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INTRODUCTION 

The theory of the sinusoidal steady-state response of circuits occupies a 

position of pre-eminence in electric-circuit theory. The analysis of many circuits and 

devices throughout all branches of electrical engineering is accomplished by the 

techniques embodied in the sinusoidal theory. Particularly impressive in this regard is 

the fact that the sinusoidal circuit theory is applicable not only in situations involving 

sinusoidal forcing functions, but equally in those situations where the forcing 

functions have a non-sinusoidal character. 

It is not by chance that the bulk of the electric power generated in power plants 

throughout the world and distributed to the consumer appears in the form of 

sinusoidal variations of voltage and current. There are many technical and 

economical advantages of using sinusoidal voltages and currents. A significant 

appreciation of this statement will be gained upon the completion of the study of this 

book. For example, it will be learned that the use of sinusoidal voltages applied to 

appropriately designed coils results in a revolving magnetic field which has the 

capacity to do work. As a matter of fact, it is this principle that underlies the 

operation of almost all electric motors found in home appliances and about 90% of all 

electric motors found in commercial and industrial applications. Although other 

waveforms can be used in such devices, none leads to an operation which is as 

efficient and economical as that achieved through the use of sinusoidal functions. 

In addition to these practical aspects, however, the sinusoidal function offers 

some very important and significant advantages from a mathematical perspective. 
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1. SINUSOIDAL FUNCTIONS: TERMINOLOGY 

In dealing with sinusoidal functions we must become familiar with the 

nomenclature before proceeding with the sinusoidal steady-state analysis of circuits. 

This makes it easier to describe and to interpret the results. 

Harmonic oscillations in electrical circuits are the changes of currents, voltages 

and electromotive forces (EMFs) over the time. 

Instantaneous values of current ( )i t , voltage ( )u t and EMF ( )e t  at the time t  

are changed under harmonic law. 

Sinusoidal alternating current, voltage and EMF are the types of harmonic 

oscillations, which are a sine function. Electrical circuits where alternating currents 

(AC) flow are termed AC circuits. 

The mathematical equations of variable single-phase harmonic oscillations of 

- current is ( ) ( )
2π

sin ψ sin ω ψm i m ii t I t I t
T

 
= + = + 

 
;   (1.1) 

- voltage is ( ) ( )
2π

sin ψ sin ω ψm u m uu t U t U t
T

 
= + = + 

 
;   (1.2) 

- EMF is ( ) ( )
2π

sin ψ sin ω ψm e m ee t E t E t
T

 
= + = + 

 
.   (1.3) 

For example, the graph in Fig. 1.1 shows the instantaneous current ( )i t  at the 

time t. 
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Fig. 1.1 

Currents, voltages and EMFs in AC circuits cannot be completely 

characterized by algebraic values, like it was in DC circuits.  

According to equations (1.1)-(1.3), the harmonic variable values are 

characterized by the following parameters: 

- , ,m m mI U E  are maximum (amplitude) values; 

- 
1

T
f

=  is the time occupied by one complete cycle of change, or the period; it 

is measured in seconds (s); 

- f  is cycle frequency which is inversely proportional to period; it is measured 

in hertz (Hz);  

- ω=2πf  is radian (or angular) frequency; the unit of measurement is radian per 

second; 

- ω ψt +  is argument (or oscillations phase) which determines the value of 

sinusoidal function at the specified moment of time; oscillations phase is 

measured in radians (rad)  or degree ( º ); 

-  ( )
0

ψ= ω ψ
t

t
=

+  is initial phase angle. It is specified from the origin of 

coordinates ( )0t =  to the beginning of a sinusoidal function. If the function of 
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harmonic oscillation is shifted to the left, then angle ψ 0 . If it is shifted to the 

right, then ψ 0 . 

 The sinusoidal functions of current ( )ωi t  and voltage ( )ωu t which are 

changing with equal frequency are given in Fig. 1.2. They are shifted relative to each 

other’s phase. The phase shift is measured by phase difference φ , which is equal to 

the difference of initial phases φ ψ ψu i= − . The numerical value of the phase shift 

angle is selected in the range  -π φ π  . 

u

i

mI

ψi

mU

ψu

φ

ωt

u i

 

Fig. 1.2 

If 

φ>0 , the voltage leads in phase with the current; 

φ=0 , the voltage and the current are in phase; 

φ<0 , the voltage lags in phase with the current. 
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2.  EFFECTIVE VALUES OF HARMONIC QUANTITY 

In linear DC electric circuit theory all values are constants, i.e. they are not 

dependent on time. Any constant character of the response makes it a simple matter 

to identify the number of amperes flowing in the circuit and thereby to describe the 

energy-transferring capability of the circuit. Moreover, the computation of the power 

absorbed by each circuit element is accomplished in a direct manner through the use 

of the equation P=I×U  by inserting the constant values of voltage and current. 

The sinusoidal current is an alternating current, i.e. one which has positive and 

negative values. In this case, the manner of describing the energy-transferring 

capability of the current is not at all obvious, as it is when direct sources are used; in 

the latter case the average current flow is identical to the direct (or constant) value. 

In view of the fact that the average current serves as a useful criterion in 

determining the energy transfer in circuits involving direct sources, it is important to 

explore its usefulness in situations involving sinusoidal (periodic) driving functions. 

The average (or mean) value of sinusoidal quantity over one cycle, or an 

integral number of cycles, is obviously zero. A significant mean will therefore be the 

average of the values prevailing during one positive (or negative) half-cycle. Thus, 

the average current during one half-cycle is given by 

( )
2 2

0 0

1 1 2
sin ω ψ

2 2

T T

av m i mI idt I t dt I
Т Т

= = + =
  . 

 Similarly, for voltage 
2

av mU U=


 and EMF 
2

av mE E=


. 

Thus, the average value of either the positive or negative half of a sine function 

can be found simply by multiplying the amplitude of the wave by 0.636. When taken 

over a full cycle, the equal and opposite average values cancel out. 

The effective value of current is the magnitude of the direct current which has the 

same heating effect in a given resistive circuit as the alternating current in question. 
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For the practical purposes, a convenient mean value is the effective value of 

current. It is the square root of the mean of the currents squared (which are all 

positive). 

Hence the root mean square (r.m.s. or effective) value of current is given by 

2

0

1
0,707 2

T

m mI i dt I I
Т

= = = . 

Similarly, 

2

0

1
0,707 2

T

m mE e dt E E
Т

= = = , 2

0

1
0,707 2

T

m mU u dt U U
Т

= = = . 

A direct voltage source applied to the resistor R causes an average power 

dissipation of I2R. Here I denotes the direct or average current. The flow of a periodic 

function of current through the same resistor yields an average power dissipation of 

I2
efR. Comparing this result with that of the direct-current case yields another 

interpretation of effective current: it is the current which produces the same heating 

effect as the direct current. 

Most electrical measuring instruments are constructed to indicate the effective 

values of currents and voltages being measured. 
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3. REPRESENTATION FORMS OF SINUSOIDAL QUANTITIES 

Analyzing the sinusoidal steady-state response of circuits, it is necessary to 

perform algebraic operations, such as addition, subtraction, multiplication and 

division, on two or more sinusoidal quantities of the same frequency. The sinusoids 

usually differ in amplitude and phase. 

 There are three representation forms of sinusoidal quantities: 

- analytical (trigonometric form), for example sin(ω ψ )m ii I t= + , 

sin(ω ψ )m uu U t= + , sin(ω ψ )m ee E t= + ; 

- graphical (Fig. 1.1);  

- vectorial (Fig. 3.1), which presents generating the sine function from the 

vertical component of the rotating line. 

Let us consider the addition of two sinusoidal currents whose equations are as 

follows: 

1 1 sin(ω )mi I t= , 2 2 2sin(ω ψ )mi I t= + . 

The current i2 leads i1 by the angle ψ2 of relative phase. The resultant current i3 

can obviously be written as 

3 1 2 1 2 2sin(ω ) sin(ω ψ )m mi i i I t I t= + = + + . 

The addition of two sinusoids of the same frequency always results in another 

sinusoid. It is necessary to understand how a resultant appropriate amplitude and 

phase of the current 3i  are expressed. Note that any sinusoid at a given frequency is 

exactly specified once its amplitude and phase are known. Using graphical forms of 

sine functions, we can plot each sinusoid and then make a point-by-point summation 

of the two sine waves. The amplitude and phase of the resultant sinusoid can be 

measured, thus allowing i3 to be written in the more useful form: 

3 3 3sin(ω ψ )mi I t= + , 

where ψ3 is the phase angle measured with respect to the same reference point used 

for ψ2. Needless to say, such a procedure is laborious and time-consuming. 
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An alternative to the graphical solution is an analytical one which simplifies 

the procedure through the use of trigonometric identities. 

Although this analytical procedure requires less effort than the graphical one, 

the method is too cumbersome, in particular in situations where more than two 

sinusoidal quantities have to be summed. 

Furthermore, multiplication and division present additional complications. 

Clearly, we need a simpler and more direct method of treating sinusoidal quantities. 

In 1893, such a method was introduced when Charles P. Steinmetz advanced the idea 

of using a constant amplitude line rotating at a frequency ω to represent a sinusoid. 

