m+1 is an integer. Then, we put t°=(a+bx"), where s is a
n

denominator of the fraction p.

n
Case 3. if m_+l+ p is an integer. Then, we make the substitution t° :(a+bx J
n

where s is a denominator of the fraction p.

Examples.

j\/—(\/_+1) =[x 2@0+x*)°dx.

Here m:—%, n:%, p=-5. Since p is integer we have Case 1.

We make the substitution x=t*. Then dx = 4t3dt.

Hence,

I=I(t4)_5(1+(t4)Z)‘5(4t3)dt= At3dt 4 tdt jt+1_1d

2t+1°  Ct+)° Y (t+))°
4 1
:I dt4_I dt5:_ 3t i tC
(t+1) (t+1) 3t+1)° (t+1)
Returning to x, we get
=— 4 + 1 +C
3&/x+1)°  @x+1)*
2.I—j\/7 [xa- x)2dx
Here m=3, n=2, p:—g.Since mTH:BTH:ZiS integer we have Case 2.
1-x2=t’ = x=+1-1t?;
—2xdx=2tdt = dx=— tdt :
1-t°
Hence,

3 2
_ Y 3 2\ o tdt _ 1—t N . ﬂ_ 1.
| = j(\/l t)(t)zﬁ— | o dt =[dt jtz_t+t+c.
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Returning to x, we get

3 l=[—F ”\/1+7X =[x (@+x*) 2dx.

Here m=-11, n=4, p=—%. Since p and m+l -1+l S

= _E are fractions, but

4
m_+1+ p= o1 = -3 is integer we have Case 3.
n 2 2
4
t2:1+:( —x=_ 1 ; dxo—— 9t
X Vt2 -1 24/(t? —-1)°
Hence
1\ 1 V) -t 1 R
=] 14| —— — == [(t* -] 4| 5 (t? 1) 4tdt=
Vt2 -1 vtz -1 24/(t? —1)° 2 t°-1
1o, .22 t° 2t
=~ [(t*-)dt=——+———+C.
2“ ) 10 3 2
Returning to x, we get
1+x%)° + A+x*)? ——V1+x* +C.

V1. Integration by Trigonometric or Hyperbolic Substitution

Integration of functions rationally depending on x and one of expressions

JaZ +x%, JaZ—x2 or Vx%—a? can be reduced to integrals of functions with respect to

sine or cosine (ordinary or hyperbolic) by corresponding substitution.

1. For integrals of the form jR(x, Va2 —x? )dx let us put

x=asint = a2 —x? = /a?(l-sin’t) = acost

or

x=atanht = vJa? — x? =-/a’(1- tanh?t) = a_
cosht
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2. For integrals of the form IR(X, va? +x? }jx we use substitution

a
x =atant = a2 + x? =~/a’(L+ tan’ x) =
cos

or
x =asinht =a’ + x? =~Ja?(L+sinh? x) = acosht.
3. Integrals of the form IR(X,'\/XZ —a? )dx can be solved by means of substitution
X=— = xz—azz\/az( _12 —1):acott
sint sin“t
or
x =cosht = v/x? —a? =,/a?(cosh?t —1) = asinht.
dx
Example. | = | ———
Ix\/x2+4
Let us use the substitution
X =2tant = v4+x2 =/4(L+tan’® x) __2
cost
and
dx = 22 dt.
cos?t
Therefore
2dt
1.dt 1 X 1, [1—cost
| =[——— —IL'[—— _—:—Intan—+C:——In‘ +C=
xq/x +4 " otant_ S 2°sint 2 2 4 |1-cost
cost
= w+c—llnl__cOSt Czlln_i—cott+C=
4 sin’t 2 sint 2 sint
2
ST L T et G ORI TP L dnt I
tan“t tant\ 2 x> X X
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3. The Definite Integral

3.1 The Definite Integral and Its Properties

Let the function y = f(x) be positive, defined and continuous on the interval [a,b].
Find the area between the graph of y = f(x), x-axis and the lines x=a, x=Db (the area of

a curvilinear trapezoid).
Let us find the area approximately. Partition the

interval [a,b] into small intervals by points
a=Xg, X Xoyeee Xy Xeupre-- Xpogy X, =Db. In each

interval [Xq, X1, [X, X510+ [Xes Xeinds - - [Xogs X, ] take

a point and denote them &g, &;,... &, ... 1. Al

each of these points calculate the value of the function

F (o). TGk - T(Eq) (Fig. 1).

Express the area as a combination of many vertically-oriented rectangles (the

Figure 1.

n-1
Sn~ 2 F(E) A
k=0
This sum is called the integral sum of the function y = f (x) on the interval [a,b].

If we chose the partition of [a,b] small enough, then 4y

the area gets better (Fig. 2). ¥
Y=F1x) /(:\

And as the width of rectangles approaches zero

(n— ), then the sum gives the area under the curve

exactly. This idea leads to the concept of the definite )
) Figure 2.
integral.

Definition. If for any partition of the interval [a,b] such that max Ax, — 0 and for

any choice of points &, it exists the limit  lim S, then that limit is called the definite

max Ax, —0

integral of the function f(x) fromato b and denoted by

max Ax, >0 =g

Tf(x)dx: lim nzlf(gk).Axk. (3.1)
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In this case the function f(x) is called integrable on the interval [a,b]. The
numbers a and b are called the lower and the upper limits of the integral and interval [a,b]

— the interval of integration.

Notes. Ay
1. If y = f(x) is positive on the interval [a,b], Y=7(x)
then the area of a curvilinear trapezoid (Fig. 3) is
Ol a b X

b
S :i F(x)dx Figure 3.

2. If f isa constant function defined by y =K for every point from [a,b], then

n-1 n-1
[Kdx=lim Y K-Ax =K lim > AX, =K(b-a).
max Ax, >0~ max Ax, —0 k=0

H_J
the length of theinterval[a,b]

Properties of the Definite Integral:

Theorem 3.1
If a function f is continuous on [a,b], then it is integrable on this interval.

A proof of statement may be found in texts on advanced calculus.

