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Abstract. The paper is continuation of our efforts on application of the properly constructed sets of exponential functions as the trial 
(basic) functions in weighted residuals method, WRM, on example of classical tasks of structural mechanics. The purpose of this 
paper is justification of new method’s efficiency as opposed to getting new results. So, static deformation and free vibration of iso-
tropic thin – walled plate are considered here. Another peculiarity of paper is choice of weight (test) functions, where three options 
are investigated: it is the same as trial one (Galerkin method); it is taken as results of application of differential operator to trial 
function (least square method); it equals to the second derivative of trial function with respect to both x and y coordinate (moment 
method). Solution is considered as product of two independent sets of functions with respect to x or y coordinates. Each set is the 
combination of five consequent exponential functions, where coefficient at first function is equal to one, and four other coefficients 
are to satisfy two boundary conditions at each opposite boundary. The only arbitrary value in this method is the scaling factor at 
exponents, the reasonable range of which was carefully investigated and was shown to have a negligible impact on results. 
Static deformation was investigated on example of simple supported plate when outer loading is either symmetrical and concentrated 
near the center or is shifted to any corner point. It was demonstrated that results converge to correct solution much quickly than in 
classical Navier method, while moment method seems to be a best choice. Then method was applied to free vibration analysis, and 
again the accuracy of results on frequencies and mode shape were excellent even at small number of terms. At last the vibration of 
relatively complicated case of clamped-clamped plate was analyzed and very encouraged results as to efficiency and accuracy were 
achieved. 
Keywords rectangular plate, clamped-clamped plate, Galerkin method, weighted residual method, free vibration, natural frequecies 
and modes, weight functions. 
 

Introduction 
The goal of paper consists in further justification of 

application of the sets of exponential consequent functions 
[1] for solution of various problems of structural mechan-
ics based on weighted residual method, WRM [2]. WRM 
is very powerful semi – analytical technique for solving 
the scientific and engineering problems, and it provides 
ideas for development of other engineering methods, such as 
FEM [3]. The essence of WRM consists in proper choice 
of the trial functions which satisfy to boundary condition. 
A linear combination of them multiplied on looking for 

coefficients should also approximately satisfy the govern-
ing differential equation, and in this case is considered as 
an approximate solution. The last goal is achieved inte-
grally: by multiplication of the looking for solution with 
some number of unknowns on the same number of test 
(weight) functions, and integration over the whole area 
[2]. The choice in capacity of test functions the trial ones 
was historically the first kind and predecessor of WRM, 
and method is usually named as Galerkin, or Bubnov – Ga-
lerkin, or Ritz – Galerkin method [4, 5]. 

In this work are not investigated any unresolved 
tasks. Here a new tool for treatment of complicated prob-
lem is rather developed. As any new technique the pro-
posed method should be assessed on relatively simple 
classical problems. Here we consider the rectangular (on 
example, of square) isotropic plate under bending. In spite 
of long history and variety of works, it is still treated ana-
lytically and attracts many investigators. This task may be 
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considered as a testing ground for developing new meth-
ods, which can be successfully applied later for more 
complicated problems [6]. In subsequent review we most-
ly concentrate on semianalytical approximate methods, 
which in theory of plates are mostly based and named 
after Ritz – Galerkin.  

Let’s start our review from the famous Navier solu-
tion. It was proposed at first half of 19th century for the 
treatment of SSSS rectangular plate (where letter S means 
one simply supported side, so all four sides are simply 
supported) [7]. In modern sense it can be considered as 
the first time application of the Galerkin method. Indeed, 
if we would consider the sinus function as the Trial ones 
(which satisfy to boundary condition) and the same func-
tion as Test one, we get the pure Galerkin method . Fur-
thermore, as sinus function is the result of 4th order differ-
ential equation application to the same function the Na-
vier method can be considered as least square method, 
LSM, variant of WRM. Furthermore, as sinus results from 
twice differentiation of sinus, then Navier method can be 
considered as Moment variant of WRM, because second 
derivative from displacement is approximately propor-
tional to bending moment. So, this simple contemplation 
allows to formulate the auxiliary goal of work – to inves-
tigate the choice of test function in WRM.  

Static analysis can be easily performed if two oppo-
site sides are simple supported. Then one set of functions 
(say, with respect to x) are expanded into sinus functions, 
so for functions along y the simple beam – like ordinary 
bi – quadratic differential equation is got, which exact 
solution allows to satisfy any boundary conditions for two 
other opposite sides. This solution was proposed by Levi 
[7]. In case of any other boundary condition the auxiliary 
Levi task is considered for plate with two sides loaded by 
given bending moment. Then principle of superposition is 
applied to several Levi tasks to provide the required 
boundary condition. In practice these strict methods are 
rather cumbersome, so Galerkin methods are widely ap-
plied for static tasks [8], especially for clamped plate [8]. 
Several trial functions were mention in [8], among them-
Timoshenko (1910) functions ( )1 cos ( / )x a+ π  for sym-
metrical loading, Galerkin (1915) functions which contain 
multipliers 2 2( )ka x− , where 2k ≥ .  

In vibration analysis both strict methods as well as 
Ritz – Galerkin methods are equally popular. The origin 
of strict method is related with work of Voigt (1893) [9]. 
This work proceeds to idea of Levy but in fact was analo-
gous to it. In case of two opposite simple supported sides 
the dependence from, say x, is chosen as sinus, which 
leads for the simple bi – quadratic equation for another 
coordinate. Its solution allows to get nonlinear character-
istic equation for any other boundary conditions. His ide-
as were lately employed by Leissa [10] for getting accu-
rate nondimensional frequencies. These ideas got further 
development in work of Gorman [11] who employs the 
principle of superposition for the dynamical case. This 

classical solution lays foundation for dynamic stiffness 
method [12], where displacements at the boundaries and 
angles are related with moments and forces are related 
through the frequency dependent matrix.  

Returning to the work of Leissa [10] it is interesting 
to know that for other tasks then two simple supported 
side he used the approximate Ritz method where the beam 
vibration solutions, so – called beam functions were cho-
sen as trial function. The idea of using them was elaborat-
ed by Warburton (1954) [13] for frequency analysis, who 
considered them separately (not as combination of them) 
in Ritz method, and since then these function are among 
the most widely used.  