Let us consider how this idea is effective in simplifying the algebraic operations 

involving sinusoidal quantities. 

This method is based on the replacement of trigonometric function with 

rotation vectors. 

The main idea of this method is that any sine function, for example 

1 1 sin(ω )mi I t=  can be rewritten as 
ω

1Im j t

mI e 
  . 

It is important to keep in mind that the exponential function  
ωj t

e  may be 

treated as a rotational operator. Its amplitude is always unity, but the cosine and sine 

components vary when time progresses. This is illustrated in Fig. 3.1, a. When t  

moves through one full period of 2π radians (i.e. one complete cycle), the line OA 

makes one complete traversal of the circle in a counter clockwise direction. Line OA 

is fixed in value of the sine function amplitude. Note that the vertical projection of 

line OA is the sine function, and the horizontal one is the cosine function. 

As a matter of fact, this is the meaning of the notation  Im ...  – it refers to the 

values generated by taking the projections of a rotating line on a pre-established 

reference line (the vertical in this case). 
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Fig. 3.1 

 

Accordingly, if we plot the vertical components of OA as it makes one complete 

revolution, the sine function shown in Fig. 3.1, b is generated. When ωt = 0, the 

position of OA is on the horizontal axis directed towards the right. Its vertical 

component at this instant is zero, as it should be for the sine function. 

The current i2 can be represented in a similar fashion. Thus, in terms of the 

exponential notation, we have 

2ω

2 2 2 2sin(ω ) Im
jj t

m mi I t I e e
 = + =   . 

To simplify this notation, it is convenient to use the phasor method. The 

phasor of the sinusoidal function of 2i  is defined as 

2
2 2 2 2 2 2cos( ) sin( )

j

m m m mI I e I jI


= =  +  . 

In general, the phasor can be represented by a complex number which is a 

result of locating a line in a plane, which means that each point in the complex plane 

is determined by the radius vector of this point, i.e. by vector whose beginning 

coincides with the coordinate origin and its ending is at a point corresponding to a 

given complex number. The complex plane with arbitrary vector is shown in Fig. 3.2. 
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j

1

αjA ae=

α

A

1a

2a

Im

Re

 

Fig.3.2 

1

αRe Re ja A ae   = =     is the projection of a 

vector on the horizontal axis called an axis of real 

numbers; 

2

αIm Im ja A ae   = =     is the projection of a 

vector on vertical axis called an axis of imaginary 

numbers. 

Where 1j = −  is the imaginary unit; 

Im is the axis of imaginary numbers; 

Re is the axis of real numbers. 

There are three forms of a complex number. 

 Using exponential or polar form of a complex number, we have 

α αjA Ae A= =  , 

where A is the modulus of a complex number; α  is the argument or phase. 

 Applying Euler’s formula, we obtain a trigonometric form of a complex 

number: 

cosα sinαA A jA= +  

or the respective algebraic form: 

1 2A a ja= + , 

where 1 Re cosαa A A = =   and 2 Im sinαa A A = =  .                                  (3.1) 

 Hypotenuse and both cathetuses of a right triangle shown in Fig. 3.2 are related 

by Pythagorean Theorem: 

                                              
2 2

1 2A a a= + ; 2

1

α arctg
a

a
= .                           (3.2) 

 The complex value of instantaneous values of the current is 

( )j t j j t j t
m m mI e I e e I e +   = = . 
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 The complex of current amplitude j

m mI I e =  presents the current i in the 

complex plane for the instant 0t = . 

 The complex values of the effective values of both current and voltage are as 

follows: 

;
2 2

m mU I
U I= = . 

Vector diagrams are used to analyse the circuits. Vector diagram is a set of 

vectors representing sinusoidal magnitudes of equal frequency.  

mI

mU

ω

ψi x

y

ψu

φ

 
Fig.3.3 

 

The length of the vector is equal to the amplitude 

or effective value, the angle with the axis OX is the 

initial phase angle u  or i . The angle between 

the vectors (phase shift angle  ) remains 

unchanged. 
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4. MATHEMATICAL OPERATIONS WITH THE COMPLEX VALUES 

1. Finding the sum and difference by using the algebraic form: 

1 2
1 1 1 1 2 2 2 2, ;

j j
A Аe a jb A А e a jb

 
= = + = = +  

1 2 1 2 1 2( ) ( ) .A A a a j b b A a jb =  +  = = +  

For example, if 1 225 30

1 1 2 212 , 17 ;
j jj jA Аe e A А e e
  − = = = =  then using (3.1), we 

obtain: 
25 30

1 2 12 17 10,8757 5,0714 14,7224 8,5

25,5981 3,4286;

j jA A e e j j

j

 − + = + = + + − =

= −
 

25 30

1 2 12 17 10,8757 5,0714 14,7224 8,5

3,8467 13,5714.

j jA A e e j j

j

 − − = − = + − + =

= − +
 

2. Multiplying and dividing using exponential or polar form: 

( )

( )

1 21 2
2

1

1 2

2
2

2

1 1

2 2

1 1 1 2

1

;

.

jj j

j
j

j

A A A e A e A A e

A eA A
e

A A e A

 + 


 −



 =  = 

= =
 

For example,  if 
1 1 1 2 2 211 19, 25 17;A a jb j A a jb j= + = + = + = −  then using (3.2), we 

obtain: 

( ) ( ) ( ) ( )59,93 34,21

1 2

25,71

11 19 25 17 21,9545 30,2324

633,7379 598 288;

j j

j

A A j j e e

e j

− = +  − =  =

= = +
 

59,93
94,141

34,21

2

11 19 21,9545
0,7262 0,0524 0,7243.

25 17 30,2324

j
j

j

A j e
e j

A j e−
+

= = = = − +
−

 

 

3. Raising to a power by using the exponential form: 

2

( )( ) ; ,

k
j

nn n j n n nA A e A A e

+ 

= =   where ( )0,1, .... 1k n= − . 

For example, 60 2 120 60 302(22 ) 484 ; 22 4,69j j j je e e e= =  . 

4. Conjugate complex values for 
jA Аe a jb= = +  are the complex 

value jA Аe a jb


− = = −   which is a different sign of the argument . 
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2 22 ; 2 ; 2 ; / jА A a b А A a А A jb A A e
   

 = + + = − = = . 

5. Multiplication of the complex value on  j corresponds to its turn by the angle 

90: 

90 90 ( 90 ); ( ) 1j j j jj e A j Ae e Ae    =   =  = . 

2 180 1
1;jj j j e j

j
 = = = − = − . 

6. Representation of the integral in a complex form. 

To integrate a sine wave function, you need to split its complex image into j: 

mIidt
j

→
 . 

 For example, the complex voltage on the capacitor is 

1 1m m
C Cm m

I I
u idt U j j I

С j C C C
= → = = − = −

   . 

7. Representation of the derivative in a complex form. 

To represent a derivative of a sinusoidal function, its complex image must be 

multiplied by j: 

m

di
j I

dt
→  . 

For example, the complex voltage on inductance is 

L Lm m

di
u L U j LI

dt
= → =  . 

 

Example 4.1. Two sinusoidal currents are described as follows: 

1 10 2 sin( ) Ai t=   and 2 20 2 sin( 60 ) Ai t=  + . 

Find the expression for the sum of these currents. 

Solution: The solution is found by applying the phasor method. First, we rewrite 

equations 1i  and 2i  as complex values: 
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( ) ( )( )

1 1

60

2 2

10 2 sin( ) 10 2;

20 2 sin( 60 ) 20 2

1 3
20 2 cos 60 sin 60 20 2 10 2 10 6.

2 2

m

j

m

i t A I

i t A I e

j j j

=   =

=  +  = =

 
= + = + = + 

 

 

Hence 

3 1 2 3 1 2 10 2 10 2 10 6 20 2 10 6m m mi i i I I I j j= +  = + = + + = + .  

So, 

( ) ( )
2 2

3

10 6
20 2 10 6 37,4, arctg 41

20 2
mI = + =  = = . 

Thus, 41

3 337,4 37,4sin( 41 )j

mI e i t A=  =  + . 
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5. THE ELEMENTS OF A SINUSOIDAL CURRENT CIRCUIT 

The response of each element of the circuit to a sustained sinusoidal source 

function is found individually for two reasons. First, it provides an opportunity to 

illustrate the manner in which the response can be found easily and directly by using 

the phasor representation of sinusoids. Second, it allows establishing the phase-angle 

relationships existing between the current and voltage for each element of the circuit. 

These relationships are fixed and must always be satisfied irrespective of whether a 

given circuit element is in a series or parallel arrangement with other circuit elements. 

 

5.1. A Sinusoidal Current Through a Resistor 

The resistor and the resistance parameter 

A resistor is a passive two-terminal electrical component that implements 

electrical resistance as a circuit element. The resistor helps to control/ reduce the flow 

of current in a circuit. Inside a resistor, electrons collide with ions, slowing the flow 

of electricity and lowering the current while producing heat. 

Resistance is measured in ohms, symbolized by the Greek letter omega (Ω). 

