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Application of exponential functions in weighted
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Abstract. The paper is continuation of our efforts on application of the properly constructed sets of exponential functions as the trial
(basic) functions in weighted residuals method, WRM, on example of classical tasks of structural mechanics. The purpose of this
paper is justification of new method’s efficiency as opposed to getting new results. So, static deformation and free vibration of iso-
tropic thin — walled plate are considered here. Another peculiarity of paper is choice of weight (test) functions, where three options
are investigated.: it is the same as trial one (Galerkin method), it is taken as results of application of differential operator to trial
function (least square method), it equals to the second derivative of trial function with respect to both x and y coordinate (moment
method). Solution is considered as product of two independent sets of functions with respect to x or y coordinates. Each set is the
combination of five consequent exponential functions, where coefficient at first function is equal to one, and four other coefficients
are to satisfy two boundary conditions at each opposite boundary. The only arbitrary value in this method is the scaling factor at
exponents, the reasonable range of which was carefully investigated and was shown to have a negligible impact on results.

Static deformation was investigated on example of simple supported plate when outer loading is either symmetrical and concentrated
near the center or is shifted to any corner point. It was demonstrated that results converge to correct solution much quickly than in
classical Navier method, while moment method seems to be a best choice. Then method was applied to firee vibration analysis, and
again the accuracy of results on frequencies and mode shape were excellent even at small number of terms. At last the vibration of
relatively complicated case of clamped-clamped plate was analyzed and very encouraged results as to efficiency and accuracy were
achieved.

Keywords rectangular plate, clamped-clamped plate, Galerkin method, weighted residual method, free vibration, natural frequecies
and modes, weight functions.

Introduction coefficients should also approximately satisfy the govern-
ing differential equation, and in this case is considered as
an approximate solution. The last goal is achieved inte-
grally: by multiplication of the looking for solution with
some number of unknowns on the same number of test
(weight) functions, and integration over the whole area
[2]. The choice in capacity of test functions the trial ones
was historically the first kind and predecessor of WRM,
and method is usually named as Galerkin, or Bubnov — Ga-
lerkin, or Ritz — Galerkin method [4, 5].

In this work are not investigated any unresolved
tasks. Here a new tool for treatment of complicated prob-
lem is rather developed. As any new technique the pro-
posed method should be assessed on relatively simple
classical problems. Here we consider the rectangular (on

The goal of paper consists in further justification of
application of the sets of exponential consequent functions
[1] for solution of various problems of structural mechan-
ics based on weighted residual method, WRM [2]. WRM
is very powerful semi — analytical technique for solving
the scientific and engineering problems, and it provides
ideas for development of other engineering methods, such as
FEM [3]. The essence of WRM consists in proper choice
of the trial functions which satisfy to boundary condition.
A linear combination of them multiplied on looking for
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considered as a testing ground for developing new meth-
ods, which can be successfully applied later for more
complicated problems [6]. In subsequent review we most-
ly concentrate on semianalytical approximate methods,
which in theory of plates are mostly based and named
after Ritz — Galerkin.

Let’s start our review from the famous Navier solu-
tion. It was proposed at first half of 19th century for the
treatment of SSSS rectangular plate (where letter S means
one simply supported side, so all four sides are simply
supported) [7]. In modern sense it can be considered as
the first time application of the Galerkin method. Indeed,
if we would consider the sinus function as the Trial ones
(which satisfy to boundary condition) and the same func-
tion as Test one, we get the pure Galerkin method . Fur-
thermore, as sinus function is the result of 4" order differ-
ential equation application to the same function the Na-
vier method can be considered as least square method,
LSM, variant of WRM. Furthermore, as sinus results from
twice differentiation of sinus, then Navier method can be
considered as Moment variant of WRM, because second
derivative from displacement is approximately propor-
tional to bending moment. So, this simple contemplation
allows to formulate the auxiliary goal of work — to inves-
tigate the choice of test function in WRM.

Static analysis can be easily performed if two oppo-
site sides are simple supported. Then one set of functions
(say, with respect to x) are expanded into sinus functions,
so for functions along y the simple beam — like ordinary
bi — quadratic differential equation is got, which exact
solution allows to satisfy any boundary conditions for two
other opposite sides. This solution was proposed by Levi
[7]. In case of any other boundary condition the auxiliary
Levi task is considered for plate with two sides loaded by
given bending moment. Then principle of superposition is
applied to several Levi tasks to provide the required
boundary condition. In practice these strict methods are
rather cumbersome, so Galerkin methods are widely ap-
plied for static tasks [8], especially for clamped plate [8].
Several trial functions were mention in [8], among them-
Timoshenko (1910) functions (1+cos(mx/a)) for sym-
metrical loading, Galerkin (1915) functions which contain
multipliers (a® —x*)*, where k>2.

In vibration analysis both strict methods as well as
Ritz — Galerkin methods are equally popular. The origin
of strict method is related with work of Voigt (1893) [9].
This work proceeds to idea of Levy but in fact was analo-
gous to it. In case of two opposite simple supported sides
the dependence from, say x, is chosen as sinus, which
leads for the simple bi — quadratic equation for another
coordinate. Its solution allows to get nonlinear character-
istic equation for any other boundary conditions. His ide-
as were lately employed by Leissa [10] for getting accu-
rate nondimensional frequencies. These ideas got further
development in work of Gorman [11] who employs the
principle of superposition for the dynamical case. This

classical solution lays foundation for dynamic stiffness
method [12], where displacements at the boundaries and
angles are related with moments and forces are related
through the frequency dependent matrix.

Returning to the work of Leissa [10] it is interesting
to know that for other tasks then two simple supported
side he used the approximate Ritz method where the beam
vibration solutions, so — called beam functions were cho-
sen as trial function. The idea of using them was elaborat-
ed by Warburton (1954) [13] for frequency analysis, who
considered them separately (not as combination of them)
in Ritz method, and since then these function are among
the most widely used.

The increasing complexity of real tasks makes ap-
proximate methods more popular. With this respect it
worth to mention the work [14] where the comparative
study of various approximate solutions (different trial func-
tions) based on Ritz method was performed. It is a pity
that it gives no concrete values of frequencies for differ-
ent methods; it would be valuable reference point for as-
sessment of different techniques. Nevertheless, for us it is
important to mention all 6 trial functions employed here.
They are as following. First, already mentioned Beam
functions, proposed by Young [15] and Warburton [13].
Second, Modified beam functions where trigonometric
component remain the same as in Beam functions, where-
as the hyperbolic terms are replaced by negative exponen-
tial terms [16]. Third, Orthogonal polynomials proposed
by Bhat [17], where polynomial sets, satisfied to bounda-
ry condition, are orthogonalized by the Gram—Schmidt
process. Fourth, keeping in mind that orthogonalization
process take a lot of efforts, Kim et al. [18] proposed a set
of usual Non — orthogonal polynomials, which integration
is much simpler. Fifth, Product of Trigonometric Func-
tions, application of which was suggested by Chai [19].
Sixth, Static beam functions as admissible functions in the
Ritz method was first proposed by Zhou [20], which use
the polynomials of third order and different sinus terms.