Theorem 3.2

bf(x)dx:—af(x)dx, af(x)dx:O. (3.2)
froomJreom |

A proof of property follows from the definition of definite integral.
The second equality is natural from the geometric standpoint, because the length of

the base of a curvilinear trapezoid is equal to zero; consequently, its area is zero too.

Theorem 3.3

VKeR, K#0: TKf (X)dx = KT f (X)dx. (3.3)

Proof. According to definition

n

TKf(x)dx= lim nz_le(gk)-Axsz lim ff(gk)-AxszTf(x)dx.

max Ax, -0 =5 max Ax, -0 =g
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Theorem 3.4
b b b
[(f,00 % F,00 )dx= [ f,(x)dx £ [ f,(x)dx (3.4)
a a a

Proof. From the definition

b n-1
J.(fl(x)i fz(x)hxz lim Okz_é)(fl(ék)i fz(ék))'AXk =

max Axy —
n-1 n-1 b b
= lim > f(E)-Ax £ lim > f,(5)-Ax =] f(x)dx+ [ f,(x)dx.
max Ax, -0 — max Axy, -0 =5 a 3
Theorem 3.5
If a<c<Db,then
b c b
[ £(0dx= [ fgdx+ [ f(x)dx. (3.5)
a a c

Proof. Since the limit of the integral sum is independent of the partition, let us

choose point ¢ as one of the division points: c=X,,, 1<m<n-1.

Hence

b n-1 m n-1
[fogdx=_lim Y (&) -Ax = lim [Zf(ik)-Akar Zf(ik)-Axk):
3 max Axg =0 —o max Axg =0\ | Zo K=m+1

n-1

= dim S FE)-AX 4 lim zf(ak)-Axk=jf(x)dx+?f(x)dx.

max Ax, -0 —p max Ax =0 20 q
Note. If f(x)>0, this property is illustrated 1y

geometrically (Fig. 4). Y=£0)
The area of a curvilinear trapezoid with the base

[a,b] is a sum of areas of a curvilinear trapezoids with the .

Figure 4.

base [a,c] and with the base [c,b].

Theorem 3.6
If the functions y= f(x) and y=g(x) satisfy the condition f(x)<g(x) on the

interval [a,b], then
b b
[ £(x)dx< [ g(x)dx (3.6)
a a
Proof. Let us consider the difference

b b b n-1
[900dx=] 1 (0dx=[(g00 - FOOMx=_tim 5 (g(&) - f(8))-a%.
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Since g(&,)— f (&) =0, Ax, >0, each term of the sum is nonnegative, the entire

sum is nonnegative, and its limit is nonnegative.
Thus

Tg(x)dx—T f (x)dx>0
or ) :

T f(x)dx < ? g(x)dx.

Note. If f(x)>0, this property could be
_ _ _ 4y y=g(x)
illustrated geometrically (Fig. 5).

The area of a curvilinear trapezoid under the

function y=1f(x)is less than the area of a

cf

curvilinear trapezoid under the function y =g(x) . Figure 5.

Theorem 3.7

If m and M are the smallest and the greatest values of the function y = f (x) on the

interval [a,b], a<b, then
b
m(b—-a) sj f(x)dx<M(b—-a). (3.7)
a
Proof. Since m< f(x) <M, we can use property 6 and note 2:

b b b
[mdx <[ f(x)dx< [ Mdx
S5 T

m(b—a)s?f(x)dxswl(b—a)

Note.
If f(x)>0, this property is clearly illustrated

geometrically (Fig. 6).

The area of a curvilinear trapezoid is between the

areas of bigger and smaller rectangles. Figure 6.
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Theorem 3.8 (Mean-value theorem)

If a function f(x) is continuous on the interval [a,b]. then there exists a point

c €[a,b] such that
b
jf(x)dx= (b—a)f(c). (3.8)
a
Proof. According to property 7 we have
1 b
m<——[ f(x)dx<M.
b-as
Whence
1 b
—— | f(X)dx=p,
b—ai (x)dx = p

where m<u<M.
Since f(x) is continuous, it takes on all intermediate values between m and M.

Therefore, there exists a point ¢ €[a,b] such that u= f(c), and

Tf(x)dx=(b—a)f(c).

3.3 Fundamental Theorem of Calculus (Newton-Leibniz Formula)

Let us consider the definite integral
[ f(tydt,

where the lower a limit is fixed and the upper limit x vary (to avoid confusion, we shall
use t as the independent variable).
Then the value of the integral will vary as well and the integral is a function of

upper limit

D(x) :f f (t)dt.
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To obtain a geometric interpretation of ®(x), ry
suppose that f(t) >0 for every t in [a,b]. In this case we

have that ®(x) is the area of the region under the graph of

X

f(t) from a to x (Fig. 7). i 7
igure 7.

Let us find the derivative of this function with respect to x.

Theorem 3.9

If function f(x) is continuous function and ®(x) :j f (t)dt, then we have

a

®'(X) :(j f(t)dtJ = ().

Thus, by definition of primitive (see 1.1 p. 4), ®(x) is an antiderivative of f(x).

A proof of statement may be found in [1].

Theorem 3.10 (Fundamental Theorem of Calculus)

Let function F(x) is any antiderivative of function f(x) on the interval [a,b], then
b b
j f (x)dx = F(x)\ =F(b)-F(a). (3.10)
a a

(Newton-Leibniz Formula)

Proof. Let F(x) be some antiderivative of f(x). According the theorem 3.9, the

function ®(x) :j f (t)dt is also an primitive of f(x). From theorem 1.1 we know that the

difference between them is a constant.
Thus for every x in [a,b]
d(x)=F(x)+C

or

Tf(t)dt:F(x)+C.



Let us put x =a and use the result of theorem 3.2
a
j f(t)dt=F(a)+C,
a

0=F(@)+C=C=-F(a).
Hence,

j f()dt=F(x)-F(a).
a
Finally, we substitute b for x and obtain Newton-Leibniz formula:

j). f (x)dx = F(X)\b =F(b)-F(a).

Example:

, the primitive ,

[ (2x+1)dx = | for (2x+1)is =(x2+x)\ =(22+2)-(1*+1) =4.
1 1

(X2 +X)

3.4 Techniques of Evaluating Definite Integrals

I. Integration by Parts

The method of integration by parts developed for indefinite integrals may also be
used to evaluate a definite integral.