Ohms are named after Georg Simon Ohm (1784-1854), the German physicist who 

studied the relationship between voltage, current and resistance. 

Because resistors convert electrical energy into heat, they are good heating 

elements for toasters, heaters, electric stoves and similar devices. Traditional light 

bulbs work because the very high temperature due to their resistance makes a metal 

filament white-hot, producing light. The formula P = I2 ·R, where P is the heating 

power in watts, I is the current in amps, and R is the resistance in ohms, determines 

the amount of heat given off by a resistor. 

Many components, such as heating elements and resistors, have a fixed-

resistance value. These values are often printed on the nameplates of components or 

in the manuals for reference. 
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When a sinusoidal current sin(ω ψ )R m ii I t= +  flows through a resistor R (Fig. 

5.1, a), a voltage drop occurs in it: 

sin(ω ψ ) sin(ω ψ )R R m i m uu Ri RI t U t= = + = + . 

Consequently, the voltage Ru  across the resistance R and the current Ri  

passing through this resistance are in phase. They reach their maxima Um and Im and 

pass through zero together (Fig. 5.1, b); the phase angle between the current Ri  and 

the voltage Ru  equals zero φ = 0. 

u

i

R

 

uR, 

iR

ωt

uR

iR

ψi=ψu

Im

Um

 

a b 


I

U

j+

1+
0

 

C 

Fig. 5.1 

Instantaneous amplitude and effective values of voltage and current are related 

by Ohm's law: 

R Ru i R= ,  m mU I R=  and  U IR= . 

The vector diagram for voltage and current resistor is shown in Fig. 5.1, c. 

By using the conductance G = 1/R, we obtain 

R Ri u G= ,  m mI U G=  and I UG= . 
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R

ω
 

Fig. 5.2 

If we neglect the skin effect, it is supposed 

that parameter R is not the function of 

frequency (Fig. 5.2). 

Let us rewrite the equation for instantaneous values of voltage and current using 

the phasor method: 

( ) ij j t j t

m m mi I t I e e I e
•

  

•
== = = , 

ij

m mi I I e
•



•
== = ,      ij

R Rm m mu U R I R I e
•



•
== =  =  ; 

Rm mU R I=  ,  
RU R I=  . 

We obtain Ohm's law written in terms of phasor quantities. 

The instantaneous power is given by 

2 2 2 2 2

2

sin ( ) 2 sin ( )

(1 cos(2 )).

R R m i i

i

p u i R i R I t R I t

R I t

=  =  =   +  =   +  =

=  −  + 
 

Thus, the instantaneous power has an unvarying component 

2 1

2
m mR I UI U I = = and a varying component  ( )

1
cos 2

2
m mU I t , varying at frequency 

2 . The energy input in course of the time dt is pdt. 

The average value of sinusoidal power over one cycle Rp  is given by 

2 2 2

0 0 0

1 1 1
cos(2 )

T T T

R R iP p dt RI dt RI t dt RI
T T T

= = −  +  =   . 

2

RP RI=  is the active (average) power. 

The diagrams of the instantaneous current and power are shown in Fig. 5.3. 
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iR,

pR

ωt

pR

iR

Im

RI2

RI2

 

Fig. 5.3 

 

5.2. A Sinusoidal Current Through an Induction Coil  

The inductor and the inductance parameter 

An inductor, also called a coil, is a passive two-terminal electrical component 

that stores energy in a magnetic field when electric current flows through it. An 

inductor typically consists of an insulated wire wound into a coil around a core.  

Any change in the current flowing through an inductor creates a changing flux, 

inducing an electromotive force (EMF) (voltage) across the inductor.  

 

Fig. 5.4 

According to Faraday's law of induction, the voltage induced by any change in 

the magnetic flux through the circuit is given by  

https://en.wikipedia.org/wiki/Incremental_passivity
https://en.wikipedia.org/wiki/Terminal_(electronics)
https://en.wikipedia.org/wiki/Electronic_component
https://en.wikipedia.org/wiki/Magnetic_field
https://en.wikipedia.org/wiki/Electric_current
https://en.wikipedia.org/wiki/Electromagnetic_coil
https://en.wikipedia.org/wiki/Electromotive_force
https://en.wikipedia.org/wiki/Voltage
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Ld di
e L

dt dt


= − = − . 

The quantity e denotes the instantaneous value of electromotive force induced 

in a closed circuit having a flux linkage  . In those instances where the magnetic 

flux Ф penetrates all the turns of the coil, as shown in Fig. 5.4, Faraday's law can be 

rewritten as: 

d
e w

dt


= − . 

According to Lenz's law, the induced voltage has a polarity (direction) which 

opposes the change in the current ( Li ) creating this voltage. The negative sign in the 

equation indicates that the induced voltage is in a direction which opposes the change 

in the current that created it. If the current is increasing, the voltage is positive at the 

end of the conductor through which the current enters and negative at the end through 

which it leaves, tending to reduce the current. If the current is decreasing, the voltage 

is positive at the end through which the current leaves the conductor, tending to 

maintain the current.  

The American inventor Joseph Henry also independently discovered the 

current of self-induction, but not before Faraday. Both experimenters were able to 

demonstrate that a changing current produced an EMF of self-induction in a coil of 

wire which varied directly with the time rate of change of current. The mathematical 

expression is given by  

L L

di
u e L

dt
= − = , 

where L is the factor of proportionality called the coefficient of self-inductance which 

is dependent upon the medium and some physical dimensions. This result is 

equivalent to Faraday's law of induction as expressed in the equation above.  

Self-inductance, usually just called inductance L, is the ratio between the 

induced voltage and the rate of change of the current. Any alteration to a circuit 

which increases the flux (total magnetic field) through the circuit produced by a given 

https://en.wikipedia.org/wiki/Lenz%27s_law
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current increases the inductance, because inductance is also equal to the ratio of 

magnetic flux to current: 

L

L
i


= . 

In the International System of Units (SI), the unit of inductance is henry (H) 

named after Joseph Henry, the American scientist of 19th century.  

 

The same method of analysis is used to find the response of a purely inductive 

circuit to a sinusoidal source function in the steady state. 

When a sinusoidal current sin(ω ψ )L m ii I t= +  flows through the inductance L 

(Fig. 5.5, a), on the basis of expression L L

di
u e L

dt
= − =  we find the voltage drop: 

( )

( )

π
sin(ω ψ ) ω sin ω ψ

2

sin ω ψ .

L
L m i m i

m u

di d
u L L I t LI t

dt dt

U t

+
 

= = + = + = 
 

= +

 

i

LLe
Lu

 

 

uL, 

iL

ωt

iL

uL

Um

Im

π/2

 

a b 



LI

LU

1+
0

2



j+

 

c 

Fig. 5.5 

https://en.wikipedia.org/wiki/International_System_of_Units
https://en.wikipedia.org/wiki/Henry_(unit)
https://en.wikipedia.org/wiki/Joseph_Henry
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The obtained expression shows that voltage uL leads current iL by angle π/2: the 

maximum voltage uL is displaced to the left with respect to the maximum current iL 

by π/2 (Fig. 5.5). When the current passes through zero, voltage uL reaches a positive 

or a negative maximum, it is proportional to the rate of change of current di/dt which 

is maximum at the instant the current passes through zero (the sine curve of the 

current has maximum steepness at this instant); when the current reaches maximum, 

the voltage uL become zero. The vector diagram given in Fig. 8b corresponds to this 

phenomenon. 

By phase-angle difference φ between voltage and current we understand, by 

convention, the difference between the initial phases of voltage and current. 

Consequently, in this case 
π

φ ψ ψ
2

u i= − = .  

The relation of the amplitudes or the effective values of voltage and current is 

similar to Ohm's law: 

ωm mU LI=   and ωU LI= .
 

The quantity xL = ωL, measured like a resistance, in ohms, is called inductive 

reactance, and the reciprocal bL = 1/ωL is called inductive susceptance. 

ω

LX

 

Fig. 5.6 

The quantity xL=ωL is directly proportional 

to the source radian frequency ω  

(Fig. 5.6). 

Let us replace the trigonometric functions of the inductive element with the 

phasor values: 

sin( ) ij

m i m mi I t I I e
•



•
=  + == = , 

2sin( )
2

i

L

j
j

L L m i m L mu X I t U X I e e

•


•


=  + + == = ; 

Since 2 cos sin
2 2

j

e j j


 
= + =  , 
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then 

Lm L mU jX I= ,       
L LU jX I=  

L

L

m L
L

m L

U U
Z

I I
= = , 

where
 

2
j

L L LZ jX X e


= =  is the complex impedance of the inductance. 

The instantaneous values of current, voltage and power are given by the graphs 

in Fig. 5.7.  

ωt

pL

QL

uL

i

i, 

uL, 

pL

 

Fig. 5.7 

The instantaneous power is calculated as 

2 2

cos( ) sin( )

2 cos( )sin( ) sin(2 ).

L L L m i m i

L i i L i

p u i X I t I t

X I t t X I t

=  =  +    +  =

=  +   +  =  + 
 

2 sin(2 )L L ip X I t=  + . 

