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PREFACE 
 

 

The textbook is compiled in accordance with the current 

syllabus of the Physics course on the chapter “Electrostatics” for the 

students of all forms of learning at higher education institutions. 

The main goal of the textbook is to help students learn how to 

solve physical problems in Electrostatics on their own. Six topics of 

practical lessons are considered in the textbook, each topic contains: 

− basic theoretical questions that a student should know to solve 

problems on electric field; 

− a list of tasks that determine the normative level of 

knowledge; 

− brief theoretical information; 

− methodical guidelines for solving problems; 

− examples of solving basic typical problems; 

− tasks for independent work of different types and levels of 

complexity. 

To assist teachers, there are variants for homework in the 

“Appendices” section that can be used for independent and control 

tasks. 

The textbook contains examples of solving basic typical 

problems and tasks for independent work. 

During compilation of examples and problems for independent 

work, popular collections of problems in General physics have been 

used [1 – 7]. 
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GENERAL GUIDELINES FOR SOLVING 

PROBLEMS 
 

 

Each branch of physics uses its own specific methods and 

techniques for solving problems. However, there is a general 

approach that makes it easier to solve problems. 

Most problems in physics are solved in three stages: the first one 

is physical (construction of a physical model), the second one is 

mathematical and the third is the stage of analysis. 

1. The physical stage involves analysis of the phenomena 

described in the problem and finding out the physical laws to which 

they are subject. This stage requires: 

− to find out what is given in the problem, trying to imagine the 

described events and to understand the essence of the task; 

− to write briefly the data of the problem in SI units. For the 

convenience of records and calculations, very large and very 

small values should be written in standard form (N10n);  

− make schematic drawings, graphs or electrical circuits 

illustrating the problem. 

2. The mathematical stage is to make up and solve the necessary 

equations, which are mathematical expressions of the relevant 

physical laws and relations between quantities, taking into account 

the conditions in the problem. This stage requires obtaining a 

specific answer to the problem. Also, the following hints may be 

useful: 

− if the required characteristics are not specified in the problem, 

but a body or a substance is specified, then it is necessary to 

know its characteristics (for example, relative permittivity, 

resistivity, etc.) which are taken from reference tables; 

− if, in addition to the desired quantities, the equation contains 

other unknown quantities which can not be expressed through 

the given in the problem, they can be temporarily considered 

known, and then reduced in the process of further 

transformations; 



 8 

− before solving the equations, one should check whether the 

system is complete, i.e. whether the number of equations 

corresponds to the number of unknown quantities that appear 

in them; 

− solution of the system of equations should begin with the 

removal of those unknown quantities that are not in the 

question of the problem; 

− in the vast majority of cases, the solution of equations should 

be presented in general (algebraic) form, and numerical values 

should be substituted at the final stage. 

3. The analysis stage is most often associated with evaluation of 

the correctness of the answer. To do that, 

− make sure that the result has the required units; 

− analyze the obtained numerical result. For example, if in the 

result of calculations it is obtained that the mass of a person is 

1000 kg, then it is evident that either physical model or 

calculations have error. If possible, check the order of 

magnitude of the obtained value using the reference data 

tables; 

− the final numerical answer should be rounded (according to 

the rounding rules); 

− solve the problem in another way and compare the obtained 

results. 

 

Differentiation and integration method (DI-method) 
 

 

When solving problems in physics at a technical university, it is 

expedient to use the method of differentiation and integration (DI-

method), which is one of the most universal calculation methods. It 

is most often used in such sections of the general physics course as 

dynamics of rotational motion of a rigid body (calculation of a 

moment of inertia of a body about its rotation axis), electrostatics 

and electromagnetism (calculation of electric field, electric potential, 

magnetic field in certain point in space). 
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The DI-method is based on the two mathematical principles: 

• The principle of possibility of presenting a physical law in a 

differential form; 

• The superposition principle (if the physical quantities included 

in the law are additive). 

The use of DI-method consists of two stages. 

The first stage is to find the differential of the desired physical 

quantity. For that purpose, the studied physical body is divided into 

infinitesimal parts for which the desired quantity is already known. 

The second stage is to summarize (integrate) contributions of all 

the infinitesimal elements of the desired quantity. At this stage, one 

should pay the most attention to the choice of integration variables 

and to the definition of limits of integration. To determine the 

integration variable, it is necessary to analyze in detail: 

a) which variables the differential of the desired quantity 

depends on; 

b) which variable is the most essential for the most convenient 

integration. 

Then, all the other variables are expressed as a function of that 

variable. Next, the limits of integration are defined as extreme (limit) 

values of the integration variable. After calculating the definite 

integral, the numerical value of the desired quantity is obtained [8]. 

When teaching students to apply the DI-method for solving 

problems in physics, it is necessary to use such important learning 

principles as 

• the principle of initial knowledge (the necessity of 

mathematical training of students on the skills of 

differentiation and integration); 

• the principle of consistency (reliance of new material on the 

material studied before, consideration of new material in parts, 

fixation of students’ attention on key issues, implementation 

of interdisciplinary relations). 

Problems should be presented to students with gradual increase 

in complexity in the sequence from simple to complex. Such an 

approach displays that application of the DI-method is based on the 

fact that the desired physical quantity for some elementary 
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(infinitesimal) part of the body is already known to students, and 

they can add (integrate) these quantities to find the desired quantity 

for the entire physical body of certain size, which is built of these 

elementary parts. 

Let’s explain these considerations with an example. If we know 

the mathematical expression for calculating the magnitude of electric 

field due to a point charge (a charged particle of infinitesimal size), 

we can use the DI-method to calculate the magnitude of electric 

field due to a charge distributed along the length of a rod (a physical 

body of finite or infinitely large size). Here, the point charge can be 

considered as the elementary part of the rod. 

We offer the following algorithm for finding the magnitude of 

electric field using the DI-method: 

1. Carefully read the text of the problem, determine which 

charged body is considered and which infinitesimal elements it 

can be divided into; 

2. Make an illustration for the problem depicting 

 - the given charged body, 

- the infinitesimal element of the body with charge dq, 

- the distance r from the elementary charge dq to the point 

in space where we need to find the electric field, 

- the direction of the electric field vector at this point, as 

well as its projection onto the coordinate axes; 

3. Determine the elementary value of the electric field dE in the 

projections onto the coordinate axes: 

2n n

dq
dE k e

r
=   , 

where ne  is the projection of the unit vector e  onto the n-th 

axis, 9

0

1
9 10

4πε
k = =   m/F. 

Note: if the body is symmetrical, it is sufficient to determine 

projection of the electric field vector onto the axis that 

coincides with the axis of symmetry, as far as projections onto 

other axes are mutually compensated by symmetry; 

4. Determine the elementary charge dq: 

if the body is 
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- linear τ
Q

dq dl dl
L

= =  , 

- planar σ
Q

dq ds ds
S

= =  , 

- volumetric ρ
Q

dq dv dv
V

= =  . 

Note: here we take that the charge is distributed uniformly. If 

the charge distribution is not uniform, then the charge density 

should be considered as a function of distance (that is, τ = τ(r), 

σ = σ(r), ρ = ρ(r)); 

5. Substitute the obtained dq into the formula for dЕ; 

6. Express all the variables that are included in the obtained 

formula with only one variable which is the most convenient 

to integrate (for example, the angle φ between the direction of 

the vector dE  and the normal to the surface of the body, or the 

solid angle Ω); 

7. Write the calculation formula n nE dE=  ; 

8. Determine the limits of integration, which depend on the 

parameters of the body (length L, radius R, angle φ, etc.); 

9. Calculate integrals for each of the projections of the vector 

dE  onto the coordinate axes; 

10. Find the magnitude of the electric field at the given point: 
2
n

n

E E=  ; 

11. Obtain the final result and analyze it. 

In order to better understand application of the DI-method to 

determining the magnitude of electric field, we advise students to 

consider the “Scheme of gradual increase in complexity in the 

formation of the concept of electric field”, which is given in the 

Appendix C. 

The material in the Appendix D helps students to draw analogies 

between the DI-method applications in different sections of physics. 

It focuses on the fact that using the known formula for a desired 

physical quantity in the simpler case (for an infinitesimal part of the 

body), it is possible to find the formula for this quantity in the more 

complex cases (for a body of finite or infinitely large size). Namely, 
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the comparison of the DI-method based calculation of such physical 

quantities as the moment of inertia and the magnitude of electric 

field is made. It should be noted that in contrast to the moment of 

inertia, the electric field is a vector physical quantity. Therefore, 

when finding it, one must first calculate projections of the electric 

field vector onto the x, y and z axes, and only then one can calculate 

the magnitude of the desired quantity 2 2 2
x y zE E E E= + +  (in cases 

where the system has a certain symmetry, the problem can be 

simplified). But the general scheme for solving problems on the 

moment of inertia and the electric field is still similar. 

Gradual increase in the complexity of problem solving is very 

important when mastering such an indispensable and widely used 

method of solving problems as the DI-method. The application of 

this method expands students’ understanding of the use of 

mathematics to solve problems in physics, promotes the development 

of complex thinking, carries an element of creativity and develops 

scientific physical thinking. 
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Topic 1. COULOMB’S LAW. INTERACTION OF 

CHARGED BODIES  

 

What a student should know 
1. Coulomb’s law. 

2. Electric charge conservation law. 

3. Superposition principle for the electric fields. 

4. A concept of: 

a) a point charge; 

b) linear, surface and volume charge densities; 

c) dielectric permittivity; 

d) electric constant. 

5. Differentiation and integration method (DI-method). 

 

Literature: [6, § 23.1 – 23.3]; [7, § 5.1 – 5.3]; [9, § 21]; brief 

theoretical information. 

Tasks that determine normative level of knowledge and skills: [6: 

§ 23, No 8, 9, 10, 13], examples 1.1, 1.2. 

Homework: see Table A.1 on p. 138. 

 

 

1.1. Brief theoretical information  
 

 

Coulomb’s law: the magnitude of force of interaction between 

two point charged bodies* is proportional to the product of absolute 

values of their charges and inversely proportional to the square of the 

distance between them: 

1 2
2

,
r

Q Q
F k

r
=


                                      (1.1) 

where k = 1/(40) = 9109 m/F is the Coulomb constant; r is the 

relative permittivity of the medium (in vacuum or in the air εr = 1). 
 

* Further we consider concept of the “point charge” for simplicity. 
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Charges of the same sign repel one another, while charges with 

opposite signs attract one another. 

The charge conservation law:  

const,
1

n
Q

i
i

=
=

 

where 
1

n
Q

i
i

=

 is the algebraic sum of charges in the isolated system of 

bodies; n is the number of charged bodies. 

Linear charge density: 

,Q
l

=  

where l is the length of a uniformly charged thread-like body. 

Surface charge density:  

,
Q
S

=  

where S is the surface area of a uniformly charged body. 

Volume charge density:  

,
Q
V

=  

where V is the volume of a uniformly charged body. 

 

 

1.2. Methodical guidelines  
 

 

1. The Coulomb’s law-related problems consider charged point 

bodies interacting with each other and with other bodies. When 

solving problems, it is necessary to carefully analyze and take into 

account all the forces (not only the Coulomb’s forces) exerted on 

each charge given in the problem. 

2. If electric field is produced by a system of charges, the 

resulting force is determined according to the principle of 

superposition of fields. One should remember that the force is a 

vector quantity, so the signs of the individual charges (qі) of the 

system must be taken into account during calculations, as they 

determine directions of the vectors F  (see example 1.1). 
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3. Formula (1.1) allows to calculate the force of interaction 

between point charges. If a charged body cannot be considered as a 

single point (the charge is distributed along a line, over a surface or 

throughout a volume, and the geometric dimensions cannot be 

neglected), the method of differentiation and integration (DI-

method) is used. 

 

 

1.2.1. Interaction of point charges  
 

 

Example 1.1 

The distance between two point charges Q1 = 10-6 C and Q2 = 

= –Q1 is 10 сm. Find the force F exerted on a point charge 

Q = 0.1 μC distanced by r1 = 6 сm from the first charge and by r2 = 

= 8 сm from the second charge. 

 

Given:                                        І. Physical model  
Q1  = 10-6 C 

Q2  = – Q1 

d = 0.1 m 

Q = 10-7 C 

r1 = 0.06 m 

r2 = 0.08 m 

 

F – ? 
 

         

                    Figure 1.1 
 

ІІ. Mathematical model  
 

1. According to the superposition principle for electric fields, 

each charge produces electric field regardless of the presence of 

other charges nearby. Therefore, the force F  exerted on the point 
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charge Q can be found as vector sum of the forces 1F  and 2F  by 

fields produced by each charge separately: 1 2.F F F= +  

2. Magnitudes of electric field forces in vacuum1 due to the first 

and the second charge are found using the Coulomb’s law2: 

1 1
1 2 2

0 1 1

1
,

4

QQ QQ
F k

r r
= =


 

(1.2) 

2 2
2 2 2

0 2 2

1

4
.QQ QQ

F k
r r

= =


 

3. Magnitude of the net force is found by the cosine theorem: 

,cos2)cos(2
21

2

2

2

121

2

2

2

1
++=−−+= FFFFFFFFF  

where  is the angle between the forces 1F  and 2F , which is 90 

because the triangle formed by the charges in space is right-angled3 

( = 90, cos 90 = 0), then 
2 2

1 2 .F F F= +                                            (1.3) 

4. Substituting expressions (1.2) into (1.3), we obtain the force 

on the point charge Q: 
2 2

2 2

1 2 1 2

2 2 4 4

1 2 1 2

.
kQQ kQQ Q Q

F kQ
r r r r

   
= + = +   

   
 

 

ІІІ. Numerical calculations: 
12 12

9 7

5 5

10 10
9 10 10 0.3

1.296 10 4.096 10
F

− −
−

− −
=   + 

 
(N). 

Answer: F = 0.3 N. 

 

 

 
1 If text of the problem does not specify the medium, it is assumed that the 

charges are in vacuum (r = 1). 
2 One should remember that charges of the same sign repel and charges of 

different signs attract (see Fig. 1.1). 
3Because it is the Egyptian triangle. 
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Example 1.2 

Two identical point charges with equal values Q1 = Q2 = 1 μC 

are fixed in space and separated by a distance d = 2 cm. A particle 

with negative charge of value Q = 2 μC and mass m = 4 g is free to 

move and lies initially at rest on the perpendicular bisector of the 

two fixed charges a distance x from the midpoint between those 

charges. Show that if x is small compared with d, the motion of Q is 

simple harmonic along the perpendicular bisector. Determine the 

period of that motion.  

 

Given:                                         І. Physical model   
Q1  = Q2 = 1 μC =10-6 C 

|Q| = 2 μC = 2·10-6 C, Q < 0  
d = 2·10-2 m 

x << d 

m = 4 g = 4·10-3 kg 

T – ? 
 

         

         

 

 

 

 

 

            Figure 1.2 
 

ІІ. Mathematical model  
 

1. In order to obtain the law of motion of the charge Q, we need 

to find the net force F  exerted on that charge. Considering the given 

conditions, we can neglect forces of gravitation and air resistance 

comparing to the electric forces on the particle Q. It experiences 

electric force from the charges Q1 and Q2 and, according to the 

superposition principle, the net force is the vector sum of the forces 

1F  and 2F  exerted by fields produced by each of them separately:  
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1 2.F F F= +  

2. As far as we have point charges, electric forces of interaction 

between them can be found with the Coulomb’s law: 

1 1
1 2 2

0

1
,

4

QQ QQ
F k

r r
= =


 

(1.4) 

2 2 1
2 2 2 2

0

1

4

QQ QQ QQ
F k k

r r r
= = =


, 

where k is the Coulomb constant, r is the distance from the charge Q 

to the charge Q1 and from the charge Q to the charge Q2 which is the 

same because Q lies the perpendicular bisector of the charges Q1 and 

Q2.  

The negative charge Q is attracted by the positive charges Q1 

and Q2, so the forces 1F  and 2F  are directed towards those charges 

along the lines joining Q and each of them (Fig. 1.2). 

3. Let’s choose the coordinate system with axis OY along the 

line joining the charges Q1 and Q2 and axis OX along the 

perpendicular bisector between them (see Fig. 1.2). Let’s denote   

the angle that the distance r makes with the axis OY. We choose this 

angle because at the given condition x << d we can consider   

being small. Also,   is the same both for the distance to the charge 

Q1 and to the charge Q2 due to the symmetry. Then, we can write 

projections of the net force onto the coordinate axes taking 

magnitudes of its components from formulas (1.4): 

1
1 2 1 2 2

sin sin 2 sinx x x

QQ
F F F F F k

r
= + = −  −  = −  , 

1 2 1 2cos cos 0y y yF F F F F= + =  −  = ; 

1

2
2 sinx

QQ
F F k

r
= = −  . (1.5) 

We see that the y-component of the net force is zero, which means 

that the net force is directed along the axis OX and motion of the 

charge Q takes place along the axis OX. The negative sign shows that 

direction of the net force is opposite to the direction of displacement 

along the axis OX. 
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The distance r is the hypotenuse of the right triangle where 

sin

x
r =


 (see Fig 1.2), and we can write formula (1.5) as 

31

2
2 sin

QQ
F k

x
= −  . (1.6) 

Now let’s find sin . As   is small, we use the small angle 

approximation: 

2
sin tan

/ 2

x x

d d
   = = . 

Then, formula (1.6) can be written as 
3

1 1

2 33

8
2 16

xQQ QQ
F k k x

x dd
 − = − . (1.7) 

We have obtained that the net force on the charge Q is quasi-elastic: 

it is directly proportional to the displacement x of the charge and acts 

in the direction opposite to that of displacement. That proves that it 

can be the restoring force and cause simple harmonic motion along 

the axis OX. 

4. Now we can write the law of motion of the charge Q using the 

Newton’s second law with the net force given by formula (1.7) and 

taking into account that motion is only along OX: 

1

3
16

QQ
ma F k x

d
= = − , 1

3
'' 16

QQ
mx k x

d
= − , 

where we take acceleration a as the second derivative of the 

displacement x along the axis OX. Continuing mathematical 

transformations, we can obtain the equation of harmonic oscillator: 

1

3
'' 16 0

QQ
x k x

md
+ = . (1.8) 

In the equation of harmonic oscillator (1.8), the multiple of the 

variable x is the square of the natural frequency of oscillations: 

2 1
0 3

ω 16
QQ

k
md

= . (1.9) 

Taking (1.9), the period of the simple harmonic motion is  
3

0 1

2π
2π

ω 16

md
T

kQQ
= = . 
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ІІІ. Numerical calculations: 
3 6

3

9 6 6

4 10 8 10
2π 2.1 10

16 9 10 10 2 10
T

− −
−

− −

  
=  

    
(s). 

Answer: The motion of the charge Q is simple harmonic along 

the axis OX because the net force on it can be approximated as quasi-

elastic 1

3
16

QQ
F k x

d
= −  and it is directed along OX. The period of 

motion is T = 2.1·10-3 s. 

 

1.2.2. Interaction between a point charge and a charge 

uniformly distributed along a thin rod 
 

 

Example 1.3 

A thin long rod is uniformly charged with a linear charge 

density τ = 10-5 C/m. A point charge Q0 = 10-8 C is located at a 

distance a = 0.2 m on the perpendicular to the axis of the rod built 

from the rod’s end. Find the force F of interaction between the 

charged rod and the point charge. 
 

Given:  

 = 10-5C/m  

а = 0.2 m 

Q0 = 10-8 C 

F – ? 
 

І. Physical model 

 
Figure 1.3 
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ІІ. Mathematical model 

 

Let’s use the DI-method (see p. 8). 

1. Take an infinitesimal rod element of length dl carrying a 

charge dq = dl (Fig. 1.3), which interacts with the charge Q0 located 

at the point O. According to the Coulomb’s law, the magnitude of 

force of interaction of these two point charges dq and Q0 is equal to: 

0

2

0

,
4

Q dl
dF

AO


=


                                    (1.10) 

where .
cos cos

OD a
AO = =

 
 

2. Make some geometric transformations according to Fig. 1.3*: 




=




=


=

2coscoscos

addAOAC
dl .                          (1.11) 

3. Substituting expression (1.11) into formula (1.10), we obtain: 

 0 0

0

.
4

Q d kQ d
dF

a a

   
= =


  

4. Since the force is a vector quantity, we must consider its two 

components dFx and dFy (Fig. 1.3): 

0cos cos ,x

kQ
dF dF d

a


=  =    

(1.12) 

0sin sin .y

kQ
dF dF d

a


=  =    

5. Integrating expressions (1.12) within the integration limits 

from 0 to /2, we obtain: 
2

0 0 0

0

cos (sin sin0) ,
2

x

kQ kQ kQ
F d

a a a



  
=   = − =  

2

0 0 0

0

sin (cos cos0) .
2

y

kQ kQ kQ
F d

a a a



  
=   = − − =  

  
*Neglecting the angle dα ( dα→0 ), the angles BAC and AOD are equal.  
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6. Since Fx = Fy, then, due to the superposition principle for 

electric fields, the magnitude of the resultant force is found by the 

cosine theorem: 

,cos222 ++=
yxyx

FFFFF  

where β = 90, cos 90 = 0 (Fig. 1.2). Therefore, 

2 2 0 2
2 .x y x

kQ
F F F F

a


= + = =  

 

ІІІ. Numerical calculations: 
9 8 5

42 9 10 10 10
64 10

0.2
F

− −
−   

= =  (N). 

Answer: F = 6.4 mN. 

 

1.2.3. Interaction between linearly distributed charges  
 

 

Example 1.4 

Two identical thin rods of length 2a carry equal charges Q 

uniformly distributed along their lengths. The rods lie along the x 

axis with their centers separated by a distance b. Find the magnitude 

of the force exerted by the left rod on the right one. 
 

Given:  

Q 

a  

b 

F – ? 
 

І. Physical model 

 
Figure 1.4 
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ІІ. Mathematical model 

 

1. The problem refers to the electrostatic interaction of two 

bodies, both having electric charge uniformly distributed along the 

length. In such a case we have to use the differentiation and  

integration method twice. Firstly, we take an arbitrary infinitesimal 

element of the left rod and find the force exerted by it on the right 

rod similarly to the case of interaction between a point charge and a 

linearly distributed charge. Secondly, we calculate the total force 

exerted by the left rod on the right rod by integrating the force by 

one element over the entire rod length.  

2. Let’s choose the coordinate system with axis OX passing 

along the rods and origin in the middle of the left rod (see Fig. 1.4). 

Take an arbitrary element of the left rod having infinitesimal length 

dli and carrying infinitesimal charge qi. Let its coordinate along the 

axis OX be xi. Similarly, we take an arbitrary element of the right rod 

with infinitesimal length dlj and infinitesimal charge qj and 

coordinate xj along the axis OX.  

According to the Coulomb’s law, the magnitude of force of 

interaction between these two infinitesimal elements can by 

calculated as interaction of two point charges: 

2 2

0 0

1 1

4 4 ( )

i j i j

ij

j i

q q q q
F

r x x
= =

  −
,                      (1.13) 

where r = xj – xi is the distance between the two chosen infinitesimal 

elements (Fig. 1.4). 

3. Now take that the element of the left rod qi and its coordinate 

xi are fixed, that is considered as constant parameters. While the 

element of the right rod qj and its coordinate xj vary along the length 

lj of the right rod. To write down this variation, we can use the linear 

density of the charge distribution along the rod which equals to the 

entire charge over the entire length 

2

Q

a
 = , (1.14) 

and then qj = dlj. Note that the two rods are identical and τ is the 

same both for the left and the right rod. 
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From Fig. 1.4 we can find that position of the element qj on the 

right rod lj = xj – (b – a), where (b – a) is the constant coordinate of 

the beginning of the rod. Then the differential dlj = dxj. Taking into 

account the aforementioned thinking, we can write formula (1.13) as 

2 2

0 0

1 1

4 ( ) 4 ( )

i j i j

ij

j i j i

q dl q dx
F

x x x x

 
= =

 −  −
.                     (1.15) 

4. Now we can calculate the force Fi exerted by one i-th 

element of left rod on the entire right rod by integrating expression 

(1.15) with respect to the variable xj withing the limits given by 

coordinates of the beginning and the end of the right rod: from  

(b – a) to (b + a). This is the first iteration of the DI-method where 

xi is fixed while xj varies along the length of the right rod: 

2 2

0 0

0

( )1 1

4 ( ) 4 ( )

1 1 1
.

4

b a b a
i j j i

i i

j i j ib a b a

i

i i

q dx d x x
F q

x x x x

q
b a x b a x

+ +

− −

 −
= =  =

 −  −

 
= −  − 

 + − − − 

 
 (1.16) 

5. To calculate the total force F exerted by the left rod on the 

right rod we should make the second iteration of the DI-method 

where the elementary charge qi and its coordinate xi vary along the 

length li of the left rod and qi = dli. Also, li = xj – ( – a) and dli = dxi. 