The increasing complexity of real tasks makes ap-
proximate methods more popular. With this respect it 
worth to mention the work [14] where the comparative 
study of various approximate solutions (different trial func-
tions) based on Ritz method was performed. It is a pity 
that it gives no concrete values of frequencies for differ-
ent methods; it would be valuable reference point for as-
sessment of different techniques. Nevertheless, for us it is 
important to mention all 6 trial functions employed here. 
They are as following. First, already mentioned Beam 
functions, proposed by Young [15] and Warburton [13]. 
Second, Modified beam functions where trigonometric 
component remain the same as in Beam functions, where-
as the hyperbolic terms are replaced by negative exponen-
tial terms [16]. Third, Orthogonal polynomials proposed 
by Bhat [17], where polynomial sets, satisfied to bounda-
ry condition, are orthogonalized by the Gram–Schmidt 
process. Fourth, keeping in mind that orthogonalization 
process take a lot of efforts, Kim et al. [18] proposed a set 
of usual Non – orthogonal polynomials, which integration 
is much simpler. Fifth, Product of Trigonometric Func-
tions, application of which was suggested by Chai [19]. 
Sixth, Static beam functions as admissible functions in the 
Ritz method was first proposed by Zhou [20], which use 
the polynomials of third order and different sinus terms.  

Except the trial functions described in [14] many 
other different functions are used in literature. For exam-
ple, the four side clamped plate is analyzed by set of tran-
slated on small distance each from other the Sink functions 
[21], which are the ratio of sin(x) to x. There also many 
other presentations of trial functions in literature, most of 
which are combinations of trigonometric functions.  

The above analysis shows that our idea [1] of using 
the sets of consequent exponential functions is, at least, 
new and deserves deeper investigation. In order to get 
exhausted understanding of accuracy we will mostly con-
sider the SSSS plate, because, from one hand, there is an 
exact solution for it. From other hand, this geometry gives 
no preference for our method, so it would be expected 
that similar number of terms will give the similar accura-
cies for other configurations. As example, we will consid- 
consider all sides clamped configuration – which usually 
present some difficulties in analytical treatment and is 
very popular for comparison purposes.  
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The problem statement and known solution 
for SSSS plate  

Governing equations. The problem statement will 
be given from mathematical point of view, without detailed 
explanation of the physical parameters and derivation of 
the governing equation. Only two problems will be con-
sidered – static loading and free vibration of rectangular 
plate. Both are reduced to solution of partial differential 
equation of 4th order with respect to Cartesian coordinates 
x and y for transversal displacement .w  So, consider an 
isotropic elastic rectangular thin plate of thickness h, with 
length 2a  and width 2 ,b  so x a≤  and y b≤ , as shown 
in Fig. 1. We also will consider an eccentrically applied 
loading on rectangular area, so introduce here the center 
of evenly distributed loading ( ),ξ η , and the dimensions 
of this area, given by two inequalities 

,x u y v− ξ ≤ − η ≤  (Fig. 1). 

 

 
Fig. 1. Partially loaded plate 

The problem of static bending of elastic plate re-
duces to solving an inhomogeneous partial differential 
equation  

 
4 4 4

4 2 2 42 ( , )∂ ∂ ∂+ + =
∂ ∂ ∂ ∂

w w w p x y
x y x y

 (1a) 

where ( , )w x y  is the unknown deflection function of the 
plate; ( , )p x y  is an outer loading.  

Similarly for free vibration the looking for dis-
placement function is considered as a proportional to 
function of time, t : sin tω , where ω  is a frequency. So, 
the problem in this case is reduced to a similar equation:  

 
4 4 4

2
4 2 2 42w w w w

x y x y
∂ ∂ ∂+ + = ω
∂ ∂ ∂ ∂

 (1b) 

Once w is known one can calculate the bending 
moments xM , yM  and twisting moment H  by the fol-
lowing formulas: 

 

( )

2 2 2 2

2 2 2 2

2

, ,

1 .

   ∂ ∂ ∂ ∂= − + ν = − + ν      ∂ ∂ ∂ ∂   

∂= − ν
∂ ∂

x y
w w w wM M

x y y x

wH
x y

 (2) 

where ν  is Poisson’s ratio. 
Thus, the problem is reduced to finding the deflec-

tion function, which simultaneously satisfies equation (1) 
and the boundary conditions on the plate contour. Here, 
we consider only two types of boundary conditions: 

1. The plate is simply supported at all edges. The 
analytical expressions for the boundary conditions in this 
case reduce to: 

( , ) 0w x a y= ± = ,
2

2( , ) 0 ( , ) 0.∂= ± =  = ± =
∂x

wM x a y x a y
x

 
(3a) 

  2

2

( , ) 0,

( , ) 0 ( , ) 0.y

w x y b

wM x y b x y b
y

= ± =

∂= ± =  = ± =
∂

 (3b) 

2. The plate is clamped (or built – in) at all edges. 
The boundary conditions in this case are:  

 ( , ) 0,= ± =w x a y    ( , ) 0w x a y
x

∂ = ± =
∂

 (4a) 

 ( , ) 0,= ± =w x y b    ( , ) 0w x y b
y

∂ = ± =
∂

 (4b) 

Classical Navier method. It is presented for simply 
supported plate in many textbooks. In case of uniformly 
distributed loading p over the area of the rectangle, as 
shown in Fig. 1, the displacements are given by the fol-
lowing expression [7]: 

 
1

4
1

1( , )
N

m
w x y

D =
= ×

π
   

 
1

22 21

2 2

sin sin
N

mn

n

a m x n y
a bm n

a b
=

π π×
 

+  
 

  (5a) 

 4 sin sin sin sin
2 2mn

p m n m u n va
mnuv a b a b

πξ πη π π=  (5b) 

where 1N  is the upper limit of expansion terms, which 
predetermines the accuracy. Similarly, for free vibration 
problem the displacement field is sought in the following 
form: 
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 , ( , ) sin sink n
k x n yw x y

a b
π π=  (6a) 

which gives from (1b) the following values of natural 
frequencies: 

 
2 2

2
,k n

k n
a b

    ω = π +         
 (6b) 

Note that displacements (6a) actually are the vibration 
modes.  

Proposed Method 

System of trial functions. For the sake of conven-
ience we introduce the following designations for expo-
nential functions, let:  

 ( , ) expk x
x

kxx L
L

 
Γ =  

 
; ( , ) expm y

y

myy L
L

 
Γ =   

 
, (7a) 

where ,k m  are integers, and xL  and yL  are scaling pa-

rameters, which values are comparable with characteristic 
dimensions of the plate. In some sense these are arbitrary 
ones, and, we think, that necessity of their involvement 
was the main hindrance, preventing application of expo-
nential functions so far. So, we will explore the influence 
of them on the results accuracy.  