It is zero when either voltage or current is zero. During the first quarter-cycle, 

when the voltage and the current are positive, the power is also positive. The area that 

is enclosed by the curve p and the axis of abscissa during this period of time 

represents the energy taken from the source and spent to establish a magnetic field in 

the inductance. 
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During the second quarter-cycle, when the current in the circuit decreases from a 

maximum to zero, the energy of the magnetic field is returned to the supply, and the 

instantaneous power is negative. During the third quarter-cycle, the energy is again 

taken from the supply and is returned to it during the fourth quarter-cycle, and so on. 

Thus, an inductance alternately draws energy from the supply and gives it back. 

 

5.3. A Sinusoidal Current Through a Capacitor 

The Capacitor and the Capacitance Parameter 

The capacitor is a passive two-terminal electronic component which has the 

ability or “capacity” to store energy in the form of an electric charge producing a 

potential difference (Static Voltage) across its plates.  

In its basic form, a capacitor consists of two or more parallel conductive 

(metal) plates not connected or touching each other but electrically separated by an 

insulating layer called Dielectric. Due to this insulating layer, DC current cannot flow 

through the capacitor as the insulating layer blocks DC current allowing a voltage 

drop across the plates to be present. 

The conductive metal plates of a capacitor can be either square or circular, or 

rectangular, or they can be a cylindrical or spherical shape with the general shape, 

size and construction of a parallel plate capacitor depending on its application and 

voltage rating. 

The parallel plate capacitor is the simplest form of a capacitor. It can be 

constructed using two metal plates at a distance from each other, with its capacitance 

value in Farads, being dependent on the surface area (A) of the conductive plates and 

the distance (d) of separation between them. Altering any two of these values alters 

the value of its capacitance. 
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Fig. 5.8 

The generalized equation for the capacitance of a parallel plate capacitor is 

given as: 

A
С

d
= , 

where  

C is the capacitance of the capacitor, in farad (F); 

ε is the permittivity of the dialectic material used in the capacitor, in farad per 

meter (F/m); 

A is the area of the capacitor plate in square meters (m2); 

d is the distance between the capacitor plates, in meters (m). 

The common property of a capacitor to store charge on its plates in the form of 

an electrostatic field is called the Capacitance of the capacitor. In other words, 

capacitance is the electrical property of a capacitor and is the measure of the 

capacitor ability to store an electric charge onto its two plates with the unit of 

capacitance being the Farad (abbreviated to F). 

Mathematically, the capacitance (C) of the capacitor is equal to the electric 

charge (Q) divided by the voltage ( Cu ): 

C

Q
С

u
= , 
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where C is the capacitance in farad (F); 

Q is the electric charge in coulombs (C) stored on the capacitor; 

Cu  is the voltage between the capacitor plates in volts (V). 

The capacitance of a parallel plate capacitor is proportional to the smallest 

area A in square metres of the two plates and inversely proportional to the distance d 

(i.e. the dielectric thickness) given in metres between these two conductive plates. 

The instantaneous current ( )Ci t  flowing through the capacitor is equal to the 

capacitance of the capacitor multiplied by the derivative of the instantaneous 

capacitor voltage ( )Cu t : 

( )
( )C C

C

d CudQ du
i t C

dt dt dt
= = = . 

This expression shows the manner in which the current flowing through a capacitance 

parameter is related to the potential difference across it. 

 

If the voltage across a capacitance is sinusoidal, i.e. sin(ω ψ )С m uu U t= + , then 

the expression for the current given above is as follows:  

( )sin(ω ψ ) ω sin ω ψ
2

sin ω ψ .
2

C m m

m

u u

u

d
i С U t U t

dt

I t

 
= + = + − = 

 

 
= + − 

 

 

uc

i

C

 

uC, 

i

ωt

i

uC Um

Im

π/2
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c 

Fig. 5.9 

The electric charge changes in accordance with a sinusoidal law, corresponding 

to the applied voltage uC. The alternate storage of positive and negative charges on 

the plates of the capacitive element allows a sinusoidal current iC to flow into the 

circuit in which the capacitance is connected. Its value is determined by the time rate 

of change of the charge of the capacitance dq/dt. 

The expression for Ci  shows that the current leads the applied voltage uC by 

angle π/2 (Fig. 5.9, b). The maximum (positive and negative) values of voltage uC  

correspond to the zero values of current. This is explained by the fact that when the 

current passes through zero, the electric charge q of the capacitance reaches a 

maximum value (positive or negative) while voltage uC is directly proportional to the 

charge. 

As in the previous case, by the angular phase difference between the voltage 

and the current we understand the difference between the initial phases of voltage and 

current, i.e. 
π

φ ψ ψ
2

u i= − = − . The vector diagram of voltage and current of the 

capacitance is shown in Fig. 5.9. 

Thus, angle φ  represents an algebraic quantity: it is positive in the case of 

inductance and negative in the case of capacitance.  

The relation of the amplitudes, correspondingly, the effective values of voltage 

and current is similar to Ohm's law 

mС С mU x I=  and С СU x I= . 
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The quantity xC = 1/ωC, measured like a resistance, in ohms, is called capacitive 

reactance, and its reciprocal value bC=ωC is called capacitive susceptance. 

Therefore, for the current, the expressions given above are as follows: 

m С mСI b U=  and С СI b U= . 

Thus, there are various parameters in sinusoidal current circuits, depending on 

the types of elements: resistance R, inductive reactance xL = ωL and capacitive 

reactance xC = 1/ωC.  

The current flowing through the inductance lags behind the voltage, and the 

current flowing through the capacitance leads the applied voltage by angle π/2. 

Consequently, the current flowing through a capacitor in the sinusoidal steady state 

always leads the potential difference across the capacitor by 90°. 

It should be noted that Ohm's law is applicable to the instantaneous values of 

voltage and current only in the case of resistance R. In the remaining cases, the ratio 

of the instantaneous values of u and i do not represent reactance, but reflect a certain 

time function of no practical interest and no use. 

ω

CX

 

Fig. 10 

The quantity 
1

ω
Сx

С
=  is inversely 

proportional to the source radian 

frequency ω  (Fig. 5.10). 

 

Let us use the phasor method: 

sin( ) ij

m i m mi I t I I e
•



•
=  + == = ; 

2 2sin( )
2

i
j j

j
mC i C C m C C mC mu U t U X I e e I X e jX Im

 • − −


•


=  + − == = = = − ,

 

Cm C mU jX I= − ,     
C CU jX I= − . 
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Cm C
C

m

U U
Z

I I
= = . 

where
 

2
j

C C CZ j X X e


−

= − =  is the complex impedance of the capacitance. 

The instantaneous values of current, voltage and power are given by the graphs 

in Fig. 5.11.  

ωt

pC

QC

uC

i

i, 

uC, 

pC

 

Fig. 5.11 

The math equation for the instantaneous power is written as: 

2 2

cos( ) sin( )

2 cos( )sin( ) sin(2 ).

C C C m i m i

C i i C i

p u i X I t I t

X I t t X I t

=  = −  +    +  =

= −  +   +  = −  + 
 

 

It is zero when either voltage or current is zero. During the first quarter-cycle, 

when the voltage and the current are positive, the power is also positive. The area 

enclosed by the curve p and the axis of abscissa during this period of time represents 

the energy taken from the source and spent to establish the electric field in the 

capacitance. 

During the second quarter-cycle, when the current in the circuit decreases from a 

maximum to zero, the energy of the electric field is returned to the supply, and the 

instantaneous power is negative. During the third quarter-cycle, the energy is again 

taken from the supply and is returned to it during the fourth quarter-cycle, and so on. 
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Thus, the capacitance alternately draws energy from the supply and gives it back 

like inductance. 

 

5.4. Resume 

Electric circuit devices capable to reserve the energy of electric or magnetic 

field are called reactive. 

The symbol of a resistor is given in Fig.5.12, a, the symbol of an inductor is in 

Fig. 5.12, b, and the symbol of a capacitor is in Fig. 5.12, c. 

u

i

R

 

i

LL
e

L
u

 

i

C
Cu

 

a B c 

 

Fig.5.12.  

All basic formulas which describe the properties of reactive elements of an 

electrical circuit are represented in Table 5.1. 

Table 5.1. 

 Current Voltage Power Energy 

R Ru
i

R
=  Ru Ri=  2

R Rp i R=   
2

0

t

R RW i Rdt=   

L ( )
1

t

L Li t u dt
L

−

=   L
L

di
u L

dt
=  L

L L

di
p i L

dt
=   

2

2
L

Li
W =  

C ( ) C
C

dQ du
i t C

dt dt
= =  ( ) ( )

1
0

t

C C Cu t u i dt
C

−

= +   C
C C

du
p u C

dt
=   

2

2

C
C

Cu
W =  

 

As is seen from this table, only in a resistive element the current and voltage are 

directly proportional to each other and algebraically related. But there are integral-

differential parities between current and voltage in inductive and capacitive elements. 
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6. KIRCHHOFF'S LAWS IN COMPLEX NOTATION 

By Kirchhoff's first law, the algebraic sum of the instantaneous currents at any 

node of network is zero: 

1

0
n

k

k

i
=

 = . 