With these considerations, the result of formula (1.16) can be written 

as 

2

0

1 1 1

4
i i

i i

F dx
b a x b a x

 
= −  − 

 + − − − 
 (1.17) 

and integrated with respect to xi varying withing the limits given by 

coordinates of the beginning and the end of the left rod: from – a to 

a. By integrating (1.17) we obtain 

2

0

2

0

1 1 1

4

1 1 1

4 ( ) ( )

a

i

i ia

a

i

i ia

F dx
b a x b a x

dx
x b a x b a

−

−

 
= −  − = 

 + − − − 

 
=  − = 

 − + − − 
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( ) ( )( )2

0

2

0

1
ln ( ) ln ( )

4

1 2
ln ln

4 2

a a

a a
i ix b a x b a

b a b

a b b

+ +

− −

=  − + − − − =


 − −    
=  − =    

 − − −    

 

2 2
2 2

2 2

0 0

1 1
ln ln .

4 (2 )( 2 ) 4 4

b b

a b a b b a

   
=  =    

 + − +  −   
 

With regard to formula (1.14) we can write the final answer: 
2 2

2 2

0

1
ln .

4 2 4

Q b
F

a b a

  
=   

 −   
 

Answer: the magnitude of the force exerted by the left rod on the 

right one is 

2 2

2 2

0

1
ln .

4 2 4

Q b
F

a b a

  
=   

 −   
 

 

 

1.3. Problems for independent work 

 

 

Interaction of point charges  

 

1.1. Determine the force of interaction of two point charges 

1 2 1Q Q= = C in vacuum at a distance r = 1 m from each other. 

1.2. Two balls with masses m = 0.1 g each are suspended at one 

point with threads of length l = 20 cm each. When given equal 

electric charges, the balls move away from each other so that the 

angle between the threads reaches the value of 60 = . Find the 

charge given to each ball. 

1.3. Two equally charged balls are suspended at one point with 

threads of equal length. Then the balls are immersed into oil with 

density 
2

0 8 10 =  kg/m3. Determine the relative permittivity εr of the 

oil if the angle between the threads remains unchanged after the 
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immersion of the balls into the oil. Density of material of the balls is 
31.6 10b =  kg/m3. 

1.4. There are two balls of masses m = 1 g each. What charge Q 

should be given to the balls so that the force of mutual repulsion of 

charges would balance the force of mutual gravitational attraction of 

the balls? Consider the balls as material points.  

1.5. In the elementary theory of the hydrogen atom, it is assumed 

that an electron is rotating about a nucleus in a circular orbit. 

Determine the electron’s velocity v if the radius of its orbit is r = 

= 53 pm. Determine the electron’s frequency of rotation.  

1.6. Point charges ,Q  2 ,Q  3 ,Q  4 ,Q  5 ,Q  6Q  ( 0.1Q =  μC) are 

located at the vertices of a regular hexagon with side 10r = сm. Find 

the force F acting on a point charge Q located in the hexagon’s plane 

and equidistant from its vertices.   

1.7. Two identical conductive charged balls are separated by a 

distance r = 60 cm. The repulsive force F1 between the balls is 
670 10− N. After the balls have been brought into contact with each 

other and separated by the previous distance, the repulsive force 

increases to 4

2 1.6 10F −=  N. Find the charges Q1 and Q2 of the balls 

before the contact. Diameter of the balls is considered to be much 

smaller than the distance between them. 

1.8. Two identical conductive charged balls are separated by a 

distance r = 30 cm. The attraction force F1 between the balls is 

90 μN. After the balls have been brought into contact with each other 

and separated by the previous distance, they start to repel with the 

force F2 = 160 μN. Find the charges Q1 and Q2 of the balls before the 

contact. Diameter of the balls is considered to be much smaller than 

the distance between them. 

1.9. Two positive point charges Q and 4Q are fixed at a distance 

l = 60 cm from each other. Determine at what point on the line 

passing through the charges one should place the third charge Q1 so 

that it will be in equilibrium. Determine the sign that charge must 

have in order for the equilibrium to be stable, considering the 

charges can move only along the line connecting them.  
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1.10. The distance between free charges Q1 = 180 nC and Q2 = 

= 720 nC is 60 cm. Determine at what point on the line passing 

through the charges one should place the third charge Q3 so that the 

system of charge will be in equilibrium. Determine magnitude and 

sign of that charge. Will that equilibrium be stable?  

1.11. Three identical charges Q = 1nC each are located at the 

vertices of an equilateral triangle. What negative charge Q1 should be 

placed in the center of the triangle so that the force of attraction 

balances the force of mutual repulsion of the charges? Will that 

equilibrium be stable?  

1.12. There are identical charges Q = 0.3 nC each at the vertices 

of a square. What negative charge Q1 should be placed in the center 

of the square so that the force of mutual repulsion of the positive 

charges balances the force of attraction of the negative charge?  

1.13. What mass mp should a proton have in order for the force 

of electrostatic repulsion of the two protons to be equal to the force 

of their gravitational attraction?  

1.14. There are two systems of point charges 
11 2, , ..., , ...,i Nq q q q  

and 
21 2, , ..., , ...,k Nq q q q     fixed at points with radii-vectors 

11 2, , ..., , ...,i Nr r r r  and 
21 2, , ..., , ..., .k Nr r r r     Find the force F  exerted by 

the charge system qk on the charge system qi.  

1.15. Calculate the ratio of electrostatic and gravitational forces 

of interaction between two electrons and between two protons. At 

what value of the specific charge q/m of the particle would these 

forces have the same magnitude? 

1.16. What the force of interaction between two copper balls 

would be if the total charge of all electrons contained in them 

differed by 1% from the total charge of all nuclei? The mass of each 

ball is 1 g, the distance between them is 1 m. 

1.17. Two small equally charged balls of mass m each are 

suspended at one point with silk threads of length l. The distance 

between the balls is x << l. Find the rate of leakage of charge dq/dt 

from each ball if the distance between them reduces with the speed 

,v a x=  where a is constant. 
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1.18. Two positive charges q1 and q2 are located at points with 

radii-vectors 
1r  and 

2r . Find the negative charge q3 and the radius 

vector 
3r  of the point where it must be placed so that the force on 

each of these three charges is zero. 

 

Interaction of a point charge with a charge uniformly 

distributed along a rod and a ring 

 

1.19. A thin rod of length l = 10 cm is uniformly charged with a 

linear charge density   = 103 nC/m. A point charge Q = 100 nC is 

located at the prolongation of the rod’s axis at a distance a = 20 cm 

from its end. Determine the force F of interaction between the rod 

and the point charge. 

1.20. A long thin rod is uniformly charged with a linear charge 

density τ = 104 nC/m. A point charge Q = 10 nC is located at the 

prolongation of the rod’s axis at a distance a = 20 cm from its end. 

Determine the force F of interaction between the rod and the point 

charge.  

1.21. Electric charge is uniformly distributed with a linear 

density τ = 103 nC/m along a thin semicircle of radius R = 10 cm. A 

point charge Q = 20 nC is placed in the center of the semicircle. 

Determine the force F of interaction between the point charge and 

the charged semicircle. 

1.22. A thin thread of length l = 20 cm is uniformly charged with 

a linear density τ = 10 nC/m. A point charge Q = 1 nC is located at a 

distance a = 10 cm from the thread on the perpendicular bisector of 

the thread. Determine the force F exerted on the charge by the 

thread.  

1.23. A thin long rod is uniformly charged with a linear density 

τ = 104 nC/m. Find the force exerted on a point charge Q = 10 nC, 

which is located at a distance a = 20 cm from the rod on its 

perpendicular bisector. 

1.24. A thin infinitely long thread is bent making an angle of 

900. Electric charge is uniformly distributed along the thread with a 

linear density τ = 1 μC/m. Determine the force F exerted on a point 

charge Q = 0.1 μCl, which is located on the prolongation of one of 
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the sides of the angle and distant by a = 50 cm from the vertex of the 

angle. 

1.25. Electric charge Q = 102 nC is uniformly distributed along a 

thin ring of radius R = 10 cm. A point charge Q1 = 10 nC is located 

on the perpendicular to the plane of the ring drawn from its center. 

Determine the force F exerted on the point charge Q1 by the charged 

ring if the charge is distant from the center of the ring by: 

1) l1 = 20 cm; 2) l2 = 2 m. 

1.26. Electric charge is uniformly distributed with a linear 

charge density τ = 1 nC/m along a thin ring of radius R = 10 cm. A 

point charge Q0 = 400 nC is located in the center of the ring. 

Determine the force F stretching the ring. Neglect interaction 

between the ring’s own charges. 

1.27. A charge q is distributed throughout a body of volume V 

with a volumetric charge density  =  ( r ); a charge q is distributed 

throughout a body of volume V with a volumetric charge density 

 =  ( r ). Write an expression for the force F  exerted by the charge 

q on the charge q. 

1.28. What force is exerted on an electron in a cavity inside of a 

charged spherical layer if the volumetric charge density ρ in the layer 

depends only on the distance from its center?  

1.29. A thin ring of wire of radius R = 100 mm carries an electric 

charge Q = 50 μC. What will the increase in the force stretching the 

ring be if a point charge Q0 = 7 μC is placed in the center of the ring? 
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Topic 2. ELECTRIC FIELD. ELECTRIC 

DISPLACEMENT FIELD  

 

What a student should know 
1. Electric field, units for the electric field. 

2. Electric displacement field. 

3. Relation between the electric field vector E  and the electric 

displacement vector D . 

4. Electric field due to a point charge and due a uniform charge 

distribution along an infinite line and over a plane. 

5. Flux of the electric field vector. 

6. Flux of the electric displacement vector. 

7. Gauss’s law for conductors and dielectrics. 

8. Superposition principle for electric fields. 

9. A concept of surface density of bound charges. 

10. Differentiation and integration method (DI-method). 
 

Literature: [6, § 23.4 – 23.6, § 24.1 – 24.4]; [7, § 5.4 – 5.6, 6.1 – 

6.4]; [9, § 22.1 – 22.5, § 23]; brief theoretical information. 

Tasks that determine normative level of knowledge and skills: [6: 

§ 23 No 25, 36, 37; § 24 No 10, 11], examples 2.1 – 2.5. 

Homework: see Table A.2 on p. 138.  

 

 

2.1. Brief theoretical information 
 

 

Electric field vector: 

,
F

E
q

=   

where F  is the force exerted by the field on a charge q introduced 

into an arbitrary point in the field. 
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Gauss’s law for conductors: flux of the vector E  through a 

closed surface is equal to the algebraic sum of charges* enclosed 

within this surface divided by the electric constant 0: 

0

1
εn i

S

E dS q=  . 

Gauss’s law for dielectrics: flux of the vector D  through a 

closed surface is equal to the algebraic sum of free charges enclosed 

within this surface: 

 

n i
S

D dS q= ,                                    (2.1) 

where Dn is the projection of the electric displacement vector onto 

the normal to the surface. 

Electric field due to a point charge q at a distance r from it: 

2

0

1
.

4

q
E

r
=


                                        (2.2) 

Superposition principle for electric fields: at any point in space, 

the total electric field E  due to a group of source charges equals the 

vector (geometric) sum of the electric fields of all the charges: 

1 2 ... .nE E E E= + + +                                  (2.3) 

In the case of two electric fields E1 and E2, the magnitude of 

resultant electric field is  
2 2

1 2 1 22 cos .E E E E E= + +                           (2.4) 

According to the superposition principle, the electric field vector 

E  in a dielectric material equals to the geometric sum of the field 

due to free charges 0E  and the field due to bound charges E: 

0 .E E E= +                                      (2.5) 

Surface density of bound charges: 

( )0 1 ,r nE =   −                                   (2.6) 

where En is the normal component of the electric field vector. 

 
*free charges 
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Electric field due to an infinitely long uniformly charged thread 

at the points external to the thread: 

0

,
2 r

E
a


=

 
 

where а is the distance from the point to the thread, τ is the linear 

density of the charge distribution along the thread. 

Electric field due to an infinite uniformly charged plane: 

02 r

E


=
 

,                                      (2.7) 

where σ is the surface density of the charge distribution over the 

plane. 

Relation between the electric field vector E  and electric 

displacement vector D : 

0 .rD E=    

Flux of the electric displacement vector: 

а) in the case of a uniform field: 

cos ;DN D S =    

b) in the case of a inhomogeneous field and any surface: 

,D n

s

N D dS =   

where Dn is the projection of the vector D  onto the normal direction 

to the surface element of area dS. 

 

 

2.2. Methodical guidelines  
 

 

1. Electric field due to a system of charges is found according to 

the superposition principle. 

2. In the case when electric charge is uniformly distributed over 

a thread (rod, ring, sphere, ball), the DI-method is used. 

3. The resultant electric field produced by two charges is 

conveniently determined using the geometric method of vector 

addition (formula 2.3). However, in the case of a system of three or 
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more charges, it is necessary to use the algebraic method, i.e., to 

express vectors through their projections onto the axes of pre-chosen 

coordinate system. 

4. To calculate electric field in dielectric materials, one should 

use the following two methods. 

The first method, called the superposition method, is based on 

the superposition principle (formula 2.5). First, the field of free 

charges 0E  is determined, and then the field of bound charges E  is 

determined. Next, the field in the dielectric material is calculated by 

formula (2.5). However, some difficulties may arise if using this 

method, for example, in determining  in formula (2.6), which 

depends on En (it may be unknown) and in determining E . The DI-

method is used for that. 

The second method is based on determining the electric 

displacement vector D  with the Gauss’s law (formula 2.1), and then 

the electric field E  in the dielectric can be found by formula (2.7). 

The second method is called the Gaussian method. 

5. It should be noted that in most problems on calculation of the 

electric field in dielectric materials, the following simplifications are 

applied: 

- the dielectric material is considered homogeneous and 

isotropic; 

- boundaries of the dielectric material are perpendicular to the 

electric field lines (coincide with the equipotential surfaces). 

 

 

2.2.1. Electric field due to a charge distribution over a 

spherical surface  
 

Example 2.1 

Electric charge is uniformly distributed over a surface of a 

hemisphere with surface charge density σ = 1 nC/m2. Find the 

electric field E in the geometric center of the hemisphere. 
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Given:                                                       

σ = 1 nC/m2 = 10-9 C/m2 

ε0 = 8.85·10-12 F/m 

Е – ? 

І. Physical model  

 

 
Figure 2.1 

 

ІІ. Mathematical model  

Let’s use the DI-method. 

1. Divide the hemisphere into infinitesimal thin rings carrying an 

infinitesimal charge dq = dS (σ is the surface charge density). Such 

a charge can be considered as a point charge. Then, the formula for 

the electric field due to the point charge dq at a distance r from that 

charge, can be written as: 

2

0

,
4 r

dS
dE

r


=

 
                                     (2.8) 
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where r = 1 (the medium is not specified the problem, so it is 

assumed that the charge is in vacuum). 

2. Since electric field is a vector quantity, we decompose it into 

two components: dEx along the normal to the plane of the ring and 

dEy parallel to the plane of the ring. 

3. Add these components for all elements of the ring. Due to the 

symmetry, the components that are parallel to the plane of the ring in 

total give zero, while the vertical components are determined by the 

formula: 

cos ,xdE dE=                                   (2.9) 

where cos = a/R (Fig. 2.1). 

4. Substitute formula (2.9) into equation (2.8): 

3

0

,
4

x

adS
dE

R


=


 

where dS = 2xRd (2x is the length of the ring; Rd is the 

thickness of the ring). 

Therefore, 

2 2

0 0

2

4 2
x

a xd a xd
dE

R R

    
= =

 
.                 (2.10) 

Distances: a = Rcos, x = Rsin. Then  
2

2

0 0

cos sin cos sin
.

2 2
x

R d d
dE

R

     
= =

 
          (2.11) 

5. Integrating expression (2.11) within the integration limits 

from zero (the farthest ring) to /2 (the nearest ring) we obtain: 

2 2 2

0 0 0 00 0 0

1
cos sin 1/ 2sin 2 ( cos ) .

2 2 2 2 4
xE d d

  

   
=    =   = −  =

    

 

ІІІ. Numerical calculations: 
9

12

10
28.3

4 8.85 10
xE

−

−
= =

 
 (V/m). 

Answer: 28.3xE =  V/m. 
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2.2.2. Electric field due to a charged plane  
 

Example 2.2 

Two infinite parallel plates charged with surface densities 1 

and 2 are located in vacuum at a distance d from each other. The 

OX axis is directed perpendicular to the plate, the origin is on the 

plate 1. Plot dependences of the x-component Ex of the electric field 

vector on the coordinate x. Consider the following cases: a) 1 = , 

2 = 2; b) 1 = , 2 = – . 

Given: 

d 

а) 1 = , 2 = 2 

b) 1 = , 2 = –  

Ex (x) – ?                             

І. Physical model  

 
а                                                      b  

Figure 2.2 

 

ІІ. Mathematical model  

1. Infinite plates divide space into three regions: I – to the left of 

the plate; II – between the plates; III – to the right of the plate (Fig. 

2.2, a, b). In these regions, each of the plates creates its own electric 

field (the plate 1 creates the field 1E , and the plate 2 creates the 

field 2E ). Magnitudes of these electric fields are determined by the 

formula  

0

.
2

E


=
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2. Directions of the vectors 1E  and 2E  for the two given cases 

are shown in Fig. 2.2, a, b, respectively. In each of the three regions, 

vector of the resulting electric field is determined by the principle of 

superposition 

1 2.E E E= +  

Taking into account directions and magnitudes of the vectors 1E  

and 2E , we can find OX-projections of the resultant vectors 

I II III, ,E E E  in each of the regions I, II, III: 

а) 1 = , 2 = 2 (Fig. 2.2, а): 

I 1 2

0 0 0

II 1 2

0 0 0

III 1 2

0 0 0

2 3
;

2 2 2

2
;

2 2 2

2 3
.

2 2 2

E E E

E E E

E E E

  
= − − = − − = −

  

  
= − = − = −

  

  
= + = + =

  

 

b) 1 = , 2 = - (Fig. 2.2, b): 

I 1 2

0 0

II 1 2

0 0 0

III 1 2

0 0

0;
2 2

;
2 2

0.
2 2

E E E

E E E

E E E


= − + = − + =

 

 
= + = + =

  

 
= − = − =

 

 

3. Plot graphs of the dependence Ex(x), where Ex is the OX- 

projection of the electric field vector: 
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    а                                                     b  

Figure 2.3 

 

Answer: the corresponding graphs are shown in Figure 2.3, a, b. 

 

2.2.3. Electric force on a charge in electric field  
 

Example 2.3 

There are an infinitely long uniformly charged thread with a 

linear charge density 1 = 310-7 C/m and a charged segment of 

length l = 20 cm with a linear charge density 2 = 210-7 C/m placed 

in one plane perpendicularly to each other at a distance r0 = 10 cm 

(Fig. 2.4). Determine the force of interaction between them. 

 

Given: І. Physical model  

1 = 310-7 C/m 

2 = 210-7 C/m 

l = 0.2 cm 

r0 = 0.1 cm 

F – ? 

 

 

                                                                Figure 2.4                          
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1. The physical system consists of two bodies: a thread and a 

segment. 

The essence of the physical phenomenon is that the field 

produced by the thread exerts electric force on the charges of the 

segment. It is necessary to determine the force of this interaction. 

2. In order to find the force exerted by the thread on the charge 

of the segment Q2 we can use the relation between the electric force 

and the electric field: 
.F qE=  

Electric field Е(х) due to the infinitely long uniformly charged 

thread is not uniform, and the charge of the segment is not a point 

charge. Let’s use the formula for the electric field due to the 

infinitely long uniformly charged thread: 

( ) 1

0

.
2

E x
x


=


 

Then, let’s use the DI-method to calculate the force.  

 

ІІ. Mathematical model  

1. Consider the segment element of length dx carrying the charge 

dq = 2dx, which is located at the distance x from the thread (Fig. 

2.4). We can consider the charge dq as a point charge. The force 

exerted on that charge is: 

1 2

0

.
2

dF Edq dx
x

 
= =


 

2. The force exerted on each segment element depends on the 

distance x from that element to the thread. Therefore, we take the 

distance x for the integration variable and integrate within the limits 

from r0 to r0 + l. So,  
0

0

1 2 1 2

0 0 0

ln 1 .
2 2

r l

r

dx l
F

x x r

+
    

= = + 
   

  

ІІІ. Numerical calculations 
7 7

3

12

3 10 2 10 0.2
ln 1 1.2 10

2 3.14 8.85 10 0.1
F

− −
−

−

    
= +   

    
(N). 

Answer: F  1.2 mN. 
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2.2.4. Electric field in dielectric materials  
 

Example 2.4 

Two infinite coaxial cylinders with radii R1 = 5 cm and R2 = 

= 10 cm are uniformly charged with surface densities 1 = 10 nC/m2 

and 2 = –3 nC/m2. The space between the cylinders is filled with 

paraffin (r = 2). Determine the magnitude of the electric field E at 

the points A, B, C, which are at distances r1 = 2 сm, r2 = 6 сm and 

r3 = 15 cm from the axis of the cylinders. 

 

Given: І. Physical model  

R1 = 0.05 m    

R2 = 0.1 m 

1 = 10-8 C/m2 

2 = – 310-9 C/m2 

r = 2  

r1 = 0.02 m 

r2 = 0.06 m 

r3 = 0.15 m 

EA - ?, 

EB -  ?, 

ЕС - ?. 

 

 

 

 

 

                                                                   Figure 2.5 

 

The total field is produced by free charges on cylinders with 

surface densities 1, 2 and by bound* charges arising from the 

polarization of paraffin, the densities of which are –1, +1 (Fig. 

2.5). 
*Electric field due to the bound charges is not zero only inside the 

dielectric material. 
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ІІ. Mathematical model  

The superposition method. To determine the electric field at the 

points A, B, C, we use the Gauss’s law. For that, we draw auxiliary 

cylindrical surfaces S1, S2, S3 passing through the points A, B, C, 

respectively, with the radii r1 < R1, R1 < r2 < R2 and r3 > R2 (Fig. 2.5). 

Then the Gauss’s law for each surface can be written as: 

0
ε

i

S

Q
EdS = .                           (2.12) 

Let’s transform the left part of the Gauss’s law: 

                           

1,2,3 1,2,3

2

lateral ends

n n

S S

EdS E dS E dS= +   , 

where Еп is the projection of the electric field vector onto the normal 

to the Gaussian surfaces. 

Consider ends of the Gaussian cylinders (Fig. 2.5). For them, 

projection of the electric field vector onto the normal is zero (Еп = 0), 

then   

1,2,3

0

ends

n

S

E dS = , since Еп = 0 (Fig. 2.5), dS ≠ 0.   

All points on the lateral surface are in the same conditions with 

respect to the charge, which allows us to consider Eп as a constant 

value (Еп = const), then 

          

1,2,3 . 1,2,3 .

1,2,3 .
2

lat lat

n n n nlat
S S

E dS E dS E S E r h= = =   ,        (2.13) 

where r and h are the radius and the height of the auxiliary surface. 

The sum of the charges enclosed by the auxiliary surface, 

according to expression (2.12), depends on the radius of that surface. 

1. If r1 < R1, then Qі = 0, because there are no charges inside 

the charged cylinder. So, 

1

0
S

EdS = . 

Therefore, the electric field E = 0 at the point A. 

2. At the point B, the field is created by the charges inside the 

surface S2 that have surface densities 1 and –1 (the field due to the 

charges +1 and 2 is zero). By the Gauss’s law, we first determine 
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the field due to the charge 1 distributed over the surface of the 

cylinder of radius R1:  

1 12iQ R h=   .                                (2.14) 

Substitute expression (2.14) into equation (2.12). Taking into 

account the right part of the formula (2.13), we obtain: 

1 1
2 2

0

1 1
2 2

0

2
2 ;

;

R h
E r h

R
E r

 
 =




=



 

1 1
2

0 2

1
.

R
E

r


=


 

3. Similarly we determine the field due to the bound charges of 

surface density 1 (they are negative): 

1 1
2

0 2

1
.

R
E

r


 =


 

According to formula (2.6), 

( ) ( )1 0 11 .r E R =   −                            (2.15) 

It is important to note that in formula (2.15) E(R1) is the value of 

the total electric field in the dielectric material at the point R1. That 

value is unknown. We need to find its relation with the total field EВ 

across the dielectric. Since the electric fields E2 and E2 are inversely 

proportional to the distance r2, the total values E(R1) and EВ must 

also meet that condition: 

( )1 2

1

.
B

E R r

E R
=  

Then, 

( )2 1 .r BE E =  −  

Since, according to the formula (2.4, b), 

2 2 ,BE E E= −  

therefore, 

1 1

0 2

1
.B

r

R
E

r


=
 

                                  (2.16) 
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4. At the point C, which is at the distance r3 from the axis, the 

field is created only by free charges, the surface densities of which 

are 1 and 2. So, by the same algorithm we find the value of the 

electric field ЕС: 

1 1 2 2

0 3 0 3

1 1
.C

R R
E

r r

 
= −

 
 

The Gaussian method. 

