
Chapter 18
Long-Time Behavior of State Functions
for Badyko Models

Nataliia V. Gorban, Mark O. Gluzman, Pavlo O. Kasyanov
and Alla M. Tkachuk

Abstract In this note we examine the long-time behavior of state functions for a
climate energy balance model (Budyko Model) in the strongest topologies of the
phase and the extended phase spaces. Strongest convergence results for all weak
solutions are obtained. New structure and regularity properties for global and trajec-
tory attractors are justified.

18.1 Introduction and Setting of the Problem

Let (M , g) be aC∞ compact connected oriented two-dimensional Riemannianman-
ifold without boundary (e.g.,M = S2 the unit sphere of R3). Consider the problem:

∂u
∂t − �u + Re(x, u) ∈ QS(x)β(u), (x, t) ∈ R+ × M , (18.1)

where�u = divM (∇Mu);∇M is understood in the sense of the Riemannian metric
g. Note that (18.1) is the so-called climate energy balance model. It was proposed in
Budyko [4] and Sellers [38] and examined also in Díaz et al. [10–13]. The unknown
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u(x, t) represents the average temperature of the Earth’s surface. In Budyko [4] the
energy balance is expressed as

heat variation = Ra − Re + D.

Here Ra = QS(x)β(u). It represents the solar energy absorbed by the Earth, Q > 0
is a solar constant, S(x) is an insolation function (the distribution of solar radiation
falling on upper atmosphere), β represents the ratio between absorbed and incident
solar energy at the point x of the Earth’s surface (so-called the co-albedo function).
The term Re represents the energy emitted by the Earth into space, and as usual, it is
assumed to be an increasing function on u. The term D is the heat diffusion, and we
assume (for simplicity) that it is constant.

As usual, the term Re may be chosen according to the Newton cooling law as
linear function on u, Re = Bu + C (here B and C are some positive constants) [4],
or according to the Stefan–Boltzmann law, Re = σu4 [38]. In this note we consider
Re = Bu as in Budyko [4].

Let S : M → R be a function such that S ∈ L∞(M ), and there exist S0, S1 > 0
such that

0 < S0 ≤ S(x) ≤ S1.

Suppose also that β is a bounded maximal monotone graph of R2; that is, there exist
m, M ∈ R, such that for all s ∈ R and z ∈ β(s)

m ≤ z ≤ M.

Through the note we consider real Hilbert spaces

H := L2(M ), V := {u ∈ L2(M ) : ∇Mu ∈ L2(TM )}

with respective standard norms ‖ · ‖H , ‖ · ‖V , and inner products ( · , · )H , ( · , · )V ,

where TM represents the tangent bundle and the functional spaces L2(M ) and
L2(TM ) are defined in a standard way; see, for example, Aubin [2]. Let V∗ be the
dual space of the function space V . We remark that

V ⊂ H ⊂ V∗,

and all embeddings are compact and dense; see, for example, Aubin [2, p. 55,
Theorem 2.34].

Let−∞ < τ < T < +∞. A function u(·) ∈ L2(τ,T;V) is called aweak solution
of Problem (18.1) on [τ,T ], if there exists a measurable function d : M × (τ,T) →
R such that

d(x, t) ∈ QS(x)β(u(x, t)) for a.e. (x, t) ∈ M × (τ,T), (18.2)
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and

∫ T

τ

[
〈−u,

∂ξ

∂t
〉 − 〈u,�ξ 〉 + 〈Re( · , t, u), ξ 〉 − 〈d, ξ 〉

]
dt = 0, (18.3)

for all ξ ∈ C∞
0 (M × (τ,T)), where 〈·,·〉 denotes the pairing in the space V .

In this manuscript, we examine the long-term dynamics as t → +∞ of all weak
solution for Problem (18.1) in the strongest sense under the assumptions listed above.

We note that the existence of a Lyapunov function for a class of semi-linear
parabolic differential reaction-diffusion equations with discontinuous nonlinearities,
regularity properties for global and trajectory attractors, and its applications were
considered in [16–18]. In [5, 32, 46, 48, 49] authors provided sufficient conditions
for the existence of a Lyapunov function for autonomous evolution inclusions of
hyperbolic type. The theory of the global and trajectory attractors for parabolic
systems in the natural phase and extended phase spaces was considered in [1, 3, 6–9,
14, 19–28, 30, 31, 33, 39–45]. Topological properties of strong and weak solutions
were provided in [15, 34–37]. Strong regularity properties of global and trajectory
attractors were proved in [10, 26–29].

