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Abstract. The nonideal deterministic dynamic system ”tank with a fluid–electro-
motor” is considered. On the basis of investigation of low-dimensional mathematical
model of the given system the map of dynamic regimes is constructed. The study of
scenarios of transition to deterministic chaos is carried out. Atypical peculiarities of
realization of such scenarios are described.
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1 Introduction

Many of modern machines, mechanisms and engineering devices in the capac-
ity of constructive elements contain the cylindrical tanks partially filled with a
fluid. Therefore investigation of oscillations of free surface of a fluid in cylin-
drical tanks is one of the main problems in hydrodynamics throughout last
decades [1]. Since seventieth years of past century were constructed, so-called,
”low–dimensional” mathematical models describing such oscillations [2]–[5].
The ”low-dimensional” models allow to obtain adequate enough describing
of a problem in cases, when power of source of excitation of oscillations con-
siderably exceeds a power consumed by an oscillating loading (a tank with a
fluid). These cases are defined as ideal in sense of Sommerfeld–Kononenko [6].
However, in real practice, the power of source of excitation of oscillations more
often is comparable with a power which consume the oscillating loading. These
cases are called as nonideal in sense of Sommerfeld–Kononenko. In these cases
it is necessary to consider interacting between a source of excitation of oscilla-
tions and oscillating loading, that leads to essential correction of mathematical
models which applied in ideal cases [7]–[9].

Nonideal, in sense of Sommerfeld–Kononenko, dynamic system ”tank with
a fluid–electromotor” in case of horizontal excitation of a platform of tank
are considered in the given article. Investigations of such systems have been
begun in work [10], where the mathematical model of such systems has been
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constructed for the first time. In such model the interacting between a source
of excitation of oscillations and a tank with fluid were taken into account.

The main goals of this work is detection of new peculiarities of transition
to the deterministic chaos in systems ”tank with a fluid–electromotor”.

2 Mathematical model of hydrodynamic system
”electric motor–the tank with fluid”

Let’s consider rigid cylindrical tank partially filled with a fluid. We will assume
that the electric motor of limited power excite horizontal oscillations of platform
of tank (fig. 1). The given hydrodynamic system is typical nonideal, in sense of
Sommerfeld–Kononenko [6], deterministic dynamic system. As shown in [7]–
[9] mathematical model of system ”tank with a fluid–electric motor” may be
described by following system of differential equations:

Fig. 1. The scheme of the system

dp1
dτ

= αp1 − [β +
A

2
(p21 + q21 + p22 + q22)]q1 +B(p1q2 − p2q1)p2;

dq1
dτ

= αq1 + [β +
A

2
(p21 + q21 + p22 + q22)]p1 +B(p1q2 − p2q1)q2 + 1;

dβ

dτ
= N3 +N1β − µ1q1;

dp2
dτ

= αp2 − [β +
A

2
(p21 + q21 + p22 + q22)]q2 −B(p1q2 − p2q1)p1;

dq2
dτ

= αq2 + [β +
A

2
(p21 + q21 + p22 + q22)]p2 −B(p1q2 − p2q1)q1.

(1)

The system (1) is nonlinear system of differential equations of fifth order.
Phase variables p1, q1 and p2, q2, accordingly amplitudes of dominant modes
of oscillations of free surface of fluid. The phase variable β is proportional to
velocity of rotation of shaft of the electric motor. There are six parametres
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A,B, α,N1, N3, µ1 of system (1), which are defined through physical and geo-
metrical characteristics of tank with a fluid and electric motor. α – coefficient
of forces of a viscous damping; N1, N3 – parameters of static characteristics of
the electric motor; µ1 – coefficient of proportionality of the vibrating moment;
A and B–the constants which sizes depend on diameter of a tank and depth of
filling with its fluid.