Except the trial functions described in [14] many
other different functions are used in literature. For exam-
ple, the four side clamped plate is analyzed by set of tran-
slated on small distance each from other the Sink functions
[21], which are the ratio of sin(x) to x. There also many
other presentations of trial functions in literature, most of
which are combinations of trigonometric functions.

The above analysis shows that our idea [1] of using
the sets of consequent exponential functions is, at least,
new and deserves deeper investigation. In order to get
exhausted understanding of accuracy we will mostly con-
sider the SSSS plate, because, from one hand, there is an
exact solution for it. From other hand, this geometry gives
no preference for our method, so it would be expected
that similar number of terms will give the similar accura-
cies for other configurations. As example, we will consid-
consider all sides clamped configuration — which usually
present some difficulties in analytical treatment and is
very popular for comparison purposes.
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The problem statement and known solution
for SSSS plate

Governing equations. The problem statement will
be given from mathematical point of view, without detailed
explanation of the physical parameters and derivation of
the governing equation. Only two problems will be con-
sidered — static loading and free vibration of rectangular
plate. Both are reduced to solution of partial differential
equation of 4" order with respect to Cartesian coordinates
x and y for transversal displacement w. So, consider an
isotropic elastic rectangular thin plate of thickness %, with
length 24 and width 2b, so |x| <a and | y| <b, as shown

in Fig. 1. We also will consider an eccentrically applied
loading on rectangular area, so introduce here the center
of evenly distributed loading (&,m), and the dimensions

of this area, given by two  inequalities
|x—§| <u, |y—n| <v (Fig. 1).
y

Y

y X
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a a

Fig. 1. Partially loaded plate

The problem of static bending of elastic plate re-
duces to solving an inhomogeneous partial differential
equation
o'w  otw

+——= p(x,
oox’ oyt )

o*w

o

(1a)

where w(x,y) is the unknown deflection function of the
plate; p(x,y) is an outer loading.

Similarly for free vibration the looking for dis-
placement function is considered as a proportional to

function of time, #: Sin¢, where ® is a frequency. So,
the problem in this case is reduced to a similar equation:

o*w

oxt

o*w

84w 2
+ =
olox? oyt

o'w

(1b)

Once w is known one can calculate the bending
moments M, M, and twisting moment H by the fol-

lowing formulas:

2 2 2 2
M, =~ a_»sza_vzv M, =- a—v;+va—‘;) ,
ox dy dy ox 2

where v is Poisson’s ratio.

Thus, the problem is reduced to finding the deflec-
tion function, which simultaneously satisfies equation (1)
and the boundary conditions on the plate contour. Here,
we consider only two types of boundary conditions:

1. The plate is simply supported at all edges. The
analytical expressions for the boundary conditions in this
case reduce to:

w(x=%a,y)=0,
2 (3a)
M (x=%a,9)=0 = 2% (x=a,3)=0.
ox
w(x,y =+1b) =0,
92 (3b)

M,(x,y=£b)=0 = a—;”(x,y:ib)zo.
y

2. The plate is clamped (or built — in) at all edges.
The boundary conditions in this case are:
w(x=z%a,y)=0,

a—W(x =%a,y)=0 (4a)
ox

W(r,y =) =0, %Y@m=iw=o (4b)
ly

Classical Navier method. 1t is presented for simply
supported plate in many textbooks. In case of uniformly
distributed loading p over the area of the rectangle, as
shown in Fig. 1, the displacements are given by the fol-
lowing expression [7]:

Y
w(x,y) =——
n4Dm:1
il a,., . mMMX . Ny
XZ 5 sin — (52)
o m? a b
+7
a b
4p . mm& . nmn . mmu . nmy
a,, = sin sin sin sin—  (5b)
mnuy a b 2a 2b

where N, is the upper limit of expansion terms, which

predetermines the accuracy. Similarly, for free vibration
problem the displacement field is sought in the following
form:
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. kmx
Wy, (x,¥) = sin % gin 1
’ a b

(6)

which gives from (1b) the following values of natural

frequencies:
{E7-6))
’ a b

Note that displacements (6a) actually are the vibration
modes.

(6b)

Proposed Method

System of trial functions. For the sake of conven-
ience we introduce the following designations for expo-
nential functions, let:

T (x,L)= exp(?j ;T (L) = exp[?j , (79)

x Y
where k, m are integers, and L, and L, are scaling pa-

rameters, which values are comparable with characteristic
dimensions of the plate. In some sense these are arbitrary
ones, and, we think, that necessity of their involvement
was the main hindrance, preventing application of expo-
nential functions so far. So, we will explore the influence
of them on the results accuracy.

The next main step in our analysis is construction
of the sets of trial function, designated below as @, (x)

and @, (y), with respect to any coordinates. Taking in

mind that each trial functions should satisfy 4 boundary
conditions (two on each side), take them as the sum of
five consecutive exponential functions I'j(x,L,) and

L', (»,L,) in the following form:

D, (x)= O o exp((k—]tz)x] + 0y, exp((kzﬂj +

X X

1 [ //;7—'-\\\
\ o~ L
/ /<§\ \i\
o5+ 2 .\~\\ T N
//// AN ‘i\

/== 0yx) | \ N
éé / Oax) v N - \5
0 —=(x) ~1 ~

—_ (D4(x) '\ s’
— = Dy(x) N o
——D_<(x)

-1 -0.5 0 0.5 1

0.5

a

kx (k-1)x
+(Xk,2 €Xp L_ +(1k’3 eXp I +

(k=2)x) _
D)