18.2 Auxiliaries

According to [16], for each u0 ∈ H and T > 0, there exists at least one weak
solution of Problem (18.1) on [0,T ]. Moreover, each weak solution u(·) of Prob-
lem (18.1) on [0,T ] is regular, that is, u(·) ∈ C([ε,T ];V) ∩ L2(ε,T;D(A)) and
ut(·) ∈ L2(ε,T;H), for each ε ∈ (0,T); see Gluzman et al. [16, Theorem 14.1],
where D(A) := {u ∈ V : Au ∈ H} and 〈Au, v〉V = (u, v)V for each u, v ∈ V . Fur-
thermore, each weak solution of Problem (18.1) on [0,T ] can be extended to a
global one defined on [0,+∞); see Gluzman et al. [16, p. 235].

Denote byD(u0) the set of all weak solutions of Problem (18.1) globally defined
on [0,+∞) with initial data u(0) = u0, u0 ∈ H. Then, D(u0) ⊂ L2

loc(0,+∞;V) ∩
C([0,+∞),H) for each u0 ∈ H. Moreover, D(u0) ⊂ L∞(0,+∞;H) for each u0 ∈
H.

Consider the family of all weak solutions of Problem (18.1) defined on the semi-
infinite time interval [0,+∞):

K = ∪u0∈HD(u0).

The setK+ is a translation invariant one, that is, u(· + h) ∈ K+ for each u(·) ∈ K+
and h ≥ 0.

Let us consider Problem (18.1) on the entire time axis. A function u ∈ L∞(R;H)

is called a complete trajectory of Problem (18.1), if 	+u(· + h) ∈ K+ for each
h ≥ 0, where 	+ is the restriction operator to the interval [0,+∞). Denote by
K the family of all complete trajectories of Problem (18.1) A complete trajectory
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u(·) ∈ K is stationary if there is z ∈ D(A) such that u(t) = z for all t ∈ R. Such z
is called a rest point. We denote the set of all rest points by Z .

Definition 18.1 The function E : V → R is called a Lyapunov type one for K+, if
the following conditions hold:
(a) E is continuous on V ;
(b) E(u(t)) ≤ E(u(s)) whenever u ∈ K+ and t ≥ s > 0;
(c) If E(u(·)) ≡ const, for some u ∈ K , then u is stationary complete trajectory.

Let ϒ(s) be a real function such that ∂ϒ(s) = β(s) for each s ∈ R and 1 : M →
R, 1 ≡ 1. According to Gluzman et al. [16, Theorem 14.2], the following function

E(u) = 1

2
‖u‖2V + B

2
‖u‖2H − Q〈S( · )ϒ(u), 1〉 u ∈ V , (18.4)

is a Lyapunov-type function forK+. Moreover, the following energy equality holds:

E(u(T)) − E(u(τ )) = −
∫ T

τ

∥∥∥∥∂u

∂s
( · , s)

∥∥∥∥
2

H

ds, (18.5)

for each u ∈ K+ and 0 < τ < T < ∞. The following lemma provides the main con-
vergence result for all weak solutions of Problem (18.1) in the strongest topologies.

Lemma 18.1 (Gluzman et al. [16, Theorem 14.3]) Let 0 < τ < T, uτ ∈ H, and
{un(·)}n≥1 be a sequence ofweak solutions for Problem (18.1) on [τ,T ]. Furthermore,
let un(τ ) → uτ weakly in H as n → ∞. Then, there exists a weak solution u(·) for
Problem (18.1) on [τ,T ] such that u(τ ) = uτ , and there exists an increasing sequence
of positive integers {nk}k≥1 such that for each ε ∈ (0,T − τ)

sup
t∈[τ+ε,T ]

‖unk (t) − u(t)‖V +
∫ T

τ+ε

∥∥∥∥∂unk
∂s

( · , s) − ∂u

∂s
( · , s)

∥∥∥∥
2

H

ds → 0, (18.6)

as k → +∞.

Definition 18.2 The multivalued map G : R+ × H → 2H \ ∅ is called a strict mul-
tivalued semiflow if:
(a) G(0, ·) = Id (the identity map);
(b) G(t + s, x) = G(t,G(s, x)) ∀x ∈ H, t, s ∈ R+.

Let us define the multivalued map G : R+ × H → 2H\{∅} as follows:

G(t, u0) = {u(t) | u(·) ∈ K+, u(0) = u0}. (18.7)

Lemma 18.2 (Zgurovsky et al. [47, Chap. 2]) ThemultivaluedmapG : R+ × H →
2H \ {∅}, defined in (18.7), is a strict multivalued semiflow.
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18.3 Main Results

In this section we state that there exist trajectory and global attractors for all weak
solutions of Problem (18.1) and provide their structure and regularity properties.