1. Let’s calculate electric field at the point B by the Gaussian 

method. According to the Gauss’s law (2.1) 

2 1 12 2 ,D r h R h =    

so, 

                                              D = R11 / r2.  

2. Next, according to the relation between the electric field Е


 

and the electric displacement field D


, we find the desired value: 

( ) 1 1
2

0 2

1
,

r

R
E r

r


=
 

 

which coincides with the expression (2.16), found by the 

superposition method. 

 

ІІІ. Numerical calculations: 

( )
8

2

2 12

0,05 10 1
4.7 10

8.85 10 2 0.06
E r

−

−


=   

 
(V/m); 

( )
8 9

2

3 12 12

0.05 10 1 0.1 3 10 1
1.5 10

8.85 10 0.15 8.85 10 0.15
E r

− −

− −

  
=  −   

 
(V/m). 

 

Answer: E(A) = 0, E(B)  4.7102 (V/m), E(C)  1.5102 (V/m). 

 

2.2.5. Flux of the electric field vector and the electric 

displacement vector  
 

Example 2.5 

Electric field is created by a point charge q = 0.1 μC. Determine 

the flux ND of the electric displacement vector through a round 

surface of radius R = 30 cm. The charge is equidistant from the 
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boundary of the surface and is located at a distance a = 40 cm from 

its center. 

Given:                                І. Physical model  

q = 10-7 C  

R = 0.3 m 

a = 0.4 m  

ND– ? 

 

 

 

 

 

 

 

 

Figure 2.6 

 

ІІ. Mathematical model  

1. The flux ND of the electric displacement vector D  can be 

found similarly to the flux of the electric field vector:  

,D n

S

N D dS=  where cos .nD D=                      (2.17) 

The integral is taken over the area S; Dn is the projection of the 

electric displacement vector onto the normal direction to the surface 

element of area dS. 

2. In vacuum, the electric displacement D  is related to the 

electric field E  by the following relation (r = 1): 

0 .D E=                                         (2.18) 

3. Let’s use the DI-method (see p. 8). 

Divide the surface into infinitesimal rings. Choose one such ring 

of radius x and thickness dx. Then the infinitesimal area of the ring is 

equal to: 

dS = 2xdx. 
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Since the field due to the point charge has central symmetry, for 

any point on the ring the value of the electric field is the same and 

equals to: 

2 2 2

0

1
.

4

Q Q
E k

r a x
= =

 +
 

4. For the points on the ring, the angle  between the electric 

field vector E  and the normal to the surface of the ring remains 

unchanged (Fig. 2.6), therefore, 

( )
2 2

; cos .
a

E n E E
a x

=  =
+

                         (2.19) 

5. Substituting expressions (2.18) and (2.19) into formula (2.17), 

we obtain: 

( )
( )

0
0 0 3 22 2 2 2

00 0

; 2 2 .
4

R R

D

S

aa Q
N E n dS E xdx xdx

a x a x


=  =   = 

+ +
  

Integrate this expression within the limits from 0 to R: 

( )

( )
( )

.
11

2

11

2

1
2

44

2222

0

22
0 2

3
22

22










+
−=








−

+
−=

=
+

−=
+

+
= 

Raa

aQ

aRa

aQ

xa

aQ

xa

xadaQ
N

R
R

D

 

 

ІІІ. Numerical calculations: 
7

8

2 2

0.4 10 1 1
10

2 0.4 0.4 0.3
DN

−
−

 
= − = 

+ 
(C). 

 

Answer: ND  = 10 nC. 
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2.3. Problems for independent work 

 

Electric field due to point charges 

 

2.1. A distance d  between two point charges 
1 8Q =  nC and 

2 5,3Q = −  nC is 40 сm. Determine the electric field at the point in 

the middle between the two charges. What would the magnitude of 

the electric field be if the second charge were positive? 

2.2. Electric field is created by two point charges 
1 10Q =  nC and 

2 20Q = −  nC, which are at a distance 20d =  cm from each other. 

Determine the electric field E  at the point distant from the first 

charge by 
1 30r =  cm and from the second charge by 

2 50r =  cm. 

2.3. A distance d  between two positive point charges 
1 9Q Q=  

and 
2Q Q=  is 8 cm. At what distance from the first charge is the 

point where the resultant electric field E  is zero? Where would that 

point be if the second charge were negative? 

2.4. Two point charges 
1 2Q Q=  and Q Q= −  are at a distance d 

from each other. Find position of the point on the line passing 

through these charges where the resultant electric field E  is zero.  

2.5. Electric field is created by two point charges 
1 40Q =  nC 

and 
2 10Q = −  nC, which are at a distance 10d =  cm from each other. 

Determine the electric field E  at the point distant from the first 

charge by 
1 12r =  cm and from the second charge by 

2 6r =  cm. 

2.6. Identical point charges q  are located at the vertices of a 

regular hexagon with side a. Determine the electric field E  in the 

center of the hexagon if: a) the sign of all the charges is the same, b) 

the signs of the neighboring charges are opposite. 

2.7. N point charges 1 2, , ..., , ...,i Nq q q q  are located in vacuum at 

points with radii-vectors 1 2 i, , ..., , ..., Nr r r r . Write expression for the 

electric field E  at the point defined by the radius vector .r  

2.8. A positive point charge of 50 μC is located on the XY plane 

at the point with a radius-vector 0 2 3 ,r i j= +  where i  and j  are the 

unit vectors of the OX and OY axes. Find direction and magnitude of 
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the electric field vector at the point with radius-vector 8 5 .Er i j= −  

Here 
0r  and r  are measured in meters. 

2.9. There are point charges q  and q−  at the vertices of a square 

with a diagonal equal to 2l. Find magnitude of the electric field at the 

point located at the distance x from the center of the square and 

symmetrical about its vertices. 

 

Electric field due to a charge distributed over a circle and a 

sphere  
 

2.10. A metal sphere of radius 10R =  cm carries an electric 

charge 8Q =  nC. Determine the electric field E at the following 

points: a) at a distance 
1 1r = cm from the center of the sphere; b) on 

its surface; c) at a distance 
2 15r =  cm from the center of the sphere. 

Plot the E vs r graph.  

2.11. Two concentric charged metal spheres with radii 
1 6R =  cm 

and 
2 10R =  cm carry charges 

1 1Q =  nC and 2 0.5Q = −  nC, 

respectively. Determine the electric field E at the points distant from 

the center of the sphere by 
1 5r =  сm, 

2 9r =  сm, 
3 15r =  сm. Plot the 

graph of dependance ( )E r . 

2.12. Electric charge is uniformly distributed along a thin circle 

of radius 8R =  сm with a linear charge density 10 =  nC/m. What is 

the magnitude of electric field at the point equidistant from all points 

of the circle by a distance r = 10 cm? 

2.13. A charge q = 20 nC is uniformly distributed along a thin 

wire ring of radius R = 60 mm. 

a) Taking the axis of the ring as OX, find the electric field E  as a 

function of X (take the origin for X in the center of the ring); 

b) investigate the following cases: x  = 0 and | x | >> r; 

c) determine the maximum value of the electric field magnitude 

Em and the corresponding coordinates 
mx . 

2.14. A charge q = 0.7 nC is uniformly distributed along a thin 

semicircle of radius R = 20 сm. Find magnitude of the electric field 

in the center of that semicircle. 
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2.15. A thin wire ring of radius R carries electric charge q. Find 

magnitude of the electric field on the axis of the ring as a function of 

the distance l to its center. Investigate the obtained dependence if 

l >> R. Determine the maximum value of the electric field magnitude 

and the corresponding distance l. 

2.16. A point charge q is located in the center of a thin ring of 

radius R which carries a charge –q uniformly distributed along its 

length. Find magnitude of the electric field on the axis of the ring at 

the point located at a distance x from its center, if x >> R.  

2.17. A thin non-conductive ring of radius R is charged with a 

linear density 
0 cos =   , where 

0  is constant,   is the azimuthal 

angle. Find magnitude of the electric field: a) in the center of the ring; 

b) on the axis of the ring depending on the distance x from its center. 

Investigate the obtained expression for x >> R. 

2.18. A sphere of radius r is charged with a surface density 

 = a r , where a  is the constant vector; r  is the radius-vector of a 

point on the surface of the sphere relative to its center. Find 

magnitude of the electric field in the center of the sphere. 

 

Electric field due to a charged line  
 

2.19. A charge Q = 500 nC is uniformly distributed over a 

surface of a straight metal rod with diameter d = 5 cm and length 

l = 4 m. Determine magnitude of the electric field E at the point 

located on the perpendicular bisector of the rod at a distance a = 

= 1 cm from its surface. 

2.20. Electric charge is uniformly distributed along a length of 

an infinitely long straight conductor. Determine the linear charge 

density τ if the magnitude of the electric field E at the distance 

a = 0.5 m from the conductor along its perpendicular bisector equals 

200 V/m.  

2.21. Two long straight conductors are located parallel to each 

other and separated by a distance d = 16 cm. The conductors are 

uniformly charged with charges of opposite signs and equal linear 

densities |τ| = 150 μC/m. What is magnitude of the electric field E at 

the point equidistant from the both conductors by r = 10 cm?  
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2.22. Electric charge is uniformly distributed over a surface 

(σ = 1 nC/m2) of an infinitely long thin-walled metal tube with a 

radius R = 2 cm. Determine magnitude of the electric field E at the 

points distant from the axis of the tube by 
1 1r =  сm, 

2 3r =  cm. Plot a 

graph of the dependence E(r). 

2.23. Two long thin-walled coaxial tubes with radii R1 = 2 cm 

and R2 = 4 cm carry electric charges uniformly distributed along their 

length with linear densities τ1 = 1 nCl/m and τ2 = –0.5 nCl/m. The 

space between the tubes is filled with ebonite. Determine magnitude 

of the electric field E at the points located at distances 1 1r =  сm, 

2 3r =  сm, 3 5r =  cm from the axis of the tubes. Plot a graph of the 

dependence E(r).  

2.24. Electric charge is uniformly distributed with a linear 

density τ = 3 μC/m along a segment of a thin straight conductor of 

length l = 10 cm. Determine the electric field E at the point located 

on the axis of the conductor and distant from the proximal end of the 

segment by the distance equal to the length of that segment.  

2.25. A thin rod of length l = 10 cm is charged with a linear 

density τ = 400 nC/m. Find the electric field E at the point distant by 

r = 8 cm from the rod along the perpendicular to the rod, built from 

one of its ends. 

2.26. A thin rod of length l = 12 cm is charged with a linear 

density τ = 200 nC/m. Find the electric field E at the point located at 

a distance r = 5 cm from the rod along its perpendicular bisector. 

2.27. Electric field is created by a thin uniformly charged rod, 

which is bent as three sides of a square (Fig. 2.7). The length a of the 

sides of the square is 20 cm. The linear charge density τ is 500 nC/m. 

Determine the electric field E at the point A. 

2.28. Two thin straight rods of length l1 = 12 cm and l2 = 16 cm 

each are charged with equal linear densities τ = 400 nC/m. The rods 

make a right angle. Find the electric field E at the point A (Fig. 2.8). 

2.29. A very thin rod of length 2l is located in vacuum. The rod 

is charged with a linear density τ. Find magnitude of the electric field 

E as a function of the distance from the center of the rod for the 



 50 

points lying on the prolongation of its axis. Investigate the case 

r >> l.  

2.30. An infinitely thin thread is charged uniformly with a linear 

density τ. Using the Gauss’s law, find magnitude of the electric field 

E as a function of the distance from the thread. 

 

 
                Figure 2.7                                                  Figure 2.8 

 
                                      а                       b 

 Figure 2.9 

 

2.31. A thread is charged uniformly with a linear density τ and is 

bent as shown in Fig. 2.9, a, b. The curvature radius R is much 

smaller than the length of the thread. Using the result of the previous 

problem, find magnitude of the electric field E at the point O for the 

configurations (a) and (b). 

2.32. Two long parallel threads are uniformly charged with a 

linear density τ = 0.5 μC/m. The distance between the threads is l = 

= 45 cm. Find the maximum value of the electric field in the plane of 

symmetry of such a system, which is located between the threads. 
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Electric field due to a charged plane  
 

2.33. Electric field is created by two infinitely parallel plates, 

uniformly charged with surface densities 
1 2 =  nC/m2 and 

2 5 = −  nC/m2. Determine the electric field E: a) between the plates; 

b) outside the plates. Plot a graph of the change in the electric field 

along a line perpendicular to the plates. 

2.34. Two infinite parallel planes are uniformly charged with 

surface densities 
1 10 =  nC/m2 and 

2 30 = −  nC/m2. Determine the 

force of interaction between the plates per unit area. 

2.35. Two infinite planes carry equal charges distributed 

uniformly with surface density σ = 100 nC/m. The planes intersect at 

an angle   = 600. Find the electric field produced by the planes and 

draw a pattern of the electric field lines. 

2.36. Two infinite plates are placed at a right angle to each other. 

Electric charges are uniformly distributed over the surface of the 

plates with surface densities 
1 1 =  nC/m2 and 

2 2 =  nC/m2. 

Determine the electric field created by the plates. Draw a pattern of 

the electric field lines.  

2.37. Two identical rectangular parallel plates with sides 

a = 10 cm and b = 15 cm are located at a small distance (comparing 

to the linear dimensions of the plates) from each other. Charges Q1 = 

= 50 nC and Q2 = 150 nC are uniformly distributed over the surfaces 

of the plates. Determine the electric field between the plates. 

2.38. Two round parallel plates of radius R = 10 cm are at a 

small distance (comparing to the radius) from each other. Electric 

charges of the same magnitude but opposite signs are given to the 

plates: |Q1| = |Q2| = Q. Determine the value of that charge Q if the 

plates are attracted to each other with the force F = 2 mN. Assume 

that the charges are distributed uniformly over the surface of the 

plates. 

2.39. A parallel plate capacitor consists of two round plates of 

radius r, separated by a distance 2a (a << r). The plates have equal 

charges of opposite signs (+ and –). The origin is in the center of 

the capacitor and the X axis is perpendicular to the plates passing 
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through their centers. Investigate electric field at the points lying on 

the X axis. To do that, find: a) Е(х); b) Е(0), i.e. the field in the center 

of the capacitor; c) Е(а – 0), х = а – ,  → 0; d) Е(а + 0), i.e. the 

field at the point with coordinate х = а + ,  → 0; e) Е (х) for the 

case when х >> r. Neglect the plane of the plates. 

2.40. An infinitely long cylindrical surface of circular cross-

section is charged uniformly along its length with a surface density 

 = 0cos, where  is the polar angle of the cylindrical coordinate 

system where the axis OZ coincides with the axis of the considered 

surface. Find magnitude and direction of the electric field vector on 

the axis. 

 

Electric field due to a charge distributed throughout a volume 
 

2.41. A large flat plate of thickness d = 1 cm contains a charge 

uniformly distributed throughout a volume with a volume density 

ρ = 100 nC/m3. Find the electric field E near the central part of the 

plate and outside the plate at a small distance from its surface. 

2.42. A sheet of glass of 

thickness d = 2 cm is uniformly 

charged with a volume density 

ρ = 1 nC/m3. Determine the electric 

field E and the electric displacement 

D at the points A, B, C (Fig. 2.10). 

Plot a graph of the dependence E(x) 

(the x-axis is perpendicular to the 

glass surface). 

2.43. An ebonite solid sphere of 

radius R = 5 cm is uniformly charged 

with a volume density ρ = 10 nC/m3. 

Determine the electric field E and the 

electric displacement D at the points: a) at a distance 
1 3r =  cm from 

the center of the sphere; b) on the surface of the sphere; c) at a 

distance 
2 10r =  cm from the center of the sphere. Plot the 

dependencies E(r) and D(r). 

Figure 2.10 
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2.44. A glass sphere carries a uniformly distributed charge with a 

volume charge density ρ = 100 nC/m3. The inner radius R1 of the 

sphere is 5 cm, the outer radius R2 is 10 cm. Calculate the electric 

field E and the electric displacement D at the points distant from the 

center of the sphere by: a) 
1 3r =  cm; b) 

2 6r =  cm; c) 
3 12r =  cm. Plot 

the dependencies E(r) and D(r).  

2.45. A long paraffin cylinder of radius R = 2 cm is uniformly 

charged with a volume density ρ = 10 nC/m3. Determine the electric 

field E and the electric displacement D at the points distant by a) 

1 1r =  cm; b) 
2 3r =  cm from the axis of the cylinder. The both points 

are equidistant from the ends of the cylinder. Plot the dependencies 

E(r) and D(r). 

2.46. There is a spherical cavity containing no electric charges 

inside a sphere charged with a volume charge density ρ. The shift of 

the center of the cavity relative to the center of the sphere is 

determined by the vector a . Find the electric field E inside the 

cavity. Consider the case a  = 0. 

2.47. A space is filled with electric charge of density 

 = 0 exp(–r3), where 0 and  are constants. Find the electric field 

E  as a function of r . Investigate behavior of the field for large and 

small r  (consider r  is large for the condition r3 >> 1, small for the 

condition r3 << 1). 

 

Force on an electric charge in an electric field  

 

2.48. A thin thread is uniformly charged with a linear charge 

density τ = 2 μC/m. A point charge Q = 0.1 μC is located on the 

perpendicular bisector at a distance r = 1 cm from the thread, r is 

small comparing to the length of the thread. Determine the force F 

exerted on the charge Q. 

2.49. A large metal plate is uniformly charged with a surface 

charge density σ = 10 nC/m2. A point charge Q = 100 nC is located 

at a small distance from the plate. Find the force F exerted on the 

charge. 
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2.50. A point charge Q = 1 μC is located near a large uniformly 

charged plate opposite its middle. Determine the surface charge 

density σ of the plate if the force F = 0.06 N is exerted on the point 

charge.  

2.51. A thin thread with uniform charge distribution along a 

length (τ = 0.4 nC/m) is located parallel to an infinite plate, which is 

uniformly charged with a surface density σ = 20 nC/m2. Determine 

the force F exerted on the thread segment of length l = 1 m. 

2.52. An infinitely long straight thread is uniformly charged with 

a linear charge density 
3

1 10 =  nC/m. A thin uniformly charged 

circle with a linear charge density 
2 10 =  nC/m shares the same axis 

with the thread. Determine the force F that stretches the circle. 

Interaction between individual parts of the circle is neglected. 

2.53. Two parallel infinitely long straight threads are uniformly 

charged with linear densities 
1 100 =  nC/m and 

2 200 =  nC/m. 

Determine the force F of their interaction per unit length l = 1 m. The 

distance R between the threads is 10 cm. 

2.54. Two identical round plates of area S = 100 cm2 each are 

located parallel to each other. The charge 
1Q  of the first plate equals 

+100 nC, the charge 2Q  of the second plate equals –100 nC. 

Determine the force F of mutual attraction of the plates for the cases 

when the distance between them is a) 
1 2r =  сm; b) 

2 10r =  m. 

2.55. A metal sphere carries a charge 
1 100Q =  nC. There is a 

thin thread going along the electric field line of the sphere, beginning 

at the distance from the sphere’s surface which equals to the sphere’s 

radius. The length of the thread is equal to the radius of the sphere. A 

charge 
2 10Q =  nC is uniformly distributed along the length of the 

thread. Determine the force F acting on the thread if the radius of the 

sphere R is 10 cm. 

2.56. A thin infinitely long thread carries a charge τ per unit 

length and is located parallel to a conductive plane. The distance 

between the thread and the plane is l. Find: a) magnitude of the force 

acting per unit length of the thread; b) distribution of the surface 



 55 

charge density σ(x) over the plane (where x is the distance from the 

line on the plane, σ = max). 

 

Flux of an electric field vector and an electric displacement 

vector  

 

2.57. An infinite plane is uniformly charged with a surface 

charge density σ = 1 μC/m2. A circle of radius r = 10 cm is placed 

parallel to the plane at a certain distance from it. Determine the flux 

ФE
 of the electric field vector passing through that circle. 

2.58. A flat square plate with sides of length a = 10 cm is located 

at some distance from an infinite uniformly charged plane 

(σ = 1 μC/m2). The plane of the plate makes an angle 30 =  with 

the electric field lines. Find the flux ND of the electric displacement 

field through that plate.  

2.59. A point charge Q = 10 nC is located in the center of a 

sphere of radius R = 20 cm. Determine the flux ФE
 of the electric 

field vector through a part of the spherical surface with the area 

S = 20 cm2.  
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Topic 3. ELECTRIC POTENTIAL. ENERGY OF 

A SYSTEM OF ELECTRIC CHARGES  
 

What a student should know 
1. Potential of electrostatic field, units of the electric potential. 

2. Potential of the field due to a point charge. 

3. Potential of the field due to a charged sphere. 

4. Potential energy of interaction in a system of point charges. 

5. Work by forces of electrostatic field. 

6. Superposition principle for electric fields. 

7. Gauss’s law. 

8. Differentiation and integration method (DI-method). 

 

Literature: [6, § 25.1 – 25.8]; [7, § 7.1 – 7.3]; [9, § 24.1 – 24.5]; 
brief theoretical information. 

Tasks that determine normative level of knowledge and skills: [6: 

§25 No 3, 13, 16, 40, 42], examples 3.1 - 3.4. 

Homework: see Table A.3 on p. 139. 

 

 

3.1. Brief theoretical information 
 

 

Potential of the electric field is a value equal to the ratio of the 

potential energy of a point positive charge placed at a given point of 

the field to the value of that charge: 

 

.
W

q
 =  

Electric potential can be found as the work done by the electric 

field in carrying a unitary charge from that point to infinity without 

any acceleration: 

.
A

q
 =  



 57 

The SI unit for electric potential is V (volt). 

Potential is a scalar quantity. If at some point in space electric 

field is created by n charges with potentials φ1, φ2, φ3, ... φn, then the 

total potential is found by the superposition principle: 

φ = φ1  +  φ2  + φ3  +...+ φn,                             (3.1) 

where φі  > 0, if qі  > 0, and φі < 0 if qі < 0. 

Electric potential of the field due to a point charge q at the 

distance r from that charge: 

,
q

k
r

 =  

where k =
0

4

1


= 9 ּ·109 m/F is the coefficient of proportionality. 

Electric potential of the field due to a metal sphere of radius R 

and charge q at the distance r from the center of the sphere:  

inside the sphere (r > R):            ,
εr

q
k

R
 =                 

on the surface of the sphere (r = R):         ,
εr

q
k

R
 =     

outside the sphere (r < R):                   .
εr

q
k

r
 =             

Energy of interaction of a system of point charges is 

calculated using the principle of superposition of fields by the 

formula  

1

1
,

2

n

i i

i

W q
=

=                                          (3.2) 

where і is the potential of the field due to n – 1 charges (except for 

the i-th charge) at the point where the charge q is located. 
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3.2. Methodical guidelines 
 

 

1. If a problem considers a point charge, then electric potential at 

some point of the field distant by r from that charge is determined by 

the formula  

.
q

k
r

 =  

2. Electric potential due to a system of charges is found by the 

superposition principle (formula 3.1). One should remember that the 

potential is an algebraic scalar quantity, so the calculations must take 

into account the signs of the individual charges of the system, 

because they determine the signs of the potentials of the 

corresponding field components.  

3. For an arbitrary charge distribution, one can use the DI-

method. It is especially effective for determining electric potential 

due to charges distributed linearly or over a surface.  

4. In the case of volume charge distribution, the DI-method 

almost loses its effectiveness due to the complexity of integral 

expressions. In the cases where the charge system has a certain 

symmetry, the potential can be found by application of the Gauss’s 

law. 

5. Potential energy W of interaction of a system of point charges 

is determined by the work that the system can perform if the charges 

move away from each other to infinity. It can be found by formula 

(3.2). 

6. Potential energy of repulsion of charges of the same sign is 

positive and increases if the charges move towards each other. 

Potential energy of attraction of charges of opposite signs is negative 

and increases to zero if one of the charges moves away from the 

other to a long distance (r → ). 
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3.2.1. Potential energy and potential of the electric 

field due to a point charge  

 
 

Example 3.1 

Determine the potential energy W of a system of four point 

charges located at the vertices of a square with side a = 10 cm. The 

charges have the same values q = 10 nC, but two of them are 

negative. Consider two possible cases of arrangement of the charges. 

 

Given: 

q1 = q2 = – q3 = – q4 = q = 10 nC = 110-8 C 

a = 10 сm = 10-1 m 

W – ? 