The next main step in our analysis is construction 
of the sets of trial function, designated below as ( )k xΦ  
and ( )m yΦ , with respect to any coordinates. Taking in 
mind that each trial functions should satisfy 4 boundary 
conditions (two on each side), take them as the sum of 
five consecutive exponential functions ( , )k xx LΓ  and 

( , )m yy LΓ  in the following form:  

  ,0 ,1
( 2) ( 1)( ) exp expk k k

x x

k x k xx
L L

   + +Φ = α + α +   
   

 

,2 ,3

,4

( 1)exp exp

( 2)exp

k k
x x

k
x

kx k x
L L

k x
L

   −+ α + α +   
   

 −+α = 
 

  

 
4

, 2 1 2
0

( , ), .k i k i x
i

x L K k K+ −
=

= α Γ ≤ ≤  (7b) 

And similarly:  

  
4

, 2 1 2
0

( ) ( , ),m m j m j y
j

y y L M m M+ −
=

Φ = γ Γ ≤ ≤  (7c) 

where the first coefficients ,0kα  and ,0mγ  are supposed 
to be equal 1, and all other coefficients 

( ), ,, , 1, 4k i m j i jα γ =  are calculated from the boundary 

conditions (3a), (3b) or (4a), (4b). So all coefficients ,k iα  
and ,m jγ  of trial functions for given geometry are calcu-

lated in advance, and the trial functions (sets of consecu-
tive exponential functions) are exactly known. As exam-
ple of their determination for simple supported plate (3), 
on Fig. 2, a are shown the several trial functions 

( ), 2, 5, 0k xx L kΦ = = − , normalized on their maximum 
value. It is worth to note that function 0 ( )xΦ  is a sym-
metrical one, while maximum of functions ( )k xΦ  with 
negative k are mostly shifted to left side of plate (negative 
x); and vise versa, functions ( )k xΦ  with positive k most-
ly attain their maximum at positive x . On Fig. 2, b are 
shown the second derivatives of these functions, 

( ), 5, 0k x k′′Φ = − , which can be used for calculation of 
bending moments (also, they will be tried as weight func-
tions in WRM, too). Note, that sometimes (for symmet-
rical loading) we will use different from (7b) – (7c) nu-
meration of lower indexes. This case will be additionally 
explained later. Next step is introduction of two dimen-
sional basic functions , ( , )k m x yΨ  which are product of 
1D sets of trial functions: 

 
 a b 

Fig. 2. Sets of trial functions (a), and their second derivatives (b), 1, 2xa L= =  
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 , ( , ) ( , ) ( , )k m k x m yx y x L y LΨ = Φ ⋅Φ   (8) 

 
2 2

1 1

, ,( , ) ( , )
K M

k m k m
k K m M

w x y x y
= =

= β Ψ  , (9a) 

where ,k mβ  are coefficients to be found. Inserting (7a), 
(7b) in (8) we get: 

 
2 2

1 1

4

, ,
0

( , )
K M i

k m k i
k K m M i

w x y
=

= = =
= β α ×     

 
4

, 2 2
0

( , ) ( , )
j

m j k i x m j y
j

x L y L
=

+ − + −
=

× γ Γ Γ   (9b) 

Weight functions and system of algebraic equa-
tions for static case. Insert 2D trial functions , ( , )k m x yΨ  
(8) in governing equations (1a). Application of differen-
tial operator to each trial function gives the following 
function , ( , )k m x yΩ : 

 , ( , ) ( ) ( ) 2 ( )Ω = Φ ⋅Φ + Φ ×IV II
k m k m kx y x y x    

 ( ) ( ) ( )×Φ + Φ ⋅ΦII IV
m k my x y  (10a) 

Which can be easily expanded in terms of elemen-
tary exponential functions kΓ : 

 
44

,
, ,

0 0
( , ) (2 , , )

==

= =
Ω = λ Γ + − × 

ji
i j

k m xk m
i j

x y k i x L   

 (2 , , )×Γ + − ym j y L  (10b) 

where 

 

222
,

, ,,
2 2i j

k i m jk m
x y

k i m j
L L

   + − + − λ = α γ +          

 (10c) 

Introduce also auxiliary functions , ( , )k m x yΘ , 
which are to be used as weight functions too. They are 
derived by twice differentiation of , ( , )k m x yΨ  by both 
coordinates: 

 , ( , ) ( ) ( )k m k mx y x y′′ ′′Θ = Φ ⋅ Φ . (10d) 

This gives the following: 

 
44

,
, ,

0 0
( , ) (2 , , )

ji
i j

k m xk m
i j

x y k i x L
==

= =
Θ = κ Γ + − ×    

 (2 , , )ym j y L×Γ + −  (10e)  

where  

  
22

,
, ,,

2 2i j
k i m jk m

x y

k i m j
L L

   + − + − κ = α γ +          

. (10f) 

As it was said above and was investigated in our 
previous work [1], three functions: , ( , )k m x yΨ , 

, ( , )k m x yΘ  and , ( , )k m x yΩ  can be used as the weight 
functions in WRM. In first case we have Galerkin meth-
od, second one we name as moment method (it complete-
ly differs from the same name method mentioned in [2]), 
and third method is least square method, LSM.  

It is convenient in general presentation (9a) to sub-
stitute two indexes k, m by one index Z : 

 ( )1 2 1 1( 1) ( ) 1Z k K M M m M= − ⋅ − + + − + ,

2 1 2 11 ( 1)( 1)Z M M K K≤ ≤ − + − +  (11a) 

In the following we will take equal number of the 
sets with respect to both coordinates. So instead of (9a) 
we can write for looking for displacement: 

 
2( 1)

1
( , ) ( , )

N

Z Z
Z

w x y x y
+

=
= β Ψ , (11b) 

where 2 1 2 1N M M K K= − = − . To apply Galerkin meth-
od we need to similarly introduce the system of weight 
functions constructed in same way as ( , )Z x yΨ , which 
however  has the different numeration:  

 ( , ) ( ) ( )Y r qx y x yΨ = Φ Φ , (11c) 

where 

 
( ) ( )
( ) ( )

1 1
2

1 1

( 1) 1,

0 , , 1 ( 1) .