Definition 18.3 A set A ⊆ H is called an invariant global attractor for multi-
valued semiflow G if the following conditions hold:
(1) A is an invariant set, that is A = G(t,A ) for each t ≥ 0;
(2) A is an attracting set, that is, for each nonempty bounded subset B ⊂ H,

distH(G(t,B),A ) → 0, t → +∞,

where distH(C,D) = sup
c∈C

inf
d∈D

‖c − d‖H denote the Hausdorff semidistance between

nonempty subsets C and D of space H.
(3) For any closed attracting set Y ⊆ H, we have A ⊆ Y .

Theorem 18.1 The strict multivalued semiflow G : R+ × H → 2H \ ∅, defined in
(18.7), has a compact invariant global attractor A in the phase space H.

Let {T(h)}h≥0 be the translation semigroup acting on K+, that is, T(h)u(·) =
u(· + h), h ≥ 0, u(·) ∈ K+. On K+, we consider the topology induced from the
Fréchet space Cloc(R+;H). Note that fn(·) → f (·) in Cloc(R+;H) as n → ∞ if and
only if ∀M > 0 	0,Mfn(·) → 	0,Mf (·) in C([0,M];H) as n → ∞.

Definition 18.4 A setU ⊂ K+ is called a trajectory attractor for translation semi-
group {T(h)}h≥0 on K+ in the induced topology of Cloc(R+;H), if U ⊂ K+ is a
global attractor for the translation semigroup {T(h)}h≥0 acting onK+; see Kasyanov
et al. [29, Sect. 3].

Theorem 18.2 There exists a trajectory attractor U for {T(h)}h≥0 on K+ in the
induced topology of Cloc(R+;H). Moreover, the following equalities hold:

U = 	+K = {u(·) ∈ K+ | u(t) ∈ A ∀t ∈ R+} = {u(·) ∈ K+ | u(0) ∈ A };
(18.8)

The following theorem provides structure and regularity properties for global and
trajectory attractors for all weak solutions of Problem (18.1).

Theorem 18.3 The following statements hold:

(i) A is a compact subset of V;
(ii) U is a bounded subset of L∞(R+;V) and 	0,MU is a compact subset of

W(0,M) for each M > 0, where W(0,M) = {u(·) ∈ C([0,M];V) : ut(·) ∈
L2(0,M;H)} is a real Banach space;

(iii) K is a bounded subset of L∞(R;V) and	0,MU a compact subset of W(0,M)

for each M > 0;



356 N.V. Gorban et al.

(iv) For each nonempty bounded set B ⊂ H distV (G(t,B),A ) → 0, t → ∞;
(v) For any bounded in L∞(R+;H) set B ⊂ K+ and any M ≥ 0 the following

relation holds: distW(0,M)(	0,MT(t)B,	0,MU ) → 0, t → +∞;
(vi) For each u ∈ K the limit sets

α(u) = {z ∈ V | u(tj) → z in V for some sequence tj → −∞},

ω(u) = {z ∈ V | u(tj) → z in V for some sequence tj → +∞}

are connected subsets of Z on which E is constant. If Z is totally disconnected
(in particular, if Z is countable) the limits in V

z− = lim
t→−∞ u(t), z+ = lim

t→+∞ u(t) (18.9)

exist and z−, z+ are rest points; furthermore, u(t) tends in V to a rest point as
t → +∞ for every u ∈ K+.

18.4 Proof of Theorems18.1, 18.2 and 18.3

Gluzman et al. [16, Theorem 14.4] yield all the statements of Theorems18.1, 18.2,
and 18.3, because the spaces V ,H and operators A, J1( · ) := B

2 ‖ · ‖2H , J2( · ) :=
E( · ) − B

2 ‖ · ‖2H − 1
2‖ · ‖2V satisfy the assumptions of [16, Theorem 14.4], that is,

(a) (V;H;V∗) is an evolution triple,whereV is a realHilbert space, such thatV ⊂ H
with compact imbedding;

(b) A : V → V∗ is a linear symmetric operator such that there exists c > 0 such that
〈Av, v〉 ≥ c‖v‖2V , for each v ∈ V;

(c) Ji : H → R is a convex, lower semicontinuous function such that the following
assumptions hold: (i) (growth condition) There exists c1 > 0 such that ‖y‖H ≤
c1(1 + ‖u‖H), for each u ∈ H and y ∈ ∂Ji(u) and i = 1, 2; (ii) (sign condition)
there exist c2 > 0, λ ∈ (0, c) such that (y1 − y2, u)H ≥ −λ‖u‖2H − c2, for each
yi ∈ ∂Ji(u), u ∈ H, where ∂Ji(u) the subdifferential of Ji(·) at a point u; i = 1, 2,
0 < λ < λ1, λ1 is a first eigenvalue of A. Note that u∗ ∈ ∂Ji(u) if and only if
u∗(v − u) ≤ Ji(v) − Ji(u) ∀v ∈ H; i = 1, 2.
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