Let functions u(x) and v(x) be differentiable. Then

b b b
fudv=(uv)| —[vdu. (3.11)
a a a
Examples.
1 u=x du=dx 1 1 1 1
2x _ _ 1 2x 1 2x _ 1 2x 1 2x
1. [xe™dx=|,, _ o214y V:le2x—§)(e —Eje dx =2 x| —2e¥ =
0 2 0 0 0 0

:1-1-e“—1-o.ez'°‘(lez'l—iez'oj:lez_le%l e*+1
2 2 4" 4 2. 4 4 4

34
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1
3 u=Inx du=-=d 2 3 3 2 2 3 3
2. [xInxdx= X 1= Inx —Il-x—dx=x—lnx —ljxdx:
X 2 X 2 2 2
1 dv=xdx v=— 11 1 1
2
2 3 2B 42 2 2 42
_X—Inx _x :3—In3—1—ln1— 3——1— —9Inv/3-2.
2 ) 41 2 2 4 4

I1. Integration by the Substitution

The method of substitution is also useful when calculating a definite integral. We
could use this idea to find an antiderivative and then apply the Newton—Leibniz formula.

Another method, which is often shorter, is to change the limits of integration. In this
case we do not need to return to the old variable

Let the function f(x) be continuous on the interval [a,b] and let us evaluate the

integral
b
[ £(x)dx.

Let us make a substitution x=@(u), where u is a new variable. The function ¢(u)
IS such that

1. ¢(a)=a and @(B) =b;

2. ¢(u) and ¢'(u) are continuous on [a.,B];

3. f(p(u)) is defined and continuous on [a, B].

Hence,

b B
[ £O0dx= [ f (@u))e'(u)du. (3.12)

Examples.

3

1. Evaluate the integral jﬂdx.
11+X

Make a substitution x =t2, dx=2tdt.
Determine the new limits

if x=1,thent=1,



if x=3 then t=+/3.

Thus
3 NERDYY V3 J3
X fx = detzzj (1— ! 2]dtzz 2(t—arctant)\ :2(\/5—1+£).

11+X 1 1+t 1 1+t 1 12
>

2. Compute the integral | sinxdx
0 2+ COSX

Apply the substitution

t =cos X = X =arccost, —sinxdx=dt.
Determine the new limits

if x=0,thent=1,
if x:E . then t=0.
2

Thus

gsinxdx 9 dt } dt
£2+cosx _{2+t_£2

1
g < tng=in
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4. Improper Integrals

Previously we studied the definite integral of a function f(x) for the case when
f (x) is a bounded function defined on a closed interval [a,b]. Is it possible to integrate

functions over infinite intervals? Could we integrate unbounded functions? Let us consider

a notion of integral, called improper integral, in a few cases.

4.1 Improper Integrals with Infinite Limits

A definite integral, that has either or both limits infinite:
+00 b ©
[f0odx, [f(x)dx or [f(x)dx,
a —00 —00

is called an improper integral of the first type.
Let f(x) be defined on [a,+oc] and integrable on [a,b] for all b >a. If there exists
a finite limit
] b
bllrpooi f (x)dx,

then the improper integral jf(x)dx is called convergent and
a

fo f(x)dx = b'iTj f (x)dx. (4.1)

If such a limit is not finite then the improper integral does not exist and is called
divergent.

The geometric meaning of an improper integral is obvious 4y

b =
when the function f(x) is positive. Since the integral jf(x)dx N

. . ) ] & X
expresses the area of curvilinear trapezoid we can consider the

Figure 8.

improper integral jf(x)dx as an area of unbounded region

a

lying between the lines y = f (x), x=a and x-axis (Fig. 8).
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Similarly, we define the improper interval over other infinite intervals:

T f (9dx= lim T f(x)dx, (4.2)

Iof (X)dx = if (x)dx+0£o f (x)dx = allrpwi f (X)dx+ blirpwi f (x)dx, (4.3)

where ¢ is any number (c=0 is often convenient). Note that this requires both of the
limits to be finite in order for the integral to be also convergent. If either of two limits does
not exist then the integral is divergent.

Examples.

+00

1. Find out at which values of m the integral J' imdx Is convergent and at which
1 X

it is divergent.

If m<1,then1-m>0 and

b 1-m b

+00
1 ) _ . X
j—dx: lim [x ™dx= lim
m
1 X

— lim (o™ ~1)= 4oo.

b—+ow0 b—+0]l—m bo+0]l—m

1

1

If m=1, then

+00

b
[ =dx= lim j%dx: lim In|x|\f:blim(ln|b|—ln1):+oo.

1 X b—+o0 1 b—+w0

If m>1, then m—1>0 and

b
- lim ‘—1( r}_l—ljzi.
, borem-=1{b m-1

+o0

Consequently, the integral j imdx converges if m>1 and it diverges when m<1.
1 X

+00 1 b

j—dx= lim [x ™dx= lim
m
1 X

b—>-o0y b—>+o(m _1)Xm—1

2. Calculate j

—00

dx.

X2 +1

According to the definition

+00 0 +00 0 b
j 21 dx = j 21 dx+ [ —dx= Iimj ——dx+ lim [———dx=
X0+l S Xo+1 o X°+1 a—>—o? X° 41 bo+oy X* +1

. 0 . b . . T TC
= lim arctan x\a+ lim arctan x\o =— lim arctana + lim arctanb=5+5:n.
b

a—>—o —-+00 a—>—o b—+o0
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In some cases it is sufficient to determine whether the integral converges or
diverges, and estimate the value. The following test can help us.
Comparison test.

1. Let functions f(x) and @(x) be defined for all x>a and integrable on each

interval [a,b] forall b>a. If 0< f(X) <@(x) forall x> a, then from convergence of the

+00

integral j'(p(x)dx it follows that the integral jf(x)dx Is convergent, and
a

a

[ f(x)dx< [e(x)dx; from divergence of the integral [ f (x)dx it follows that the integral

[ @(x)dx is also divergent.
a

+00

2. Let function f(x) be defined for all x>a. If the integral ﬂf(x)\dx converges,

a

+00
then the integral j f (x)dx also converges and is called absolutely convergent.
a

If the integral jf(x)dx converges, and Hf(x)\dx diverges, then the integral
a a

J' f (x)dx is called conditionally convergent.
a

Examples.