X

+0U 4 exp(

4
=Y oy Do (L), K Sk<K,.
i=0

(7b)
And similarly:
4
q)m(y):ZYm,_jr2+n1—j(y’Ly)’ Ml SmSMZ (70)
j=0
where the first coefficients o, , and vy, , are supposed
to be and all
Ois Vi, (i, J =1,_4) are calculated from the boundary
conditions (3a), (3b) or (4a), (4b). So all coefficients o ;

and v, ; of trial functions for given geometry are calcu-

equal 1, other  coefficients

lated in advance, and the trial functions (sets of consecu-
tive exponential functions) are exactly known. As exam-
ple of their determination for simple supported plate (3),
on Fig. 2, a are shown the several trial functions
D, (x), L, =2,k=-5,0, normalized on their maximum
value. It is worth to note that function ®,(x) is a sym-
metrical one, while maximum of functions ®;(x) with

negative k are mostly shifted to left side of plate (negative
x); and vise versa, functions ®, (x) with positive £ most-

ly attain their maximum at positive x. On Fig. 2, b are

shown the second derivatives of these functions,

@/ (x), k=-5,0, which can be used for calculation of

bending moments (also, they will be tried as weight func-
tions in WRM, too). Note, that sometimes (for symmet-
rical loading) we will use different from (7b) — (7¢) nu-
meration of lower indexes. This case will be additionally
explained later. Next step is introduction of two dimen-
sional basic functions ‘¥, , (x,y) which are product of

1D sets of trial functions:

|| TS
@5 (x) 5
0.5 |~ —P3) , N
Sl— i)/ S
— '(l):‘x(.\') - -~ \
—_——(x —_ T ——lse.
. @ =1 e )
c/ . —=.
|\ N2 /
A . 4 7 ~ .
-0.5 PPV — 1 I I
W\ P g e
\y/ 1. .~ 1
AN e
1 -0.5 0 0.5 1
b

Fig. 2. Sets of trial functions (), and their second derivatives (b), a =1, L, =2
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\Pk,m(x>y)=(I)k(x’Lx)'(I)m(y’Ly) (8)

W(x y)_ ZZ z Bk m\Pkm(x y) (98')

k=K, m=M,

where B, , are coefficients to be found. Inserting (7a),
(7b) in (8) we get:

K,
W(X,y): z z Bka(xkl
k=K, m=M,
j=4
Xz Ynz,jr2+k—i (x7 Lx)r2+m—j (y’ Ly) (9b)
Jj=0

Weight functions and system of algebraic equa-
tions for static case. Insert 2D trial functions ¥, , (x,y)

(8) in governing equations (la). Application of differen-
tial operator to each trial function gives the following
function Q, , (x,):

Q. (6. 3) =@ (1) @, (1) + 20! (x)x

X0 (1) + D (x)- D)) () (10a)

Which can be easily expanded in terms of elemen-
tary exponential functions I :

i=4 j=4

Q(x,y)= Z P TQ2+k—i,x,L,)X
i=0 j=0
xXI'2+m=j,y,L,) (10b)
where
2+k-i) (2 ’

; +k—i +m

?\'kjm _(xlemj [ J ( jJ (IOC)
L

x ¥

Introduce also auxiliary functions ©, , (x,y),

which are to be used as weight functions too. They are
derived by twice differentiation of ‘¥, , (x,y) by both

coordinates:
G)k,m(-x,y):q)Z(X)'q);(y)' (IOd)
This gives the following:
Opn(1,)=3 Z 0 T2+ k—ix, L)
i=0 =0
XI(2+m—j,y,L,) (10e)
where
24k-i) (2 Y
i +Kk—1 +m—
Kk’,jm=0(‘k,i’Ym,/' [ j +( ]J . (IOf)
: L, L,

As it was said above and was investigated in our
previous work [1], three functions: ¥,  (x,y),

O, (x,y) and Q,  (x,y) can be used as the weight

functions in WRM. In first case we have Galerkin meth-
od, second one we name as moment method (it complete-
ly differs from the same name method mentioned in [2]),
and third method is least square method, LSM.

It is convenient in general presentation (9a) to sub-
stitute two indexes &, m by one index Z :

Z=(k-K)-(My—M,+1)+(m—-M))+1,

1S Z <(My—M, +1)(K, —K, +1) (11a)

In the following we will take equal number of the
sets with respect to both coordinates. So instead of (9a)
we can write for looking for displacement:

(N+1)?

wx,p) = Y, B, (11b)
Z=1

(x,),
where N=M,-M, =K,
od we need to similarly introduce the system of weight
functions constructed in same way as ¥, (x, y), which

—K, . To apply Galerkin meth-

however has the different numeration:

Py (x,3) =@, ()P, (») (1c)

where
Y=(r—K)(N+D+(g—M,)+1,

(11d)
0<(r=K),(¢g—M,)SN, ISYS(N+1)%.
Substitute the general solution (11a) in left side of
equation (la). Then consequently multiply both sides of
(1a) on weight functions taken in form (11c). Then take
the integrals over the whole plate area, and in this way get

the system of linear equations:
, ey —
Zjan,m =0zB; =ay, (11e)

where

.l;
N

j:
Z X, mr2+k—i (x, L)%
j:

/1
-b-a
4
X l—‘Zer—j (y’ Ly)z (X’r,sr2+r—s (x,Lx)x

s=0

4
Xz Yol 20q— (Vs L)) dxdy,
1=0

i=

i

(111)

b a
ay = [ | px,)¥y (x, y) dxdy =
-b-a
b a
= [ | p(x. )@, ()@, () dxdy
-b—-a

(11g)

As we can see, invaluable advantage of the expo-
nential functions is that they are very easily differentiated
and integrated in closed form. So, in determining the co-
efficients in (11f) it should be accounted for, that:
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I Doigei (06 L) Ty O, L) dx =

L,
— (T a,L
4+k—l o ( 4+k—i+r— sl( )

- 1—‘4+k—i+r—s (_ao Lx ))

The terms in free column (11g) are also easily taken ana-
lytically:

(12a)

b a

ay = [ [ p(x,») @, (x)®, (y) dxdy =
—b—-a
E+un+v 4
= I J. Z:O(‘r,ir2+r—i(x’l’x)><
E-un-vi=0
4
XY g,/ T 24q-; 0, L) dxdy =
Jj=0
d (X‘ri
=Z - .(F2+r—i(§+u9Lx)_1—‘2+1‘71'(E-’_U’Lx))X
o 2t+r—i
i Yg.i
X —(Fz (M+v,L,)-
j:02+q +9-J
_F2+q—j(n_v9L )) (lzb)
which is correct when 2+¢g—j#0 and 2+r—i#0.
Otherwise:

(T, ) =Ty, (&) =
dbr—i 2+r—i u 2+r—i u))=
=a,;-u if 2+r—-i=0,

Yq.j —
m(rzwﬂ- M+1) =Ty, ,(M-V)) =
=Y,V if 2+q—j=0. (12¢)

It is no need to describe in details the application of
0;,,(x,y) and Q,  (x,y) in capacity of weight func-

tion. We only note, that in first case coefficients o, ; and

2+r-s)

Y, in (11f) should be substituted by —=*
L

X

and respectively, and the same is relat-

—(2+q-1)
v
ed to equation (11g) or its expanded form (12b). And in

second case, i.e. LSM is situation is the similar — the
products of @ ; and ¥, ; should be replaced by kii[.