 

І. Physical model  
 

 

а                                          b 

Figure 3.1 

 

ІІ. Mathematical model  

1. Potential energy of interaction of a system of point charges 

(q1, q2, ... , qn) is equal to the sum of the interaction energies of 

separate charge pairs: 

,
i j

ij i j

i j ij

q q
W q k

r

=  =                                  (3.3) 
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where rij is the distance between the charges qi and qj in the separate 

pair. 

2. According to formula (3.3) in the system of four charges (q1, 

q2, q3, q4) the potential energy of interaction is equal to: 

12 13 14 23 24 34.W W W W W W W= + + + + +  

3. All the charges have the same value. The distances between 

them are, respectively: 

13 24 2,a a a= =  
14 12 34 23 .a a a a a= = = =  

4. In the first case (Fig. 3.1, a), the potential energy of the charge 

system is equal to: 

.
2

2

2

1

2

11111

2

2









−=

=







−−−+−=

a
kq

aaaaaa
kqW

 

Here we take into account that the potential energy is an 

algebraic quantity, i.e., its sign depends on the sign of charges (see 

guidelines on p. 58, no. 6). 

5. In the second case (Fig. 3.1, b), the potential energy of the 

system is: 

( )
.

2

122
2

2

24

2

1

2

11111

22

2

a
kq

aa
kq

aaaaaa
kqW

−
−=








−−=

=







++−−−−=

 

 

ІІІ. Numerical calculations: 

 

а) 
9 8 2

6

1

9 10 (10 ) 2
12.7 10

10
W

−
−

−

 
= − = −  (J); 

               б) 
( )

2
9 8

6
1

9 10 10 2 2 1
23.1 10

10 2
W

−

−
−

 
 
 

  −
= − = −  (J). 

 

Answer: а) 12.7W = − μJ; b) W = – 23.1 μJ. 
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3.2.2. Electric potential of the field due to charges 

distributed along a line  
 

 

Example 3.2 

Electric charge with a linear density τ = 10 nC/m is uniformly 

distributed along a segment of a thin straight conductor. Calculate 

the potential φ created by that charge at the point on the axis of the 

conductor, which is distant from the nearest end of the segment by 

the distance equal to the length of that segment. 

 

Given:                                             

  = 10-8 C/m 

А – ?                        

І. Physical model  

 
Figure 3.2 

 

ІІ. Mathematical model 

Let’s use the DI-method (see p. 8). 

1. Consider an element dx of the segment of the conductor which 

carries an elementary charge dq = τdx (Fig. 3.2), where τ is the linear 

charge density for the charge element located at the distance x from 

the point A. 

2. The charge dq creates electric field, the potential dφ of which 

at the point A can be calculated by the formula  

.A

dx
d k

x


 =  

3. Electric potential created by all the elements dx of the segment 

at the point A is determined by the superposition principle, and the 

integration variable x varies within the limits from l to 2l, that is: 
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2
2 2

ln  = ln 2

l
l

A A
l

l

k dx l
d k k

x l


 =  = =    . 

 

ІІІ. Numerical calculations: 
9 8= 9 10 10 ln 2 62.4A

−    = (V). 

 

Answer: 62.4A =  V. 

 

3.2.3. Electric potential of the field due to charges 

distributed over a surface  
 

Example 3.3 

Find the potential at the edge of a thin disk of radius R = 20 cm, 

which carries uniformly distributed electric charge with a surface 

density σ = 0.25 μC/m2. 

  

Given:                                            І. Physical model  

R = 0.2 m  

 = 0.2510-6 C/m2 

 – ? 

 

 

 

                      

                   

 

 

 

 

 

                            Figure. 3.3. 

 

 

 

                            Figure 3.3 
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ІІ. Mathematical model 

Let’s use the DI-method. 

1. Mark the point A on the disk (Fig. 3.3) and divide the disk 

into a system of infinitely thin circular ribbons with centers in that 

point. Consider one of the ribbons of radius x and thickness dx. 

2. Make some geometric and trigonometric transformations 

(Fig. 3.3). Divide the side AD in half. Then, from the right triangle 

OAB we obtain:  

/ 2
cos

2

x x

R R
 = = ; 

hence, we have that  = arcсos (x/2R), the length of the ribbon is 

l = 2x = 2xarсcos (x/2R), its infinitesimal area is dS = ldx. 

3. The infinitesimal charge of the ribbon dq = dS ( is the 

surface charge density) produces electric field, and its potential d at 

the point А can be calculated by the formula  

0

.
4

dS
d

x


 =


                                      (3.4) 

4. Find the potential at the edge of the thin disk at the point A by 

integrating expression (3.14) within the limits from +R to –R: 

( )

0

2 2

0 0

arccos
4 2

arccos 2 .
2 2

R

R

R

R

x
d dx

R

x R
x R x

R

+

−

+

−


 =  = =



  
= − − = 

  

 
 

 

ІІІ. Numerical calculations: 
6

3

12

0.25 10 0.2
1.8 10

3.14 8.85 10

−

−


 = = 

 
(V). 

 

Answer: 1.8=  kV. 
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3.2.4. Electric potential of the field due to charges 

distributed throughout a volume  
 

Example 3.4 

A charge q = 1 μC is uniformly distributed throughout a volume of a 

sphere of radius r = 10 mm. Find the potential in the center of the 

sphere. 

 

Given:                                      І. Physical model  

q = 10-6 C 

r = 10-2 m 

 – ? 

 

 

 

                                                         

 

 

 

 

 

 

 

 

                  Figure 3.4 

 

ІІ. Mathematical model  

Let’s use the DI-method (see p. 8). 

1. Divide the sphere into infinitesimal layers of radii r and 

thickness dr. Each layer carries a charge dq = ρdV, where ρ is the 

volume charge density equal to: 

,
q

V
 =  

then:  
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2 2

3 3

4 3
,

4 /3

dV r dr r dr
dq q q q

V R R


= = =


 

where dV is the volume of the layer; V is the volume of the sphere. 

2. All the charges dq are at the same distance r from the center 

of the sphere and produce the following potential in the center: 

3

0 0

1 1
3 .

4 4

dq q
d rdr

r R
 = = 

 
                    (3.5) 

3. Integrating expression (3.5) within the limits from 0 to R, we 

obtain the potential in the center of the sphere: 
2

3 3

0 0 00

1 3 1 3 1 3
.

4 4 2 4 2

R
q q R q

rdr
R R R

 = = =
    

 

ІІІ. Numerical calculations: 
6

9 6

2

3 10
9 10 1.35 10

2 10

−

−


 =  = 


(V). 

Answer:   = 1.35 МV. 

 

 

3.3. Problems for independent work 
 

 

Potential energy and electric potential of the field due to point 

charges  
 

3.1. A point charge Q = 10 nC, located at some point in the field, 

has a potential energy П = 10 μJ. Find the potential φ at that point of 

the field. 

3.2. A work A = 4 μJ is done by external forces in moving a 

charge Q = 20 nC from one point in the field to another. Determine 

the work A1 by the field forces and the potential difference  

between these two points. 

3.3. Electric field is created by a positive point charge Q1 = 6 nC. 

A positive charge Q2 is moved from the point A in the field to the 
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point B (Fig. 3.5). What is the change in the potential energy  per 

unit of the moved charge if r1 = 20 сm and r2 = 50 cm? 

3.4. Electric field is created by a positive point charge 

Q1 = 50 nC. Without using the concept of potential, determine the 

work A by external forces in moving a point charge Q2 = –2 nC from 

the point C to the point B (Fig. 3.6), if r1 = 10 сm, r2 = 20 сm. Also, 

determine the change  in the potential energy of the system of 

charges. 

 
Figure 3.5                                              Figure 3.6 

 

3.5. Electric field is produced by a point charge Q = 1 nC. 

Determine the potential φ of the field at the point distant from the 

charge by r = 20 cm. 

3.6. Determine the potential  of the electric field at the point 

which is distant from the charges Q1 = – 0.2 μC and Q2 = 0.5 μC by 

r1 = 15 cm and r2 = 25 cm, respectively. Also determine the 

minimum and the maximum distance between the charges for which 

this solution is possible.  

3.7. Charges Q1 = 1 μC and Q2 = –1μC are separated by a 

distance d = 10 cm. Determine the electric field E and the electric 

potential φ at the point distant by r = 10 cm from the first charge and 

lying on the line passing through the first charge perpendicular to the 

direction from Q1 to Q2. 

3.8. Determine the potential energy  of a system of two point 

charges Q1 = 100 nC and Q2 = 10 nC located at a distance d = 10 cm 

from each other. 

3.9. Find the potential energy of a system of three point charges 

Q1 = 10 nC, Q2 = 20 nC and Q3 = – 30 nC located at the vertices of 

an equilateral triangle with a side a = 10 cm. 
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3.10. What is the potential energy  of a system of four identical 

point charges Q = 10 nC located at the vertices of a square with a 

side a = 10 cm? 

3.11. Electric field is created by two point charges +2Q and –Q, 

located at a distance d = 12 cm from each other. Determine the 

geometric location of the points on the plane for which the electric 

potential is zero (write the equation of the line of zero potential). 

 

Electric potential of the field due to linearly distributed charges  

 

3.12. A charge Q = 1 nC is uniformly distributed along a thin rod 

of length l = 10 cm. Determine the potential φ of the electric field at 

the point lying on the axis of the rod at a distance a = 20 cm from its 

nearest end. 

3.13. Electric charge is uniformly distributed along a thin circle 

of radius R = 10 cm with a linear charge density τ = 10 nC/m. 

Determine the potential φ at the point lying on the axis of the circle 

at a distance a = 5 cm from its center. 

3.14. Electric charge is uniformly distributed along a length of 

an infinitely long thin straight thread with a linear charge density 

τ = 0.01 μC/m. Determine the potential difference  of the two 

points of the field distant from the thread by r1 = 2 сm and r2 = 4 cm. 

3.15. Thin rods make a square with a side a. The rods are 

charged with a linear density τ = 1.33 nC/m. Find the potential φ in 

the center of the square. 

 

Electric potential of the field due to charges distributed over 

a surface 

 

3.16. A metal ball of diameter of d = 2 cm is negatively charged 

to the potential φ = 150 V. How many electrons are there on the 

surface of the ball?  

3.17. One hundred identical droplets of mercury are charged to 

the potential φ = 20 V each and then merge into one large drop. 

What is the potential 1 of the resultant drop? 

3.18. Electric charge is uniformly distributed over an infinite 
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plane with a surface charge density σ = 10 nC/m2. Determine the 

potential difference  of the two points if one of them is located on 

the plane and another is distant from the plane by d = 10 cm. 

3.19. Two infinite parallel planes are at a distance d = 0.5 cm 

from each other. Charges with surface densities 1 = 0.2 μC/m2 and 

1 = −0.3 μC/m2 are uniformly distributed over a surface of the 

planes. Determine the potential difference U between the planes. 

3.20. A charge Q = 1 nC is uniformly distributed over a surface 

of a thin round plate. The radius R of the plate is 5 cm. Determine the 

potential φ of the electric field at the two points: a) in the center of 

the plate; b) at the point lying on the axis perpendicular to the surface 

of the plate and distant from its center by a = 5 cm. 

3.21. There are two concentric metal spheres, the radii of which 

are R1 = 3 сm and R2 = 6 cm. The space between the spheres is filled 

with paraffin. The charge Q1 of the inner sphere is –1 nC, the charge 

Q2 of the outer sphere is 2 nC. Find the potential φ of the electric 

field at a distance: a) r1 = 1 cm; b) r2 = 5 cm; c) r3 = 9 cm. 

3.22. Determine the potential φ to which you can charge an 

isolated metal ball of radius R = 10 cm, if the air breakdown occurs 

at the electric field E = 3 MV/m. 

 

Electric potential of the field due to charges distributed 

throughout a volume 
 

3.23. A flat glass plate of thickness d = 2 cm is uniformly 

charged with a volume density ρ = 10 nC/m3. Find the potential 

difference  between the point on the surface of the plate and the 

point inside the plate. Assume that the size of the plate significantly 

exceeds its thickness. 

3.24. An ebonite ball is hollow inside and charged uniformly 

with a volume density ρ = 2 nC/m3. The inner radius of the ball is 

R1 = 3 cm, the outer is R2 = 6 cm. Find the potential φ of the electric 

field at the points: 1) on the outer surface of the ball; 2) on the inner 

surface of the ball; 3) in the center of the ball. 

3.25. A solid paraffin ball of radius R = 10 cm is uniformly 

charged with a volume charge density ρ = 1 nC/m3. Find the 
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potential φ of the electric field in the center of the ball and on its 

surface. Plot the dependence  (r).   

3.26. Potential of the electric field in some region of space 

depends only on the coordinate x according to the law  = – ах3 + b, 

where a and b are constant. Find the volume charge distribution (х). 
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Topic 4. POTENTIAL GRADIENT. WORK IN 

MOVING AN ELECTRIC CHARGE. MOTION 

OF CHARGED PARTICLES IN ELECTRIC 

FIELD 

 

What a student should know 
1. Relation between potential gradient and electric field. 

2. Work in moving an electric charge. 

3. Potential energy of a charged particle. 

4. Superposition principle for electric fields. 

5. Gauss’s law. 

6. Newton’s second law. 

7. Law of conservation of energy and momentum. 

8. Differentiation and integration method (DI-method). 

 

Literature: [6, § 25.3 – 25.4, 23.7]; [7, §7.4 – 7.6]; [9, § 24.6 – 

24.8, 22.6]; brief theoretical information. 

Tasks that determine normative level of knowledge and skills: [6: 

§ 25 No 17, 23, 35; § 23 No 46], examples 4.1– 4.6.  

Homework: see Table A.3 on p. 139. 

 

 

4.1. Brief theoretical information 
 

 

Relation between electric potential and electric field: 

grad .E = −                                         (4.1) 

In the case of electric field of spherical symmetry,  

,r

r
E e

r r r

 
= − = −

 
                                (4.2) 

or in the scalar form: 

      
x

E
x




−= .                                   (4.3) 
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And in the case of a uniform field when the electric field vector is 

constant at every point in space, the relation is: 

1 2 ,E
d

 −
=  

where 1 and 2 are the potentials of the points of two equipotential 

surfaces; d is the distance between these surfaces along the electric 

field line. 

Potential difference and electric field are related by 
2 2

1 2

1 1

.nEdr E dr − = =                               (4.4) 

Gauss’s law in the differential form: 

0

,



=




+




+




= Ediv

z

E

y

E

x

E
Ediv zyx


,  

where  is the volume charge density. 

Work done by the electric field in carrying a point charge q′ 

from one point of the field with potential 1 to another point with 

potential 2 equals  

),('
21

= −qA  or  ,' ldEqA


=                     (4.5) 

for the uniform field: 
,cos' = ElqA  

where l is the displacement,  is the angle between the vector E  and 

the direction of the displacement. 

Work done by external forces is equal in absolute value to the 

work done by the field forces and opposite in sign: 

. .ext f field fA А= − . 

Potential energy of a charged particle in the electric field: 

= Q . 

Law of conservation of energy and momentum: 
П ,

,i

E T const

p const

= + =

 =
                               (4.6) 

where T is the kinetic energy of the body; П is the potential energy. 
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4.2. Methodical guidelines 
 

1. General method for determining potential difference is based 

on formula (4.4), which relates electric field and electric potential 

difference between two points in the field. It is important that integral 

in (4.4) may be calculated along any line joining these two points. 

2. If spatial distribution of electric potential in an inhomogeneous 

field is known, then formulas (4.1) – (4.3) allow to find the electric 

field vector. The problem is simplified in the case of symmetric fields, 

when direction of the vector E  is given. In such a case, it is enough to 

take the derivative of the potential with respect to the coordinate in 

the given direction. 

3. To determine the work by forces of electric field in moving an 

electric charge, it is necessary to make an equation based on the laws 

of conservation and conversion of energy. In the case of interaction of 

charged bodies and redistribution of charges that occurs, the equations 

are made in accordance with the law of conservation of charge. The 

resulting system of equations is solved relative to the desired value. 

4. The work done by electric field in carrying a point charge q is 

determined by formula (4.5). The electric field potentials 1 and 2 

can be determined using the DI-method or the Gauss’s law. 

5. One should remember that the field created by an electric 

charge is potential, which means that the work by the field does not 

depend on the trajectory followed in the field, but depends on the 

initial and final positions. 

6. In many problems considering motion of a particle, it is 

important to choose a correct reference frame depending on the 

conditions given in the problem. Particular attention should be paid to 

the properties of the reference frame where motion of the particle is 

considered: is the reference frame closed? If the system is closed, the 

law of conservation of energy and momentum (4.6) is valid. 

7. In order to solve problems, it may be necessary to write the 

equation of motion of a particle – the Newton’s second law. One 

should remember that the electric force is ,F qE=  where q is an 

algebraic quantity. 



 73 

8. During motion of a particle, a force F  always (except when 

v E⊥ ) does work that replaces the kinetic energy of the particle. 

9. When solving problems on particle collisions, it is convenient 

to solve the problem in the system of the center of mass. The total 

momentum of a system of particles in the C-system is always zero, 

while the momentums of the both particles in such a system are the 

same in magnitude and opposite in direction. Kinetic energy of the 

both particles can be expressed in terms of the reduced mass and the 

relative velocity of the particles. 

 

 

4.2.1. Potential gradient and its relation with electric field  
 

Example 4.1 

Determine the potential difference between two metal balls of 

radius r0 = 0.5 cm each, separated by a distance r = 1 m from each 

other, if the charge of the first ball is q1 = 1.5 nC, and the charge of 

the second ball is q2 = –1.5 nC. 

 

Given:                                              І. Physical model  

r0 = 0.005 m 

r = 1 m 

q1 = 1.510-9 C 

q2 = – 1.510-9 C 

А – В – ? 

 

 

                                  Figure 4.1 

 

1. Since r >> r0, mutual attraction of the balls can be neglected 

when considering the forces of mutual repulsion of the charges of the 

same sign within each ball. That is, we take that distribution of 

charges over the surface of the balls is uniform.  

2. The potential difference is determined by formula (4.4). To use 

that formula, first we must determine the electric field E at any point 
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in the space between the balls. To do that, we use the superposition 

principle for electric fields (see formula 2.3). 

3. Let’s choose the trajectory of integration along the line AB 

(Fig. 4.1). The electric field vectors due to the both balls at all the 

points of the line are directed from A to B (from positive charge to 

negative).  

ІІ. Mathematical model  

1. The net electric field at the point C, located at the distance x 

from the center of the left ball, is equal to:  

       1 2 ,cE E E= +   

or in projections onto the OX axis: 

 
21

EEE += , 

where Е1 and Е2 can be found by formula (2.2):  

 
2

0

1
.

4

q
E

r
=


 

Then we have: 

   
( ) ( )










−
+


=









−
+


=

22

0
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1

0
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1

xrx

q

xr

q

x

q
E

C
, 

where q = q1= q2 is absolute value of each charge. 

2. By formula (4.4) we determine the potential difference: 

( )

0 0

0 0

22

0

1 1
.

4

r r r r

A B

r r

q
Edx dx

x r x

− −  
 − = = − 

  − 
   

After integrating and making some simplifications, we get: 

( )

( )
0

0 0 0

2 21
.

4
A B

q r r

r r r

−
 − =

 −
 

3. Given the ratio r >> r0, we have: 

0 0

1 2
.

4
A B

q

r
 − =


 

ІІІ. Numerical calculations: 
9

9 3

3

2 1.5 10
9 10 5.4 10

5 10
A B

−

−

 
 − =  = 


(V). 

Answer: А – В = 5.4 kV. 
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Example 4.2 

Two coaxial rings, each of radius R are made of thin wire. The 

rings are located at a small distance l from each other (l << R) and 

have charges q and –q. Find the electric potential and the electric 

field on the axis of the system as a function of the coordinate x. Draw 

approximate graphs of the obtained dependences in one figure. 

Investigate the obtained functions if  х  >> R. 
 

Given:                                        

R, а 

а << R 

q, – q 

  – ? 

Ex – ?  
 

І. Physical model  
 

 

 

        Figure 4.2 

 

    ІІ. Mathematical model  

According to the superposition principle, the potential created by 

two charged rings is equal to the sum of the potentials created by each 

charged ring separately: 

  = 1 + 2.                            (4.7) 

Let’s use the DI-method. 

1. Divide the rings into infinitesimal elements dx with charges dq, 

which can be taken as point charges. Then the potential produced by 

the charge dq at the distance r+ is: 

+


=
r

dq
d

0

1

4
,                                   (4.8) 

and the potential produced by the charge dq at the distance r- is: 
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−


=
r

dq
d

0

2

4
,                                   (4.9) 

where r+ and r- are the distances from the rings’ elements to the point 

O, which do not change if we consider one element of the ring or 

another.  

From Fig. 4.2 we have: 

2

2

2

2

2
,

2








++=








−+=

−+

l
xRr

l
xRr .  

2. Integrate expressions (4.8) and (4.9):  

( )

,

2
4

2
4

1
2

2

0

2

2

0

1









−+

=









−+

= 
l

xR

q
dq

l
xR

q

     (4.10) 

because regardless of the nature of the charge distribution 
( )

.
q

dq q=  

The potential 
2

  is respectively equal to: 

                
2

2

0

2

2
4 








++

−=
l

xR

q
.                     (4.11) 

3. Substituting expressions (4.10) and (4.11) into formula (4.7), 

we obtain: 
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2

1

4
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q

l
xR

l
xR

q

 

In the last expression we ignore the component l/2 which is small 

comparing to R and obtain the final formula:   
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( ) 2

3
22

0
4 Rx

xql

+
= .                         (4.12) 

4. Use formula (4.3) and expression (4.12) to determine the 

electric field on the axis of the system: 

( )

( )
( )

( )
( ) ( )

,
2

4

2

2

3

4
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0
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+

+
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−=

Rx

Rxql

Rx

xRx

Rx

Rxql

Rx

x

dx

dql

x
E

x

 

where Ex is the projection of the vector E  onto the X axis. 

5. For х  >> R we can neglect the component R2 comparing to 

х2, then the potential 
2

04

ql

x
 


 (for large | х | the potential decreases 

proportional to the square of the distance from the rings) and the 

electric field 
3

0
4 x

ql
E


  (for large | х | the field decreases as the cube 

of the distance from the rings). 

6. Draw approximate graphs of E (х) and  (х) (Fig. 4.3). 

 
Figure 4.3 

 

Answer: 
( )

( )

2 2

5 2
2 2

0

2
;

4
x

R xql
E

x R

−
=

 +
 

( )
3 2

2 2

0

.
4

qlx

x R
 =

 +
  

The corresponding graphs are shown in Fig. 4.3. 
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Example 4.3. 

Electric potential of the field inside a charged sphere depends 

only on the distance from its center as  = ar2 + b, where a and b are 

constants. Find the volume charge distribution (r) inside the sphere. 

 

Given:                                 І. Physical model  

 = ar2+b 

a, b 

 (r) – ? 

 

 

 

 

 

 

       Figure 4.4 

 

ІІ. Mathematical model  

1. Let’s use the differential form of the Gauss’s law: 

0

div .
yx z

EE E
E

x y z

  
= + + =

   
 

As far as E  = –gradφ, we can write: 

,
0

2

2

2

2

2

2




=












+




+




−=




+




+




=

zyxz

E

y

E

x

E
Ediv zyx


 

therefore, 
2 2 2

0 2 2 2
.

x y z

      
 = − + + 

   
                           (4.13) 

2. As given, ( )2 2 2 2 .ar b a x y z b = + = + + +  Substitute this 

expression into equation (4.13) and take the partial derivative of the 

second order. Therefore, 
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( )( ) ( )( )

( )( )

2 2
2 2 2 2 2 2

0 2 2

2
2 2 2

02
6 .

a x y z b a x y z b
x y

a x y z b a
z

  
 = − + + + + + + + +

 


+ + + + = − 
 

 

The negative sign means that the sphere is uniformly charged 

with the negative charge. 

Answer: ( ) 06 .r a = −   

 

4.2.2. Work in moving an electric charge in electric field  
 

Example 4.4 

Electric charge is uniformly distributed along an infinitely long 

straight thread (τ = 0.1 μC/m). Determine the work А12 by the field 

forces to move a charge q′ = 50 nC from the point 1 to the point 2. 

 

Given:                                             

 = 0.110-6 C/m 

q′ = 510-8 C 

0 = 8.8510-12 F/m 
 
А12 – ? 

 

І. Physical model  

1. According to the law of conservation of 

energy, the work by the field forces to move a 

charge from one point in the field to another is 

equal to: 

A12 = ΔΠ = q(φ1 – φ2), 

 

where q is the moved charge, 1 and 2 are the potentials produced 

by the charged thread at the points 1 and 2, respectively. 

2. The potential difference is determined by formula (4.4). 

Configuration of the charges allows us to assume that the field has 

axial symmetry. Thus, using the Gauss’s law, first we find the electric 

field created by the charged thread. 