= − + + − +

≤ − − ≤ ≤ ≤ +

Y r K N q M

r K q M N Y N
 (11d) 

Substitute the general solution (11a) in left side of 
equation (1a). Then consequently multiply both sides of 
(1a) on weight functions taken in form (11c). Then take 
the integrals over the whole plate area, and in this way get 
the system of linear equations: 

 ,
,,

r q Y
k m Z Z Yk m aφ β = φ β = ,  (11e) 

where 

 

44
, ,

2, ,
0 0

4

2 , 2
0

( , )

( , ) ( , )

b a ji
r q i j

k i xk m k m
i jb a

m j y r s r s x
s

x L

y L x L

==

+ −
= =− −

+ − + −
=

φ = λ Γ ×

× Γ α Γ ×

  


 

 
4

, 2
0

( , ) ,q t q t y
t

y L dxdy+ −
=

× γ Γ  (11f) 

 ( , ) ( , )
b a

Y Y
b a

a p x y x y dxdy
− −

= Ψ =   

 ( , ) ( ) ( )
b a

r q
b a

p x y x y dxdy
− −

= Φ Φ   (11g) 

As we can see, invaluable advantage of the expo-
nential functions is that they are very easily differentiated 
and integrated in closed form. So, in determining the co-
efficients in (11f) it should be accounted for, that:  
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2 2

4 1

( , ) ( , )

( ( , )
4

+ − + −
−

+ − + −

Γ ⋅Γ =

= Γ −
+ − + −


a

k i x r s x
a

x
k i r s x

x L x L dx

L
a L

k i r s

 

 4 ( , )).+ − + −− Γ −k i r s xa L  (12a) 

The terms in free column (11g) are also easily taken ana-
lytically: 

 
4

, 2
0

4

, 2
0

( , ) ( ) ( )

( , )

( , )

b a

Y r q
b a

u v

r i r i x
iu v

q j q j y
j

a p x y x y dxdy

x L

y L dxdy

− −
ξ+ η+

+ −
=ξ− η−

+ −
=

= Φ Φ =

= α Γ ×

× γ Γ =

 

 



   

 
( )

4
,

2 2
0

4
,

2
0

( , ) ( , )
2

( ( , )
2

r i
r i x r i x

i

q j
q j y

j

u L u L
r i

v L
q j

+ − + −
=

+ −
=

α
= Γ ξ + − Γ ξ − ×

+ −
γ

× Γ η + −
+ −




 

  2 ( , ))q j yv L+ −− Γ η−  (12b) 

which is correct when 2 0q j+ − ≠  and 2 0r i+ − ≠ . 
Otherwise:  

 ( ),
2 2

,

( ) ( )
2

     2 0,

r i
r i r i

r i

u u
r i

u if r i

+ − + −
α

Γ ξ + − Γ ξ − =
+ −

= α ⋅ + − =
 

  ( ),
2 2( ) ( )

2 + − + −
γ

Γ η + − Γ η − =
+ −

q j
q i q iv v

q j
  

 ,      2 0.= γ ⋅ + − =q j v if q j  (12c) 

It is no need to describe in details the application of 
, ( , )k m x yΘ  and , ( , )k m x yΩ  in capacity of weight func-

tion. We only note, that in first case coefficients ,r sα  and 

,q tγ  in (11f) should be substituted by 
( )

, 2
2 (2 )r s

x

r s
L

α
+ −  

and , 2
2 (2 )

( )

γ
+ −q t

y
q t

L
 respectively, and the same is relat-

ed to equation (11g) or its expanded form (12b). And in 
second case, i.e. LSM is situation is the similar – the 
products of ,r sα  and ,q tγ  should be replaced by ,

,
s t
r qλ . 

Algebraic equations for free vibration. A promi-
nent advantage of approximate WRM over the exact ana-
lytical methods is that its general scheme of application is 
almost the same for both static and free vibration cases. 
This allows us to describe the theoretical part very briefly. 
Besides, we consider only Galerkin method. The reason is 
very simple. As it will be shown for static case, Galerkin 

method is very good one with respect to calculation of 
displacements, and mode shape analysis is actually the 
investigation of the displacement.  

So, we take the looking for displacements in form 
(11b). Insert them in governing equation (1b), so we get 
the expression for residuals , ( , )k m x yΩ :  

 
44

,
, ,

0 0
( , ) 1 (2 , , )

==

= =
Ω = λ Γ + − × 

ji
i j

k m xk m
i j

x y k i x L    

 (2 , , )×Γ + − ym j y L  (13a) 

where the following designation for coefficients ,
,1i j

k mλ  is 
used:  

222
, 2

, ,,
2 21i j

k i m jk m
x y

k i m j
L L

    + − + −  λ = α γ + − ω =           

 

 , 2
, ,,

i j
k i m jk m= λ − α γ ω  (13b) 

which now is the sum of two constituents, the first one is 
the same as in static case, namely ,

,
i j
k mλ , and other one is 

proportional to 2ω . Then residuals (13a) are consequent-
ly multiplied on weight functions (11c) and integrated 
over the area. Eventually we get the following equation 
for coefficients of the matrix: 

  , , , 2
, , ,0 1r q r q r q

k m k m k mφ = φ − φ ω =   

 ( )
4 4

, 2
, ,,

0 0

2 2( , ) ( , )

b a
i j

k i m jk m
i jb a

k i x m j yx L y L
= =− −

+ − + −

= λ − α γ ω ×

× Γ ⋅Γ ×

    

 
4 4

, 2 , 2
0 0

( , ) ( , )r s r s x m t q t y
s t

x L y L dxdy+ − + −
= =

× α Γ γ Γ   (13c) 

All integrals in (13c) can be easily taken analytical-
ly, as was shown in (12a) and (12b). So, resulting system 
of algebraic equation with accounting for index redesig-
nation takes the form: 

 
2 2

2 2

2 2

2 2

1 2 1 1 2 1 1 2 1
1 1 2 2 ( 1) ( 1)

2 2 2 2 2 2 2 2 2
1 1 2 2 ( 1) ( 1)

( 1) ( 1)2
( 1) ( 1)

0 1 0 1 ... 0 1

0 1 0 1 ... 0 1

... ... ... ...

... ... ... 0 1

N N

N N

N N
N N

+ +

+ +

+ +
+ +

 φ − ω ⋅φ φ − ω ⋅φ φ − ω ⋅φ
 
 φ − ω ⋅φ φ − ω ⋅φ φ − ω ⋅φ ×
 
 
 φ − ω ⋅φ
 

 

 

2

1

2

( 1)

0
0

... ...
0N +

β   
   β   × =   
   
   β   

 (13d) 
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System (13d) has only solution when its determi-
nant is equal to zero. This allows finding the natural fre-
quencies. After, the natural modes can be easily found by 
usual procedure.  