Algebraic equations for free vibration. A promi-
nent advantage of approximate WRM over the exact ana-
lytical methods is that its general scheme of application is
almost the same for both static and free vibration cases.
This allows us to describe the theoretical part very briefly.
Besides, we consider only Galerkin method. The reason is
very simple. As it will be shown for static case, Galerkin

method is very good one with respect to calculation of
displacements, and mode shape analysis is actually the
investigation of the displacement.

So, we take the looking for displacements in form
(11b). Insert them in governing equation (1b), so we get
the expression for residuals Q, , (x,y):

i=4 j=4
Z M, T(2+k—i,x, L)X
i=0 =0

Qk m ()C y =
xT(2+m~j,y,L,) (13a)

where the following designation for coefficients Mj{’f;n is

used:

2
2 2
i 24+k—i 24+m—j
7\'116,,]01 :(Xk,iYm,j [ 17 J +[ I J] —0)2 =

X

= Ay = O Y O (13b)

which now is the sum of two constituents, the first one is

the same as in static case, namely A}’ , and other one is

proportional to ®” . Then residuals (13a) are consequent-
ly multiplied on weight functions (11c) and integrated
over the area. Eventually we get the following equation
for coefficients of the matrix:

g — 60" — h179 2 =
k,m _q)ok,m q)lk,m('o -

ba 4 4 )
- I J‘ZZ(NkJm — Ol iV, ;O )x
b ai=0 j=0
XUy (L) Ty, (0, L)X

4 4
Xz O(r,sr2+r—s (x! Lx )Z Ym,tr2+q—t (y’ Ly ) dXdy (130)
s=0 t=0

All integrals in (13c) can be easily taken analytical-
ly, as was shown in (12a) and (12b). So, resulting system
of algebraic equation with accounting for index redesig-
nation takes the form:

00] — 0L 905 0" 0Ly .. Q00— 0Ly o
007 " If 003”013 .o Q0L 0~ QI
(N+1) (N+1)
¢O(N+l) ¢1(N+1)

By 0

B 0
xi ol (13d)

B(N+1)2 0
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System (13d) has only solution when its determi-
nant is equal to zero. This allows finding the natural fre-
quencies. After, the natural modes can be easily found by
usual procedure.

Simply — supported plate, static centric load. This
is a special case of static loading. Of course, it can be treat
treated by the proposed procedure. Yet here we wish to
show other possibility of construction of the trial func-
tions as the sets of consequent exponential functions.
Consider SSSS plate |x| <a, | y| <b, loaded by uniformly

distributed stresses, ¢(x,y), at the central rectangular

part, |x| <u, |y| <v, of the plate, so:

—v<y<y,

g(xy) =~ (14)

1, —u<x<u,
uv

0, elsewhere.

Symmetrical case makes redundant a lot of general
sets of trial functions (7b) and (7c¢). So, the more efficient
symmetrical trial functions can be proposed. First of all
wrote the specific boundary conditions at x=0,y=0:

ow 1w
g(x=0)=0, g(x=0)=0, (153)
ow *w
—((=0)=0, —((=0)=0. 15b
5 =00 S50=0 (15b)

Note that on sides (x =+a, y) and (x,y =+b) the

boundary conditions remain the same as are given by
formulas (3a) and (3b). So, we will use here the discon-
tinuous decaying functions, as were proposed in [1]. Con-
struct the following sets of 5 consequent exponential
functions which decay at infinity x —>too:

D, (x)= Ol 0 exp(—?j+ O exp[—(k—gﬁJ+

X X

(k+2)x (k+3)x
+0L 5 exp| — i +0y 3 exp| — 7 +

X X

Lx

4 4
ol 4 exp(— (k+ )x]ZZOck,iF_k_i(x,Lx). (16a)
=0

In y-direction the sets of functions ®,,(y) are con-
structed in the same manner:

4
q)m (y):Zan,jF—m—j(xaLy) (16b)

i=0
As before, take that all coefficients o, v, , as

equal to 1, and all other coefficients o ; (i =1,_4) and

Y, ( j= 1,_4) are determined from the boundary condi-

tions (3a) and (3b) at (x=+a,y) and (x,y=+b) as
well as from the symmetry conditions (15a) and (15b).

The next step is introduction of 2D trial functions
¥, n(x,y) according to formula (8). All other steps are
also the same, except some technical details, for example

integration is performed over ' of the whole area, and
K, =M,=0,K,=M,=N.

Practical tasks, verification

Due to the methodological character of the present
work we will consider below only square plates, each side
being equal to 1, i. e. a=b=1. Also we always take
L, =L, =L.The choice of this rather arbitrary parameter

on the predicted results will be investigated. For static
loading the results are presented for both displacements
(as the looking for target function) and for bending mo-
ment, which is mostly important in structural analysis.
For vibration analysis only frequencies and, sometimes,
mode shapes will be calculated.

Static centric loading. Take that loading is given
by (14) and « = v . Accurate results are given and calcu-
lated by Navier formulas. It approximately stated that
correct solution can be attained at number of terms of
expansion N, in formula (5) equal to 400, i. e. 400-400

coefficients a are used.

Uniformly distributed loading is a very trivial case,
which requires a small number of terms. So, we will con-
sider more concentrated cases of loading. Start with load-
ing on ¥ of the plate area, i. e. take that #/a=0.5 . Fig. 3, a
shows the accurate Navier (N, = 400) displacement along
axis x = y. Fig. 3, b and Fig. 3, ¢ show the deviation of
approximate results for displacement from the accurate
one, S(Wa) (X, y)) for number of terms in WRM N equal

to 4 and 8. Fig.3 ¢, d, e shows the exact distribution of the
bending moments along axis x = y, and the deviations of

the moments, S(M an (% y)) from exact value according

to three different variants of choice of test functions.
These deviations are calculated by the following expres-
sions:

Wexact ()C, y) ~Wo,N ()C, y)
Wotaer (X, 1)

Mexact (x’ y) _M(X,N(x1 y)
Mo (x,3)

exact

S(WOL,N ()C,y)) =

-100%,
(17a)

(Mo (x,9)) = -100%,

(x,y) and M (x,y) are the maximal “ex-

max
where w, evact

exact
act” (for N, =400) Navier values, here attained at the

point (x = 0, y = 0). Index “a” (o.={¥, O, Q}) relates to

our investigations of the best variant of WRM: namely,
for the Galerkin method o =Y, for the method of mo-
ments o.=0 and for the least square method o =Q.
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Fig. 3. Exact displacements (@) and bending moments (d) along axis x = y (a), and their deviations
by WRM calculated for N=4 (b, e)and N=8 (¢, /) at u=v=0.5,L=3

Evidently that all variants of WRM demonstrate
very impressive accuracies, while for moments the bigger
number of terms is required to get the same accuracy.