3. Draw the auxiliary Gaussian surfaces with radii r1 and r2 (Fig. 

4.5). For each surface, the Gauss’s law has the form: 

 

1,2
0
ε

i

S

Q
EdS = . (4.14) 
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    Figure 4.5 

 

ІІ. Mathematical model  

1. Similarly to the example (2.4), we find the electric field E  on 

the Gaussian surfaces. To do that, we transform the left side of the 

Gauss’s law: 

                           

1,2 1,2

2

lateral ends

n n

S S

EdS E dS E dS= +   , 

where Еп is the projection of the electric field vector onto the normal 

to the Gaussian surfaces. 

Consider the ends of cylinders of the Gaussian surfaces (Fig. 2.5). 

For them, the projection of the electric field vector onto the normal is 

zero (Еп = 0), then  

1,2

0

ends

n

S

E dS = , since Еп = 0 (Fig. 4.5), dS ≠ 0. 

All points of the lateral surface are in the same conditions with 

respect to the charge, which allows us to consider Eп as a constant 

value (Еп = const), then 

1,2 . 1,2 .

1,2 .
2

lat lat

n n n nlat
S S

E dS E dS E S E r h= = =    ,        (4.15) 
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where r and h are the radius and the height of the auxiliary surfaces. 

Substitute the right side of equation (4.15) into equation (4.14) 

0

2


=
 i

n

Q
rhE , 

or 

0

2



=

h
hrE

n
, 

where  is the linear charge density, and h ~ l.  

Then the electric field due to the infinitely long uniformly 

charged thread is:               

r
EEE

rn

0
2


===


. 

2. Use formula (4.4) to find the potential difference in the field 

between the points 1 and 2 (the integration limits are from a to 2a): 

2ln
2

ln
22

0

2

0

2

0

2

21




=




=




==− 

a

a

a

a

a

a r

dr
Edr . 

3. The work done by the field to move the charge q′ from the 

point 1 to the point 2 is: 

( ) 2ln
2

0

2112




=−= qqA . 

 

ІІІ. Numerical calculations: 
8 6

12 12

5 10 0.1 10
ln2 62.4

2 1 8.85 10
A



− −

−

  
= =

  
(μJ). 

Answer: 12 62.4A =  μJ. 

 

4.2.3. Motion of charged particles in an electric field  
 

Example 4.5 

An electron (with initial speed v0 = 0) flies out of the point 1 on 

the surface of an infinitely long negatively charged cylinder 

(τ = 20 nC/m). Determine the kinetic energy T of the electron at the 
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point 2 located at the distance of 9R from the surface of the cylinder, 

if R is its radius. 

 

Given:                                               І. Physical model  

R 

L = 9R 
8τ 2 10−=   C/m 

v0 = 0  
 
T2 – ? 

 

              

 

 

 

 

 

                                                    

Figure 4.6 

 

ІІ. Mathematical model  

1. The infinitely long negatively charged cylinder with a linear 

charge density τ creates electric field around it. That field is 

inhomogeneous but symmetrical about the axis of the cylinder, and its 

magnitude  

0

1 2
( ) .

4 r

E E r
r


= = −

 
                               (4.16) 

The field lines are radially (perpendicularly) approaching the axis 

of the cylinder. 

2. Since the electron and the cylinder are charged with the same 

signs, the electron is repelled from the cylinder by the force: 
,F eE= −  

where е is the elementary charge (е = 1.610-19 C). 

3. As given, the initial speed of the electron is zero (v0 = 0), so its 

kinetic energy Т1 at the point 1 is also zero. Under the action of the 

force F, it starts to move along the field line in a rectilinear trajectory.  
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4. The kinetic energy T2 of the electron at the point 2 is found by 

formula (4.5), and we use the work - kinetic energy relation:  

 ( )
2

2

1

.l

L

T A e E dl e E r dr= = =   

Taking into account (4.16) and the fact that the trajectory of the 

electron is a straight line, we integrate within the limits from R to 

R +9R: 
( ) 109

2

0 0 0

2
ln ln10,

4 2 2

RR R

r r rR R

dr e e
T e r

r

+
  

= = =
       

where r = 1 (we assume that the electron is flying in vacuum). 

 

ІІІ. Numerical calculations: 
19 9

16

2 12

1.602 10 20 10
ln10 1.327 10

2 8.85 10
T

− −
−

−

  
=   

  
 (J)  828.18 (eV). 

Answer: Т2 = 828.18 eV. 

 

Example 4.6 

A proton approaches an  - particle. The speed v1 of the proton 

in a laboratory (stationary) reference frame at a sufficiently large 

distance from the  - particle is equal to 300 km/s, and the speed v2 of 

the  - particle is considered to be zero. Determine the minimum 

distance rmin, at which the proton can approach the  - particle. The 

charge of the  - particle is equal to two elementary positive charges, 

and its mass m2 can be considered four times greater than the mass 

m1 of the proton. 

 

Given:                                            І. Physical model  
5

1ν 3 10=  m/s 

2ν 0,= α 2q e=  

2 14m m=  

е = 1.6  10-19 C                                                    

mp = 1.6 10-27 kg                                              

rmin – ?                                                  Figure 4.7 
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ІІ. Mathematical model  

1. The proton and the  - particle are positively charged, then the 

repulsive forces will act between them. The proton will move 

uniformly slowing down with constant acceleration, while the  -

particle will move uniformly speeding up with constant acceleration 

(because we consider that it is at rest at the initial moment of time).  

2. Let’s take the origin of the coordinate system in the center of 

mass of the system of the two particles (C-system*). 

To determine the minimum distance that the proton can approach 

the  - particle, we apply the law of conservation of energy, according 

to which the total mechanical energy E  of an isolated system does 

not change, that is 

,E T= +  

where Т  is the sum of kinetic energies of the both particles relative to 

the center of mass;   is the potential energy of the system of charges. 

3. As given, at the initial moment of time the proton is quite far 

from the  - particle, so the potential energy can be neglected 

( 0 = ). Therefore, for the initial moment, the total energy is equal to 

the kinetic energy of the particles, that is E T= . 

At the final moment, when the particles get as close as possible, 

the velocity and the kinetic energy become zero, and the total energy 

equals to the potential energy: E =  . Therefore, according to the 

law of conservation of energy: 

.Т =   

The kinetic energy Т  in the C-system has the form: 
2

12 ,
2

T


=  

where ( )1 2 1 2/m m m m = +  is the reduced mass; 12 1 2ν ν ν= −  is the 

relative velocity (velocity of one particle relative to another). 

 
This problem considers collision of particles, so, for convenience, we will 

further denote all the values related to the system after the “collision” (meaning 

the moment of time that corresponds to the maximum interaction between the 

particles) with a dash; and the values in the C-system – with an above tilde () 

sign. 
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Substituting the expression for the potential energy in vacuum, 

we obtain the relation to find the desired distance: 

( )2
1 2 1 212 1 2 1 2

min 22

0 min 0 12 0 1 2 1 2

221 1 1
,

2 4 4 4

m m q qq q q q
r

r m m

+
=  = =

     − 
 

where 
1 2,q q  are the charges of the proton and the  - particle, 

respectively. 

4. Given that the charge of the  - particle is equal to two 

elementary positive charges, and its mass 
2m  can be considered four 

times greater than the mass 
1m  of the proton, we obtain: 

2

min 2

0 1

5
.

4 p

e
r

m
=

 
 

 

ІІІ. Numerical calculations: 
2 38

12

min 12 27 10

5 1.602 10
7.67 10

4 8.85 10 1.672 10 9 10
r

−
−

− −


=  

    
(m). 

Answer: rmin = 7.67 pm.  

 

 

4.3. Problems for independent work 
 

Potential gradient and its relation with electric field vector  
 

4.1. An infinite plane is uniformly charged with a surface density 

σ = 4 nC/m2. Determine the value and direction of the potential 

gradient of the electric field produced by this plane. 

4.2. The magnitude of a uniform electric field E at some point in 

space is equal to 600 V/m. Determine the potential difference U 

between that point and the other point lying on the line that makes an 

angle   = 600 with the direction of the electric field vector. The 

distance r  between the points is 2 mm. 

4.3. The magnitude of a uniform electric field E at some point in 

space is equal to 120 V/m. Determine the potential difference U 

between that point and the other point that lies on the same electric 

field line and is distant from the first point by 1r =  mm. 
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4.4. Electric field is created by a positive point charge. Electric 

potential φ of the field at the point distant from the charge by 

r = 12 cm is equal to 24 V. Determine the value and direction of the 

potential gradient at that point. 

4.5. An infinite straight thin thread is uniformly charged with a 

linear charge density τ = 1 nC/m. Find the potential gradient at the 

point at a distance r = 10 cm from the thread and indicate its 

direction. 

4.6. A solid dielectric sphere ( 3r = ) of radius R = 10 cm is 

charged with a volume charge density ρ = 50 nC/m3. The magnitude 

of electric field inside and on the surface of such a sphere is 

determined by the formula 
03 r

Е r


=
 

, where r is the distance from 

the center of the sphere to the point at which the field is measured. 

Determine the potential difference between the center of the sphere 

and the points lying on its surface. 

4.7. A charge q = 1 μC is uniformly distributed over a round thin 

plate of radius r = 0.1 m. Taking the axis of the plate for the axis Y, 

find: a) φ, E for the points lying on the axis as a function of y; 

investigate the obtained expressions for у << r; b) φ, E at the point 

у1 = 100 mm. 

4.8. A charge with a density  =  (r) is distributed throughout a 

region V. Write an expression for the electric potential φ and the 

electric field E at the point given by the radius vector r  .  

4.9. Determine the electric field, the potential of which has the 

form of  = a r , where a  is the constant vector, r  is the radius 

vector of a point in the field. 

4.10. Determine the electric field, the potential of which depends 

on the coordinates x, y by the law: a)  = a(х2 – y2); b)  = aхy, where 

a is constant. Draw an approximate pattern of these fields using the 

vector E  (in the xy plane). 

4.11. Find the potentials of the following electrostatic fields:  

а) E  = a(y i  + x j ); b) E  = 2axy i  + a(x2 – y2) j ; c) E  = ay i  + (ax + 

+ bz) j  + by ,k  where a and b are constants; i , j , k  are the unit-

vectors of axes x, y, z. 
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Work on moving charges in an electric field  

 

4.12. Point charges 
1 1Q =  μC and 2 0.1Q =  μC are located at a 

distance 
1 10r =  cm from each other. What is the work A done by the 

field forces, if the second charge, repelling from the first, moves away 

from it by a distance: a) 1 10r =  м; b) 2r = ? 

4.13. A thin rod is bent in a semicircle. The rod is charged with a 

linear density τ = 133 nC/m. What is the work A by external forces 

required to carry a charge Q = 6.7 nC from the center of the 

semicircle to infinity? 

4.14. A thin rod is bent in a circle of radius R =10 cm. It is 

charged with a linear density τ = 300 nC/m. What is the work A by 

external forces required to carry a charge Q = 5 nC from the center of 

the circle to the point located on its axis at the distance r = 20 cm 

from its center? 

4.15. Two infinite planes, uniformly charged with a surface 

charge density σ = 0.2 nC/m2, intersect at an angle   = 600. Draw a 

pattern of the equipotential surface and determine the work by the 

field forces in carrying a charge Q = 10 nC from the point A to the 

point B (Fig. 4.8). 

 

 

 

 

 

 

Figure 4.8  Figure 4.9 

 

 
Figure 4.10 
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4.16. A charge is uniformly distributed along a segment of a 

straight conductor with a linear charge density τ = 1 μC/m. Determine 

the work A by the field forces to move a charge q=1 nC from the 

point B to the point C (Fig. 4.9). 

4.17. Electric field is created by two identical positive point 

charges Q. Find the work А1,2 by the field forces to move a charge 

Q1 = 10 nC from the point 1 with the potential 1 = 300 V to the point 

2 (Fig. 4.10). 

4.18. Determine the work А1,2 in carrying a charge Q1 = 50 nC 

from the point 1 to the point 2 (Fig. 4.11) in the field created by two 

charges of equal absolute value |Q| = 1 μC. The distance a = 0.1 m. 

4.19. Electric field is created by a charge uniformly distributed 

along a ring (τ = 1 μC/m). Determine the work А1,2 by the field forces 

to move a charge Q = 10 nC from the point 1 (in the center of the 

ring) to the point 2 on the perpendicular to the plane of the ring (Fig. 

4.12). 

 
Figure 4.11                                                    Figure 4.12 

 

Motion of charged particles in electric field  

 

4.20. A proton with initial speed v0 = 100 km/s enters a uniform 

electric field (E = 300 V/cm) so that its velocity vector coincided with 

the direction of the field lines. What path l must the proton travel in 

the direction of the field lines to double its speed? 
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4.21. An infinite plane is negatively charged with a surface 

charge density σ = 35.4 nC/m2. An electron flies in the direction of 

the electric field line produced by the plane. Determine the minimum 

distance lmin the electron can approach the plane, if it has the kinetic 

energy T = 80 eV at the distance l0 = 5 cm. 

4.22. An electron flies horizontally with the speed of 

v0 = 1.6 Mm/s and enters a uniform electric directed vertically 

upwards and having the magnitude of E = 90 V/cm. What will the 

magnitude and direction of the electron’s velocity be in time 1 ns? 

4.23. A proton moves along a field line of a uniform electric field. 

At the point of the field with the potential 1 the proton has the speed 

of v1 = 0.1 Mm/s. Determine the potential 2 of the point at which the 

speed of the proton increases 2 times. The ratio of the charge of the 

proton to its mass is e/m = 96 MC/kg.  

4.24. An electron with a speed of v0 = 1 Mm/s flies into a uniform 

electric field of magnitude E = 1 kV/m. Determine the distance l 

traveled by the electron to the point where its speed v1 is half the 

initial. 

4.25. What is the minimum speed vmin that a proton must have in 

order to reach the surface of a metal ball charged to the potential 

φ = 400 V (Fig. 4.13)? 

4.26. An electron moves along the field line of a uniform electric 

field. At some point in the field with a potential 1 = 100 V, the 

electron has a speed of v1 = 6 Mm/s. Determine the potential 2 of the 

field point at which the speed v2 of the electron will be equal to 0.5v1. 

 

 
Figure 4.13 

 

4.27. An electron with an initial speed v0 = 3 Mm/s flies into a 

uniform electric field of magnitude E = 150 V/m. The initial velocity 



 90 

vector is perpendicular to the electric field lines. Find: 1) the force F 

acting on the electron; 2) the acceleration a acquired by the electron; 

3) the speed v of the electron in time t = 0.1 μs. 

4.28. An electron enters the space between the plates of a parallel 

plate capacitor with the velocity of magnitude v = 10 Mm/s directed 

parallel to the plates. How close will the electron approach the 

positively charged plate during its motion inside the capacitor, if the 

distance d between the plates is 16 mm, the potential difference across 

the plates is U = 30 V and the length l of the plates is 6 mm? The field 

is considered uniform. 

4.29. An electron enters a parallel plate capacitor with the 

velocity of magnitude v0 = 10 Mm/s directed parallel to the plates. At 

the moment of time when it exits the capacitor, the direction of the 

electron’s velocity makes an angle   = 350 with the initial velocity 

direction. Determine the potential difference across the plates 

(consider the field to be uniform) if the length l of the plates is 10 cm 

and the distance d between them is 2 cm. 

4.30. An electron enters a parallel plate capacitor being at the 

same distance from each plate and having a velocity of magnitude 

v0 = 10 Mm/s directed parallel to the plates. The distance d between 

the plates is 2 cm, the length l of each plate is 10 cm. What is the 

smallest potential difference U that must be applied across the plates 

so that the electron does not fly out of the capacitor? 

4.31. A positively charged particle, the charge of which is equal 

to the elementary charge e, is accelerated through the potential 

difference U = 60 kV and approaches the nucleus of a lithium atom, 

the charge of which is equal to three elementary charges. At what 

smallest distance rmin can the particle approach the nucleus? The 

initial distance between the particle and the nucleus can be considered 

as infinitely large, and the mass of the particle is small compared to 

the mass of the nucleus. 

4.32. Two electrons separated by a large distance start to 

approach each other with a relative initial speed v = 10 Mm/s. 

Determine the minimum distance rmin at which they can approach 

each other. 
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4.33. Two charged particles of the same sign with charges Q1 and 

Q2 approach each other from a large distance. The velocity vectors 
1ν  

and 
2ν  of the particle lie on the same line. Determine the minimum 

distance rmin at which these particles can approach each other if their 

masses are m1 and m2, respectively. Consider two cases: 1) m1 = m2 

and 2) m2 >> m1.  

4.34. The mass ratio of two charged particles is equal to 

k = m1 / m2. The particles are at a distance r0 from each other. What 

kinetic energy T1 will the particle of mass m1 have if it moves away 

from the other particle under the repulsive force by a distance r >> r0. 

Consider three cases: 1) k = 1; 2) k = 0; 3) k → . Take the charges of 

the particles equal to Q1 and Q2. Initial velocities of the particles can 

be neglected. 
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Topic 5. ELECTRIC DIPOLE  
 

What a student should know 
1. Dipole, point dipole. 

2. Electric dipole moment  

3. Electric field and electric potential due to a dipole. 

4. Energy of the dipole field. 

5. Work by electric field forces. 

6. Concept of internal forces of electric field. 

7. Superposition principle for electric fields. 

8. Relation between electric field and electric potential. 

9. Electric field due to a system of charges at large distances. 

10. Fundamental law of dynamics for rotational motion. 

 

Literature: [6, § 23.4, 26.6]; [7, § 5.7]; [9, § 22.3, 22.7]; brief 

theoretical information. 

Tasks that determine normative level of knowledge and skills: [6: 

§ 26 No 49, 51], examples 5.1– 5.5.  

Homework: see Table A.4 on p. 139. 

 

 

5.1. Brief theoretical information 
 

 

Electric dipole is a system consisting of two point charges, 

identical in magnitude and opposite in sign, which are separated by a 

fixed distance from each other. 

Electric dipole moment: 

,p ql=                                           (5.1) 

where q is the value of the dipole charges; l  is the vector (arm), 

directed from the negative charge to the positive. 

If the arm l of the dipole is much smaller than the distance r 

from the center of the dipole to the point of observation (l << r), the 

dipole is considered as a point dipole.  
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Electric field due to a point dipole with electric moment p, 

measured at the point with coordinates (r, ): 

2

3

0

1 3cos ,
4

p
E

r
= + 

 
 

where r is the distance from the observation point to the center of the 

dipole,   is the angle between the vector of electric dipole moment 

and the direction to the observation point (Fig. 5.1). 

 
 

Figure 5.1 

 

If  = 0, then 

3

0

;
2

p
E

r
=

 
 

if  = /2, then 

3

0

.
4

p
E

r
=

 
 

Electric potential due to a point dipole with electric dipole 

moment p, measured at the point with coordinates (r, ): 

2

0

1 cos
.

4

p

r


 =


 

If  = 0, then 

2

0

;
4

p

r
 =

 
 

if  = /2, then 0.=  



 94 

Potential energy of a system of two charges (a dipole) in an 

external field is equal to the sum of the energies of each of the 

charges separately. 

( ),pW q q q+ − + −=  −  =  −                        (5.2) 

where 
+  and 

−  are the potentials of the external field at the points 

where the charges +q and –q are located. 

Electric dipole moment of a system of N charges is determined 

by the formula  

1

,
N

i i

i

p q r
=

=                                         (5.3) 

where 
ir  determines the position of the i-th charge in the system. The 

signs of the charges must be taken into account in this formula. 

Work by external field forces on an electric dipole: 

1 2 ,A W W W= − = −                               (5.4) 

where W is the change in the potential energy of the dipole as the 

consequence of the action of forces, W1 and W2 are the initial and 

final value of the energy in the process of action of forces. 

Torque on a dipole with an electric dipole moment p  in a 

uniform electric field E : 

, sin ,M p E M pE =  =    

where  is the angle between the directions of the vectors p  and E . 

In the case of an inhomogeneous electric field which is 

symmetrical about the OX axis, the force on the dipole is  

cos ,x

E
F p

x


= 


 

where дE/дх is the degree of the field inhomogeneity in the OX 

direction. 
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5.2. Methodical guidelines 
 

 

1. When solving problems on this topic, it is necessary to pay 

attention to the dipole under consideration: small size of the dipole 

allows us to make assumptions that it is a point dipole. That 

simplifies solution of the problem and obtained results. 

2. If the observation point A lies on the prolongation of the 

dipole axis, or is at any arbitrary position in space, then the electric 

field E  and the electric potential φ are determined by the 

superposition principle (see formulas (2.3), (3.1)). 

3. Since the electric field due to a dipole has axial symmetry, the 

field pattern in any plane passing through the dipole axis does not 

change and the electric field vector E  lies in that plane. 

4. To calculate the electric field due to a dipole, there is no need 

to know q and l separately; it is enough to know their product, that is 

the electric dipole moment, according to formula (5.1). 

5. The electric dipole moment of a multipole, i.e., of a system of 

N charges, is determined by formula (5.3), where 
ir  determines the 

position of the i-th charge in the system: it shows the direction and 

distance from some origin within the charge system to the i-th 

charge. The sign of the charge must be taken into account in that 

formula. 

 

   

5.2.1. Electric field and electric potential due to a 

dipole. Electric dipole moment 
 

 

Example 5.1 

Determine the potential φ and the magnitude E of the electric 

field due to a dipole as functions of r and  (r is the distance from the 

center of the dipole,  is the angle between the axis of the dipole and 

the direction from the center of the dipole to a given point). The 

dipole moment is equal to p. 
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Given:                                              І. Physical model  

р                                               

 (r,), Е (r,) – ? 

 
Figure 5.2 

 

ІІ. Mathematical model  

1. According to the superposition principle, the total potential is 

equal to the sum of potentials created by the charges +q at the 

distance r+ and –q at the distance r– (Fig. 5.2): 

( )
( )

0 0

1 1
, .

4 4

q r rq q
r r

r r r r

− +

+ −

+ − + −

− 
 = − = 

  
              (5.5) 

2. According to Fig. 5.2, the distance between the charges is 

l = 2a, where a is the distance from the center of the dipole to the 

charges. 
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3. Assuming that the dipole is a point dipole (r >> l), we obtain: 
2 , cos , cos ,r r r r r a r r a+ − + −= = −  = +                  (5.6) 

that is  

2 cos cos .r r a l− +− =  =                              (5.7) 

Substituting equations (5.6) and (5.7) into expression (5.5), we 

obtain: 

( )
2

0

1 cos
, ,

4

ql
r

r


  =


 

or according to formula (5.1): 

( )
2

0

1 cos
, .

4

p
r

r


  =


                              (5.8) 

4. To determine the electric field due to the dipole, we use 

formula (4.3), which gives relation between the electric potential and 

electric field. Let’s calculate projections of the vector E  onto two 

mutually perpendicular directions* Er and E (Fig. 5.2). These 

projections determine the vector E  with respect to the change in the 

variables r and , respectively, i.e., Er is projection onto the radial 

direction which characterizes change in the value of r, and E is 

projection of the vector E  onto the tangential direction which 

characterizes change in the angle . The tangential direction is 

determined by the value rd of displacement of the end of the radius-

vector r when it turns through the angle d. Thus, as a result of 

differentiation we have: 

( )

( )

2 3

0 0

2 3

0 0

1 1 cos 1 sin
, ,

4 4

1 cos 1 2 cos
, .

4 4
r

p p
E r

r r r r

p p
E r

r r r r



    
 = − = − = 

    

    
 = − = − = 

    

 

5. With help of the obtained components of the vector E , it is 

easy to find the magnitude of the electric field produced by the 

dipole: 
 

*It should be noted that these are the directions of displacement of the end 

of the vector r  which defines the observation point. 



 98 

2 2

2 2

3 3

0 0

2 2 2

3 3

0 0

1 2 cos 1 2 sin

4 4

1 1
4cos sin 3cos 1.

4 4

r

p p
E E E

r r

p p

r r



    
= + = + =   

    

=  +  =  +
 

 

Answer: ( ) ( ) 2

2 3

0 0

1 cos 1
, ; , 3cos 1.

4 4

p p
r E r

r r


  =  =  +

 
 

 

Example 5.2 

A point electric dipole with moment p is located in an external 

electric field of magnitude Е0, so that the vectors p  and 0E  are 

collinear. It happens that one of the equipotential surfaces enclosing 

the dipole is a sphere. Find its radius. 

 

Given:     

р, Е0 

R – ?     

І. Physical model 

 
Figure 5.3 

 

ІІ. Mathematical model  

1. As given, the equipotential surface* is a sphere. According to 

the superposition principle, the electric field at any point on that 
 

*The equipotential surface is the locus of points in space having the 

same electric potential, i.e., at any point on the equipotential surface the 

electric potential is a constant value. 
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sphere is the vector sum of the external electric field and the electric 

field created by the dipole: 

0 ,dipE E E= +  

but this vector sum at any point on the sphere must have zero 

projection onto the tangent to this sphere. 