+00

1. Investigate the integral j for convergence.

L x2(1+e")
Since I
1 1
<% for x>1,
X“(L+e") x 1
YT
and = (14+e™)
o0 b 1 1P 1 0
— = lim j—zdx=— lim = =— lim (—— )zl,
L X2 by X b+ Xl bo+e\ by Figure 9.

: : o dx . : .
we obtain that the integral j —————converges ant its value is less than 1 (Fig. 9).

1 X“(1+¢e”)
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2. Find out whether the integral f \/_dx converges

It will be noted that

X+1 X 1

> =,
x3 X /X

But

j\/_dx_bILerZ\/_‘ ——

Whence the original integral is divergent.

+00 %

. . nx
3. Investigate the convergence of the integral j > >—dX.
1 X

Since

- :i2 forall x>1
X

and

b

+00

j idx_ lim -1

1 X b—+w )(

=1,

+0 A3

dx converges and

40| i
it follows that the integral | ‘%
X

4.2 Improper Integrals of Discontinuous Functions

Definite integral that has an integrand that approaches infinity at one or more points
in the range of integration is called an improper integral of the second type.

If the function f(x) is defined for all a<x<b, integrable on any interval [a,b—¢],

0<e<b—a and unbounded to the left of the point b.
Let us consider

jf(x)dx_ lim If(x)dx (4.4)

e—>0+

If this limit is existent and f|n|te, then the i |mproper integral is called convergent.

Otherwise, it is called divergent.
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Analogously, if the integrand f (x) is unbounded to the right from the point a, then

jf(x)dx— lim jf(x)dx (4.5)

—>0+

Finally, if the function is unbounded in the neighborhood of an interior point ¢ of the

interval [a,b], then

CS]_

If(x)dx jf(x)dx+jf(x)dx— I|m jf(x)dx+ lim jf(x)dx (4.6)

2—)0
C+eo

Examples.

1. Find out at which values of m the integral jidx Is convergent and at which it
o X

is divergent. The integrand im Is defined for all 0 < x <1 and unbounded to the right of
X
the point 0.
If m<1,then1-m>0 and

1

1 1-m
[L ax=tim [ ax=tim X —tim- L Q-©+ep")= L.
OX a—>00+8)( e—0 l_m0+g e>01—m 1—m
l
If m=1, then j x=lim j L dx=lim In|x|\0 _I|m(In1—In|O+a|)
O s—)OO+ e—>0
If m>1, then m-1>0 and
L ' 1 1
[-L ax=tim | —dx_llm— —lim—=1- = |=
o X a0 e->0(m— ]_)X . e>0om-—=1 (O+¢)

0
Consequently, the integral jimdx converges if m<1 and it diverges when m>1.

2. Investigate the integral j for convergence.

4Xﬂ X

The function IS unbounded to the left of the point 1.

3

xIn® x
podx L Fedinx T -1 )1
jxlngx_ m(}j n°x i 21n? x i 21 2e1 ] 2
o 0 7 e—> N n (]_ g) 2|n

Therefore the integral converges.
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For the functions defined and positive on the interval convergence tests are
analogous to the comparison tests for improper integrals with infinite limits.
Comparison test.

1. Let functions f(x) and @(x) be defined on the interval [a,b) and discontinuous

at the point b. If 0< f(X) <¢(x) at all points of interval [a,b), then from convergence of

b b
the integral jq)(x)dx it follows that the integral j f (x)dx is convergent; from divergence
a a

b b
of the integral jf(x)dx it follows that the integral j(p(x)dx Is also divergent.
a a
2. Let f(x) be an alternating function on the interval [a,b] and discontinuous only
b b
at the point b. If the integral ﬂf(x)\dx converges, then the integral jf(x)dx also
a a

converges and is called absolutely convergent.

b b
If the integral jf(x)dx converges, and ﬂf(x)\dx diverges, then the integral
a a

b
j f (x)dx is called conditionally convergent.
a

b
Analogous tests are also valid for improper integrals jf(x)dx, where f(x) is
a

unbounded to the right from the point a.

Example.

1 2
) ) C0S“ xdx
Investigate the integral | —— for convergence.
g g g M x g

The integrand is unbounded to the right of the point 1.

2
Since |cos x| <1, we have 0<|COS X|< 1 dx
Ri-x| " 1-x -x

according the first example of this chapter. Hence, the original integral converges.

IS convergent

1
. The integral |
0
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5. Application of the Definite Integral

5.1 The Area of a Region

I. The Area of a Curvilinear Trapezoid

Let the function y = f(x) be positive, defined and continuous on the interval [a,b].

1y As we know from the chapter 3.1 the area between the
y=£(z) graph of y= f(x), x-axis and the lines x=a and x=Db
(Fig. 10)
0l « X b
Figure 10. S :i FOxdx. (1)
Example. ry
34 yoe

Compute the area of the region bounded by y=¢e*,

x-axis and the lines x=—1and x=1 (Fig.11).

AL
Let us use the formula (5.1): _/./ |
: 1

2
1 —
_e_et-t7t (units?). _
-1 e Figure 11.

W

2

S = }exdx =e*
-1

If the curvilinear trapezoid is bounded by the curve represented by equations in

parametric form

{X =X, { <t<t,
y=y(t),

and
X(t)=a, x(t,)=Db.

Let us use the formula (5.1) to compute the area
b

S :Tf(x)dx:jydx.

Change the variable in the integral
x=x(t), dx=x'(t)dt, t <t<t,,
y = f(x)=1(x(t)) = y(t).



44

Hence

S :tjz y()x'(t)dt. (5.2)

ty

Example.

2 2
Compute the area of the region bounded by ellipse X—2 - g—z =1 (Fig.12).
a

Let us use the parametric equations of ellipse Ay
X = acost, 1-‘1=%
y =Dbsint.

Since the region is symmetric about the coordinate

axes, we compute the area of one quarter. Here x varies

4.
v

from O to a, and so t varies between t; =g and t, =0.