When replacing phasor k

k k k

j j t j t

m m mI I e e I e
  = = with ki  in the previous equation and 

putting j te  before the brackets, we have 

1

0
k

n
j t

m

k

e I

=

 = . 

Since 0j te    for any t, it follows that 

1

0
k

n

m

k

I
=

 = .         (6.1) 

Equation (6.1) is Kirchhoff's current law (KCL) in a complex form. 
 

 

Fig. 6.1 

Suppose the instantaneous currents (fig. 6.1) are described by 

equations  

1 1 1

2 2 2

3 3 3

sin( );

sin( );

sin( ),

m

m

m

i I t

i I t

i I t

=  + 

=  + 

=  + 

 

then   

1 2 3

2 2 3 3 1 1sin( ) sin( ) sin( ).m m m

i i i

I t I t I t

= + =

=  + +  + =  +
 

 

Let the given sinusoidal currents ( 1 2 3, ,i i i ) be symbolized by the complex functions 

31 2
1 1 2 2 3 3, ,

jj jj t j t j t

m m m m m mI I e e I I e e I I e e
   = = = . The complex currents 

amplitudes, correspondingly, equal 31 2
1 1 2 2 3 3, ,

jj j

m m m m m mI I e I I e I I e
 

= = =  Using 

KCL, we can write 
1 2 3 m m mI I I= + . 
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It is worth considering Kirchhoff's voltage law. The Kirchhoff's second law, 

also known as the mesh or voltage law (its acronym being KVL from Kirchhoff's 

voltage law), states that the algebraic sum of the instantaneous voltages across 

individual electrical components is equal to the algebraic sum of the AC source 

voltages in a mesh. 

Suppose a mesh has n branches and each (k-th) branch in the general case 

contains an electromotive force (ek), a resistance (Rk), an inductance (Lk), and a 

capacitance (Ck), with a current ik flowing through all of them. Then by Kirchhoff's 

voltage law 

1 1

1n n
k

k k k k k

k kk

di
i R L i dt e

dt C= =

 
+ + = 

 
  . 

In accordance with substituting complex values for their instantaneous ones 

described above, each term on the left-hand side can be replaced by 
k kI Z , and each 

term on the right-hand side can be replaced by 
kE . Then Kirchhoff's second law for 

the network with n branches may be written in the complex form: 

1 1

n m

kk k

k k

I Z E
= =

 =    or  
1

0
n

k

k

U
=

 = . 

 

Fig. 6.2 

Let us consider the part of network in Fig.  6.2 

and write Kirchhoff's voltage law for it: 

4

4

1
1 1 1 2 2 2 3 3

2

1 2 4

1

.

di di
i R L i R i dt i R L

dt C dt

e e e

+ − − + − =

= − −


 

 

Using Kirchhoff's second law in the complex form, we obtain: 

431

2

1 2 4 1 1 1 1 2 2 2 3 3 4 4

2

1 1 1 2 2 3 3 4 4

2

1

1
( ) ( ) .

ZZZ

Z

E E E I R j L I I R I I R j L I
j C

I R j L I R I R I j L
j C

− − = +  − − + −  =


= +  − + + − 


 

or  1 2 3 41 2 3 4 1 2 4.I Z I Z I Z I Z E E E− + − = − −  



35 

 

Since Kirchhoff's current and voltage laws hold for a sinusoidal current as well, 

one might write down the equations for the values in a complex form, solve them by 

Kirchhoff's laws and check the result of calculation with the help of a vector diagram. 
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7. CONNECTIONS OF R, L AND C ELEMENTS 

 Let us examine the application of the complex method for a case of R, L and C 

elements connected in series and in parallel. 

7.1. Series Connection of R, L and C 

When a current ί flows through a circuit consisting of passive R, L and C 

elements connected in series (Fig. 7.1), a voltage drop is produced on the terminals of 

this circuit equal, in accordance with Kirchhoff's voltage law, to the algebraic sum of 

the voltage drops on the individual elements 

u(t)

i(t) CR

uR(t) uC(t)uL(t)

L

 

Fig. 7.1 

R L Cu u u u= + +  

or in the integral-differential form: 

1di
u iR L idt

dt C
= + +  . 

In view of the fact that for the moment we consider steady-state conditions for 

an electrical circuit with a sinusoidal current, let us take sin( )m ii I t=  + . Voltage 

uR is in phase with current i, voltage uL leads, and voltage uC lags behind i by π/2. 

Consequently, the voltage across the terminals of the circuit is calculated as: 

( )
1

sin ω ψ ω sin ω ψ sin ω ψ
2 ω 2

m i m i m iu RI t LI t I t
C

+
    

= + + + + + −   
   

. 

This equation is a trigonometrical form of Kirchhoff's voltage law for a circuit 

with R, L and C connected in series: 

mR mU RI= ; =ωmL mU LI ;
1

=
ω

mC mU I
C

 . 
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The complex-number method is also called symbolic method for the reason that 

the currents and voltages are represented by their complex transforms or symbols. 

The use of complex notation gives 

( )( )R L C L С L СU U U U RI jX I jX I R j X X I ZI= + + = + − = + − = , (7.1) 

where 
( )L С

U U
I

R j X X Z
= =

+ −
 is the complex value of effective current; 

 ( ) j

L СZ R j X X Ze = + − =   is the complex impedance of the circuit;   

( )
22

L СZ R X X= + −  is the impedance of the electrical circuit;  

 L СX X X= − is the reactive resistance; 

L CX X
arctg

R

−
 =  is the phase difference between the initial phases of the voltage 

and the current. 

 The equation U ZI=  is Ohm's law for alternating current circuits in the 

complex form. 

 Equation (7.1) reveals that the complex current may either lead or lag the 

complex voltage, depending on the relative values of the inductive and capacitive 

reactance. 

Whenever the inductive reactance is more than the capacitive one, i.e. 

ωL>1/ωC , the RLC circuit essentially behaves as an inductive circuit insofar as the 

current is concerned. Interestingly, this condition can be satisfied either by having a 

large inductance or by operating at a high frequency. 

On the other hand, whenever ωL<1/ωC, the current leads the voltage, thereby 

indicating that the RLC circuit behaves as a capacitive circuit as far as the current is 

concerned. However, there are some differences that must be discussed below. 

Fig. 7.2 presents the vector diagrams for three cases of the RLC circuit shown 

in Fig. 7.1. 
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LU CU

0 
IRU

U
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CU

0 

I

RU U=

LU CU

0 =

 

ωL>1/ωC ωL<1/ωC ωL=1/ωC 

a B c 

Fig. 7.2 

Fig. 7.2, a shows the case where ωL>1/ωC . Hence the vector of the current 

must lag the vector of voltage. The component values of the effective potential 

difference across each circuit element are also depicted. Note that the voltage drop 

across the resistor terminals 
RU  must be in phase with the current I . It is represented 

by the line, which is parallel to the vector of current. In vector diagrams, any line 

drawn parallel to another line means that the quantities represented by the two lines 

are in phase. The current I  leads the voltage across the capacitor terminals 
CU  by 

90°, or the capacitive voltage lags behind the current by 90°. Finally, the effective 

potential difference across the inductor terminals 
LU UL leads the current I  by 90°. 

Although the vector diagram depicted in Fig. 7.2, a is for an RLC circuit in 

which the inductive reactance predominates, note that the circuit behaves differently 

from the straight RL circuit. Firstly, the potential difference across the inductor 

contains a component which is equal and opposite to the total voltage across the 

capacitor terminals. This leaves a net reactive voltage, as ‘seen’ by the source. 

Secondly, the voltage across the inductor can be several times greater in magnitude 

than the source voltage U. This cannot occur in the simple RL circuit. However, the 

large value of U L should not be disturbing because Kirchhoff's voltage law continues 
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to be satisfied. Keep in mind that with AC circuits it is the vector sum which is 

important. An algebraic sum is meaningless except in those instances where only 

elements of the same type appear in the circuit. The angle φ is positive if the circuit 

has inductive character. Thus, for the first vector diagram (Fig. 7.2, a) the current lags 

the input voltage in phase, and the angle φ is read off on the abscissa axis to the left 

from the current to the voltage. 

Fig. 7.2, b is drawn for the case where ωL<1/ωC. The angle φ is negative at the 

capacity character of the circuit. Thus, voltage lags behind the current in phase, and 

the angle φ is read off on a real axis to the right from the current to the voltage. 

Now we will pass from vector diagrams (Fig. 7.2, a, b) to impedance triangles. 

One can see the case of active-inductive resistance of an electrical circuit in Fig. 7.3, 

a and the case of active-capacitive resistance of an electrical circuit in Fig. 7.3, b. 

As it follows from the formula for impedance, the resistance and the reactance 

may be depicted by a rectangular triangle, similar to the triangle of the vectors of 

voltages in Fig. (7.2, a, b). The impedance triangle graphically shows the relationship 

between the impedance magnitude Z and the associated resistance and reactance of 

the circuit. 

R

L CX X−Z

0 

 

R

L CX X−
Z

0 

 

a b 

 Fig. 7.3 

From impedance triangles, it follows that the resistance and reactance are 

connected with the impedance:  

cosR Z=   and sinX Z=  . 