2. According to the requirements of symmetry of the dipole field 

with respect to the plane passing through the dipole’s center 

perpendicular to the vector of the electric dipole moment (the 

perpendicular bisector plane), the center of the dipole must coincide 

with the center of the equipotential sphere.  

3. Consider the point S on the sphere, which belongs also to the 

perpendicular bisector plane of the electric dipole moment vector 

(Fig. 5.3). At that point, the electric field dipE  due to the dipole, as 

shown in Fig. 5.3, is directed opposite to the vector 0E  of the 

external electric field. In addition, the vector dipE  of the electric field 

due to the dipole is the geometric sum of the vectors E+  and E - of 

the fields created by the positive and the negative charge of the 

dipole separately. 

4. According to Fig. 5.3, let’s project all the vectors onto the axis 

tangent to the sphere at the point S: 

( )0 cos .dipE E E E+ −= = +                        (5.9) 

The distances from the charges of the dipole to the point S are 

the same: 
2 2 4,r R l= +  

where R is the radius of the sphere; l is the distance between the 

charges of the dipole. 

Magnitudes |Е+| and |Е-| are equal, therefore, substituting the 

known formula (2.3) into equation (5.9) we obtain: 

0 2 2 2
2 20 0 2

1 2 1 2
cos ,

4 4
2

4 4 4

q q l
E

l l lR R R

=  =
 

+ + +

      (5.10) 
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because according to Fig. 5.3 
2

2

cos .

2
4

l

l
R

 =

+

 

5. As given, we have the point dipole, i.e., R >> l, therefore, in 

the denominator of the obtained expression (5.10) the term l2/4 can 

be neglected in comparison with R2, while in the numerator the 

product ql equals p. 

Finally: 3
0 3

0 0 0

1 1
.

4 4

p p
E R

R E
=  =

 
 

Answer: 3

0 0

1
.

4

p
R

E
=


 

 

Example 5.3 

A point charge q = – 210 -10 C is located on the prolongation of 

the axis of the dipole with the electric dipole moment  

ре = 1.510 -10 C. The distance between the point charge and the 

center of the dipole is r = 10 cm (the charge is located closer to the 

positive pole of the dipole). What work is required to move that 

charge to the symmetrically located point to the other side of the 

dipole? The dipole arm l << r. 

 

Given:                                                І. Physical model  

q = – 210-10 C 

r = 0.1 m 

ре = 1.510-10 Cm 

Аext.f – ? 

 

 

 

 

 

 

 

Figure 5.4 
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ІІ. Mathematical model  

1. The work by external forces is equal in magnitude and 

opposite in sign to the work by the field forces: 

( ). . 1 2 ,ext f field fA A q= − = −  −                          (5.11) 

where 1 and 2 are the potentials of the initial and final points. 

2. The field is created by the two point charges +q and – q of the 

dipole, i.e. the potentials of the points 1 and 2 must be found 

according to the superposition principle: 

1 2

0 0

1 1 1 1
, ,

4 4

2 2 2 2

q q

l l l l
r r r r

   
   

 = −  = −   
    − + + −

   

    (5.12) 

where, according to Fig. 5.4: (r – l/2) is the distance from the point 1 

to the positive pole; (r + l/2) is the distance from the point 1 to the 

negative pole. 

3. Reduce to a common denominator each of the expressions 

(5.21): 

1 22 2
2 20 0

2 2

, .
4 4

1 1
4 4

q l q l

l l
r r

r r

 =  = −
    

− −   
   

          (5.13) 

As we know, ql = p. If r >> l then the term l2/(4r2) can be 

neglected, and (5.13) takes the form: 

1 22 2

0 0

; .
4 4

e ep p

r r
 =  = −

 
                        (5.14) 

4. Substituting equation (5.14) into equation (5.11), we obtain:  

з.с 2 2 2

0 0 0

2
.

4 4 4

e e ep p qp
A q

r r r

 
= − + = − 

   
 

 

ІІІ. Numerical calculations: 

( )
( )

10 10

8

. 29

2 2 10 1.5 10
5.4 10

9 10 0.1
ext fA

− −

−
−   

= − = 
 

(J). 

Answer: Аext.f. = 54 nJ. 
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5.2.2. Dipole in an external electric field  
 

Example 5.4 

A uniform electric field of magnitude E = 300 kV/m is applied 

perpendicular to the arm of a dipole with the electric moment 

p = 12 pCm. Under the action of the field forces, the dipole starts to 

rotate about the axis passing through its center. Find the angular 

speed  of the dipole at the moment when it passes the equilibrium 

position. The moment of inertia J of the dipole about its 

perpendicular bisector axis is 210 -9 kgm2. 

 

Given:                                          І. Physical model  

р = 1.210-11 Cm 

Е = 3105 V/m 

J = 210-9 kgm2 

 – ? 

 
                      

 

 

 

                                                                               Figure 5.5 

 

ІІ. Mathematical model  

1. Fundamental law of dynamics for rotational motion is: 

 
( )

ext

d JdL
M

dt dt


= = , 

for the case under consideration: 

ext

d
J M

dt


= , 

then 

( )
0

1
t

extt M dt
J

 =  ,                               (5.15) 

where Мext is the net torque due to external forces acting on the 

dipole. 
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2. Let the position of the dipole in the external field be as shown 

in Fig. 5.5: the forces of the same magnitude, but opposite direction 

are exerted on the dipole (i.e. on the charges +q and –q of the dipole) 

in the external electric field. Directions of these forces are parallel to 

the external field lines. 

3. According to the superposition principle: 

F F F+ −= + , 

since these forces have the same magnitude, i.e., |F+| = |F-| = qE, then 

the net force  

2 .F qE=                                           (5.16) 

4. The torque due to the net force exerted on the dipole, is by 

definition: 
2 cos ,M qEl=   

where l∙cos is the arm (Fig. 5.5); l is the distance from the negative 

charge – q to the positive charge +q. 

According to formula (5.1), expression (5.16) takes the form 

2 cos .M pE=                                     (5.17) 

5. Calculating the angular speed  from integration with respect 

to time, we perform integration with respect to the angle , that is 

.
d d

dt
dt

 
=  =


                               (5.18) 

The equilibrium position of the dipole is the position when the 

net torque on the dipole is zero (М = 0    =  / 2). 

Therefore, we substitute equations (5.17) and (5.18) into 

expression (5.15), and integrate within the limits from 0 to  / 2: 

2

0

1 2 2
2 cos sin sin0 .

2

d pE pE
pE

J J J



  
 =  = − = 

   
       (5.19) 

From expression (5.19), we obtain the angular speed  of the 

dipole: 

2
.

pE

J
=  
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ІІІ. Numerical calculations: 
11 5

11

2 1.2 10 3 10
6

2 10

−

−

   
 = =


 (rad/s). 

Answer:  = 6 rad/s. 

 

Example 5.5 

What work must be done against the electric field forces to move 

a dipole with the electric moment p from the position 1, where the 

electric field equals to Е1, to the position 2 with the electric field of 

magnitude Е2 (Fig. 5.6) and to turn it through the angle 90? 

 

Given:                                 І. Physical model  

р, Е1, Е2 

 = 90 

А – ? 

 

 

 

 

 

 

 

     Figure 5.6 
 

ІІ. Mathematical model  

1. Consider motion of the dipole: let it be carried in the field, and 

then rotated (or vice versa – we’ll show that the work depends only 

on the initial and final position of the dipole, and not on the path of 

transition between these positions). The work in this motion is the 

sum of works in moving the dipole in the field and in rotating the 

dipole. Let’s calculate these works separately. 

2. Use formula (5.2), (5.4) and the known formula for the 

potential difference: 

.

b

a b

a

Edl − =   
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In our case, the direction l  coincides with the direction of the 

electric dipole moment. Having chosen the center of the dipole as the 

origin (we have a right to do that because the dipole is a neutral 

system of charges), we denote coordinates of the positive and the 

negative charge as +l / 2 and –l / 2, where l is the distance between 

the charges +q and – q. 

Since the distance between the charges of the dipole is much 

smaller than all other distances in the problem (we have the point 

dipole), the external electric field does not change within the dipole. 

Therefore, the potential energy of the dipole in the position 1 is: 
2

1 1 1

2

.

l

l

W q E dl qlE
−

= = −  

And in the position 2 it is: 
2

2 2 2

2

.

l

l

W q E dl qlE
−

= = −  

Then the work in moving the dipole between these positions is:  

( )12 2 1 1 2 .A W W ql E E= − = −  

3. Let’s calculate the energy of the dipole when the vector of the 

electric moment is perpendicular to the vector of the external electric 

field (the dipole is turned through the angle  = 90). Fig. 5.6 shows 

that the external field is symmetrical about the axis passing through 

the center of the dipole perpendicular to the vector of its electric 

moment. That means that electric potential at the points equidistant 

from the axis of symmetry (at the points of location of charges +q 

and – q of the dipole) is the same. Thus, the potential energy of the 

dipole in this position is zero. 

Therefore, the work in rotating the dipole at the point 2 through 

the angle  = 90 is: 

( )2 2 290 90
0 .A W W qlE qlE= − = − − =  

4. Thus, we have proven that no matter how complex is the 

motion, the work required for it is the same, i.e., if the dipole is 

carried from the position 1 to the position 2 and rotated, the work is  

( ) ( )12 1 2 2 190
,A A A ql E E qlE qlE= + = − − − =  
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if, vice versa, it is rotated at the position 1 and so moved to the 

position 2, then the work in rotating the dipole with energy W1 is: 

( )1 1 190
0 .A W W qlE qlE= − = − − =                    (5.20) 

The work in moving the dipole is zero.  

5. Since the electric dipole moment p = ql, the formula (5.20) 

finally takes the form: 

1.A pE=  

Answer: 
1.A pE=  

 

 

5.3. Problems for independent work 
 

 

Electric field due to a dipole  

 

5.1. The distance between the charges q =  3.2 nC of the dipole 

is 12 cm. Find the magnitude E and the potential φ of the field 

produced by the dipole at the point distant by r = 8 cm both from the 

first and the second charge. 

5.2. A dipole with an electric moment p = 0.12 nCm is formed 

by two point charges Q =  1 nC. Find the magnitude E and the 

potential φ of the electric field at the points A and B (Fig. 5.7), which 

are at the distance r = 8 cm from the center of the dipole. 

5.3. Determine the magnitude E and the potential φ of the 

electric field produced by a point dipole with an electric moment 

p = 4 pCm at the distance r = 10 cm from the center of the dipole, in 

the direction making angle  = 60 with the vector of the electric 

dipole moment. 

5.4. A point dipole with an electric moment p = 1 pCm rotates 

uniformly with a frequency v = 103 s-1 about its perpendicular 

bisector axis. Derive the law of change of the electric potential as a 

function of time at some point distant by r = 1 cm from the center of 

the dipole and lying in the plane of rotation of the dipole. Assume 
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that at the initial moment of time the potential 0 of that point is 

zero. Plot a graph of the dependence (t). 

 

 
Figure 5.7 

 

5.5. Two point dipoles with electric moments p1 = 1 pCm and 

p2 = 4 pCm are located at a distance r = 2 cm from each other. Find 

the force of their interaction if the axes of the dipoles lie on the same 

line. 

5.6. Two point dipoles with electric moments p1 = 20 pCm and 

p2 = 50 pCm are located at a distance r = 10 cm from each other so 

that their axes lie on the same line. Calculate the potential energy of 

the dipoles corresponding to their stable equilibrium. 

5.7. What is the property of the electric dipole moment p  of a 

neutral system of charges? 

5.8. What is the work A required to rotate a dipole with an 

electric dipole moment p  from the position along the field to the 

position against the field?  

5.9. What is the electric moment p  of: a) a quadrupole, b) an 

octupole?  

 

Dipole in an external electric field 

 

5.10. A dipole with an electric moment p = 100 pCm is attached 

to an elastic thread (see Fig. 5.8). When an electric field of 

magnitude E = 3 kV/m is applied in the direction perpendicular to 
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the dipole arm, the dipole turns through an angle  = 30. Determine 

the torsion constant C of the thread. (The torsion constant is the 

value equal to the torque that causes torsion of the thread by 1 rad). 

 
Figure 5.8 

 

5.11. A dipole with an electric moment p = 100 pCm is located 

in a uniform electric field of magnitude E = 50 V/m. The vector of 

the electric dipole moment makes an angle  = 60 with the direction 

of the field lines. What is the potential energy Wp of the dipole? 

Hint: For zero potential energy take the energy corresponding to 

the position of the dipole when the vector of the electric dipole 

moment is perpendicular to the field lines. 

5.12. A dipole with an electric moment p = 100 pCm is freely 

placed into a uniform electric field of magnitude E = 150 V/m. 

Calculate the work A required to rotate the dipole through the angle 

 = 180. 

5.13. A point dipole with an electric moment p = 100 pCm is 

freely placed into a uniform electric field of magnitude E = 9 V/m. 

The dipole is turned through a small angle and left on its own. 

Determine the natural frequency  of the dipole oscillations in the 

electric field. The moment of inertia J of the dipole about the axis 

passing through its center is 410-12 kgm2.  

5.14. A dipole with an electric moment p = 20 pCm is located in 

an inhomogeneous electric field. The degree of the field 
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inhomogeneity is characterized by the value dE/dx = 1 МV/m2 taken 

in the direction of the dipole axis. Calculate the force Fx exerted on 

the dipole in this direction.  

5.15. A point dipole with an electric moment p = 5 pCm is 

freely placed in the field produced by a point charge Q = 100 nC at 

the distance r = 10 cm from that charge. For that point in space, 

determine the value | dE/dr | which characterizes the degree of the 

field inhomogeneity in the direction of the field line, and the force F 

exerted on the dipole. 

5.16. Find the force F of interaction of two water molecules 

separated by a distance r = 110-3 m. The electric dipole moment of 

the water molecule is p = 0.6210-29 Cm. The dipole moments of the 

molecules are considered to be aligned with the line joining the 

centers of the molecules. 

5.17. A dipole with an electric dipole moment p  is located at a 

distance r from a long uniformly charged thread with a linear charge 

density τ. Find the force F  acting on the dipole if the vector p  is 

oriented: a) along the thread; b) along the radius-vector r ; c) 

perpendicular to the thread and to the radius-vector r .  

5.18. A point dipole with an electric dipole moment p  is located 

at a distance d from a conductive plane. Find the force acting on the 

dipole if the vector p  is perpendicular to the plane. 
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Topic 6. CAPACITANCE, CAPACITORS. 

ENERGY STORED IN A CHARGED 

CONDUCTOR. ENERGY STORED IN 

ELECTRIC FIELD  

 

What a student should know 
1. Electrical capacitance of an isolated conductor, units of the 

capacitance. 

2. Capacitance of a parallel-plate, spherical, cylindrical 

capacitor. 

3. Capacitance of an isolated conductive sphere. 

4. Capacitance for capacitors in parallel and series combination.  

5. Energy stored in the field of a charged capacitor. 

6. Energy density stored in the electric field. 

7. Work by electric field forces. 

8. Force exerted on a conductor or dielectric in an electric field. 

9. Gauss’s law. 

10. DI-method. 

11. Rules for junctions and loops in electric circuits. 

 

Literature: [6, § 26.1 – 26.5]; [7, § 8.1 – 8.5]; [9, § 25]; brief 

theoretical information. 

Tasks that determine normative level of knowledge and skills: [6: 

§ 26 No 4, 19, 23, 53], examples 6.1, 6.2.  

Homework: see Table A.5 on p. 140. 

 

 

6.1. Brief theoretical information 
 

 

Electrical capacitance of an isolated conductor or capacitor: 

,
Q

C


=
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where ∆Q is the charge transferred to the conductor (capacitor); ∆φ 

is the change in potential caused by this charge. 

Or, 

,
Q

C =


 

where Q is the charge transferred to the conductor, φ is the potential 

of the conductor. 

Capacitance of a capacitor: 

1 2

,
Q

C =
 −

                                       (6.1) 

where φ1 – φ2 is the potential difference across the plates of the 

capacitor. 

Capacitance of a parallel-plate capacitor: 

0 ,r S
C

d

 
=  

where S is the area of the plates (of one plate); d is the distance 

between the plates; εr is the relative permittivity of the dielectric 

material filling the space between the plates. 

Capacitance of an isolated conductive sphere of radius R, 

which is located in an infinite medium with relative permittivity εr: 

04 .rC R=    

If the sphere is filled with dielectric material, its capacitance 

does not change. 

Electrical capacitance of a spherical capacitor (two 

concentric spheres of radii R1 and R2, the space between them is 

filled with a dielectric material of relative permittivity εr): 

0 1 2

2 1

4
.r R R

C
R R

 
=

−
 

Capacitance for capacitors in series combination: 

 
а) in general case: 

  
11 2 3

1 1 1 1 1 1
... ,

n

in iC C C C C C=

= + + + + =                   (6.2) 
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where n is the number of capacitors in combination; 

b) for the case of two capacitors,  

1 2

1 2

;
C C

C
C C

=
+

 

c) for the case of n identical capacitors of capacitance С1 each,  

1 .
C

C
n

=  

Charge of the entire combination: 

1 2 3 ... .nQ Q Q Q Q= = = = =  

Voltage across the entire combination: 

1 2 3 ... .nU U U U U= + + + +  

Capacitance for capacitors in parallel combination: 

 
а) in general case: 

1 2

1

... ;

,

n

n

i

i

C C C C

C C
=

= + + +

=
 

where n is the number of capacitors in combination; 

b) for the case of two capacitors, 

1 2;C C C= +  

c) for the case of n identical capacitors of capacitance С1 each,  

1.C nC=  

Charge of the entire combination:  

1 2 ... .nQ Q Q Q= + + +  

Voltage across the entire combination:  

1 2 ... .nU U U U= = = =  

Energy stored in electric field that occupies a volume V and is 

characterized by an energy density w is determined by the expression 

.
V

W wdV=                                       (6.3) 
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Energy density stored in electric field is determined by the 

values that characterize the electric field: 
2

0 1
,

2 2

r E
w ED

 
= =                                  (6.4) 

where D is the electric displacement field; Е is the electric field. 

Energy stored in a charged capacitor: 
2 2

.
2 2 2

qU CU q
W

C
= = =                               (6.5) 

Work by electric field forces: 

1 2 ,A W W W= − = −                                 (6.6) 

where W is the change in the field energy. 

Force exerted on a conductor or dielectric in electric field in 

the x direction at a constant charge q: 

.x

W
F

x


= −


 

 

 

6.2. Methodical guidelines 
 

 

1. Capacitance depends only on the shape, size and material of a 

conductor and does not depend on whether the conductor has cavities 

or not. 

2. If a parallel plate capacitor is connected to a power supply, 

charged and then disconnected, then in the case of change of the 

capacitance C of the capacitor by increasing (or reducing) the 

distance d between its plates, or by introducing (or removing) a 

dielectric material between the plates, the charge on the capacitor 

does not change. 

3. A mixed combination of capacitors, which consists of 

connection of groups of capacitors in series and in parallel, is the 

easiest to calculate. After replacing each group by the equivalent 

capacitance, the circuit is simplified until it becomes possible to find 

the total capacitance of the system. It should be noted that in the case 

of such a replacement, the charges and voltages do not change. It is 
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possible to simplify a circuit by finding the points of equal potentials 

(these are the points that have symmetry). Points of the circuit have 

the same potential if they are connected directly by a conductor, the 

resistance of which is assumed to be zero in problems. By 

connecting and disconnecting such points, you can reduce complex 

combination to combination of capacitors in series and in parallel. 

4. To calculate an electrical circuit consisting of capacitors and 

constant voltage sources, if the circuit cannot be decomposed into 

groups of series and parallel combinations, the following two rules 

should be applied: 

- the junction (node) rule is a consequence of the law of 

conservation of electric charge: if plates of several capacitors are 

connected to one node which is not connected to a power supply, 

then the algebraic sum of the charges on these plates is zero, i.e. 

0;q =                                       (6.7) 

- the loop rule is a consequence of the law of conservation of 

energy: the algebraic sum of potential differences across every 

capacitor and power supply that occurs while traveling around any 

closed loop in the circuit is zero, i.e. 

0.U =                                      (6.8) 

Direction of traveling around the loop is chosen arbitrary: 

clockwise or counterclockwise.  

5. To solve problems on the topic “Energy stored in a charged 

capacitor”, the equation of energy balance is usually used for 

external action on capacitors associated with the change in their 

capacitances. Change in the capacitance of a system may be 

accompanied by motion of charges, that is, by electric current flow. 

It is always believed that arbitrary motion of charges due to changes 

in the capacitance of the system is so slow that the loss of energy for 

Joule heating, which is proportional to the square of the current, can 

be neglected. 

6. If it is necessary to find the force of attraction of the plates of 

the capacitor, one should keep in mind that the electric field 

produced by one plate is twice less than the field between the plates 

of the capacitor. 
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7. In order to increase the capacitance of a capacitor (energy 

stored in it) it is necessary to do work equal to the change in the 

energy stored in the capacitor (6.6). 

8. When calculating the total electric energy of charged non-

point bodies, it should be assumed that it consists not only of the 

energy of interaction, but also of the energy consumed for 

appearance of the charge on each body (their own energy) (6.3). 

 

 

6.2.1. Complex combination of capacitors  
 

Example 6.1 

A system of capacitors (Fig. 6.1) is charged to the potential 

difference U0 = 200 V, and then disconnected from the power supply. 

How will the energy stored in the system change if the switch K is 

closed? The capacitances С1 = С2  = С3 = С5 = 1 μF, С4 = 0.5 μF. 

 

Given:                                  

U0 = 200 V 

С1 = С2  = С3 = С5 = 10-6 F 

С4 = 0.510-6 F 

W – ?  

 

І. Physical model  

 

After disconnecting the system from 

the battery, its charge, which 

corresponds to the sum of the 

charges of all the plates connected to 
 

one of the battery terminals, remains unchanged regardless of the 

position of the switch K. However, if the switch is closed, the 

combination pattern of the capacitors changes, which brings change 

in the capacitance of the system. Therefore, according to formula 

(6.5) let’s determine the change in the energy stored in the system: 
2 2 2

0
0

0 0

,
2 2 2

C Cq q q
W W W

C C C C

−
 = − = − =  

where С0, W0 and С, W are the capacitances and energies stored in 

the system before and after closing the switch.  
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Since the charge on the system q = C0U0, then 
2 2 2

0 0 0 0 0 0

0

.
2 2

C U C C C U C C
W

C C C

− −
 = =  

 

 
Figure 6.1 

 

ІІ. Mathematical model  

To find the capacitance С0 (before closing the switch) consider 

the system in Fig. 6.1. That system is a parallel combination of two 

branches, while each branch is a series combination of two 

capacitors. Using formula (6.2), we obtain  

3 41 2
0

1 2 3 4

.
C CC C

C
C C C C

= +
+ +

 

2. Let’s determine the capacitance C (after closing the switch). 

From formula (6.1), the charge is proportional to the voltage U: 
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( )1 2 3 4 5, , , , ,q f C C C C C U=                             (6.9) 

where U is the terminal voltage of the battery in the case of the 

closed switch, ( )1 2 3 4 5, , , , .f C C C C C C=  

3. Let’s calculate the charge of the system adding the charges of 

capacitors according to rule (6.7): 

 
1 3.q q q= +                                         (6.10) 

To determine the charges q1 and q3 let’s put the signs of charges 

on the plates of all capacitors depending on the chosen signs of the 

battery terminals (Fig. 6.1). By rule (6.7) for the nodes a and b, we 

can write: 

1 2 5 0;q q q− + + =                                         (6.11) 

3 4 5 0.q q q− + − =                                         (6.12) 

4. Equations (6.10) – (6.12) have six unknown quantities. We 

use rule (6.8). Choose the travelling direction around the loops, for 

example, clockwise. To avoid errors in the signs, keep in mind the 

following: if the potential across the section (1 – 2) of the loop 

decreases in the travelling direction, then the potential difference  

1 – 2 is positive, otherwise it is negative. Therefore, taking into 

account relation (6.1), for the loops mabm, anba and АmanBA we 

obtain: 

5 31

1 5 3

0;
q qq

C C C
+ − =

                                    (6.13) 

 

52 4

2 4 5

0;
qq q

C C C
− − =

                                    (6.14) 

  

1 2

1 2

0.
q q

U
C C

+ − =

                                      (6.15) 

5. Solving the system of equations (6.10) – (6.15), containing six 

unknown quantities q, q1, q2, q3, q4, q5 with respect to q, we obtain 

11
0.85 .