According to the formula (5.2): Figure 12.
0 0 g

S =4[bsint(acost)dt =4[asint(-bsint)dt = 4absin® tdt =
T n 0

2 2

2ab[ (1-cos2t)dt = 2ab(t - SIZth g 2ab(E - % —-0+ %) =mnab (units?).
0

0 2
: Xy
Thus, the area of the region bounded by ellipse 7z +=11s
S =mab. (5.3)
1y y=7(x) If f(x) changes sign on the interval [a,b] a finite

\‘ /-/‘/ number of times (Fig.13), then

b
S = [|f (x)ldx
Figure 13. )
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Il. The Area Between Two Curves
Let the functions y = f(x) and y=g(x) be positive, defined and continuous on the
interval [a,b] and for every xe[a,b] g(x) < f(x).
Then the area of the region bounded by the curves

g y=f(x) y=1(x), y=9g(x) and the lines x=a, x=Db (Fig. 14 ) is

b b
- gz S = [ f(dx—[ g(x)dx,
i cII EI) .ft a a
_ b
Figure 14. S =[(f(x)-g(x)dx. (5.4)
Example.

Evaluate the area of the region between the curves
y=4-x*and y=x*—-2x+1.

Solving the system of equation

y=4-x°,
y=x2—2x+1,

find the abscissas of the points of intersection of the

curves. Then eliminating y we obtain

Figure 15.

4-x%=x%-2x+1,

whence x, =-1and x, =2.

As it seen from the figure 15, 4— x* > x* — 2x+1 on the interval [-1,2].

Consequently,
2

2 2 2X3
S=[((4—x*)—(x* —2x+1)dx= [(3—2x? +2x))dx:(3x—?+ xzj

-1

:(6—%+4j—(—3+§+1):6 (units?).

-1
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I11. The Area of a Curvilinear Sector in Polar Coordinates

Consider a curve defined in polar coordinates by the equation

p=p(p), a<o=<P,
where p(¢) is a continuous function for ¢ [a, 3]

Let us find the area inside of polar curve p=p(¢) between the radius vectors
¢=a and ¢=f. The idea is the same as with the area of a curvilinear trapezoid: find an
approximation that approaches the true value.

Partition the sector [o,3] into small subsectors by
radius vectors o=@y, @O, --- Oy Priqs--- Ppgs O, =P

In each part [o,,®,,], k=0,...(n—1) take an angle

&, and calculate the value of the function p(&,) (Fig. 13).

We approximate the region using sectors of circles

Figure 13.

1 1
Sk :Epz(gk)(@kﬂ_@k):Epz(gk)A(Pk’ k=0,...(n-1).
Thus, the sum

n-1 n—ll )
S=>S= ng E)A @,
k=0 k=0

give the approximation of the area of the region.

Since this sum is an integral sum, its limit as max A ¢; — 0, is the definite integral,
and we obtain the formula for the area of a curvilinear sector
18,
5= [p*(@)do. (5.5)
Example.

Find the area of a region enclosed by the portion

of Archimedean spiral p =, OS(ps%n (Fig. 14).

Use the formula (5.5)

3n 3n

Todg- @] _@n*_or’
¢ do= = =

: 3|, 38 8

0

% (units?). Figure 14.
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5.2 The Arc Length of a Curve

I. The Arc Length of a Curve in Rectangular Coordinates

Let us find the length of the arc of a curve between points A and B. The curve is
given by the equation y = f (x) such that functions f(x) and f'(x) are continuous on the
interval [a,b].

Divide the interval up into n subintervals by 4y

the points o el
Ay B
A=My,M,,..M,,M.1,...M. M, =B. = e

Approximately the length of the curve is a sum of

segments connecting these points (Fig. 15)

n-1 Figure 15.
Lag = kZ;)‘MkMkH"

The length of each segment we can find using Pythagorean theorem

2
A
‘MkMk+l‘:\/(AXk)2+(Ayk)2:Axk 1+[A_2(/kj .
\} K

Since, by the Lagrange’s theorem

Ay, _ F(ia) =) _ ¢
= * = f , X < < X i1
AXk Xk+1 _ Xk (&k) k ak k+1

we have

‘MkMk+1‘ :Axk\/l+(f '(ik))z

and
n-1
Lag = ZAXk\llJf(f'(ﬁk))Z -
k=0

Therefore, this is integral sum for the continuous function 1+ (f'(x))? and a limit

as max Ax, — 0 give us the formula for computing the length of arc

s =T 1+ (f'(x))? dx (5.6)

a
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Example.

Evaluate the length the curve y =+/(x—1)* between the points (1 0) and (5, 8).

Find the derivative of the function ry

(J(x 1) ) \/—1 |
T y=afx-17,

7

E

]
Hence, al

3

2

1

szuf'mj dx =

2 4
—x——dx_— — x——
4 39

i 5 J

012 3 4
3 3
_i[\/(ﬁ_§) _\/(g_§j J_i(lom_l) (units). Figure 16.
27 4 4 4 4 27

I1. The Arc Length of a Curve Represented Parametrically

Let a curve be given by the equations in the parametric form
x=x(), y=y(),
and the derivatives x'(t), y'(t) becontinuous on the interval [t;,t,].

In this case we can use formula (5.6), where

=Y 2 ytzy() dx=x'(t)dt and x(t)=a, x(t,)=b.
dx x;  X(t)’

Hence,

AB_j 1+(y'?;] X(t)d.

Finally,

Lug = j XOP+(yOF (5.7)

Note: If the space curve is represented parametrically
x=x(), y=yt), x=x(), telt,t],
then

Lag = I\/ (X®) +(y ) +(Z@®) dt
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Example.
X =a(t-sint),
Find the length of one arc of cycloid ( ) t €[0, 2x].
y =a(l—cost),
Let us find the half of curve as t €[0, x]. ¥
Differentiating with respect to t, we obtain iga
Xx'=a(t—sint)'=a(l-cost), .
. , ) l et 2re
y'=a(l-cost) =asint.
Figure 17.

Hence,

L=2] J@@—cost)} +(asint)? dt= 2[\/a?(1-2cost +cos? t +sin’t) dt =
0 0

T

sin£ dt= —8acos£ =

:2aj\/2—2005t dt:2aj 4sin2%dt:4aj
0 0 0

0

=-8a cosg +8acos0=8a (units).