 

7.2. Parallel Connection of R, L and C  

The circuit configuration of parallel RLC connection is shown in Fig. 7.4. 
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Cu( )u t R

Ri

Ru

Li

L Lu

( )i t

 

 Fig. 7.4 

If we apply sinusoidal voltage ( )( ) sinm uu t U t=  +  to input terminals, in a 

non-ramified part there appear a current whose instantaneous value, according to the 

first Kirchhoff's law, is equal to an algebraic sum of instantaneous values of the 

branch currents: 

R L Ci i i i= + + . 

If we rewrite the equation given above in a complex notation, we will get the 

equation that represents a trigonometrical notation of Kirchhoff's first law for the 

values of the currents: 

( ) ( ( )) j

R L C C L C LI I I I GU j B U B U G j B B U YU Ie− = + + = + − = + − = = .    (7.1) 

Here 

RI GU=  is the current through resistance R (in phase with voltage U); 

L LI jB U=  is the current through the inductance (lags behind the voltage by π/2); 

C CI jB U= −  is the current through the capacitance (leads the voltage by π/2), 

where G is called the conductance,  

BL is called the inductive susceptance, 

BC is called the capacitive susceptance. 

The value C LB B B= −  is called the susceptance. 

The complex admittance of the circuit is given by: 

( )C LY G j B B= + − . 

Vector diagram for parallel RLC connection in Fig. 7.5, a is a geometrical 

interpretation of equation (7.1). Fig. 7.5, a is drawn for the case where BC > BL. 

Hence the current phasor must lead the voltage phasor. 
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0 

RI

CI U

I
CI

LI

LI

 

0 

G

C
L

B
B

B
=

−

Y

 

a b 

 Fig. 7.5 

Note that the voltage drop across the resistor terminals 
RU must be in phase 

with the current 
RI . It is represented by the line which is parallel to phasor 

RI . In 

vector diagrams, any line drawn parallel to another line means that the quantities 

represented by the two lines are in phase. 

The current 
CI  leads the voltage across the capacitor terminals 

CU  by 90°, or 

the capacitive voltage lags behind the current by 90°. 

Finally, the effective potential difference across the inductor terminals 
LU  

leads the current 
LI  by 90° as expected. 

Now we will pass from the vector diagram (Fig. 7.5, a) to the triangle of 

conductivities. Figure 7.5, b shows us a right-angled triangle, called admittance 

triangle, for the case of active-capacity load of an electrical circuit. 

The magnitude of the complex admittance is given by 

2 2( )C LY G B B= + − . 

The admittance may be interpreted in terms of the role of an operator, too. It is 

the quantity which (when multiplied by the voltage phasor) yields the current phasor. 

In general, Y is a complex number which often is calculated as: 

1 1
( )

j

C LY j C G j B B G jB Ye
R L

−  
= +  − = + − = + = 

 
, 
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where G is the real part of the admittance and is called conductance, and B is the 

quadrature component and is called susceptance. 

Then we can write that for the parallel RLC case 

1
G

R
=  and 

1
B

X
= , 

where C LB B B= −  and L CX X X= − . 

The active and reactive conductivities of a circuit are connected with 

admittance by the following relationships: 

cosG Y=   ; 

sinB Y=  ; 

arctg C LB B

G

−
 = . 

The admittance triangle graphically shows the relationship between the 

magnitude of the admittance of a circuit, Y, and its inphase and quadrature 

components. 
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8. INSTANTANEOUS AND AVERAGE POWER. POWER FACTOR. POWER IN 

COMPLEX FORM 

Our interest in this section is to develop a general expression for the average 

power associated with a voltage and current in an АС circuit. In this connection, let 

( )sinmu U t=   represent the potential difference across the branch terminals of a 

given circuit, and let ( )sinmi U t=  −  denote the corresponding current flowing 

through that branch. The relative phase angle is given by: u i = − . 

The voltage and current sinusoid are shown in Fig.8.1. It follows then that the 

expression for the instantaneous power is calculated as: 

( )

( ) ( )

sin sin

cos cos 2 cos cos 2 .
2

m m

m m

p ui U I t t

U I
t UI UI t

= =  −   =

=  −  −  =  −  −   

 (8.1) 

The graphs of Eq. (8.1) are shown in Fig. 8.1. 

 

 Fig. 8.1 

Note that for a fixed φ the instantaneous power consists of two components: a 

constant part and a time-varying part. The varying part has a frequency that is twice 

more than ones of the voltage and current sinusoids. The shaded portions of the plot 

of p(t) refer to those time intervals when the power is negative. In effect, this means 

that the circuit returns power to the source during these intervals. 

Figure 8.1 shows that the instantaneous power is negative whenever the voltage 

and current are of opposite sign. However, for the case plotted in Fig. 8.1 the positive 
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area under the p(t) curve exceeds the negative area. Therefore, the average power is 

positive. The smaller φ, when i is brought more closely in phase with u, the smaller 

negative areas of the p(t) curve in Fig. 8.1, so the average power increases. This is 

equivalent to raising the p(t) curve higher above the abscissa axis. When φ = 0, the 

current and voltage are in phase. There are no negative areas associated with the p(t) 

curve. Hence all the power is consumed between the circuit branch terminals. The 

circuit may then be called purely resistive. On the other hand, when φ is increased, 

the negative areas become larger, and the lower power is consumed between the 

terminals, whereas the greater one returns to the source. At the extreme value of φ, 

the p(t) curve is dropped to that position which makes the negative and positive areas 

equal. In this instance there is no average power consumed between the circuit 

terminals. 

The relative phase angle φ is determined by the values of the circuit parameters 

that appear between the circuit branch terminals across which voltage u(t) exists. 

Because of the passive nature of these circuit parameters, the value of φ is restricted 

to the range expressed by 
2 2

 
−    .The general expression for the instantaneous 

power in an AC circuit is described by Eq. (8.1). The really useful quantity in terms 

of the capability of the circuit to do work is the average value of the power over one 

cycle. 

The average power during a period, called active power, is equal to the 

constant item of expression (8.2), since the average value of the sinusoidal item 

completing two cycles during period T is equal to zero, i.e.: 

0

1
T

P pdt
T

=  .      (8.2) 

Inserting equation (8.1) for p(t) gives 

( )
0 0

1
cos cos 2

T T

P UI dt UI t dt
T

 
=  −  − 

 
  . 

Since the second term on the right side in the equation involves the integration 

of a simple sine function over a time interval equal to two complete periods of the 



45 

 

double frequency of sine function, the value is always identically equal to zero. This 

leaves just the first term and, since φ is independent of t, the average power called 

active is given by 

cosP UI=  .     (8.3) 

Active power is measured in watts (W). The factor cos is called the power 

factor: 

cos
P

UI
 = . 

As is seen from (8.3), the active power is equal to the product of the effective 

values of the voltage and the current with the power factor. The power factor of an 

electrical energy receiver depends on the impedance angle of the given receiver; the 

nearer the angle φ to zero, the nearer cosφ to unity and, consequently, the greater is 

the active power transmitted by the source to the receiver, for the given values of U 

and I. 

 Let us convert the expression of active power: 

2 2 2 2cos , cosP ZI RI P YU GU= = = = . 

If the circuit contains reactive (energy-storing) components, energy will 

circulate to-and-from between circuit and supply. 

The expression for the instantaneous inductive power is written as: 

cos cos 2 sin 2
2 2

L L L L L Lp U I U I t U I t
  

= −  − =  
 

. 

For the instantaneous capacitive power, it is as follows: 

cos cos 2 sin 2
2 2

C C C C C Cp U I U I t U I t
  

= −  − =  
 

. 

The amplitude of the sinusoidal component of instantaneous power is equal to 

the product of the effective values of voltage and current. This quantity bears the 

name of apparent power and is measured in voltamperes (VA). 

S UI= .     (8.4) 

On the basis of (8.3) and (8.4), the power factor equals the ratio of active 

power to apparent power: 
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     cos
P

S
 = . 

In electrical circuit calculations the concept of reactive power is also used 

( ) ( )
2 2

cos sinQ UI UI UI= −  =  . 

and measured in reactive volt-amperes (VAR). 

Let us convert the expression of reactive power: 

2 2 2 2sin , sinQ ZI XI Q YU BU= = = = . 

Apparent power can be written in a complex form. Let us suppose that a 

sinusoidal current is flowing through an electrical circuit, the positive directions of 

the current and the voltage at the circuit terminals being chosen so as to coincide 

(Fig. 8.2). 

I

U

Z

 

Fig. 8.2 

The complex values of the effective current and voltage are, respectively: 

uj
U Ue


=  аnd с 

The angular phase difference between voltage and current equals the difference 

between their initial phases u i = − . 

Let us multiply complex voltage U  by the complex current 
*

I , conjugate with I , 

*

cos sinu ij j jS U I Ue Ie UIe UI jUI P jQ
 −  = =  = =  +  = + . 

 Then it is apparent that 

       
* *

Re Re ; Im ImP S U I Q S U I= = = = . 
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j

P

0Q 

1+
 

Fig. 8.3 

 Thus, the complex value S has a real part equaled to the active power and an 

imaginary part equaled to the reactive power. It is known as complex power and, 

being a phasor quantity, it can be represented graphically in a complex plane 

(Fig. 8.3). 