13
q U U

 
= = 
 

                                  (6.16) 

6. Comparing formulas (6.9) and (6.13), we can find the 

capacitance after closing the switch: C = 0.85 μF. 
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ІІІ. Numerical calculations: 

( ) ( )
2 2

6 6

6 6 6

0 6 6

10 0.5 10
0.5 10 0.33 10 0.83 10

2 10 1.5 10
C

− −

− − −

− −
= + =  +  = 

 
(F); 

60.85 10С −=  (F); 
6 4 6 6

4

6

0.83 10 4 10 0.83 10 0.85 10
3.9 10

2 0.85 10
W

− − −
−

−

    − 
 =  = − 


(J). 

Answer: W = – 0.39 mJ, the negative sign in the answer shows 

that in the case of closing the switch the energy of the system 

decreases, while the charge remains constant. 

 

6.2.2. Energy stored in a charged conductor. Energy 

stored in electric field  
 

Example 6.2 

A charge Q is uniformly distributed throughout a volume of a 

sphere of radius R. Assuming the relative permittivity εr = 1, find the 

electrical energy stored in the sphere. 

 

Given:                                   

Q, R 

W – ?                                 І. Physical model  

 

1. The intrinsic electrical energy stored in the sphere is equal to: 

,e

V

W w dV=                                          (6.17) 

where we is the volume energy density. 

2. To determine the volume energy density, we use formula 

(6.4). 

3. We find the unknown electric field using the Gauss’s law, 

taking into account the spherical symmetry: 

1,2
0

i

S

Q
EdS


= ,                                  (6.18) 

where dS is the area element of the auxiliary surface, which has the 

shape of a sphere. 
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Figure 6.2 

 

ІІ. Mathematical model  

1. To calculate the electric field inside and outside the sphere of 

radius R, draw the auxiliary surfaces S1 and S2 (Fig. 6.2). At all 

points of these surfaces, the angle between E  and dS  is zero (for the 

positive charge) and E  = const, so  

1,2 1,2

24πn n n

S S

EdS E dS E dS E r= = =   ,                     (6.19) 

where r is the radius of the auxiliary surface.  

If r < R, then the sum of the charges enclosed by the surface S1 

is equal to  
34
,

3
Q r=   

where 
33 4Q R =   is the volume density of the charge. 

Therefore, 
3

3
.

Qr
Q

R
=                                                      (6.20) 
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Substituting equations (6.19) and (6.20) into formula (6.18), we 

obtain expression for the electric field inside the volume of the 

sphere: 

3

0

.
4

Qr
E

R
=


 

If r > R, then the sum of the charges enclosed by the surface S2 

is equal to 

.Q Q=                                         (6.21) 

Substituting equations (6.21) and (6.19) into expression (6.18), 

we find the electric field outside the sphere: 

.
4 2

0
r

Q
E


=                                        (6.22) 

2. Substitute (6.21) and (6.22) into formula (6.4). In this case, 

the volume energy density is also a function of the distance r: 

( )

( )

2 2

2 6

0

2

2 4

0

, ,
32

, .
32

e

e

Q r
w r R

R

Q
w r R

r

= 
 

= 
 

                            (6.23) 

Since the dependence we (r) is not the same for the regions of 

space inside and outside the charge Q, we calculate the integral in the 

right part of (6.17) as the sum of two integrals: 

1 2

,e e

V V

W w dV w dV= +                                  (6.24) 

where V1 is the volume of space occupied by the charge Q; V2 is the 

volume of the rest of space; dV is the infinitesimal volume in the 

form of a thin layer of the sphere with thickness dr (within such a 

volume the values E and we are constant): 24 .dV r dr=   

4. Substitute expressions (6.23) into equation (6.24) taking into 

account that within the volume V1 the variable r varies from 0 to R, 

and within V2 it varies from R to  . Finally, we have: 
2 2

4

2

0 00

3
.

8 20

R

R

Q dr Q
W r dr

r R

 
= + = 
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Answer: 
2

0

3
.

20

Q
W

R
=


 

 

 

6.3. Problems for independent work 
 

Capacitance of capacitors  

 

6.1. Electric charge is uniformly distributed over the plates of a 

parallel plate capacitor with a surface density σ = 0.2 μC/m2. The 

distance d between the plates is 1 mm. How much will the potential 

difference across the capacitor change if the distance between the 

plates increases to 3 mm? 

6.2. A parallel plate capacitor is charged to the potential 

difference U = 600 V. There are two layers of dielectric between the 

plates: the glass layer of thickness 
1 7d =  mm and the ebonite layer 

of thickness 
2 3d =  mm. The area S of each plate of the capacitor is 

200 cm2. Find: a) the capacitance C of the capacitor; b) the electric 

displacement D, the electric field E and the potential drop   across 

each layer. 

6.3. A paraffin slab of thickness d = 1 cm is inserted between the 

plates of a parallel plate air capacitor fitting exactly the space 

between the plates. By what value should the distance between the 

plates be increased to obtain the capacitance equal to that the initial 

air capacitor has had? 

6.4. The distance d between the plates of a parallel plate 

capacitor is 1.33 mm, the area S of the plates is 20 cm2. There are 

two layers of dielectric in the space between the plates of the 

capacitor: the mica of thickness 1 0.7d =  mm and the ebonite of 

thickness 2 0.3d =  mm. Determine the capacitance C of such a 

capacitor. 

6.5. The capacitance C of a parallel plate capacitor is 1.5 μF. The 

distance d between the plates is 5 mm. What will the capacitance of 
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the capacitor be, if one puts a slab of ebonite of thickness 
1 3d =  mm 

on the bottom plate? 

6.6. There is a tight-fitting glass slab between the plates of a 

parallel plate capacitor. The capacitor is charged to the potential 

difference 
1 100U =  V. What will the potential difference 

2U  be if 

the glass slab is removed from the capacitor? 

6.7. Two concentric metal spheres with radii 
1 2R =  сm and 

2 2.1R =  cm make a spherical capacitor. Determine its capacitance C 

if the space between the spheres is filled with paraffin. 

6.8. A capacitor consists of two concentric spheres. The radius 

1R  of the inner sphere is 10 cm, the radius of the outer is 

2 10.2R =  cm. The space between the spheres is filled with paraffin. 

A charge Q = 5 μC is given to the inner sphere. Determine the 

potential difference U between the spheres. 

6.9. A KD type capacitor is made of low-frequency ceramics in 

the form of a disk with electrodes applied to its both sides. The 

M750 capacitor has the capacitance C = 6800 pF, the disk of 

diameter D = 13.5 mm and thickness d = 0.6 mm. Determine the 

relative permittivity of its dielectric ceramics. 

6.10. A KT type capacitor has a dielectric made of capacitor 

ceramics in the form of a tube of mean diameter D and length l. 

Determine the relative permittivity for the capacitor KT-2, if its 

capacitance C = 30 pF, diameter D = 3.5 mm, length l = 7 mm, and 

the tube thickness d = 0.3 mm.  

6.11. A coaxial radio frequency cable (RK-75-4-12) consists of a 

central wire, a concentric cylindrical sheath (screen) and a 

polyethylene insulation between them. Find the capacitance per unit 

length of such a cable (μF/m) if the wire diameter is d = 1.2 mm and 

the screen diameter is D = 4.6 mm. 

 

Combinations of capacitors 

 

6.12. Two capacitors with capacitances 
1 3C =  μF and 2 6C =  μF 

are connected to each other and connected to the battery ε = 120 V. 

Determine the charges Q1 and Q2 on the capacitors and the potential 
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differences 
1U  and 

2U  across their plates, if the capacitors are 

connected: a) in parallel; b) in series. 

6.13. A capacitor of capacitance 1 0.6C =  μF is charged to the 

potential difference 
1 300U =  V. Then it is connected to another 

capacitor of capacitance 2 0.4C =  μF, which is charged to the 

potential difference 
2 150U =  V. Find the charge Q  that will flow 

from the plate of the first capacitor to the second capacitor. 

6.14. Three identical parallel plate capacitors are connected in 

series. The capacitance C of such a capacitor bank is 89 pF. The area 

S of each plate is 100 cm2. The dielectric material is glass. What is 

the thickness d of the dielectric? 

6.15. A capacitor of capacitance 1 0.2C =  μF is charged to the 

potential difference 
1 320U =  V. Then it is connected to another 

capacitor charged to the potential difference 
2 450U =  V, and the 

voltage across the first capacitor changes to 400 V. Determine the 

capacitance of the second capacitor. 

6.16. Capacitors with capacitances 
1 10C =  nF, 

2 40C =  nF, 

3 2C =  nF and 
4 30C =  nF are connected as shown in Fig. 6.3. 

Determine the capacitance C of the capacitor bank.  

6.17. Capacitors are connected as shown in Fig. 6.4. 

Capacitances of the capacitors are: 1 0.2C =  μF, 2 0.6C =  μF, 

3 0.3C =  μF, 4 0.5C =  μF. Determine the capacitance C of the 

capacitor bank. 

 

 
                Figure 6.3                                      Figure 6.4 
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6.18. An air capacitor is charged to the potential difference 

U = 600 V and disconnected from the power supply, and then 

connected in parallel with an uncharged capacitor of the same shape 

and size, but with a dielectric (porcelain). Determine the relative 

permittivity εr of the porcelain, if after connecting the second 

capacitor the potential difference decreased to 
1 100U =  V. 

6.19. Capacitors of capacitances 
1 2C =  μF, 

2 2C =  μF, 

3 3C =  μF, 
4 1C =  μF are connected as shown in Fig. 6.5. The 

potential difference across the plates of the fourth capacitor is 

4 100U =  V. Find the charges and the potential differences across the 

plates of each capacitor, as well as the total charge and the total 

potential difference across the capacitor bank. 

6.20. Five different capacitors are connected according to the 

scheme (Fig. 6.6). Determine the capacitance С4 at which the 

capacitance of the entire system does not depend on the value of 

capacitance С5. Take С1 = 8 pF, С2 =12 pF, С3 = 6 pF.  

 

 

 

 

 

 

 

 

Figure 6.5 

 

 
Figure 6.6 

 



 125 

Energy stored in the field of a parallel plate capacitor  
 

6.21. The distance d between the plates of a parallel plate 

capacitor is 2 cm, the potential difference across the plates is 

U = 6 kV. The charge Q on each plate is equal to 10 nC. Calculate 

the field energy W stored in the capacitor and the force F of mutual 

attraction of the plates. 

6.22. What amount of heat Q will be released during the 

discharge of a parallel plate capacitor, if the potential difference 

across the plates is 15 kV, the distance d is 1 mm, the dielectric is 

mica, the area of each plate is 300 cm2? 

6.23. The force F of attraction between the plates of a parallel 

plate air capacitor is 50 mN. The area S of each plate is 200 cm2. 

Find the energy density w stored in the field of the capacitor. 

6.24. A parallel plate air capacitor consists of two round plates 

of radius r = 10 cm each. The distance 
1d  between the plates is 1 cm. 

The capacitor is charged to the potential difference U = 1.2 kV and 

then disconnected from the power supply. What work A in distancing 

the plates from each other is required to increase the distance 

between them to 2 3.5d =  сm? 

6.25. A parallel plate air capacitor of capacitance C = 1.11 nF is 

charged to the potential difference U = 300 V. After disconnecting 

from the power supply, the distance between the plates of the 

capacitor is increased 5 times. Determine: 1) the potential difference 

U  across the plates after their distancing; 2) the work A by external 

forces required to distance the plates. 

6.26. A capacitor of capacitance 
1 666C = pF is charged to the 

potential difference U = 1.5 kV and disconnected from the power 

supply. Then a second, uncharged capacitor of capacitance 

2 444C = pF is connected in parallel to the first capacitor. Determine 

the energy spent on the formation of the spark that has occurred at 

the connection of the capacitors. 

6.27. Capacitors with capacitances 
1 1C = μF, 

2 2С =  μF, 

3 3С =  μF are connected in a circuit with voltage U = 1.1 kV. 
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Determine the energy stored in each capacitor in the cases of 1) 

series and 2) parallel combination. 

6.28. The capacitance C of a parallel plate capacitor is 111 pF, 

the dielectric is ceramics. The capacitor is charged to the potential 

difference U = 600 V and disconnected from the power supply. What 

work A is required to remove the dielectric from the capacitor? 

Neglect friction. 

6.29. The space between the plates of a parallel plate capacitor is 

filled with a dielectric (ceramics) of volume V = 100 cm3. The 

surface charge density σ over the capacitor plates is 8.85 nC/m2. Find 

the work A required to remove the dielectric from the capacitor. 

Neglect friction of the dielectric against the capacitor plates. 

6.30. An ebonite slab of thickness d = 2 mm and area 

S = 300 cm2 is placed into a uniform electric field of magnitude 

E = 1 kV/m so that the field lines are perpendicular to the slab’s flat 

surface. Find: 1) the density ΄ of bound charges on the surface of 

the slab; 2) the energy W stored in the electric field concentrated 

within the slab. 

6.31. The slab from the previous problem is moved to the region 

of space without external electric field. Neglecting the decrease of 

the field in the dielectric over time, find the energy W stored in the 

electric field within the slab. 

6.32. Determine the work required to increase by х = 0.2 mm 

the distance x between the plates of a parallel plate air capacitor with 

charges q = 0.2 μC on its plates. The area of each plate is 

S = 400 cm2.  

6.33. The space between the plates of a parallel plate capacitor is 

filled with a dielectric material of relative permittivity εr. What 

happens with the energy density w stored in the field between the 

plates, if the capacitor: a) is connected to a power supply; b) is 

disconnected from the power supply?  

6.34. A parallel plate capacitor with the distance between the 

plates d = 1 mm is immersed into the water in a horizontal position, 

and the water fills it completely. After that, the capacitor is 

connected to a DC power supply U = 500 V. Find the increase in the 

water pressure inside the capacitor.  
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6.35. A parallel plate capacitor is placed so that one of its plates 

is above the surface of the liquid, the other is below the surface. The 

relative permittivity of the liquid is εr, its density is ρ. What height 

will the liquid level in the capacitor rise after charging its plates with 

the surface density σ? 

 

Energy stored in a charged sphere  

 

6.36. A metal sphere with capacitance C = 10 pF is charged to 

the potential φ = 3 kV. Find the energy W stored in the field within a 

spherical layer bounded by that sphere and a spherical surface 

concentric to it with the radius three times larger than the radius of 

the sphere. 

6.37. Electric field is created by a charged (Q = 0.1 μC) sphere 

of radius R = 10 cm. What energy W is stored in the volume bounded 

by that sphere and a spherical surface concentric to it with the radius 

twice as large as the radius of the sphere? 

6.38. A metal sphere of radius R1 = 6 cm contains a charge Q. A 

spherical surface concentric to the sphere divides space into two 

parts (the inner part is limited and the outer part is infinite) so that 

the electric field energies stored in the both parts are equal. Find the 

radius R2 of the spherical surface. 

6.39. A solid paraffin ball of radius R = 10 cm is charged 

uniformly throughout a volume with the volume charge density 

ρ = 10 nC/m3. Find the energy W1 stored in the electric field within 

the ball and the energy W2 stored in the field outside the ball. 

6.40. An ebonite ball is uniformly charged throughout a volume. 

How many times does the energy stored in the electrostatic field 

outside the ball exceed the energy stored in the field concentrated 

within the ball? 

6.41. A charge q = 10-10 C is uniformly distributed over the 

surface of a sphere with radius r = 1 cm. The relative permittivity of 

the medium surrounding the sphere is εr = 1. a) Calculate the energy 

W stored in the field due to the sphere; b) What part  of that energy 

is stored within the region bounded by the spere and an imaginary 
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concentric spherical surface of radius R = 1 m? c) What is the radius 

of the spherical surface enclosing half of the energy? 

6.42. Initially, a charge q = 10-10 С is distributed uniformly 

throughout the volume of a sphere with radius r = 1 cm. Then, as a 

result of mutual repulsion, the charges pass to the surface of the 

sphere. What work A is done on the charges by the electric forces 

(εr = 1)? 

6.43. A point charge q = 3 μC is located in the center of a 

spherical layer of a homogeneous and isotropic dielectric (εr = 3). 

The inner radius of the layer is a = 250 mm, the outer is b = 500 mm. 

Find the energy W stored within the dielectric. 

6.44. A system consists of two concentric metal shells with radii 

R1, R2 and corresponding charges q1 and q2. Find the intrinsic energy 

W1 and W2 stored in the field of each shell, the interaction energy of 

the shells W12 and the total electrical energy W of the system. 

6.45. A spherical shell of radius R1, carrying a uniformly 

distributed charge q, is expanded to radius R2. Find the work done by 

the electric forces. 

6.46. A long cylindrical dielectric layer with relative permittivity 

εr is introduced into the cylindrical capacitor filling almost the entire 

space between the plates. The average radius of the plates is R, the 

distance between them is d, and d << R. The plates of the capacitor 

are connected to a DC power supply U. Find the magnitude of the 

electric force that draws the dielectric into the capacitor.  
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ANSWERS  
 

 
1.1. F = 9 GN.  1.2. Q = 50.1 nC.  1.3. r = 2.  1.4. Q = 86.7 fC.                        

1.5.  = 219 km/s, n = 6.591014 s-1.  1.6. F = 54 mN.  1.7.  Q1 = 0.14 μC,          

Q2 = 20 nC.  1.8.  Q1 = 0.09 μC, Q2 = – 0.01 μC.  1.9. Between the charges at 

the distance х = 40 cm from the charge 4Q, positive.  1.10. The point is located 

at the distance l1 = 20 cm from Q1, Q3 = – 810-8 C, unstable. 1.11. Q1 =  

= –0.577 nC, no.  1.12.  Q1 = –0.287 nC.  1.13. mp = 1.8610-9 kg.                                       

1.14. 
( )

( )
1 2

3
1 10

1
.

4

N N

i k
i k

i k
i k

q q
F r r

r r= =


= −

 −
  1.15. For electrons: Fe/Fg  4.21042, 

for protons: Fe/Fg  1.241036, q/m = 0.8610-10 C/kg. 1.16. F = 1.3510-8 N. 

1.17. 03 2
.

2

dq mg
a

dt l


=  1.18. 1 2 2 1

3

1 2

,
r q r q

r
q q

+
=

+
 

( )
1 2

3 2

1 2

.
q q

q
q q

= −
+

  

1.19. F = 1.5 mN.  1.20. F = 4.5 mN. 1.21. F = 3.6 mN. 1.22. F = 1.27 μN.  

1.23. F = 9 mN.  1.24. F = 4.03 mN. 1.25. 1) F1 = 0.16 mN, 2) F2 = 2.25 μN. 

1.26. F = 35 μN. 1.27. 
( ) ( )( )

3
.

V V

r r r r
F k dVdV

r r

   −
=

−
    1.29. F = 50 N. 

2.1. Е = 2.99 kV/m, Е = 607 V/m.  2.2. Е = 280 V/m.  2.3. х1 = 6 cm,                

х2 = 12 cm.  2.4. At the distance ( )1 2 1d d= +  from the negative charge                   

2.5. Е = 34 kV/m.  2.6. а) Е = 0, b) Е = 0.  2.7. 
( )

2
10

1
.

4

N
i

i i

q
E

r r=

=
 −
                   

2.8. 2.7 3.6 ;E i j= −  Е = 4.5 kV/m.  2.9. 

( )
3

2 2 2

0

.

2

ql
E

l x

=

  +

  2.10. 0,             

Е2 = 900 V/m, Е3 = 400 V/m, graph at Fig. 1.  2.11. 0, Е2 = 1.1 kV/m,                   

Е3 = 200 V/m, graph at Fig. 2.  2.12. Е = 2.71 kV/m.   
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       Figure 1                                                        Figure 2 

 

2.13. а) 

( )
3

2 2

,
kxq

E

x R

=

+

 b) xm =  42.8 mm, Еm = 1.93104 V/m.                        

2.14. Е = 0.1 kV/m.  2.15. 

( )
3 2

2 2 2
0

,
6 3

m

lq q
E k E

Rl R

= =
+

 if .
2

R
l =         

2.16. 
2

4

3
.

kqR
E

x
=  2.17. a) 0

04
E

R


=


, b) 

( )

2

0

3
2 2 2

0

,

4

R
E

x R


=

 +

 if x >> R 

2

0

3

0

.
4

R
E

x


=


  2.18. 

0

.
3

aR
E = −


  2.19. Е = 64.3 kV/m.   2.20.  = 5.55 nC/m.         

2.21. Е = 43.2 MV/m.  2.22. 0, E2 = 75.5 V/m, graph at Fig. 3.  2.23. 0,                

E2 = 200 V/m, Е3 = 180 V/m, graph at Fig. 4.  2.24. E = 135 kV/m.   

 

 
       Figure 3                                                          Figure 4 

 

2.25. E = 35.6 kV/m.  2.26.  E = 55.7 kV/m.  2.27.  E = 60.2 kV/m.              

2.28.  E = 38 kV/m.  2.29. ( ) 2 2

0

2
;

4

l
E r

r l


=

 −
 if r >> l, ( ) 2

0

.
4

l
E r

r


=
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2.30. ( )
0

.
2

E r
r


=


  2.31. а) 

0

2
,

4
E

R


=


 b) 0.  2.32. max

0

40E
l


= =


kV/m.   

2.33. 1) E = 396 V/m, 2) E = 170 V/m, graph at Fig. 5. 2.34. Р = 17 μPa.   

2.37. Е = 377 kV/m.  2.38. |Q| = 33.3 nC.  2.39. a) ( )
0

0 1 ,
a

E
r

  
 − 
  

                  

b) ( )
0

0 1 ,
a

E a
r

  
−  − 

  
 c) ( )

0

0 ,
a

E a
r


+  −


 d) ( ) 3

4
.

q a
E x r k

x
= −              

2.40. 0

0

,
2

E


=


 direction of the vector E  corresponds to the angle  = .  

2.41. Е = 56.5 V/m.  

 
Figure 5 

 

2.42. ЕА = 0, DA = 0, EB = 80.8 V/m, DB = 5 nC/m2, ЕС = 162 V/m,                   

ЕС = 1.13 kV/m, DС = 10 nC/m2, graph at Fig. 6.  2.43. 1) Е1 = 3.78 V/m,       

D1 = 0.1 nC/m2, 2) Е2 = 6.28 V/m (r >> R), Е2 = 18.8 V/m, 3) Е3 = 4.72 V/m,    

D3 = 41.7 nC/m2, graph at Fig. 7. 2.44. 1) E1 = 0, D1 = 0, 2) E2 = 13.6 V/m,     

D2 = 843 pC/m2, 3) Е3 = 229 V/m, D3 = 2.02 nC/m2, graph at Fig. 8.           

2.45. 1) E1 = 2.83 V/m, D1 = 50 pC/m2, 2) E2 = 7.55 V/m, D2 = 66.7 pC/m2, 

graph at Fig. 9. 2.46. 
0

,
3

tot

a
E


=


 the field inside the cavity is uniform.   

2.47. ( ) 0

0

.
2

r
E r

r


=


 2.48. F = 0.36 N.  2.49. F = 56.5 μN. 2.50.  =  

= 1.06 μC/m2.  2.51. F/l = 452 nN/m.  2.52. F = 1.13 mN. 2.53. F/l =  

= 3.6 mN/m. 2.54. 1) F = 56.5 mN, 2) F = 0.9 μN. 2.55. F = 150 μN.  
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2.56. ( )
( )

2

2 2
0

, .
4

l
F x

l l x

 
=  =

  +
 2.57. ФЕ = 1.78 kVm. 2.58.  = 2.5 nC.  

2.59. ФЕ = 4.5 Vm.  2.60. ФЕ = 2.7 Vm.   

 

 
Figure 6 

 
Figure 7 

 

3.1.  = 1 kV. 3.2. А1 = – 4 μJ,  = 200 V. 3.3. П/Q2 = – 162 J/C.  

3.4. А = 4.5 μJ.  3.5.   = 45 V.  3.6.   = 6 kV, dmin = 10 cm, dmax = 40 cm. 

3.7. Е = 664 kV/m,  = 26.4 kV.  3.8. П = 90 μJ. 3.9. П = – 63 μJ.   

3.10. П = 48.8 μJ. 3.11. (x – 10)2 + y2 = 64.  3.12.  = 36.5 V. 3.13.  = 505 V. 

3.14. 2

0 1

ln 125
2

r

r


 = =


 V. 3.15.  = 33.6 V. 3.16. N = 1.04109.  

3.17.  = 432 V. 3.18.  = 56.6 V. 3.19. U = 141 V. 3.20. 1)  = 360 V,  

2)   = 149 V.  3.21. 1)  = 75 V, 2)  = 135 V, 3)  = 100 V. 3.22.  =  

= E R = 300 kV.  3.23.   = 8.07 V.  3.24. 1 = 238 V, 2 = 3 = 116 V.  