Simply – supported plate, static centric load. This 
is a special case of static loading. Of course, it can be treat 
treated by the proposed procedure. Yet here we wish to 
show other possibility of construction of the trial func-
tions as the sets of consequent exponential functions. 
Consider SSSS plate ,x a y b≤ ≤ , loaded by uniformly 
distributed stresses, ( , )q x y , at the central rectangular 
part, ,x u y v≤ ≤ , of the plate, so:  

  
1,   ,    ,1( , )
0,              elsewhere.

u x u v y v
q x y

uv
− ≤ ≤ − ≤ ≤

= ⋅


 (14) 

Symmetrical case makes redundant a lot of general 
sets of trial functions (7b) and (7c). So, the more efficient 
symmetrical trial functions can be proposed. First of all 
wrote the specific boundary conditions at 0, 0x y= = : 

  
3

3( 0) 0, ( 0) 0,w wx x
x x

∂ ∂= = = =
∂ ∂

 (15a) 

 
3

3( 0) 0, ( 0) 0.w wy y
y y

∂ ∂= = = =
∂ ∂

 (15b) 

Note that on sides ( , )x a y= +  and ( , )x y b= +  the 
boundary conditions remain the same as are given by 
formulas (3a) and (3b). So, we will use here the discon-
tinuous decaying functions, as were proposed in [1]. Con-
struct the following sets of 5 consequent exponential 
functions which decay at infinity x → ± ∞ :  

 
,0 ,1

,2 ,3

( 1)( ) exp exp

( 2) ( 3)exp exp

k k k
x x

k k
x x

kx k xx
L L

k x k x
L L

   +Φ = α − + α − +   
   

   + ++α − + α − +   
   

 

  
4

,4 ,
0

( 4)exp ( , )k k i k i x
x i

k x x L
L − −

=

 ++α − = α Γ 
 

 . (16a) 

In y-direction the sets of functions ( )m yΦ  are con-
structed in the same manner:  

  
4

,
0

( ) ( , )m m j m j y
i

y x L− −
=

Φ = γ Γ   (16b) 

As before, take that all coefficients ,0kα  ,0mγ  as 

equal to 1, and all other coefficients ( ), 1, 4k i iα =  and 

( ), 1, 4m j jγ =  are determined from the boundary condi-

tions (3a) and (3b) at ( , )x a y= +  and ( , )x y b= +  as 
well as from the symmetry conditions (15a) and (15b). 

The next step is introduction of 2D trial functions 
, ( , )k m x yΨ  according to formula (8). All other steps are 

also the same, except some technical details, for example 
integration is performed over ¼ of the whole area, and 

1 1 0K M= = , 2 2 .K M N= =  

Practical tasks, verification 

Due to the methodological character of the present 
work we will consider below only square plates, each side 
being equal to 1, i. e. 1a b= = . Also we always take 

x yL L L= = . The choice of this rather arbitrary parameter 
on the predicted results will be investigated. For static 
loading the results are presented for both displacements 
(as the looking for target function) and for bending mo-
ment, which is mostly important in structural analysis. 
For vibration analysis only frequencies and, sometimes, 
mode shapes will be calculated.  

Static centric loading. Take that loading is given 
by (14) and u v= . Accurate results are given and calcu-
lated by Navier formulas. It approximately stated that 
correct solution can be attained at number of terms of 
expansion 1N  in formula (5) equal to 400, i. e. 400·400 
coefficients ,m na  are used.  

Uniformly distributed loading is a very trivial case, 
which requires a small number of terms. So, we will con-
sider more concentrated cases of loading. Start with load-
ing on ½ of the plate area, i. e. take that / 0.5u a = . Fig. 3, a 
shows the accurate Navier ( 1 400N = ) displacement along 
axis x = y. Fig. 3, b and Fig. 3, c show the deviation of 
approximate results for displacement from the accurate 
one, ( ), ( , )Nw x yαδ  for number of terms in WRM N equal 
to 4 and 8. Fig.3 c, d, e shows the exact distribution of the 
bending moments along axis x = y, and the deviations of 
the moments, ( ), ( , )NM x yαδ  from exact value according 
to three different variants of choice of test functions. 
These deviations are calculated by the following expres-
sions:  

 
( )

( )

,
, max

,
, max

( , ) ( , )
( , ) 100%,

( , )

( , ) ( , )
( , ) 100%,

( , )

α
α

α
α

−
δ = ⋅

−
δ = ⋅

exact N
N

exact

exact N
N

exact

w x y w x y
w x y

w x y

M x y M x y
M x y

M x y

 (17a) 

where max ( , )exactw x y  and max ( , )exactM x y  are the maximal “ex-
act” (for 1 400N = ) Navier values, here attained at the 
point (x = 0, y = 0). Index “α” ( ){ , , }α = Ψ Θ Ω  relates to 
our investigations of the best variant of WRM: namely, 
for the Galerkin method α = Ψ , for the method of mo-
ments α = Θ  and for the least square method α = Ω . 
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Evidently that all variants of WRM demonstrate 
very impressive accuracies, while for moments the bigger 
number of terms is required to get the same accuracy. 

For comparison, the deviation of 10 terms 
1( 10)N =  Navier solution from the exact one is also shown 

on Fig. 3, f. So, we can state also very good accuracy of 
Navier method for this case. Furthermore, Navier method 
is much simpler in technical realization here, so 
the further analysis for justification of our method is 
needed. 

Thus consider two cases of concentrated loading. 
First case is the when the loading is applied on central 
square part with both sides equal to u = v = 0.1. It means 
that only 0.01 of the whole area is loaded. The second 

case relates to more abrupt loading: u = v = 0.04, i. e. 
only 0.0016 part of plate area is loaded. The results (only 
for moments, because for displacements they are much 
accurate) of moment deviations are depicted on Fig. 4. 
The results for u = v = 0.1 are given on Fig. 4, a at N = 8 
for all three variants of WRM realization. With compari-
son purpose we give here the deviation of Navier results 
for 1 20N = . It is evident, that 8 terms analysis in all var-
iants of exponential functions based WRM are not worse 
than 20 terms Navier analysis. 