For comparison, the deviation of 10 terms
(N, =10) Navier solution from the exact one is also shown

on Fig. 3, f So, we can state also very good accuracy of
Navier method for this case. Furthermore, Navier method
is much simpler in technical realization here, so
the further analysis for justification of our method is
needed.

Thus consider two cases of concentrated loading.
First case is the when the loading is applied on central
square part with both sides equal to u = v = 0.1. It means
that only 0.01 of the whole area is loaded. The second

(M), % V=%
1 f\\ Nl:GZI\(/)I
14/’- 5.‘\\ - -MM
0.5 % \ —-LSM
5 ' \ — Nav
N ;‘_—-——-
= :‘// N\
-0.5 //
1 /
S
=1.5
0 0.05 0.1 0.15 0.2
X
a

case relates to more abrupt loading: u = v = 0.04, i. e.
only 0.0016 part of plate area is loaded. The results (only
for moments, because for displacements they are much
accurate) of moment deviations are depicted on Fig. 4.
The results for u = v = 0.1 are given on Fig. 4, a at N=28
for all three variants of WRM realization. With compari-
son purpose we give here the deviation of Navier results
for Ny =20. It is evident, that 8 terms analysis in all var-

iants of exponential functions based WRM are not worse
than 20 terms Navier analysis.

With decreasing the area of loading the deviance
for the same number of terms, NV = 8, increases from over-
age value =1% atu =v =0.1upto 1.5% foru =v =
= 0.04. Navier method produces worse results and at u =

M), %

N=38
. N=32
1.5 //\\\ —GM
SN --MM
1 ,'//\\ : —-LSM
/ ‘\ — Nav
0.5
1\
ol W1 = —
-0.5 AN
-1
0 0.05 0.1 0.15 0.2
X
b

Fig. 4. Calculated deviations of the bending moments at u = v = 0.1 () and u = v = 0.04 (b)
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= v = 0.04 loading it requires approximately 32 terms
(N, =32) to gives the comparable accuracy with N = 8

in WRM.

Look again on Fig. 4 and Fig. 3, f, which give the
moment deviation. These deviations are product of two
factors. First one is the scale (maximal value) of the cal-
culated approximate dependence; second one is the
change of form of dependence. For example, calculated
graph can be slightly wider or shifted with respect to the
true one. Of, course, in practical application we are most-
ly interested in maximums of functions. So, investigate
the deviations at the point (x = 0, y = 0), where the local
maximum is attained. Introduce the measure of deviation
of moments, d,, for the whole area, which is the differ-

ence between the exact maximum and calculated one:

max max
— M exact M N

Sy -100% . (17b)

The results of §,, determination are given in

Table 1. It allows to draw more definite conclusions with
respect to accuracy of different variants of our WRM real-
ization and Navier method. First, the efficiency of expo-
nential based WRM as compared with Navier results in-
creases when the loading become more concentrated. For
example, for u = v = 1 both approaches require a compa-
rable number of terms. When the loading is very concen-
trated, say u = v = 0.04, the similar accuracy can be at-
tained for 8 terms in WRM and for 80 — 100 terms in Na-
vier method. It should be remembering that 8 terms actu-

Table 1. Deviation of calculated moment M An,lax

ally means 8-8 = 64 coefficients, while 100 terms means
10* coefficients. Second, Galerkin method (GM) is not the
best option for calculation of moments. Method of mo-
ments (MM) and least square method (LSM) are better
choices for this particular task.

As was said before, the only semi — arbitrary pa-
rameters in proposed WRM realization are the scaling
lengths L., L,. We think, that necessary to adopt some

scaling factor was the main hindrance, which prevented to
use them so far. In case of using the sin and cos functions
the scaling factors are quite natural and are related with
boundary conditions (plate dimensions) more univocally.
Here of course, scaling factors are related with dimen-
sions, too. But, with increase of number of element, it
becomes more and more abrupt, i.e. with very outstanding
sole maximum. To provide some smoothness, it is neces-
sary to take L,, L, slightly bigger than characteristic

dimension. This point requires some numeric investiga-
tion.

Consider the local loading over the area |x| <0.la,
and | y| <0.1a. Calculate according to (17b) the moments
deviations at different values of L, =L, ={1, 2, 3} for the

same number of terms N = 6. The results of calculation
are shown on Fig. 5. First, we can notice, that overage
deviations for all three cases (scaling factors) are similar.
From other hand, it can be noticed that for LSM at
L =1, there is systematic deviation (all deviations are
negative), this means the trial function have no “power”

according to WRM and Navier method

Navier method, &y, % Proposed method, 8y, % M = M2
ula=v/b N=38§
N=20 N=50 N=100 | N=200 GM MM LSM N =400
0.04 8.984 —1.044 0.165 0.017 0.745 —0.182 0.317 0.378892
0.1 —1.385 0.045 —0.018 0.003 —1.014 —0.233 0.027 0.284116
0.5 —0.048 0.001 0 0 0.283 0.109 —0.0005 0.117744
1.0 0.021 —0.001 0 0 —0.0007 | —0.0006 | —0.0001 0.047886
0, S(V 0,
8, % N=6 520 A N=6 | 6’/20 A N=6
n —GM \ —GM A —GM
. \ - -MM 1 -MM| 14— -MM
oL —.LSM i -\\ . —.LSM i | |l--Lsm
/ NI - ' =T
1 v “1HH ‘\ / -1 - /
" | |
/ -2 -2
-2
-3 -3
0 01 02 03 04 05 0 01 02 03 04 05 0 01 02 03 04 05
X X X
a b c

Fig. 5. Calculated deviations of bending momentat L, =L, =1(a), L, =L, =2(b), L, =L, =3 (c); u /a=0.1
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,they are not able to provide correct result at points far
from the origin. So, within reasonable limits the value of
L has no influence on character and accuracy of solution.
So, we mostly take it to be in ranges from 2 to 4.

Simply — supported plate, eccentric load. This case
is characterized by two points. First, here and below we
return to more universal functions (7b), (7c). Second, it is
intuitively clear, that eccentric loading leads to eccentric
deformation, where it might be more advantageous to use
the eccentric trial function ‘¥, , (x,y). This possibility

pertains to peculiarities of our method, so it is interesting
to investigate this. Note, that traditional sinus functions
do not allow this.