3.25.  1 = 472 V, 2 = 377 V, graph at Fig. 10.  3.26. 
06 .ax=    
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Figure 8 

 
Figure 9 

 
Figure 10 

 

4.1. grad ;E = − grad 226E = = V/m, gradient is directed 

perpendicular to the plane. 4.2. U = 0.6 V. 4.3. U = 0.12 V. 4.4. grad
r


 = =  
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= 200 V/m, gradient is directed towards the charge. 4.5. 
0

grad
2 r


 = =


 

= 180 V/m, gradient is directed towards the thread along the field line.   

4.6. 
2

0

3.14
6

R
 = =

 
 V. 4.7. а) ( )2 2

2

0

,
2

q
r x x

r
 = + −

 
  

2 2 2
0

1 .
2

x

q x
E

r r x

 
= − 

  + 
 At | x | >> r the field due to the point charge: 

0

1
,

4

q

x
 =


 

2

0

1
;

4
x

q x
E

x x
=


 b)  = 75 kV, Ех = 0.53 МВ/m.  

4.8. 
( )

0

1
,

4
V

r dV

r r


 =

 −  
( )( )

3

0

1
.

4
V

r r r dV
E

r r

 −
=

  −
   4.9. E a= − , the field is 

uniform. 4.10. а) E  = –2а (x i  – y j ), b) E  = – а (y i  – x j ). 4.11. a)  = 

= – axy + const, b)  = ay ((y2/3) – x2) + const, c)  = – axy  – byz + const.  

4.12. А1 = 8.91 mJ, А2 = 9 mJ.  4.13. А = Q / 40 = 25.2 μJ.   4.14. А = 47 μJ.  

4.16. А = 2.62 μJ.  4.17. А1,2 = (Q11)/3 = 1 μJ. 4.18. А1,2 = 659 μJ.  4.19. А1,2 = 

= 165 μJ.  4.20. l = 5.19 mm. 4.21. l = 1 cm. 4.22.  = 2.24 Mm/c, makes an 

angle 45 with the initial direction.  4.23. 2 = 289 V (m and e are the mass and 

the charge of the proton).  4.24. l = 2.13 mm. 4.25. min = 0.24 Mm/c (e/m is 

the specific charge of the electron).  4.26. 2 = 23.3 V (m is the mass of the 

electron). 4.27. F = 2.410-17 N, a= 2.751013 m/s2,  = 4.07 Mm/s.  4.28. lmin = 

= 5.9 mm.  4.29.    = 79.6 V.  4.30. U = 22.5 V.  4.31. rmin = 72 fm.   

4.32. 
2

min 2

0

10.1
e

r
m

= =
 

 pm (m is the mass of the electron).  

4.33. 
( )

( )
1 2 1 2

min 2

0 1 1 2

1
;

2

Q Q m m
r

m

+
=

  + 
 

( )
1 2

1 2

0 1 1 2

;
QQ

r
m

=
  + 

  
( )
1 2

2 2

0 1 1 2

.
2

QQ
r

m
=

  + 
 

4.34. 
( )

1 2
1

0 0

;
4 1

QQ
T

r k
=

 +
 1) 1 2

1

0 0

;
8

Q Q
T

r
=


 2) 1 2

1

0 0

;
4

Q Q
T

r
=


     3) 1 0.T =  

5.1. E = 6.75 kV/m;  = 0.  5.2. A = 0, B = 385 B, EA = 1.08 kV/m,              

EВ = 22 kV/m.  5.3.    = 1.8 V, E = 47.6 V/m.  5.4.   (t) = 90cos (6.28103t + 

+ /2).  5.5. F = 1.35 μN.  5.6. Wp = – 18 nJ.  5.7. The electric dipole moment 

p  of the neutral charge system does not depend on the choice of coordinate 

system, which determines this system. 5.8. А = 2рЕ. 5.9. а) p  = 0, b) p  = 0.  

5.10. 
sin

286
pE

C


= =


 nNm/rad. 5.11. Wp = – 500 μJ. 5.12. А = 30 μJ.  
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5.13.  = 239 Hz.  5.14. 0.2
dE

F p
dx

= = mN.  5.15. 1.8
dE

dx
= МВ/м2, F = 9 μN. 

5.16. F = 2.110-16 N. 5.17. а) 0,F =  b) 
2

0

,
2

p
F

r


= −


 c) 

2

0

.
2

p
F

r


=


                     

5.18. 
2

4

0

1 3
,

4 8

p
F

d
=


 the direction is from the dipole to the conductive plane.  

6.1. U = 22.6 V.  6.2. C = 88.5 pF, 2) D1 = D2 = 2.66 μC/m2, Е1 =  

= 42.8 kV/m, Е2 = 100 kV/m, 1 = 1 = 300 V.  6.3. d = 0.5 cm.                 

6.4. С = 35.4 pF.  6.5. С = 2.5 μF.  6.6. U = 700 V.  6.8. U = 4.41 kV.             

6.10. r = 13.2.  6.11.  100 pF/m.  6.12. 1) Q1 = 360 μC, Q2 = 720 μC, U1 = U2 

= = 120 V; 2) Q1 = Q2 = 240 μC, U1 = 80 V, U2 = 40 V.  6.13. Q = 36 μC.  

6.14. d = 2.32 mm.  6.15. 1
2 1

2 1

0.32
U U

C C
U U

−
= =

−
 μF. 6.18. r = 5.  6.19. Q1 = 

= 200 μC, Q2 = Q3 = 120 μC, Q4 = 100 μC, 110 V, 60 V, 40 V; Qtot = 220 μC, 

1 = 210 V. 6.20. 2 3
4

1

9
C C

C
C

= = pF.  6.21. W = 30 μJ.  6.22. Q = 0.209 J.  

6.23. w = 2.5 J/m3.  6.24. А = 50 μJ.  6.25. 1) U = 1500 V, 2) A = 0.2 mJ.  

6.26. W = 23 mJ.  6.28. А = 80 μJ.  6.29. А = 63.5 nJ.  6.30. 1)  = 5.9 nC/m2,                       

2) W = 88.5 pJ.  6.31. W = 118 pJ.  6.32. 
2

0

11.3
2 r

q x
A

S 


= = μJ.   

6.33. а) w increases r times, b)  decreases r times. 6.34. Р = 7 kPa.   

6.35. ( )
2

0

1 .
2

r

r

h
g


=  −

  
 6.36. W = 30 μJ. 6.37. W = 225 μJ. 6.38. R2 =  

= 12 cm.  6.39. W1 = 7.88 nJ, W2 = 78.8 nJ.  6.40. W1/ W2 = 15.      6.41. а) 
2

0

1 1
4.5

2 4

q
W

r

 
= = 

 
nJ, b)  = 0.99, c) R = 2cm. 6.42. А = 0.9 nJ. 6.43.  W = 

= 27 mJ.  6.44. 
2 2

1 2 1 2

0 1 2 2

1
.

4 2 2

q q q q
W

R R R

 
= + + 

  
 6.45. 

( )2

2 1

0 1 2

.
8

q R R
A

R R

−
=


   

6.46. 
( )2

0 1
.r

x

U R
F

d

  −
=  
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APPENDICES  

 

Appendix A 

Tables of homework variants*  
 

 

Table A.1 

COULOMB’S LAW. INTERACTION OF CHARGED BODIES   
Variant Problem number  

0 1.1 1.18 1.22 1.29 

1 1.2 1.17 1.20 1.25 

2 1.3 1.16 1.19 1.26 

3 1.4 1.15 1.23 1.21 

4 1.5 1.14 1.24 1.28 

5 1.6 1.13 1.19 1.27 

6 1.7 1.12 1.20 1.26 

7 1.8 1.11 1.22 1.25 

8 1.9 1.18 1.23 1.29 

9 1.10 1.17 1.20 1.26 

 

Table A.2 

ELECTRIC FIELD.  

ELECTRIC DISPLACEMENT FIELD 
Variant Problem number  

0 2.1 2.18 2.24 2.33 2.49 

1 2.2 2.17 2.25 2.34 2.48 

2 2.3 2.16 2.26 2.35 2.50 

3 2.4 2.15 2.27 2.36 2.51 

4 2.5 2.14 2.28 2.37 2.52 

5 2.6 2.13 2.29 2.38 2.53 

6 2.7 2.12 2.31 2.39 2.54 

7 2.8 2.11 2.22 2.40 2.55 

8 2.9 2.10 2.23 2.35 2.56 

9 2.1 2.17 2.32 2.34 2.57 

 
*Variant number is the number of the last digit of the student’s card 
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Table A.3 

ELECTRIC POTENTIAL. ENERGY OF THE SYSTEM OF 

ELECTRIC CHARGES. POTENTIAL GRADIENT. WORK IN 

MOVING AN ELECTRIC CHARGE. MOTION OF 

CHARGED PARTICLES IN ELECTRIC FIELD  
Variant Problem number  

0 3.1 3.15 3.23 4.12 4.20 

1 3.2 3.14 3.24 4.13 4.21 

2 3.3 3.13 3.25 4.14 4.22 

3 3.4 3.12 3.26 4.15 4.23 

4 3.5 3.21 4.10 4.16 4.24 

5 3.6 3.20 4.9 4.17 4.25 

6 3.7 3.19 4.8 4.18 4.26 

7 3.8 3.18 4.7 4.19 4.27 

8 3.9 3.17 4.6 4.17 4.28 

9 3.10 3.16 4.5 4.18 4.29 

 

Table A.4 

ELECTRIC DIPOLE 
Variant Problem number  

0 5.1 5.9 5.10 5.18 

1 5.2 5.8 5.11 5.17 

2 5.3 5.7 5.12 5.16 

3 5.4 5.9 5.13 5.18 

4 5.5 5.8 5.14 5.17 

5 5.6 5.9 5.15 5.16 

6 5.1 5.8 5.10 5.18 

7 5.2 5.7 5.11 5.17 

8 5.3 5.9 5.12 5.16 

9 5.4 5.8 5.13 5.18 
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Table A.5 

CAPACITANCE, CAPACITORS. ENERGY STORED IN A 

CHARGED CONDUCTOR. ENERGY STORED IN 

ELECTRIC FIELD 
Variant Problem number 

0 6.1 6.17 6.23 6.33 

1 6.2 6.16 6.24 6.44 

2 6.3 6.15 6.25 6.34 

3 6.4 6.14 6.26 6.43 

4 6.5 6.13 6.18 6.35 

5 6.6 6.12 6.19 6.42 

6 6.7 6.11 6.20 6.36 

7 6.8 6.10 6.21 6.41 

8 6.1 6.9 6.22 6.37 

9 6.2 6.17 6.27 6.40 

 
 

Appendix B 

Tables of physical quantities 

 

Table B.1 

Prefixes and multipliers for the formation of multiple and 

fractional units 
Name Symbol Multiplier Name Symbol Multiplier 

Exa Е 1018 deci d 10-1 

Peta P 1015 centi с 10-2 

Tera Т 1012 milli m 10-3 

Giga G 109 micro μ 10-6 

Mega М 106 nano n 10-9 

Kilo k 103 pico p 10-12 

Hecto h 102 femto f 10-15 

Deca da 101 atto а 10-18 
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Table B.2 

Fundamental physical constants  
Name Symbol Numerical value 

Electric constant 

Gravitational constant 

Elementary charge 

Electron rest mass 

Proton rest mass 

Neutron rest mass 

Gravitational 

acceleration 

Specific charge of an 

electron 

0 

G 

e 

me 

mp 

mn 

 

g 

 

e/me 

 

8.85410-12 Fm-1 

6.67210-11 m3kg-1s-2 

1.60210-19 C 

9.10910-31 kg 

1.67310-27 kg 

1.67510-27 kg 

 

9.807 m/с2 

 

1.761011 C/kg 

 

 

Table B.3 

Relative permittivity r 
Material r Material r 

Water 

Wax paper 

Kerosene 

Ebonite 

Quartz 

81 

3.7 

2 

2.6 

2.7 

Transformer oil 

Paraffin 

Glass 

Mica 

Ceramics 

2.2 

2 

5.5...10 

6 

6 

 

 

Appendix C 

Scheme of gradual increase in complexity in the 

formation of the concept of electric field 
 

Example 1. Material point 

Example Material point of charge q at a distance r from the point A  

Figure  

 
 

Magnitude of 

electric field 2

q
E k

r
=   
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Example 2. Thin thread 

Example A thin thread of length L carrying charge Q uniformly 

distributed along the length. Point A is located at a distance a 

from the thread  

Figure  

 
 

Element A point of infinitesimal length dl and charge dq 

Elementary 

magnitude of 

electric field in 

projections onto 

the coordinate 

axes 

 

2
cosx

dq
dE k

r
= ;  

2
siny

dq
dE k

r
=  

 

Elementary 

charge 

Q
dq dl dl

L
= =  

Components of 

electric field 2
cos cos

/ cos
x

l a tgQ dl Q d
dE k k

L L ar ar

 
 



= 
=  = = 

=
 

2
sin siny

Q dl Q d
dE k k

L L ar


 =  =   

Calculation 

formula 

2

1

cos
x

Q
E k d

L a






=  ;  

2

1

sin
y

Q
E k d

L a






=  ;   

2 2
x yE E E= +  

Result 

(Particular cases) 
1) 1

2

/ 2

/ 2

 

 

= −

=
  ( )L→  2E k

a


=  

2) 1

2

0

/ 2



 

=

=
  ( )L→  2E k

a


=  

3) 1 0

2 0

 

 

= −

=
  0 2

L
tg

a
 =  02 sin

Q
E k

La
=  

4) 1

2 0

0

 

=

=
  0

L
tg

a
 =  02 sin

2

Q
E k

La


=  
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Example 3. Thin semicircle 

Example A thin semicircle of radius R carrying charge Q uniformly 

distributed along the length. Point A is located in the 

geometric center of the semicircle  

Figure  

 
 

Element A point of infinitesimal length dl and charge dq  

Elementary 

magnitude of 

electric field in 

projections onto 

the coordinate 

axes 

 

2
cosx

dq
dE k

R
= ;  

2
siny

dq
dE k

R
=  

Elementary 

charge 

 
Q Q

dq dl dl Rd
R R

 
 

= = =   

 

Components of 

electric field 

 

2
cosx

Q Rd
dE k

R R





=  ;  

2
siny

Q Rd
dE k

R R





=   

 

Calculation 

formula 

 
/2

2
/2

cos
x

Q
E k d

R









−

=  ;  
/2

2
/2

sin
y

Q
E k d

R









−

=  ;      

2 2
x yE E E= +  

 

Result  

2
2

Q
E k

R
=  
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Example 4. Thin ring 

Example A thin ring of radius R carrying charge Q uniformly 

distributed along the length. Point A is located on the axis of 

the ring at a distance a from its plane  

Figure  

 
 

Element A point of infinitesimal length dl and charge dq  

Elementary 

magnitude of 

electric field in 

projections onto 

the coordinate 

axes 

 

2
cosx

dq
dE k

r
= ;  

2
siny

dq
dE k

r
=  

Elementary 

charge 

 

2

Q
dq dl dl

R



= =  

 

Components of 

electric field 

 

2
cos

2
x

Q dl
dE k

R r



=  ;   

2
sin

2
y

Q dl
dE k

R r



=   

 

Calculation 

formula 

 

2
( )

cos
2

x

l

Q dl
E k

R r



=  ;  

2
( )

sin
2

y

l

Q dl
E k

R r



=  ;     

2 2
x yE E E= +  

 

Result  

2 2 2( )

Q Q
E k k

r R a
= =

+
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Example 5. Thin disk 

Example A thin disk of radius R carrying charge Q uniformly 

distributed over the surface. Point A is located on the axis of 

the disk at a distance a from its plane, and the disk is visible 

from that point at a solid angle Ω  

Figure  

 
 

Element An infinitely thin ring of radius r and charge dq  

Elementary 

magnitude of 

electric field in 

projections onto 

the coordinate 

axes 

 

2
cosx

dq
dE k

r
=  

Elementary 

charge 

 

2

Q
dq ds ds

R



= =  

 

Components of 

electric field 

 

2 2 2 2
cos cosx

Q ds ds Q
dE k d k d

R r r R
 

 
=  = =  =    

 

Calculation 

formula 

 

2
0

x

Q
E k d

R



=    

 

Result 

(Particular cases) 2

Q
E k

R
=   

1) 
2

2 2

S R
a

a a


→= =  

2

Q
E k

a
=  

2) 0 2a → =  
2

2Q
E k

R
=  
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Example 6. Hemisphere 

Example A hemisphere of radius R carrying charge Q uniformly 

distributed over the surface. Point A is located in the center of 

the hemisphere 

Figure  

 
 

 

Element An infinitely thin ring of radius r and charge dq  

Elementary 

magnitude of 

electric field in 

projections onto 

the coordinate 

axes 

 

2
cosx

dq
dE k

R
= ;  

2
siny

dq
dE k

R
=  

Elementary 

charge 

 

2 2

2

2 sin
2 2

2 sin
2

Q Q
dq ds ds rdl r R

R R
Q

R Rd
R

  
 

  


= = =  = = =

=  

 

 

Components of 

electric field 

 
2

2 2

2 sin cos

2
x

Q R d
dE k

R R

   


=   

 

Calculation 

formula 

 
/2

2
0

sin cosx

Q
E k d

R



  =   

 

Result  

22

Q
E k

R
=  
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Appendix D 

Comparison of the DI-method based calculation 

of the moment of inertia and the electric field 
 

 

Table D.1 

A point body 

 Moment of inertia 
2

( )m

I r dm=   

Magnitude of electric field  

2
( )

n n

q

dq
E k e

r
=   

Example A material point of mass m 

located at a distance r from 

the axis of rotation  

A material point of charge q 

located at a distance r from the 

point A  

Figure 

 

 

 
 

Compared 

quantities   

Mass m Charge q 

Final 

formula 

2I mr=  
2

q
E k

r
=   

 

Table D.2 

A linear body 

 Moment of inertia 
2

( )m

I r dm=   

Magnitude of electric field  

2
( )

n n

q

dq
E k e

r
=   

Example 1. A thin rod 

Example A thin rod of length L and 

mass M. The axis of rotation 

is perpendicular to the rod 

and passes through its middle  

A thin thread of length L 

carrying charge Q uniformly 

distributed along the length. 

Point A is located at a distance a 

from the thread  
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Figure  

 

 

 
 

Element An infinitesimal point of 

mass dm located at a distance 

r from the axis of rotation  

A point of infinitesimal length dl 

and charge dq 

Compared 

elemen-

tary 

quantities   

 
M

dm dl dr
L

= =   

 
Q

dq dl dl
L

= =  

General 

formula 

 

2 2 M
dI r dm r dr

L
= =    

 

2 2

;

n n n

n

dq Q dl
dE k e k e

Lr r
Q d

k e
L a



=   =   =

=  

 

cosxe = ;      sinye =  

 

Calcula-

tion 

formula 

 
/2

2

/2

L

L

M
I r dr

L
−

=   

 
2

1

cos
x

Q
E k d

L a






=  ;

2

1

sin
y

Q
E k d

L a






=  ; 

2 2
x yE E E= +   

 

Result 

(Particular 

cases) 

 

21

12
I MR=  

1) 1

2

/ 2

/ 2

 

 

= −

=
  ( )L→          

2E k
a


=  

2) 1

2

0

/ 2



 

=

=
  ( )L→            

2E k
a


=  
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3) 1 0

2 0

 

 

= −

=
  0 2

L
tg

a
 =      

02 sin
Q

E k
La

=  

4) 1

2 0

0

 

=

=
  0

L
tg

a
 =          

02 sin
2

Q
E k

La


=  

 

Example 2. A thin ring, the axis coincides with one of the diameters  

Example A thin ring of radius R and 

mass M. The axis of rotation 

coincides with one of the 

diameters 

A thin semicircle of radius R 

carrying charge Q uniformly 

distributed along the length. 

Point A is located in the 

geometric center of the 

semicircle   

Figure  

 
 

 

 
 

Element An infinitesimal point of 

mass dm located at a distance 

r from the axis of rotation  

A point of infinitesimal length dl 

and charge dq 

Compared 

elemen-

tary 

quantities   

 

2

2

M
dm dl dl

R
M

Rd
R







= =  =

= 

 

 

 
Q

dq dl dl
R

Q
Rd

R







= = =

= 
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General 

formula 

 

2 2

2

M
dI r dm r d


= =    

 

2

2
;

n n

n

dq
dE k e

r
Q Rd

k e
R R





=   =

=  

 

cosxe = ;      sinye =   

 

Calcula-

tion 

formula 

 
2

2

0

2
2 2

0

sin
2

sin
2

M
I r d r R

M
R d





 


 


=  = = =

=





 

 
/2

2
/2

cos
x

Q
E k d

R









−

=  ;

/2

2
/2

sin
y

Q
E k d

R









−

=  ; 

2 2
x yE E E= +  

 

Result  

21

2
I MR=  

 

 

2
2

Q
E k

R
=  

 

Example 3. A thin ring, the axis is perpendicular to the plane of the ring  

Example An infinitely thin ring of 

radius R and mass M. The 

axis of rotation passes 

through the center of the ring 

perpendicular to its plane  

A thin ring of radius R carrying 

charge Q uniformly distributed 

along the length. Point A is 

located on the axis of the ring at 

a distance a from its plane  

Figure  

 

 

 
 

Element An infinitesimal point of 

mass dm located at a distance 

r from the axis of rotation  

A point of infinitesimal length dl 

and charge dq 

Compared 

elemen-

tary 

quantities   

 

2

M
dm dl dl

R



= =   

 

2

Q
dq dl dl

R



= =  
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General 

formula 

 

2 2

2

M
dI r dm r dl

R
= =  

 

2 22
n n n

dq Q dl
dE k e k e

Rr r
=   =   ;    

cosxe = ;      sinye =  

 

Calcula-

tion 

formula 

 

2

( )
2

l

M
I r dl

R
=   

 

2
( )

cos
2

x

l

Q dl
E k

R r



=  ;  

2
( )

sin
2

y

l

Q dl
E k

R r



=  ;     

2 2
x yE E E= +  

 

Result  
2I MR=  

 

 

2 2 2( )

Q Q
E k k

r R a
= =

+
 

 

 

Table D.3 

A planar body 

 Moment of inertia 
2

( )m

I r dm=   

Magnitude of electric field  

2
( )

n n

q

dq
E k e

r
=   

Example 1. A thin disk 

Example A thin disk of radius R and 

mass M. The axis of rotation 

is perpendicular to the plane 

of the disk and passes through 

its center  

A thin disk of radius R carrying 

charge Q uniformly distributed 

over the surface. Point A is 

located on the axis of the disk at 

a distance a from its plane, and 

the disk is visible from that point 

at a solid angle Ω  
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Figure  

 
 

 

 

Element An infinitely thin ring of 

mass dm and radius r  

An infinitely thin ring of charge 

dq and radius r  

Compared 

elemen-

tary 

quantities   

 

2
2

M
dm ds rdr

R
 


= =   

 

2

Q
dq ds ds

R



= =  

General 

formula 

 

2 2
2

2
M

dI r dm r rdr
R




= =    

 

2

2 2

2

cos

cos

x

dq
dE k

r
Q ds

k
R r
Q

k d
R








=   =

=  =

=  

 

 

Calcula-

tion 

formula 

 

3
2

0

2
R

M
I r dr

R
=   

 

 

2
0

x

Q
E k d

R



=    

Result 

(Particular 

cases) 

 

21

2
I MR=  

 

2

Q
E k

R
=   

1) 
2

2 2

S R
a

a a


→= =   

2) 0 2a → =   

Example 2. Spherical surface 

Example A spherical surface of radius 

R and mass M. The axis of 

rotation coincides with one of 

the diameters 

A hemisphere of radius R 

carrying charge Q uniformly 

distributed over the surface. 

Point A is located in the center of 

the hemisphere 
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Figure  

 
 

 

 

Element An infinitely thin ring of 

mass dm and radius r 

An infinitely thin ring of charge 

dq and radius r 

Compared 

elemen-

tary 

quantities   

 

2

2

2
4

2 sin
4

M
dm ds rdl

R
M

R Rd
R

 


  


= =  =

=  

 

 

2

2

2

2

2
2

2 sin
2

Q
dq ds ds

R
Q

rdl
R

Q
R Rd

R







  


= = =

=  =

=  

 

 

General 

formula 

 

2 2
2

2 sin
4

M
dI r R d

R
  


=    

 

2

2

2 2

cos

2 sin cos

2

x

dq
dE k

r

Q R d
k

R R



   



=   =

= 

 

 

Calcula-

tion 

formula 

 

2

0

2 3

0

sin
2

sin
2

M
I r d

M
R d





 

 

=  =

=





 

 

 
/2

2
0

sin cosx

Q
E k d

R



  =   

Result  

22

3
I MR=  

 

 

22

Q
E k

R
=  

 

 