I11. The Arc Length of a Curve in Polar Coordinates

If a smooth curve is given by the equation p=p(p), a<e<p, in polar

coordinates.
Let us use the formulas for converting polar coordinates to Cartesian coordinates
X = pCOS P,
{y:pan
Since p =p(p), we put this expression in place of p and obtain

{X=p(@)coscp, w<o<p

y =p(@)sino,
These equations are regarded as parametric equations of the curve. Applying

formula (5.7) we obtain

AB—Nx(cm +(y(0)} do= N(p(cp)coscp)) +((p(@)sino) }: dp=

= [(p'(0) cosp—p(e)sin ) +(p'(¢)sin @+ p(¢) cos @)} dep =

Q‘—o'@



50

J(') cos? o - 2pp'sinpcos @+ p? sin o+ (o) sin2 o+ 2pp’sin cos ¢ + p2 cos? ¢ dg =

T\/ (cos @-+sin (p)+p (sm @+ COS (p)d(p j\/ 2 +p? do.

Hence,

Q ™

Lpg = Np(cp) (p()) d (5.8)

Example.
Find the length of the cardioid p=a(l—cose) (Fig. 18). !

This curve is symmetrical about polar axis, that’s why we
varying the angle from 0 to = and multiplying the integral by 2. )
Here, p’=asino.

Hence,
i Figure 18.

Ls =2j\/(asin(p)2 +(a@l—cosg))’ do=

= 2aj\/sin2 ¢+1-2cosp+cos’ ¢ dp=2a[/2—2cos¢ dp = 2aj1/4sin2g do =
0 0 0

T

= 4ajsin% do = —8acosg = —8acosg +8acos0=28a (units).

0
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5.3 Volume of a Solid

I. Volume of a Solid From the Areas of Parallel Sections

Suppose we have a solid. Assume that we know the area of any section of the solid
by the plane perpendicular to the x-axis (Fig. 19) and this area is a function of Xx:
S=S5(x).

Cut the solid by planes x=a, X=X;,... X=X,
X=X 1,--- X=D into n layers. Each layer is a

cylindrical body, which volume is a product of the area
of the base (S =S(&,)) and the altitude (Ax, ):

Vi = S(E)AX -

The volume of all the cylinders will be

Figure 109.

n-1 n-1
Va3 Vi = 2 S(E)AX -
k=0

k=0

It is the integral sum of the continuous function S(x)on the interval a<x<b and,

finally, we obtain the formula for the volume of a solid

b
V = [S(x)dx. (5.9)
a
Example.
Evaluate the volume of ellipsoid —+g—2 2—2_1 (Fig. 20).
a C
Let us make a section of ellipsoid by the plane ZA
X=X, parallel to the yz-plane. Here we have the ellipse C 500
2 2 2 -1 T )
y© z X ! , >
P ez
or F
y? 72 Figure 20.




According to formula (5.3), the area of this ellipse is

2 2 2
S(%) = nb\/l—);% -c\/l—);% - nbc(l—);%j.

Hence, the volume of ellipsoid is

a a X2 X3
V = [S(x)dx=mhc [| 1-= [dx=rhc x—3—2

a

_4 nabc (units)®.
a a 3

1. The Volume of a Solid of Revolution

Consider the solid generated by revolution about

the x-axis of the curvilinear trapezoid bounded by the Ay y=£(x)
curve y=f(x)(f(x)>0), the x-axis and the straight
lines x=a and x=b (Fig. 21). la . Q b
An arbitrary section of this solid made by plane
perpendicular to the x-axis is a circle of radius f (x) and
Figure 21.

its area is

S(x) = n(f (x))2.

=¥
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Let us use formula (5.9) and obtain the formula of volume of a solid of revolution

about the x-axis
b
Vo, = nj(f (x))2dx.

Example.

(5.10)

Find the volume of a solid obtained by revolving about the x-axis of the figure

bounded by the first arc of the sinusoid y =sinx (Fig. 22).

Vo, = [ (5in x)zdx=gj(1—0052x)dx=
0 0

n 2

= % (units)3. /a

Ny

n( sin2xj
=—| X—
2 2

0

Figure 22.
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Let us consider the solid of revolution about '

the y-axis of the curvilinear trapezoid bounded by

the curve y = f (x), the x-axis and the straight lines

x=a and x=b (Fig. 23).

The volume of a solid of revolution about the

Figure 23.

y-axis

b
V,, =2m[x f (x)dx. (5.11)

Example.

The figure bounded by the arc of the sinusoid y =sinx, the x-axis and the straight

line x=g revolves about the y-axis (Fig. 24). Compute the volume of the solid of

revolution thus obtained.

2 r
_ ooy | u=x du=dx |_
V,, _2n£x5m XAX =4y Zsinxdx V= —cosx =
N N X
n g = o %
\ — i
= 2m| —XC0sx|2 + [ cos xdx | = ’
0 :
Figure 24.

T

=2nsinX|2 =2n (units)®,

If the solid of revolution is generated by the rotation of the curvilinear trapezoid

= t y
bounded by the parametric curve {X x(t) t, <t<t,, then
y=y(),
t
Vo, = [ y2©)x'(t)dt. (5.12)
L}
th
V,, =2 [ x(t) y(t)X' (t)dt. (5.13)

t
The volume of the solid of revolution of polar curve p=p(¢), o <t <, about the

polar-axis is

2 ! :
V, = gn'[p3((p)sm odo. (5.14)
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5.4 The Surface of a Solid of Revolution

Let us consider the arc of the smooth nonnegative function y= f(x) and the

surface generated by revolving this arc about the x-axis (Fig. 25). Determine the area of

this surface.

Subdivide the interval into n parts by the points Ay A
%A
A=My,M,,...M, M, ,,...M, ;,M =B. M .*;1 5
Tk
Draw the chords AM,, ..MM, ., ...M, ;B, LA

|
whose lengths are determined as follows (see 5.2 1) ol & ?:fkr' T’?‘;” . 3
AR
AS, = Ax 1+ (F'(5)) !