As example, consider the slightly concentrated ec-
centric uniform loading acting on area —0.8<x<-0.4,

~08<y<-04:

p(x,y) = m

and-0.8<y<-04

(18)

1 1, if —0.8<x<-04
0, elsewhere

Results of multivariate calculation of maximal deviation
of approximate moments according to definition (17) by
WRM for number of terms equal to 7 are presented in
Table 2. Here we presented results as for usual symmet-
rical approach, as well as to the “shifted” approach, when

the mean value of K,, =(K, +K,)/2 is taken to be neg-
ative (for M,, is the same). The exact value of maximal

bending moment is determined from Navier solution at
N, equal to 200. A number of interesting conclusions

can be drawn from these results:

— as expected, the usual “symmetrical” solution,
when —-K, =-M, =K, =M, =3 is nor the best choice
for eccentric loading;

— for symmetrical approach the scaling length, L,
is not essential and provides the similar results for rela-
tively wide range of its values. Here the deviations are
near 8%;

— the shifting of the mean trial function number can
drastically increase the accuracy;

— the bigger is the shift to the left (to negative side)
the bigger scaling length should be taken to provide the
best accuracy; the deviation can be as low as approximat-
ly 1%;

— choice of weight function have minor influence
on accuracy, nevertheless it is evident that MM and LSM
have some advantage over Galerkin method.

To understand the whole picture about deviations
we present the exact displacements and bending moments
on Fig. 6, a and Fig. 6, ¢ accordingly for geometry and
loading considered. The deviation, calculated according to
(17a), along line x = y are given on Fig. 6, b — for dis-
placements and on Fig. 6, d — for moments. In calculation
we use the shifted functions, where N =8 and K, =—8

and K, =-1. In spite that deviation may be as big as 4%,

here the deviation of the maximal value is not bigger than
0.3%. So, the accuracy is quite good. It is interesting to
know that similar accuracy for limited number of terms in
Navier method is attained at approximately 26 terms. No-
tice again that Galerkin method is worse as compared
with LSM.

Free vibration of a simply supported plate. Note,
that only Galerkin method is used for free vibration anal-
ysis. Here the shifting of trial function have no sense, so
the basic functions @, (x), ®,(y) are constructed ac-

cording to formulas (7b) and (7c), where —K, =K,,
—M, =M, . This SSSS configuration is very important

for understanding of the efficiency of our method, be-
cause only for it there is an accurate solution, while for
our method this case presents no additional advantages as
compared with other geometries. So the real accuracy of
method can be demonstrated.

We have started our calculation for only one trial
function, where K; =M, =0 at L =2. This one term

approximation allows to get only one frequency, so we
got @ =4.9393. The relative deviation of it from the

Table 2. Deviation from the maximum bending moment & (M), % calculated for N=7, M o =0.14691

exact —

Weigbt func- Qk,m (x,7), LSM ®k,m (x,), \Pk,m (x,), GM
tions MM
-7, — | [-8~—
[Ki; K] [=3;31 | [-5:1] | [-6;0] 1] 2l [-9; -3] [-7; 1] [-7; 1]
L=0.8 7.024 2.858 —0.293 | —0.423 1.388 12.968 —1.051 —2.118
L=1 8.575 2.928 0.835 —0.581 | —0.338 10.668 —0.792 —0.834
L=2 8.823 1.908 1.192 1.629 1.549 0.535 —0.131 —0.703
L=3 8.602 3.751 1.908 1.093 1.094 1.405 0.973 1.142
L=5 8.461 5.793 4.269 2.929 1.912 1.266 3.162 2.428
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Fig. 6. Exact displacement (a), bending moment (¢) and calculated deviations from them (b, d) at K| =-8, K, =—1

accurate  value (formula (6b)) is equal to:
|4.9348 - 4.9393] o
(o) =———-100% = 0.091% . This is unex-
4.9348
pectedly good result.

Letting K, = M, =—1 the frequency equation (13d)
becomes a polynomial of 9" order with respect to unk-

Table 3. Deviations of the calculated dimensionless frequencies

nown . These 9 frequencies are calculated and given
in Table 3. Multiple roots have the double numeration in
first column. The calculations were performed for three
different values of the scaling length L = {2, 3, 5} . Here,

the increase of L, leads to a little better accuracy. The

results are shown in Table 3. For example, for first fre-

Exact value, (6b) Proposed method (GM), &(w;), %
I;i‘;gllz;fcgf o ” Lo=L,=2 Ly=L,=3 Ly=L,=5

N=3 N=5 N=3 N=5 N=3 N=5

1 1,1 4.93480 le™ 7.6e78 4¢3 1.2¢78 2¢73 3.4e”

2,3 1,2; 2,1 12.3370 0.930 0.006 0.717 0.003 0.621 0.002

4 2,2 19.7392 0.914 0.006 0.705 0.003 0.611 0.002

5,6 1,3; 3,1 24.6740 2.919 0.051 2.621 0.039 2.475 0.034
7,8 2,3; 3,2 32.0762 2.230 0.035 1.973 0.026 1.849 0.022

9 3,3 44.4132 2.548 0.040 2.288 0.030 2.161 0.026
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quency the increasing of scaling length from 2 to 5 leads
to increase of accuracy (deviation decreases from
0.0001% to 0.00002%). For other frequencies up to ninth
one the deviation may be as big as 0.62% — 2.92 %.
Letting K, =M, =-2 the system contains 25

which allows to find 25 roots. Of course, the larger the
number of frequency the lesser is the accuracy of its de-
termination. So we restrict ourselves only with first 9
roots (frequencies). They also are given in Table 3. Such
comparatively small increase in number of unknowns
leads to drastic increase of accuracy. The relative devia-
tions of the first nine frequencies d(@;) 1<i<9 are

confined within range from 3.4-1079% for first fre-

quency up to 0.034% for the ninth one. We consider these
results as perfect one, which demonstrates the great effi-
ciency of the method.

Free vibration for all sides clamped plate. CCCC
plate is very often calculated for comparison purposes.
CCCC plate can not be solved analytically, so the effi-
ciency of different approximate methods is usually
demonstrated for it. Namely this geometry was chosen in
comparison study of different popular methods in
work [14].

In our analysis we use N =5 (25 degrees of free-
dom, DOF), N =7 (49 DOF), and N =9 (81 DOF). For
this case there is no exact solution, and which number is
closer to “exact” one, we only can guess. So in Table 4
we give our results as well as the results of the most re-
spected investigators. Note some interesting results.