Modulus S=UI equals apparent power that is measured in volt-amperes . 
 

Power balance 

From the law of conservation of energy, it follows that the sum of the 

instantaneous powers given by all sources of the circuit should be equal to the sum of 

the instantaneous powers consumed by all receivers of energy: 

1 1

n m

ks kc

k k

p p
= =

=  . 

In sinusoidal current circuits, the balance of complex, active and reactive 

powers is considered. The condition for the balance of complex power is 

1 1

n m

ks kc

k k

S S
= =

=  . 

Let us consider the complex power by means of active and reactive power: 

the active power supplied by all energy sources is equal to the active power of all its 

consumers (it is completely consumed in the resistive elements of the circuit): 

1 1

n m

ks kc

k k

P P
= =

=  ,                      
2

1 1

Re
kc

n m

k

k k

S I R
= =

  =   . 

the reactive power of all sources is equal to the reactive power of all consumers (it 

circulates between energy sources and its consumers): 

1 1

n m

ks kc

k k

Q Q
= =

=  ,                      
2

1 1

Im
kc

n m

k

k k

S I X
= =

  =   . 
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Example 8.1. Consider sinusoidal alternating current circuit (Fig. 8.4). The 

instantaneous input voltage is ( )141sinu t=  , where ω=314 s-1. The circuit 

resistances 1 2 310 , 40 , 20R R R=  =  =  ; inductances and capacitances of 

reactive elements L1=15,9 mH, L2=95,5 mH, C1=212 μF , C3=79,6 μF . 

Find the branch currents, the voltages across the sections of the circuit, and 

write them in instantaneous forms. Determine the powers of the supply and the load. 

Draw a vector diagram of currents and voltages. 

1CX1R

3R

2i

1i

( )u t

3i

3CX

2LX

b

a

2R

1LX

 
Fig. 8.4 

 

First, determine inductive and capacitive reactances of the branches: 

1 1 2 2

1 3

1 3

5 ; 30 ;

1 1
15 ; 40 .

L L

C C

X L X L

X X
C C

=  =  =  = 

= =  = = 
 

 

Use a symbolic method for calculation. 

All complex values must be written both in algebraic and in exponential form. 

The complex effective input voltage is given by 

0141
100

2 2

uj jmU
U e e V


= = = . 

The complex impedances of branches are: 

( ) 45

1 1 1 1

37

2 2 2

63

3 3 3

10 10 14.1 ;

40 30 50 ;

20 40 44.7 .

j

L C

j

L

j

C

Z R j X X j e

Z R jX j e

Z R jX j e

−

−

= + − = − = 

= + = + = 

= − = − = 

 

Then pass from the initial circuit to the circuit with complex impedances 

(Fig. 8.5). 
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1Z

3Z

2I

1I

U

3I

b

a

2Z

  

Fig. 8.5 

In order to calculate the circuit, we use the method of equivalent 

transformations. The section ab with a parallel connection of branch impedances 

2Z and 3Z  is changed by an equivalent complex impedance: 

( )3 2 17

23

3 2

40 30 (20 40)
35.1 10.8 36.8

40 30 20 40

j
Z Z j j

Z j e
Z Z j j

−
 + −

= = = − = 
+ + + −

. 

Then the equivalent impedance of the circuit is given by 

25

1 23 10 10 35.1 10.8 45.1 20.8 49.7 j

eZ Z Z j j j e−= + = − + − = − =  . 

The current in a non-ramified part of the electrical circuit is found by Ohm's 

law: 

25

1 25

100
2.01 1.83 0.84 A

49.7

oj

j
e

U
I e j

Z e−
= = = = + . 

The voltages across circuit sections are: 

( )25 20

11 1

25 17 8

231

2.01 10 10 28.5 V;

2.01 36.8 73.9 V.

j j

j j j

ab

U I Z e j e

U I Z e e e

−

−

= =  − =

= =  =
 

The currents through the parallel branches are calculated by: 

8
29

2 37
2

8
71

3 63
3

73.9
1.48 A;

50

73.9
1.65 A.

44.7

j
jab

j

j
jab

j

U e
I e

Z e

U e
I e

Z e

−

−

= = =

= = =

 

The solution can be checked using Kirchhoff's voltage and current-laws: 

29 71 25

1 2 3

20 8

1

1.48 1.65 2.01 A;

28.5 73.9 100.2 V.

oj j j

j j

ab

I I I e e e

U U U e e

−

−

= + = + =

= + = + =
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The relative error does not exceed one per cent. 

Let us pass from complex currents and voltages to their instantaneous values: 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1

1

2

3

1 1

1 1

2 2

3 3

2 sin 2 28.5sin 314 20 V;

2 sin 2 73.9sin 314 8 V;

2 sin 2 2.01sin 314 25 A;

2 sin 2 1.48sin 314 29 A;

2 sin 2 1.65sin 314 71 A.

ab

u

ab ab u

i

i

i

u U t t

u U t t

i I t t

i I t t

i I t t

=  +  =  −

=  +  =  +

=  +  =  +

=  +  =  −

=  +  =  +

 

The complexes of apparent powers of the energy source: 

( )
*

1 100 1.83 0.84 183 84 VAS E I j j= =  − = − , 

where 183 WtEP =  – the active powers for the supply; 

84 VArEQ = −  – the reactive powers for the supply. 

The active powers for the branches of the electrical circuit: 

2 2 2 2 2 2

1 1 2 2 3 3 10 2.01 40 1.48 20 1.65 182.5 WtloadP R I R I R I= + + =  +  +  = . 

The reactive powers for the branches of the electrical circuit are calculated as: 

( )

( )

2 2 2

1 1 1 2 2 3 3

2 2 25 15 2.01 30 1.48 40 1.65 83.6 VAr.

load L C L CQ X X I X I X I= − + − =

= −  +  −  = −
 

Then check the balance of powers: 

183 182.5 Wt;

84 83.6 VAr.

E load

E load

P P

Q Q

  =

  − = −
 

Finally, draw a combined vector diagram of the branch currents and voltages 

(in the corresponding scale): 

1I

2I

3I

UabU

1U

j+

1+

 

Fig. 8.6 
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9. RESONANCE IN ELECTRICAL CIRCUITS UNDER HARMONIC 

OSCILLATIONS ACTION  

 Resonance is a steady-state operation mode of electrical circuit comprising 

heterogeneous reactive elements (energy-storing elements) in case when the phase 

shift between input current and applied voltage of this circuit is equal to zero. 

Resonance cannot take place when only one type of energy-storing element is 

present, e.g. inductance or capacitor. There must be two types of independent energy-

storing elements capable of interchanging energy between one another, for example, 

inductance and capacitor. 

 Circuits where the resonance phenomenon appears are called oscillatory 

circuits. The simplest oscillating circuits include inductive and capacitive elements 

connected in series or parallel. 

 There are two types of resonances known as voltage resonance in a series loop 

and current resonance in a parallel loop. 

 

9.1. Series oscillatory circuit. Voltage resonance 

Thus far we have analysed the behaviour of a series RLC (Fig. 9.1) circuit 

whose voltage source is a steady state sinusoidal supply with the fixed frequency. 

u(t)

i(t) CR

uR(t) uC(t)uL(t)

L

 

Fig. 9.1 

Firstly, let us consider what we already know about series RLC circuits. 
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Inductive reactance:  

2LX L fL= =  . 

 Fig. 9.2 

Capacitive reactance:  

1 1

2
CX

C fC
= =
 

. 

 

 Fig. 9.3 

Total circuit reactance: 

1/L CX X X L C= − = −  . 

 

 Fig. 9.4 

Total circuit complex impedance: ( ) 2 21/ ( 1/ ) jZ R j L C R L C e = +  −  = +  −  , 

where phase shift is
 

1/
arctg

L C

R

 − 
 = . 

When 
1

L
C

 


, the circuit is inductive, and if 
1

L
C

 


, the circuit is 

capacitive. 

When the inductive and the capacitive elements are connected in series, one 

can obtain the conditions under which voltage resonance (also known as series 

resonance) will take place. 

Electrical resonance occurs in an AC circuit when the two reactance elements, 

which are opposite and equal, cancel each other out under the condition that: 
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1
L

C
 =


. 

And the point on the graph (Fig. 9.4) at which this happens is formed when the 

two reactance curves cross each other.  

In a series resonant circuit, the resonant frequency, ƒR point can be calculated 

as follows: 

1
R

LC
 = , rads   or  

1

2
Rf

LC
=


, Hz.    (9.1) 

We can see then that at resonance the two reactances cancel each other out, 

thereby making a series LC combination act as a short circuit, with the only 

opposition to current flow in a series resonance circuit being the resistance, R. In 

complex form, the resonant frequency is the frequency at which the total impedance 

of a series RLC circuit becomes purely “real”, i.e. no imaginary impedance exists. 