Each chord of length describes (during the rotation) Figure 25

a truncated cone whose surface is

AP, = 271 (Xk+1)2_ 1% g, = 1 (Xp) = T ) WL+ (F/(E) P AX, .

Thus, the surface describes by the broken line is equal to the sum

n-1 n-1

= AR = 3w f (Xin) = F RN+ (F/(E)) A% .

k=0 k=0

The limit of this sum, when the largest segment AS, approaches zero gives a

formula of the area of the surface of revolution

Px = lim Z (f (Xs1) — f(Xk))\/1+(f ,(ak))zAXk :AlikTo:Z::ZEf (ﬁk)\/l‘*‘(f'(ék))zAXk-

AS; >0
POX:Zan(x) 1+(f'(x))dx. (5.15)

The surface generated by revolving of the arc about the y-axis
b
P,, = 2| xy/1+(f'(x))dx. (5.16)
a

If the surface of revolution is generated by the rotation of the parametric curve
x=x(t), y=y(), t; <t <t,, then

2nj YOO +(y'®) dt, —2nj XOVXOP +(yOF dt  (5.17)
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Example.

1. Compute the surface of revolution of the curve y = x> between the straight lines
X = _2 and x= 2 :
3 3

Let us use the formula (5.17). Ay

2
3 )

X1+ ((x°))? dx=4n [ x*V1+9x* dx= ﬂ\ : x
) .

_2.1 il 3 2
3 3
!
2

5:
0

P,.=2-2n

0X

o'—.w“\)

V1+9x* d(1+9x*) =

196
729

2. Find the surface of revolution of the first arc of cycloid

X =a(t—sint),
y = a(l-cost),

(1+9x*)?

wIiN

T T
9 9

o'—.w“\)

Figure 26.

(units)?.

t [0, 2n].

Let us use the formula (5.17). ¥
2 1o

2n
P, = 2nj’a(l—cost)\/(a(l—cost))2 +(asint)’ dt = B
0

2n

=2ma’® [ (1—cost)v/2—2cost dt =
0 Figure 27.
21 21 21

=2ma’ [ (1-cost) asin? L dt = 8a’ fsinSldt:Sna2 j(l—cos2 ljsinldt:
) 2 A ! 2)7 2

cos® | ’
2| _ 64ra’

3

21
=—16ma’ j(l— cos? Ljd (cos L) — _16ma?| cos L - (units)2.
! 2 2 2
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5.5 Physical Application of the Definite Integral

I. Work of the Variable Force

Suppose a force F moves an object along the x-axis, and the direction of the force
coincides with the direction of motion. Let us determine the work done by the force F as
the body is moved from the point x =a to the point x=b.

The work done by a constant force in moving an object a distance is equal to the
product of the force and the distance moved. That is, if the force F is constant, then

W=F(b-a).

But in most cases the applied force is not constant, but varies depending on the
position of material point. Assume that the force F(x) varies continuously from a to b.

In order to find the total work divide the interval [a,b] into n arbitrary parts by
points a=X,, X, X,, ..., X, =b of length Ax;, Ax,, ..., AX,. In each part (X, X.1),

k=0,1,...n choose an arbitrary point &, and evaluate the work of the force on each part

W, =F(§,)Ax%., k=0,1,..n.

Hence, the total work is approximately
n-1 n-1
W~ 2 W, =2 F(E)AX.
k=0 k=0
Obviously, this expression is an integral sum of the function F(x) on the interval

[a,b]. The limit of this sum as max Ax, — 0 exists and leads to the work of the force

F (x) over the path from the point x =a to the point x=b

b
W = [ F(x)dx. (5.18)

Example.

v IS

The compression S of a helical spring is proportional to
the applied force F. Compute the work of the force F when

in free state

Length of spring

the spring is compressed 5 cm, if a force of one kilogram is

required to compress it 1 cm. i
Figure 28.
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It is given that the force F and the distance covered S are connected by the
relation F =kS, where k is a constant.

Let us express S in meters and F in kilograms. When S =0,01, F =1, that is,
1=k-0,01, whence k =100, F =100S.

By formula (5.18) we have

0,05 g2|"®
W = [100SdS =100~  =0.125 kilogram-meter.
0 0

I1. Mass, Coordinates of the Centre of Gravity and Moments of Inertia
Suppose on an xy-plane there is a system of material points
P(X, Y1), P(X2, ¥2).-y P(Xys ¥n)
with masses m;, m,, ..., m,.
The product x,m, and y,m, are called the static moments of the mass relative to the
y- and x-axis. According to well-known formulas from mechanics, the coordinates of the

centre of gravity of this material system will be defined by the formulas

X, = A (5.19)

Rotational inertia is a property of an object which can be rotated. It is also known
as moment of inertia. It is also sometimes called the second moment of mass. It is possible

to calculate the total rotational inertia for the system of material points

n
about the x-axis 1, = > x/m, ,
k=1
n
about the y-axis I, =Y y/m,, (5.20)
k=1

n
about the origin I, = Z(xf + yf)mk .

We use these formulas in finding physical characteristics of various objects.
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1. The mass, the centre of gravity and moments of inertia of a material line

Consider the arc of the material curve y= f(x), a<x<b, and let linear density

(mass per unit lenght) of this material curve be y. We assume that linear density is the

same in all points of the line. Objects whose mass is uniformly distributed throughout the

object are called homogeneous.

Divide the interval [a,b] into n parts by points X, X,, ..., X,. This partition divide
the curve into n parts of length Al, Al,, ..., Al,. The masses of these parts are
m, =vyAl,, m, =yAl,, ..., m =yAl . Choose the point &, in each part (X, X)),
k=0,1..n.

axis.