With decreasing the area of loading the deviance 
for the same number of terms, N = 8, increases from over-
age value 1%≈  at u = v = 0.1 up to 1.5%  for u = v =  
= 0.04. Navier method produces worse results and at u =  

 
 a b c 

 
 d e f 

Fig. 3. Exact displacements (a) and bending moments (d) along axis x = y (a), and their deviations  
by WRM calculated for N = 4 (b, e) and N = 8 (c, f )  at  u = v = 0.5, L = 3 

 

 
 a b 

Fig. 4. Calculated deviations of the bending moments at u = v = 0.1 (a) and u = v = 0.04 (b) 
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= v = 0.04 loading it requires approximately 32 terms 
1( 32)N =  to gives the comparable accuracy with N = 8 

in WRM. 
Look again on Fig. 4 and Fig. 3, f, which give the 

moment deviation. These deviations are product of two 
factors. First one is the scale (maximal value) of the cal-
culated approximate dependence; second one is the 
change of form of dependence. For example, calculated 
graph can be slightly wider or shifted with respect to the 
true one. Of, course, in practical application we are most-
ly interested in maximums of functions. So, investigate 
the deviations at the point (x = 0, y = 0), where the local 
maximum is attained. Introduce the measure of deviation 
of moments, ,δN  for the whole area, which is the differ-
ence between the exact maximum and calculated one:  

 
max max

max 100%exact N
N

exact

M M
M

−
δ = ⋅ . (17b) 

The results of Nδ  determination are given in  
Table 1. It allows to draw more definite conclusions with 
respect to accuracy of different variants of our WRM real-
ization and Navier method. First, the efficiency of expo-
nential based WRM as compared with Navier results in-
creases when the loading become more concentrated. For 
example, for u = v = 1 both approaches require a compa-
rable number of terms. When the loading is very concen-
trated, say u = v = 0.04, the similar accuracy can be at-
tained for 8 terms in WRM and for 80 – 100 terms in Na-
vier method. It should be remembering that 8 terms actu-

ally means 8·8 = 64 coefficients, while 100 terms means 
104 coefficients. Second, Galerkin method (GM) is not the 
best option for calculation of moments. Method of mo-
ments (MM) and least square method (LSM) are better 
choices for this particular task.  

As was said before, the only semi – arbitrary pa-
rameters in proposed WRM realization are the scaling 
lengths ,x yL L . We think, that necessary to adopt some 

scaling factor was the main hindrance, which prevented to 
use them so far. In case of using the sin and cos functions 
the scaling factors are quite natural and are related with 
boundary conditions (plate dimensions) more univocally. 
Here of course, scaling factors are related with dimen-
sions, too. But, with increase of number of element, it 
becomes more and more abrupt, i.e. with very outstanding 
sole maximum. To provide some smoothness, it is neces-
sary to take ,x yL L  slightly bigger than characteristic 

dimension. This point requires some numeric investiga-
tion. 

Consider the local loading over the area 0.1x a≤ , 

and 0.1y a≤ . Calculate according to (17b) the moments 
deviations at different values of {1, 2, 3}x yL L= =  for the 

same number of terms N = 6. The results of calculation 
are shown on Fig. 5. First, we can notice, that overage 
deviations for all three cases (scaling factors) are similar. 

From other hand, it can be noticed that for LSM at  
L = 1, there is systematic deviation (all deviations are 
negative), this means the trial function have no “power” 

Table 1. Deviation of calculated moment max
NM  according to WRM and Navier method 

/ /u a v b=  

Navier method, , %Nδ  Proposed method, , %Nδ  max max
400exact NM M =≅  

N = 20 N = 50 N = 100 N = 200 
N = 8  

N = 400 
GM MM LSM 

0.04 8.984 –1.044 0.165 0.017 0.745 –0.182 0.317 0.378892 

0.1 –1.385 0.045 –0.018 0.003 –1.014 –0.233 0.027 0.284116 

0.5 –0.048 0.001 0 0 0.283 0.109 –0.0005 0.117744 

1.0 0.021 –0.001 0 0 –0.0007 –0.0006 –0.0001 0.047886 
 

 
 a b c 

Fig. 5. Calculated deviations of bending moment at 1x yL L= = (a),  2x yL L= = (b),  3x yL L= =  (c);  / 0.1u a =  
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,they are not able to provide correct result at points far 
from the origin. So, within reasonable limits the value of 
L has no influence on character and accuracy of solution. 
So, we mostly take it to be in ranges from 2 to 4.  

Simply – supported plate, eccentric load. This case 
is characterized by two points. First, here and below we 
return to more universal functions (7b), (7c). Second, it is 
intuitively clear, that eccentric loading leads to eccentric 
deformation, where it might be more advantageous to use 
the eccentric trial function , ( , )k m x yΨ . This possibility 
pertains to peculiarities of our method, so it is interesting 
to investigate this. Note, that traditional sinus functions 
do not allow this. 

As example, consider the slightly concentrated ec-
centric uniform loading acting on area 0.8 0.4,x− ≤ ≤ −

0.8 0.4y− ≤ ≤ − : 

 
1,   if 0.8 0.41( , )
0,              elsewhere(0.4 0.4)

and 0.8 0.4

x
p x y

y

− ≤ ≤ −
= ⋅ 

− ≤ ≤ −
 (18) 

Results of multivariate calculation of maximal deviation 
of approximate moments according to definition (17) by 
WRM for number of terms equal to 7 are presented in 
Table 2. Here we presented results as for usual symmet-
rical approach, as well as to the “shifted” approach, when 
the mean value of ( )1 2 / 2mK K K= +  is taken to be neg-
ative (for mM  is the same). The exact value of maximal 
bending moment is determined from Navier solution at 

1N  equal to 200. A number of interesting conclusions 
can be drawn from these results:  

– as expected, the usual “symmetrical” solution, 
when 1 1 2 2 3K M K M− = − = = =  is nor the best choice 
for eccentric loading; 

– for symmetrical approach the scaling length, L, 
is not essential and provides the similar results for rela-
tively wide range of its values. Here the deviations are 
near 8%; 

– the shifting of the mean trial function number can 
drastically increase the accuracy; 

– the bigger is the shift to the left (to negative side) 
the bigger scaling length should be taken to provide the 
best accuracy; the deviation can be as low as approximat-
ly 1%; 

– choice of weight function have minor influence 
on accuracy, nevertheless it is evident that MM and LSM 
have some advantage over Galerkin method. 

To understand the whole picture about deviations 
we present the exact displacements and bending moments 
on Fig. 6, a and Fig. 6, c accordingly for geometry and 
loading considered. The deviation, calculated according to 
(17a), along line x = y are given on Fig. 6, b – for dis-
placements and on Fig. 6, d – for moments. In calculation 
we use the shifted functions, where 8N =  and 1 8K = −  
and 2 1K = − . In spite that deviation may be as big as 4%, 
here the deviation of the maximal value is not bigger than 
0.3%. So, the accuracy is quite good. It is interesting to 
know that similar accuracy for limited number of terms in 
Navier method is attained at approximately 26 terms. No-
tice again that Galerkin method is worse as compared 
with LSM.  

Free vibration of a simply supported plate. Note, 
that only Galerkin method is used for free vibration anal-
ysis. Here the shifting of trial function have no sense, so 
the basic functions ( ), ( )k mx yΦ Φ  are constructed ac-
cording to formulas (7b) and (7c), where 1 2K K− = , 

1 2M M− = . This SSSS configuration is very important 
for understanding of the efficiency of our method, be-
cause only for it there is an accurate solution, while for 
our method this case presents no additional advantages as 
compared with other geometries. So the real accuracy of 
method can be demonstrated. 