This is because at resonance they are cancelled out. So the total impedance of the 

series circuit becomes just the value of the resistance and therefore:   

1/

1

L C

Z R j L R
C

 = 

 
= +  − = 

 
.    (9.2)

 

Then at resonance, the impedance of the series circuit is at its minimum value 

and is equal only to the resistance R of the circuit. The circuit impedance at resonance 

is called “dynamic impedance” of the circuit, and depending upon the frequency, XC 

(typically at high frequencies) or XL (typically at low frequencies) will dominate on 

the respective side of resonance as shown below. 
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Fig. 9.5 

Note that when the capacitive reactance dominates the circuit, the impedance 

curve has a hyperbolic shape to itself, but when the inductive reactance dominates the 

circuit, the curve is non-symmetrical due to the linear response of XL. 

In addition, note that if the circuit impedance is at its minimum at resonance, 

then the resulting current flowing through the circuit may be dangerously high. Since 

the current flowing through a series resonance circuit is the voltage divided by 

impedance, at resonance the impedance Z gets its minimum value as R. Therefore, the 

circuit current at this frequency will be at its maximum value as shown below 

1

1

1
L

C

L
C

U U U
I

Z R
R j L

C
 =



 =


= = =
  

+  −    

. 

The voltage across a series combination is the phasor sum of 
RU , 

LU  and 
CU . 

Hence, if at resonance the two reactances are equal and cancelling, the two voltages 

representing 
LU   and 

CU   must also be opposite and equal in value, thereby 

cancelling each other out because with pure components the phasor voltages are 

drawn at +90o and -90o, respectively. 
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Then in a series resonance circuit, when 
L CU U= , the resulting reactive 

voltages are zero, and all the supply voltage is dropped across the resistor. Therefore, 

supply RU U= , and it is for this reason that series resonance circuits are known as 

voltage resonance circuits (as opposed to parallel resonance circuits which are current 

resonance circuits). 

The frequency response curve of a series resonance circuit shows that the 

magnitude of the current is a function of frequency and plotting this onto a graph 

shows us that the response starts at near to zero, reaches maximum value at the 

resonance frequency when Imax = IR and then drops again to nearly zero as ƒ becomes 

infinite. The result of this is that the magnitudes of the voltages across the inductor, L 

and the capacitor, C can become many times larger than the supply voltage, even at 

resonance, but as they are equal and at opposition, they cancel each other out. 

You may also notice that as the maximum current through the circuit at 

resonance is limited only by the value of the resistance (a pure and real value), the 

source voltage and circuit current must therefore be in phase with each other at this 

frequency. Then the phase angle between the voltage and current of a series 

resonance circuit, being also a function of frequency for a fixed supply voltage, is 

equal to zero at the resonant frequency point when U, I and UR are all in phase with 

each other as shown below. Consequently, if the phase angle is zero, then the power 

factor must therefore be unity. 

 

a        b 

Fig. 9.6 
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Note that the phase angle is positive for frequencies above ƒR and negative for 

frequencies below ƒR , and this can be proven by 

1/
arctg 0

L C

R

 − 
 = = . 

The frequency response of the circuit current magnitude above relates to the 

“sharpness” of the resonance in a series resonance circuit. The sharpness of the peak 

is measured quantitatively and is called Quality factor, Q of the circuit. The quality 

factor relates the maximum or peak energy stored in the circuit (the reactance) to the 

energy dissipated (the resistance) during each cycle of oscillation meaning that it is a 

ratio of resonant frequency to bandwidth and the higher the circuit Q, the smaller the 

bandwidth: 

1
R RC L R

R

L
U U L C

Q
U U R CR R R

 
= = = = = =


.

 

Then the relationship between resonance, bandwidth, selectivity and quality 

factor for a series resonance circuit is defined as: 

1. Resonant frequency, (ƒR) 

1 1
0L C R R

R R

X X L L
C C

=   =   − =
 

. 

1
R

LC
 = . 

2. Current I at R  

1 1

2

2

1/

, ;

.
1

L L
C C

max

L C

Z min I max

U U
I

R
R L

C

 =  =
 

 = 

= =

= =

 
+  − 

 

 

 

 



57 

 

3.  Quality factor Q 

1 1R

R

L L
Q

R CR R C


= = =


. 

4. Phasor diagram 

RU CU

LU

j+

1+

 

Fig. 9.7 

 

9.2. Parallel oscillatory circuit. Current resonance 

Parallel resonance occurs when the supply frequency creates zero phase 

difference between the supply voltage and current producing a resistive circuit. 

A parallel resonance circuit is similar to the series resonance circuit we looked 

at in the previous topic. Both of them are 3-element networks that contain two 

reactive components making them a second-order circuit. Both are influenced by 

variations in the supply frequency, and both have a frequency point where their two 

reactive components cancel each other out influencing the characteristics of the 

circuit. Both circuits have a resonant frequency point. 

Let us consider parallel oscillatory circuit in Fig. 9.8 that has two parallel 

branches, where resistance 1R  is in the branch with inductance and resistance 2R  is in 

the branch with capacitance  

i(t)

R1 R2

L C

i2(t)i1(t)

u(t)

 

Fig. 9.8  
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Firstly, let us revise what we already know about series RLC circuits. 

Inductive susceptance:  

1 1

2
LB

L fL
= =
 

 

 Fig. 9.9 

Capacitive susceptance: 

2CB C fC= =   

 

 Fig. 9.10 

Total circuit susceptance: 

1
C LB B B C

L
= − =  −


. 

 

Fig. 9.11 

From above, the inductive susceptance, BL, is inversely proportional to the 

frequency as represented by the hyperbolic curve. The capacitive susceptance, BC is 

directly proportional to the frequency and is therefore represented by a straight line. 
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The final curve shows the plot of total susceptance of the parallel resonance circuit 

versus the frequency and is the difference between the two susceptances. 

Then we can see that at the resonant frequency point, where it crosses the 

horizontal axis, the total circuit susceptance is zero. Below the resonant frequency 

point, the inductive susceptance dominates the circuit producing a “lagging” power 

factor, whereas above the resonant frequency point the capacitive susceptance 

dominates producing a “leading” power factor. 

Thus, at the resonant frequency the input current and the applied voltage must 

be in phase; there is only the resistance present in the parallel circuit, so the power 

factor becomes unity. This is possible when 0 = . 

Also, as the impedance of a parallel circuit changes with frequency, this makes 

the circuit impedance “dynamic” with the current at resonance being in-phase with 

the voltage since the impedance of the circuit acts as a resistance. 

The current 
1I  through the branch with inductance lags in phase with the 

supply voltage U  and is expressed by the equation: 

( )

11

1 1

1 1
1 12 2 2 2 2 2

1 1 1 1

1

1
.

U
I UY U

Z R j L

R j L R L
U U j U G jB

R j L R j L R L R L

= = = =
+ 

   −  
=  = − = −   

+  −  + +   

 

The current 
2I  through the branch with capacitance leads in phase with the 

supply voltage U  and is expressed by the equation: 

( )

22

2
2

2 2
2 2

2 2
2 2 2 22 2 2 2

1

1
1

,
1 1

U
I UY U

jZ R
C

j
R RC CU U j U G jB

j j
R R R RC C C C

= = = =
−



   −+    =  = − = +   − +  + +     

 

where  

U  is the applied voltage with frequency  ; 
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1
1 2 2 2

1

R
G

R L
=

+ 
 is the conductance in the branch with inductance; 

2
2

2

2 2 2

1

R
G

R
C

=

+


 is the conductance in the branch with capacitance; 

1 2 2 2

1

L
B

R L


=

+ 
 is the susceptance in the branch with inductance; 

2
2

2 2 2

1

1
CB

R
C

−
=

+


 is the susceptance in the branch with capacitance. 

 The current through the unbranched part of the circuit is calculated as follows: 

( )( )1 2 1 2 1 2 Re1 Im1 Re2 Im2

U
I I I UY U G G j B B I jI I jI

Z
= + = = = + + − + = − + + . 

As for the equation above, the applied voltage and input current are in phase 

when the imaginary parts of the currents magnitudes through the parallel branches are 

equal to each other: 

Im1 Im2I I= . 

 This is possible when the susceptances of parallel branches are equal: 

2 2 2
21
2 2 2

1

1

L C

R L
R

C

 =
+ 

+


.     (9.3) 

From Equation (9.3) the resonant frequency of parallel oscillatory circuit with 

losses is calculated as: 

2 2 2
1 1

0 0 2 22
22

R

L R RC
L RR

C

−  −
 =  = 

 −−
, 

where 
0

1

LC
 =  is the resonant frequency of lossless parallel oscillatory circuit 

when 1 2 0R R= = . 

We can see that at resonance the admittance of the circuit is at its minimum 

and is equal to the conductance of the circuit. Also, at resonance the current drawn 
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from the supply is also at its minimum and is determined by the value of the parallel 

resistance. 

As ( )( )
1 2

1 2 1 2 1 2
B B

Y G G j B B G G min
=

= + + − + = + = ,  

then ( )
1 2

1 2B B
I UY U G G min

=
= = + = . 

 The phasor diagram is shown in Fig. 9.12. 

RI I=

CI

j+

1+

LI

U

0 =

 

Fig. 9.12 

The quality factor is given by the following ratio: 

1
R

L R C

L
Q

R CR


= =


. 
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