Then the total mass is
m= kZi:lmk = kZi:lYAlk = kZ:YAXk Vi+(f D)
Hence, the mass of a material line is
m:Ty 1+(f'(x))dx. (5.21)
a

According to formulas (5.19) and (5.20) we obtain

kilyé.»kAlk an‘,lékAXk \/1+(f ’(E;k))z
anl_lvAlk anI_lAXk \/1+(f '(ﬁk))z
ki_lvf (Al zf E) ML+ (5

Yo ® ="

kZ:YAlk anl_lAXk \/1+(f '(‘ik))z

That’s leads to formulas of the centre of gravity of a material line

X

Q

Tx 1+(f'(x))dx M, Tf(x) 1+(f'(x))dx
Xe = ab = v Ye = 2 b = (5.22)
[ 1+ (F/(x))*dx [1+(F7(x))*dx

Here, M,, and M, are the static moments of the curve relative to the y- and x-
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Moments of inertia of a material line

b
about the x-axis = [ F200VL+(F/(x) X, (5.23)

b
about the y-axis , = [ X2\1+(F(x))dx, (5.24)

a

about the origin | :T(x2 + F2(x) N1+ (f'(x))*dx. (5.25)

Example. Ay yeacoh
Determine the coordinates of the center of gravity \\
of a homogeneous arc of curve y =acosh 5, —a<x<a , “ ,
a | L
(Fig. 29). -2 U a
Since the arc is symmetric about the y-axis, the Figure 29.

center is on the y-axis, that is x, =0.

By the second of formulas (5.22)

2 X\ 2 x\? 2 X X
m= | 1+((acosh—)'j dx= | 1+(Sinh—) dx = 2] cosh ~dx = 2asinh=
. a a . a

a

a

=2asinhl.

0

2 2
_ jacosh \/1+((acosh )j dx = J’acosha\/1+(sinh§) dx =

—a —a

a 2 a a
= jacoshi\/ﬂ(sinh 5) dx = 2aj cosh? Xdx = aj(l+ cosh %jdx =
a a : : a

b a
a 2X : a

:a(x+—sinh—) :a(a+—sinh2j.
2 a /| 2

Hence,

a a+§sinh 2
M, 2 a(l+sinh2)
Yo = = - = - ~118a.
m 2asinhl 4sinhl

Finally, the center of gravity is

(0, a(l+sinh 2))

4sinhl
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2. The mass and the centre of gravity of a material plane figure
Let us consider a curvilinear trapezoid bounded by the line y=f(x), a<x<b,

which is a material plane figure (lamina). Suppose that lamina is homogeneous, that is, the
area density (mass per unit area) is constant .

The mass of a material plane figure

b
m = [ vf (x)dx. (5.26)
a
The centre of gravity of a material plane figure
b 1 b
[ xf (x)dx " 2[ f 2(x)dx
X =4 =2,y =-2 = (5.27)
[foodx ™ [ £ (dx

Here, M,, and M,, are the static moments of the material plane figure relative to

the y- and x-axis.

Moments of inertia of a material plane figure

b
about the x-axis = [ F2O0y1+(F(x)) dx, (5.28)

+(f (x) dx (5.29)

= [(x2+ F2 () W1+ (F/(%))Pd (5.30)

about the y-axis

DJ'—;CT

about the origin |

SD'—-C'

Example.

Find the coordinates of the center of gravity of homogeneous lamina bounded by the
curve x/;+\/§:x/5 and lines x=0, y=0.

Since the figure is symmetric about the bisector of first

quarter, the center is on the line y =X, thatis x, =Y,.

Let us apply the formulas (5.27)

:]i.x(\/a—\/;)zdx=i(aX—2x/5x/?+ xz)dx:

Figure 30.
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30

:[a_xz_ﬂ@ﬁﬂ_j

2 5 3

0
2

(Va-xfax=[la-2vavx +x)ax=2

0

m =

O —

Hence,
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Appendix 1. Graphs of Certain Functions in Cartesian Coordinates
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Appendix 3. Graphs of Certain Functions in Polar Coordinates

Circle
X2 + y? = 2ax
p=2acoso

Archimedean spiral

Logarithmic spiral

p=aop . p=e%
p=—
¢
e N NEN e TN 5 ‘.
AL i
i Lemniscate of Bernoulli
i p = a,/C0S2¢p
Cardioid Triple-petaled rose

p=a(l+coso)

p=asin3p



https://en.wikipedia.org/wiki/Cardioid
https://en.wikipedia.org/wiki/Lemniscate_of_Bernoulli

Appendix 3.

65

Graphs of Certain Functions in Parametric Form

4y

\x
d

(I

/

Cycloid Straight line
i =a(t —sint), y=kx+Db
Circle Xx=a(t-sint) [0, 21]
X =acost, y = a(l-cost), X =t +X,,
. te[0,2n]
y =asint, y =mt+Y,.
& ¥ &Y
b @

/

0

/

Witch of Agnesi

y(x*+a*)=a’

] X =at,
Ellipse .
) ) Astroid . a
Xy 2 2 2 y_t2+1'
X = acost, X =acos’t,
. te[0,2n] i, t €[0, 2x]
y =bsint, y=asin’t,
' ! F oy
-4 Ea > i 00 >
O : :
! b b \
! { N -
i \H -d,.f ]
Strophoid Folium of Decartes
) 2 Involute of a circle s 3
ye(a—x)=x“(a+x) _ y® + x° = 3axy
X =a(cost +tsint),
21 _ t €[0, 2n] 3at
X=a , y =a(sint—tcost), X=—",
t*+1 t2+1
—att2 -1 3 3at?
y= t2+1. t3+1.




Appendix 4. The table of derivatives. Properties of derivatives

C'=0 VCeR; x)' =1
1 ' 1
Xn !:nxn—l; = \/; =
(") 2 ) =
(e*) =e"; (@) =a"Ina;
(Inxy ==; (log, x)' = ——;
X XIna

(sin x)" =cos X;

(cosx)' =—sin x;

(tanx)' =

(cotx)' =—

cos? X’ sin?x’
. , 1
(arcsinx)' = (arccosx)' =— ;
1-x? 1—x?
(arctan x)' = L. (arccotx)’ = — L
1+x2’ 1+x%’

(sinh x)" = cosh x;

(cosh x)" =sinh x;

1
tanh x)' = :
( ) cosh? x

1
cothx) =—- X
( ) sinh? x

1. vCeR (C-f)=C-f"
2. (f+g)=1"+0"
3.(f-g)=1"-g+f-qg’

!

4. if g(x)#0, GJ _fo-t-g

5. Chain Rule (£ (9(x)))x = f(3(x))- 0, (X).

66
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