We have started our calculation for only one trial 
function, where 1 1 0K M= =  at 2L = . This one term 
approximation allows to get only one frequency, so we 
got 1 4.9393ω ≈ . The relative deviation of it from the 

Table 2. Deviation from the maximum bending moment ( ), %Mδ  calculated for N = 7, max 0.14691exactM ≅  

Weight func-
tions 

, ( , ),k m x yΩ  LSM , ( , ),k m x yΘ

MM 
, ( , ),k m x yΨ GM 

[K1; K2] [–3; 3] [–5; 1] [–6; 0] 
[–7; –

1] 
[–8; –

2] 
[–9; –3] [–7; –1] [–7; –1] 

L=0.8 7.024 2.858 – 0.293 – 0.423 1.388 12.968 – 1.051 – 2.118 

L=1 8.575 2.928 0.835 – 0.581 – 0.338 10.668 – 0.792 – 0.834 

L=2 8.823 1.908 1.192 1.629 1.549 0.535 – 0.131 – 0.703 

L=3 8.602 3.751 1.908 1.093 1.094 1.405 0.973 1.142 

L=5 8.461 5.793 4.269 2.929 1.912 1.266 3.162 2.428 
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accurate value (formula (6b)) is equal to: 

1
4.9348 4.9393

( ) 100% 0.091%
4.9348

−
δ ω = ⋅ ≈ . This is unex-

pectedly good result.  
Letting 1 1 1K M= = −  the frequency equation (13d) 

becomes a polynomial of 9th order with respect to unk- 

nown 2ω . These 9 frequencies are calculated and given 
in Table 3. Multiple roots have the double numeration in 
first column. The calculations were performed for three 
different values of the scaling length { }2, 3, 5xL = . Here, 
the increase of xL  leads to a little better accuracy. The 
results are shown in Table 3. For example, for first fre-

 
 a b 

 
 c d 

Fig. 6. Exact displacement (a), bending moment (c) and calculated deviations from them (b, d) at 1 8= −K , 2 1= −K  

Table 3. Deviations of the calculated dimensionless frequencies  

Number of  
frequency 

Exact value, (6b) Proposed method (GM), %),( iωδ  

k, n iω  
2== yx LL  3== yx LL  5== yx LL  

N = 3 N = 5 N = 3 N = 5 N = 3 N = 5 

1 1, 1 4.93480 1e–4 7.6e–8 4e–5 1.2e–8 2e–5 3.4e–9 

2, 3 1, 2;   2, 1 12.3370 0.930 0.006 0.717 0.003 0.621 0.002 

4 2, 2 19.7392 0.914 0.006 0.705 0.003 0.611 0.002 

5, 6 1, 3;   3, 1 24.6740 2.919 0.051 2.621 0.039 2.475 0.034 

7, 8 2, 3;   3, 2 32.0762 2.230 0.035 1.973 0.026 1.849 0.022 

9 3, 3 44.4132 2.548 0.040 2.288 0.030 2.161 0.026 
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quency the increasing of scaling length from 2 to 5 leads 
to increase of accuracy (deviation decreases from 
0.0001% to 0.00002%). For other frequencies up to ninth 
one the deviation may be as big as 0.62% – 2.92 %.  

Letting 1 1 2K M= = −  the system contains 25 
which allows to find 25 roots. Of course, the larger the 
number of frequency the lesser is the accuracy of its de-
termination. So we restrict ourselves only with first 9 
roots (frequencies). They also are given in Table 3. Such 
comparatively small increase in number of unknowns 
leads to drastic increase of accuracy. The relative devia-
tions of the first nine frequencies ( )iδ ω  1 9i≤ ≤  are 

confined within range from 83.4 10 %−⋅  for first fre-
quency up to 0.034% for the ninth one. We consider these 
results as perfect one, which demonstrates the great effi-
ciency of the method. 

Free vibration for all sides clamped plate. CCCC 
plate is very often calculated for comparison purposes. 
CCCC plate can not be solved analytically, so the effi-
ciency of different approximate methods is usually 
demonstrated for it. Namely this geometry was chosen in 
comparison study of different popular methods in  
work [14]. 

In our analysis we use 5N =  (25 degrees of free-
dom, DOF), 7N =  (49 DOF), and 9N =  (81 DOF). For 
this case there is no exact solution, and which number is 
closer to “exact” one, we only can guess. So in Table 4 
we give our results as well as the results of the most re-
spected investigators. Note some interesting results. 

The 25 – equations approach was not able to find 
9th and 10th frequencies. All other frequencies were de-
termined with good accuracy. Results for 49 – equations 
approach differ from 81 – equations approach for first 8 
frequencies by less than 0.003% , while the 12th frequency 
differ on 0.5%. Comparison with previous authors shows 
some minor difference, for example, the differences for 
first 4 frequencies with classic work of Leissa A.W. [10], 
Blevins recent handbook [22], where old results of Dur-
vasula S. [23] are used there, Gorman D. [24] is confined 
withing 0.03%. Of course, this is not a big difference, but 
it is interesting to know which results are more exact. So, 
a resent work of El – Gamel M. at all [21], where approxi-
mately 200N =  terms were used (this means N2 equa-
tions), can shed light on the value of “exact” values. They 
gave only first four frequencies. But the biggest differ-
ence (for 4th one) with our results is smaller than 0.0002% 
So, we can state a very exiting accuracy of our approach 
for comparatively small number of DOF used.  

Conclusions 

In this work we apply to rectangular plate analysis 
the new variant of WRM based on the sets of consequent 
exponential functions. The following results with respect 
to methods application and its accuracy on example of 
square plate with side equal to 1 are attained. 