The 25 — equations approach was not able to find
9% and 10" frequencies. All other frequencies were de-
termined with good accuracy. Results for 49 — equations
approach differ from 81 — equations approach for first 8
frequencies by less than 0.003% , while the 12 frequency
differ on 0.5%. Comparison with previous authors shows
some minor difference, for example, the differences for
first 4 frequencies with classic work of Leissa A.W. [10],
Blevins recent handbook [22], where old results of Dur-
vasula S. [23] are used there, Gorman D. [24] is confined
withing 0.03%. Of course, this is not a big difference, but
it is interesting to know which results are more exact. So,
a resent work of El — Gamel M. at all [21], where approxi-
mately N =200 terms were used (this means N equa-
tions), can shed light on the value of “exact” values. They
gave only first four frequencies. But the biggest differ-
ence (for 4" one) with our results is smaller than 0.0002%
So, we can state a very exiting accuracy of our approach
for comparatively small number of DOF used.

Conclusions

In this work we apply to rectangular plate analysis
the new variant of WRM based on the sets of consequent
exponential functions. The following results with respect
to methods application and its accuracy on example of
square plate with side equal to 1 are attained.

1. For static analysis only SSSS plate was investi-
gated, for which the exact solution exists. In general pro-

Table 4. Comparison of dimensionless frequencies for CCCC square plate

Proposed method, GM El-Gamel
N v T i
N=5 N=7 N=9 Ref. [21] ’ ) :
1 35.9855 35.985217 35.985193 35.985191 35.9915 35.992 35.984
2 73.4137 73.394121 73.393877 73.393857 73.413 73.413 73.40
3 73.4137 73.394121 73.393877 73.393878 73.413 73.413 73.40
4 108.2589 108.217880 108.216711 108.216517 108.269 108.27 108.20
5 131.7900 131.582561 131.580782 131.641 131.64 131.92
6 132.4211 132.207247 132.204900 132.243 132.24 131.92
7 165.2058 165.003733 165.000815 165.158° 165.00
8 165.2058 165.003733 165.000815 165.158° 165.00
9 — 211.772117 210.547862 210.52
10 — 211.772117 210.547862 210.52
11 220.3309 220.035401 220.033243 220.04
12 231.7419 243.192875 242.172416 242.28
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posed method requires lesser terms than Navier method.
The more concentrated is outer loading the lesser terms
are required in proposed method as compared with Navier
solution to achieve the similar accuracy. For example, for
the central uniform loading on a square with side equals
to 0.04, proposed 8 — terms solution is comparable with
80 — terms Navier solution.

2. The method has unique feature to effectively
treat eccentric loading by considering only eccentric
terms (shifted to the same direction with respect to the
symmetric function with number 0). This can essentially
decrease the required number of terms.

3. Accuracy of WRM depends in some extend on
the proper choice of weight function. Three different vari-

square method and Moment methods. In general, this
choice has no drastic effect on accuracy, nevertheless
LSM can be considered as the best choice.

4. There is only one semi arbitrary parameter in our
trial functions — scaling length L. It was shown on many
static and free vibration examples that optimally it can be
chosen in the range of 2 — 4 times of characteristic dimen-
sion of plate. In this range the choice of L has minor in-
fluence on results.

5. Analysis of frequencies for free vibration of
SSSS and CCCC plates demonstrates a very remarkable
accuracy of the method which exceeds other ones with
respect to accuracy. Technique of method application for
free vibration almost does not differ from the static analy-

ants of them were investigated: Galerkin method, Least  sis

[11]
[12]
[13]

[14]

and is very simple and easy to implement.
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IIpuMeHeHne IKCMOHEHIIUATBHBIX QYHKIUI B MeTO/Ie B3BeIIEHHBIX HEBSI30K B
CTPYKTYPHOIi MeXaHHKe HA MPUMepe CTATHYECKOr0 H BUOPAIIMOHHOT0 aHAJIHN3A
NPSIMOYTOJIbHO# TJIACTHHBI

H. B. Opsinsk, 0. I1. Baii

Aunnomayus. [lannoe uccredoganue agasiemcs npOOONHCEHUEM HAWUX YCUTULL N0 NPUMEHEHUIO CReYUATbHO NOCMPOEHHbIX HAOOPO8
N0CIe008aMENbHbIX IKCHOHEHYUANLHBIX (DYHKYULl Kak npobuwix (basuchvix) @ynxkyuii 6 memoode e3geuiennvix Heeazox (MBH) na
npumepe Kiaccuieckux 3a0ay cmpykmypHou mexanuxu. Cmambs He HANpasieHa Ha NOJYYeHUe HOBbIX Pe3YIbmAamos, d NOCeujeHd
0bocHoganuio I pexmusHocmu npediazaemozo memooa. Paccmampusaromes cmamuueckas degpopmayusi u c60000Hble KOAeOaHUsA
uU30mponHol MmoHKocmennou keaopammuou niacmutvl. OcobenHocmolo pabomel AGIAEMCsL 8blOOP BeCOBLIX (NOBEPOUNBIX) DYHKYULL 8
mpex 8apuarHmax: Kax npobuvix gyuxyuti (memoo I anepxuna, MI); kax QyHKyull, AEIAIOWUXCA Pe3YTbIMATMOM NPUMeHeHUs: Ougde-
PEHYUATBHO20 ONepamopa K npooHviM QyHKyull (Memoo Haumenvuux keaopamos, MHK); kax ¢hynkyuil, aerarouuxcs npousgedeHu-
AMU 8MOPBIX NPOUZBOOHBIX OM NPOOHBIX GYHKYUL no X u y (Memoo momenmos, MM). Pewenue cmpoumcs kak npousgederue 08yx
He3a68UCUMBIX MHOJICECm8 DYHKYULl OMHOCUMeNbHO Koopounam x u y. Kajwcooe mnoscecmeo npedcmagnsem cobou KOMOUHAYUIO
NnAMU NOCIe008aMENbHbIX IKCNOHEHYUATbHBIX (DYHKYULL, 8 KOmOopoll nepeaviii Koaghguyuenm pagern 1, a wemvipe opyeue kod¢hpuyu-
eHma onpeoensiomcs U3 SPAHUYHBIX YCL08ULL HA NPOMUBONOLONCHBIX CIOPOHAX NAACHUHbL. TIpou3601bHbIM NApamempom 6 menooe
A67151emcst KOIPPuyuenm macuumabuposaniis 6 NOKA3AmMensx, pasymHuslil OUAnazon KOmMopo2o muamenbHo UCCI1e008alcs, U NoKAa3a-
HO €20 6NusAHUE HA Pe3YIbIMAaNbi.