In works [7]–[9] existence of the deterministic chaos in system (1) has been
proved, some types of chaotic attractors are classified and shown that chaotic
attractors are typical attractors of the given system. We will notice that the
detailed and all-round study of chaotic dynamics of system (1) is possible only
by means of a series of numerical methods and algorithms. The technique of
carrying out of such researches is described in works [7]–[9], [11].

3 Numerical research of dynamic regimes

Let’s begin our investigations by construction the map of dynamic regimes
of system. The map of dynamic regimes represents the diagram in a plane,
on which coordinate axes values of two parameters of system are marked and
various colors (color shades) ploted areas of existence of the various steady-
states dynamic regimes. The technique of construction the map of dynamic
regimes is described in [8].

In fig. 2 the map of dynamic regimes of system ”tank with a fluid–electromotor”
constructed in regard to parameters N3 and α is presented at values A =
1.12;B = −1.531;µ1 = 0.5;N1 = −1.

 

Fig. 2. The map of dynamic regimes of system.

In the received sheet of a map (fig. 2) areas of three various types of dynamic
regimes are ploted. Areas of values of parameters N3, α in which equilibrium
position will be the steady-state regime of system are ploted by white color.
Gray color corresponds the areas of values of parameters N3, α at which limit
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cycles will be the steady-state regimes of system. At last, areas in which the
steady-state regimes of system will be chaotic attractors are ploted by black
color. Areas of existence of deterministic chaos (black areas) occupy the con-
siderable space in a map of dynamic regimes. It testifies that the deterministic
chaos is a typical steady-state regime of system (1).

Studying of types of the steady-state regimes of system (1) and features
of realization of possible scenarios of transitions between dynamic regimes of
different types we will investigate at changing of parameter N3 along vertical
section of a map (fig. 2) at α = −0.3.

Let’s consider the scenario of transition to chaos, which is realized in system
at values of parameter N3 which go out through the right boundary of a window
of periodicity −0.65269 < N3 < −0.6296. At each value of parameter in interval
−0.65269 < N3 < −0.6369 in system simultaneously exist two stable single-
turn limit cycles. Their projections of phase portraits, built at N3 = −0.64,
are presented in fig. 3a–b. These projections are symmetrical in regard to an
abscissa axis p2 = 0. At parameter increasing, at valueN3 = −0.6368, happen a
period-doubling bifurcation. In system simultaneously exist two two-turn limit
cycles of the doubled period. Projections of phase portraits of cycles of doubled
period at N3 = −0.6368 are shown in fig. 3c–d. Projections of these cycles also
are symmetrical in regard to an abscissa axis. The further increasing of value of
parameter N3 leads to arising of the symmetrical cycles of quadruple period etc.
Such infinite process of periods-doubling of simultaneously existing symmetrical
cycles comes to an end with arising of a chaotic attractor at N3 = −0.6295
(fig. 3e–f).

The projection of the arising chaotic attractor (fig. 3e) consists of two sym-
metrical parts in regard to horizontal axis. Amplitudes of temporal realizations
of the given chaotic attractor more than twice exceed amplitudes of temporal
realizations of limit cycles of the cascade of bifurcations of period-doubling.
Accordingly the chaotic attractor is localized in considerably more volume of
phase space than volume of localization of any cycles of cascade of period-
doubling. Moving of a typical trajectory on a chaotic attractor can be conven-
tionally divided into two phases. In first of these phases the trajectory makes
chaotic walks along coils of upper or lower parts of chaotic attractor. In an
unpredictable moment of time the trajectory ”jumps” from the upper or lower
part of an attractor in its symmetrical part and again starts to make chaotic
walks. Such process is repeated the infinite number of times. Thus transi-
tion to chaos has peculiarities which typical as for the Feigenbaum’s scenario
(infinite cascade of bifurcations of period-doubling of limit cycles), and as for
an intermittency (an unpredictable intermittency between the upper and lower
parts of arising chaotic attractor).