1. For static analysis only SSSS plate was investi-
gated, for which the exact solution exists. In general pro-

Table 4. Comparison of dimensionless frequencies for CCCC square plate 

№ 

Proposed method, GM 
El-Gamel 

M.,  
Ref. [21] 

Blevins R.,  
Ref. [22] 

Leissa A.W., 
Ref. [10] 

Gorman D., 
Ref. [24] 

5N =  7N =  9N =  

1 35.9855 35.985217 35.985193 35.985191 35.9915 35.992 35.984 

2 73.4137 73.394121 73.393877 73.393857 73.413 73.413 73.40 

3 73.4137 73.394121 73.393877 73.393878 73.413 73.413 73.40 

4 108.2589 108.217880 108.216711 108.216517 108.269 108.27 108.20 

5 131.7900 131.582561 131.580782  131.641 131.64 131.92 

6 132.4211 132.207247 132.204900  132.243 132.24 131.92 

7 165.2058 165.003733 165.000815  165.158e  165.00 

8 165.2058 165.003733 165.000815  165.158e  165.00 

9 – 211.772117 210.547862    210.52 

10 – 211.772117 210.547862    210.52 

11 220.3309 220.035401 220.033243    220.04 

12 231.7419 243.192875 242.172416    242.28 
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posed method requires lesser terms than Navier method. 
The more concentrated is outer loading the lesser terms 
are required in proposed method as compared with Navier 
solution to achieve the similar accuracy. For example, for 
the central uniform loading on a square with side equals 
to 0.04, proposed 8 – terms solution is comparable with 
80 – terms Navier solution.  

2. The method has unique feature to effectively 
treat eccentric loading by considering only eccentric 
terms (shifted to the same direction with respect to the 
symmetric function with number 0). This can essentially 
decrease the required number of terms.  

3. Accuracy of WRM depends in some extend on 
the proper choice of weight function. Three different vari-
ants of them were investigated: Galerkin method, Least 

square method and Moment methods. In general, this 
choice has no drastic effect on accuracy, nevertheless 
LSM can be considered as the best choice.  

4. There is only one semi arbitrary parameter in our 
trial functions – scaling length L. It was shown on many 
static and free vibration examples that optimally it can be 
chosen in the range of 2 – 4 times of characteristic dimen-
sion of plate. In this range the choice of L has minor in-
fluence on results.  

5. Analysis of frequencies for free vibration of 
SSSS and CCCC plates demonstrates a very remarkable 
accuracy of the method which exceeds other ones with 
respect to accuracy. Technique of method application for 
free vibration almost does not differ from the static analy-
sis and is very simple and easy to implement. 
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Применение экспоненциальных функций в методе взвешенных невязок в 
структурной механике на примере статического и вибрационного анализа 
прямоугольной пластины 
И. В. Орыняк, Ю. П. Бай 

Аннотация. Данное исследование является продолжением наших усилий по применению специально построенных наборов 
последовательных экспоненциальных функций как пробных (базисных) функций в методе взвешенных невязок (МВН) на 
примере классических задач структурной механики. Статья не направлена на получение новых результатов, а посвящена 
обоснованию эффективности предлагаемого метода. Рассматриваются статическая деформация и свободные колебания 
изотропной тонкостенной квадратной пластины. Особенностью работы является выбор весовых (поверочных) функций в 
трех вариантах: как пробных функций (метод Галеркина, МГ); как функций, являющихся результатом применения диффе-
ренциального оператора к пробным функций (метод наименьших квадратов, МНК); как функций, являющихся произведени-
ями вторых производных от пробных функций по x и y (метод моментов, ММ). Решение строится как произведение двух 
независимых множеств функций относительно координат x и y. Каждое множество представляет собой комбинацию 
пяти последовательных экспоненциальных функций, в которой первый коэффициент равен 1, а четыре другие коэффици-
ента определяются из граничных условий на противоположных сторонах пластины. Произвольным параметром в методе 
является коэффициент масштабирования в показателях, разумный диапазон которого тщательно исследовался, и показа-
но его влияние на результаты. 
Статическая деформация исследована на примере простой шарнирно-опертой пластины, когда внешняя нагрузка или 
симметрична и сосредоточена вблизи центра пластины, или смещена от центра к произвольной угловой точке. Продемон-
стрировано, что результаты сходятся к точному решению быстрее, чем в классическом методе Навье. ММ и МНК дают 
лучшую точность при определении изгибающих моментов, чем МГ. Предложенный метод применен к анализу свободных 
колебаний пластины, точность результатов определения собственных частот является отличной даже при небольшом 
количестве членов ряда. Проанализированы сравнительно сложный случай - свободные колебания защемленной по всем 
сторонам пластины, достигнуты очень хорошие результаты по эффективности и точности. 
Ключевые слова: прямоугольная пластина, смещенная нагрузка, метод взвешенных невязок, метод Бубнова-Галеркина, 
весовые функции, свободные колебания пластины, защемленная пластина, собственные частоты. 

Застосування експоненціальних функцій в методі зважених нев’язок в 
структурній механіці на прикладі статичного та вібраційного аналізу  
прямокутної пластини  
І. В. Ориняк, Ю. П. Бай 

Анотація. Дослідження є продовженням наших зусиль щодо застосування спеціально побудованих наборів послідовних 
експоненціальних функцій як пробних (базисних) функцій в методі зважених нев’язок (МЗН) на прикладі класичних задач 
конструкційної механіки. Стаття не направлена на отримання нових результатів, а присвячена обґрунтуванню ефектив-
ності запропонованого методу. Розглядаються статична деформація та вільні коливання ізотропної тонкостінної квад-
ратної пластини. Особливістю роботи є вибір вагових (перевірочних) функцій в трьох варіантах: як пробних функцій (ме-
тод Гальоркіна, МГ); як функцій, що є результатом застосування диференціального оператора до пробних функцій (метод 
найменших квадратів, МНК); як функцій, які є добутком других похідних від пробних функцій по x і y (метод моментів, 
ММ). Розв’язок будується як добуток двох незалежних множин функцій відносно координат x та y. Кожна множина є 
комбінацією п'яти послідовних експоненціальних функцій, де перший коефіцієнт дорівнює 1, а чотири інші коефіцієнти 
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визначаються з граничних умов на протилежних сторонах пластини. Довільним параметром в методі є коефіцієнт масш-
табування в показниках, розумний діапазон якого ретельно досліджено і показано його вплив на результати.  
Статична деформація досліджена на прикладі простої шарнірно-опертої пластини, коли зовнішнє навантаження або 
симетричне і зосереджене поблизу центру пластини, або зміщене від центра до будь-якої кутової точки. Продемонстро-
вано, що результати сходяться до точного рішення швидше, ніж у класичному методі Нав'є. ММ та МНК дають кращу 
точність при визначенні згинаючих моментів, ніж МГ. Запропонований метод застосований до аналізу вільних коливань 
пластини, точність результатів визначення власних частот є відмінною навіть при невеликій кількості членів ряду. Про-
аналізовано порівняно складний випадок – вільні коливання защемленої на всіх сторонах пластини, досягнуто дуже хороших 
результатів щодо ефективності та точності. 
Ключові слова: прямокутна пластина, зміщене навантаження, метод зважених нев’язок, метод Бубнова-Гальоркіна, ваго-
ві функції, вільні коливання пластини, защемлена пластина, власні частоти. 
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