Cmamuueckas Oeopmayus uccied08aHa Ha npumepe NPOCMOU WAPHUPHO-ONEPMOU NIACMUHbL, KO20A BHEWH S HASPY3KA Ul
CUMMEMPUYHA U COCPEOOMOYeHa 60U3YU YeHmPa NAACTUHBL, UNU CMeujeHa Om YeHmpa K NPOU360IbHOU yenoeol mouke. IIpodemon-
CMPUPOBAHO, YMO Pe3yIbmamvl CXOOAMCA K MOUYHOMY peueHulo bvicmpee, yem 6 Kiaccuveckom memoode Hasve. MM u MHK oatom
JYHUYI0 MOYHOCMb NPU OnpedeneHun uszubarowux momenmos, yem MI. IlpednosicenHuiii Memoo npuMeHer K aHaiusy c60000HbIX
KONeOAHUIl NAACMUHBL, MOYHOCHb Pe3YIbMAamos onpedenenuss COOCMEEHHbIX YaACMOm AGNAEMCs ONMIUYHOU Jddice npu HebOIbULOM
Koauvecmee uneno8 paod. IIpoananusuposansl cpasHUMENbHO CIONCHBLE CAYHall - c60000Hble KONEOAHUs 3aueMNeHHOU NO 8Cem
CMOPOHAM NAACMUNBL, OOCIUSHYNIbL OYEeHb XOPOoUlUe Pe3yibmamsl No IPHEeKMUSHOCHU U MOYHOCIU.

Knrwouesvte cnosa: NPAMOY2OJIbHASA NIACMUHA, CMeWerHdas Haepy3Kda, Memoo 636€UleHHbIX HeBA30K, Memoo Ey6Hoea—FaJ1epKuHa,
e6ecoeble d)yHKLjMM, Cc60000HbLE KONCOAHUS naacmunbsl, 3aujemMileHHas niacmuna, cobcmeeHHble Yacmomol.

3acTocyBaHHSI eKCIIOHEHUIAJbHUX PYHKIIN B MEeTO/Ai 3Ba’KEHUX HEB 30K B
CTPYKTYPHii MexaHilll Ha MPUKJIAAi CTATUYHOIO Ta BiOpauiifHOro a”Hamizy
NPAMOKYTHOI IVIACTUHHU

L. B. Opunsk, 1O. I1. baii

Anomauia. [ocniodxcenuss € npoo08ICEHHAM HAWUX 3YCUTL U000 3ACMOCYBAHHA CHeyianibHO NOOYO08AHUX HAOOPIE NOCNIO08HUX
eKCnoHeHYianbHux Qynkyit ax npobnux (basucnux) gyuxyii 6 memooi 3eadxcenux neg’sizok (M3H) na npuxnadi kiacuynux 3aoay
KoHCmpyKkyitnoi mexanixy. Cmamms He HANpaeiena Ha OMPUMAHHI HOBUX Pe3VIbMAmie, a NPUCeAHeHa 0OIPYHMYEaAHHIO epeKmus-
HOCMI 3anPONOH08aH020 Memody. Poszensdaromvcs cmamuuna 0eopmayis ma GiibHi KOTUSAHHA i30MPONHOI MOHKOCMIHHOI K8aO0-
pamuoi naacmunu. Ocobaugicmio podomu € 6ubip 8az08ux (nepegipounux) yHKYiti 8 mpbox eapiaHmax. AK NPoOHUX yHKYIl (Me-
mod I'anvopxina, MI'); ax ¢hyukyitl, wo € pe3yrbmamom 3acmocy8anHs OupepeHyianbHo20 onepamopa 00 npooHUX PyHKYitl (Menoo
Hatmenwux keaopamie, MHK), sx ¢yuxyii, sxi € 000ymxom Opyeux noxionux 6i0 npoOHux yyHkyiti no x i y (Memoo MoMeHmIs,
MM). Po3s’sz0x 6y0yembest sk 006YMOK 080X HE3ANEHCHUX MHONMCUH (PYHKYIL 8i0HOCHO Koopounam x ma y. Koocna mmodcuna e
KOMOIHayicto n'amu nociio08HUX eKCNOHeHYianbHuX (yHKYil, Oe nepuuil Koegiyicnm odopiguioe 1, a womupu inwi KoeghiyicHmu
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BUBHAYAIOMbCSL 3 SPAHUYHUX YMOG HA NPOMUNENHCHUX CIMOPOHAX NAACmuHU. JJ08LIbHUM napamempom 8 Memooi € Koepiyicnm macui-
MabyeanHs 8 NOKAZHUKAX, POZYMHULL OIANA30H K020 PEMEeNbHO 00CTIONHCEHO i NOKA3AHO 1020 6NIUE HA Pe3YIbmAami.

Cmamuuna degopmayisi 00CAIONCeHa HA NPUKIAOi NPOCMOI WAPHIPHO-0NePMOi NAACIMUHYU, KOAU 308HIUHE HABAHMANCEHHS aD0
cumempuune i 30cepeddcere nobau3y YeHmpy niacmunu, abo 3miujene 6i0 yenmpa 00 6yob-axoi kymosoi mouxu. [Ipodemoncmpo-
6aHO, WO pe3yTbmamu cX005iMbCsi 00 MOYHOLO PilenHs weuowe, Hixc y kiacuunomy memooi Has'e. MM ma MHK oaiomo kpawgy
TNOYHICMb NPU BUBHAYEHHT 32UHAOYUX Momenmis, Hise MI. 3anpononosanuii Mmemoo 3acmoco8anuii 00 aHAi3y BLIbHUX KOIUBAHb
NIACTMUHU, TMOYHICIb PEe3YIbIAmMi6 6U3HAUEHHsL IACHUX YaCmOom € GIOMIHHOIO HABIMb NPU HeeNuKil Kitbkocmi uneHie psoy. Ilpo-
AHANI308AHO NOPIGHSAHO CKAAOHUL 6UNAOOK — GLIbHI KOTUBAHHS 3AUJeMIIeHOI HA 6CIX CMOPOHAX NIACMUHU, OOCASHYMO 0YJice XOPOUIUX
PE3VILMAmia Wooo epexmueHoCmi ma moyHoCni.

Knrouosi cnosa: npsmokymua niacmuna, smMilyeHe Ha8aHMAaNCeH s, Memoo 36AxiCeHUX Heg 30K, Memod bybnosa-I anvopkina, éazo-
6l (pyHKYIL, BINbHI KOIUBAHHS NAACMUHY, 3aWeMIeHA NIACMURA, 61ACHI YACMOMU.
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