In fig. 4 are shown the distribution of spectrum density (Fourier–spectrums)
of the constructed regular and chaotic attractors. Fourier–spectrums of single-
turn limit cycles and their first bifurcation of a period-doubling (fig. 4a–b)
are discrete and harmonic. It is easy to observe occurrence of a new harmon-
ics in Fourier–spectrum in fig. 4b, that typical for the Feigenbaum’s scenario.
Distribution of a spectral density of a chaotic attractor at N3 = −0.6295 is
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Fig. 3. Projections of phase portraits of limit cycles at N3 = −0.64 (a–b), N3 =
−0.6368 (c–d) and chaotic attractor at N3 = −0.6295 (e–f)
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continuous. In its Fourier–spectrum practically completely disappear separate
spectral peaks.
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Fig. 4. Fourier–spectrum of limit cycles at N3 = −0.64 (a), N3 = −0.6368 (b) and
chaotic attractor at N3 = −0.6295 (c)

Further consider the transition to deterministic chaos through the left bound-
ary of a window of periodicity

−0.65269 < N3 < −0.6296. (2)

As it has been told earlier, at each value of parameter in interval −0.65269 <
N3 < −0.6369 in system simultaneously exist two symmetrical, in regard to
an abscissa axis, and stable single-turn limit cycles (fig. 3a–b). At reaching in
parameter N3 the left boundary of a window of periodicity (2), the both limit
cycles are disappearing and in system arise a chaotic attractor. The projection
of a phase portrait of a chaotic attractor of this kind is presented in fig. 5a.
The constructed projection of this chaotic attractor is symmetrical in regard
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to axis p2 = 0 and outwardly is similar with a projection of a chaotic attractor
shown in fig. 3e.

  

a b

Fig. 5. Projections of phase portrait (a) and distribution of invariant measure (b) of
chaotic attractor at N3 = −0.6527

In fig. 5b distribution of an invariant measure in a phase portrait of a chaotic
attractor is shown at N3 = −0.6527. The constructed distribution makes clear
the mechanism of arising of the given chaotic attractor. Contours of accurately
traced area in fig. 5b under the shape represent two ”pasted together” the
symmetrical limit cycles presented in fig. 3a–b. Scenario of arising of chaos
has many typical characteristics of an intermittency of Pomeau-Manneville.
However, in this case the moving of trajectory in an attractor consists of three
phases, two laminar phase and one turbulent.

In the first laminar phase the trajectory fulfils quasi-periodic motions in a
small neighbourhood of one of ”pasted together” disappeared cycles, either
of ”upper” or of ”lower”. In an unpredictable moment of time happens a
turbulent cruption outburst and a trajectory leaves away from a neighbourhood
of the disappeared cycle into distant phase space areas. To such turbulent phase
of motion answer a more pale areas in distribution of an invariant measure in
fig. 5b. After end of a turbulent phase, the trajectory can return into the first
laminar phase of motion, or transfer in the second laminar phase, to which
correspond quasi-periodic motions in a small neighbourhood of second of the
disappeared limit cycles. Such process of motion of a trajectory in attractor of
type ”one of the laminar phases–a turbulent phase–one of the laminar phases”
is iterate infinitely often. The moments of transition of trajectories into a
turbulent phase, as and the moments of ”switching” of trajectories between
two laminar phases are unpredictable. Thus transition to chaos reminds the
classical scenario of Pomeau-Manneville. However, unlike the classical scenario,
we have not one, but two laminar phases.
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4 Conclusions

Thus computer simulation and a numerical analysis of some aspects of the
regular and chaotic dynamics of nonideal dynamic system ”a tank with a fluid-
electromotor” is carried out. The map of dynamic regimes of system is con-
structed. Atypical peculiarities of realization of scenarios of transition to de-
terministic chaos are revealed and described. The possibility of realization of
the scenario of transition to deterministic chaos, which unites the Feigenbaum’s
scenario and an intermittency is detected. Also transition to chaos through an
intermittency which consists not of one, but of two laminar phases is described.
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