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a b s t r a c t

In this paper we study the numerical approximations of a non-Newtonian model for
concentrated suspensions.

First, we prove that the approximative models possess a unique fixed point and study
their convergence to a stationary point of the original equation.

Second, we implement an implicit Euler scheme, proving the convergence of these
approximations as well.

Finally, numerical simulations are provided.
© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Non-Newtonian (or complex) fluids often appear in nature and industry. Good examples of such fluids are toothpaste,
ketchup, magma, blood, mucus or emulsions such as mayonnaise among many others. A special type of complex fluids
are concentrated suspensions, which can be found, for example, in medicine (blood) or in building industry (cement). The
dynamical behaviour of suspensions is still far from being well understood as developing a faithful mathematical model of
such processes is not an easy task.

We are interested in an equation modelling suspensions which was proposed in [1]. In the last years, several authors
have studied for this equation the existence and uniqueness of solutions [2,3], the asymptotic behaviour [4,5] and numerical
approximations [6–8].

In our previous paper [8] we studied a sequence of approximative problems for this model, in which finite-difference
schemes were used to deal with the partial derivative with respect to the spatial variable. The problem was split in three
steps: a partial differential equation with a large diffusion, an infinite system of ordinary differential equations and finally a
finite system of ordinary differential equations. For initial data satisfying suitable assumptions it was proved that the iterate
limit of the solutions of the approximative problems in the space C([0, T ], L2(R)) is equal to the solution of the original
equation.

In this paper we extend the results from [8] in two ways.
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First, we study the convergence of the fixed points of the approximative problems. It is well-known [2] that for certain
values of the parameters of the equation there exists a unique fixed point of the problem with support not included in
the interval [−1, 1]. This equilibrium is asymptotically stable [4] and the numerical simulations in [7] suggest that every
solution with initial data with support not included in [−1, 1] converges to this fixed point as time goes to +∞. We prove
that each of the approximative problems possesses a unique fixed point and also that the iterate limit of the equilibria of the
approximative problems in the space L2(R) is equal to the equilibrium of the original equation with support not included in
the interval [−1, 1].

Second, we complete the sequence of approximations of the problem by implementing an implicit Euler scheme for
the discretization of the time derivative. We prove that the solution of the resulting system converges in the space
C([0, T ], L2(R)) to the solution of the finite system of ordinary differential equations approximating the original equation.

Finally, some numerical simulations are provided in the last section.

2. Previous results

In the previous paper [8] the authors considered the convergence of finite-difference approximations of the problem

∂p
∂t

− D (p (t))
∂2p
∂σ 2

+
1
T0

χR\[−1,1] (σ ) p =
D (p (t))

α
δ0 (σ ) , (1)

p ≥ 0, p (0, σ ) = p0 (σ ) , (2)

where p = p (t, σ ) , t ∈ [0, T ], σ ∈ R, T0 and α are positive constants.
Here, δ0 is the Dirac δ-function with support in the origin,

D (p (t)) =
α

T0


|σ |>1

p (t, σ ) dσ

and χI is the indicator function in the interval I .
The function p(t, σ ) is a probability density at time t , so for any t ∈ [0, T ],

R
p(t, σ )dσ = 1, (3)

p(t, σ ) ≥ 0, for a.a. σ ∈ R.

It is well-known [2] that for any p0 ∈ L1 (R) ∩ L∞ (R) such that p0 ≥ 0 a.e.,


R p0(σ )dσ = 1,


R |σ | p0(σ )dσ < ∞ and
D (p0) > 0 there exists a unique solution p = p (t, σ ) of problem (1)–(2), which satisfies (3).

We consider as a first step the approximative problem

∂tpc −


D

pc (t)


+

1
c


∂2
σσp +

1
T0

χR\[−1,1] (σ ) pc =
D (pc (t))

α
δc (σ ) , (4)

pc ≥ 0, pc (0, σ ) = p0c (σ ) , (5)

where pc = pc(t, σ ), c > 0 is a large parameter and the δ-function δ0 is replaced by the step continuous from the right
function

δc (σ ) =


0, if σ < −

1
2c

,

c, if −
1
2c

≤ σ <
1
2c

,

0, if σ ≥
1
2c

.

Wewould like to highlight the fact that the new term 1
c ∂

2
σσp is an artificial diffusionwhich helps us to prove the convergence

of the approximative solutions. Such a trick is very common in the numerical approximations of problems in Physics. Also,
[−

1
2c ,

1
2c ] is the support of the map δc , which approximates the δ-function δ0. Therefore, when c → +∞, the artificial

diffusion and the support of δc converge to 0 in unison.
Let p0c be such that

p0c ∈ C∞

0 (R), p0c ≥ 0 a.e.,


R
p0c (σ )dσ = 1, (6)

p0c → p0 in L2(R), σp0c → σp0 in L1(R), as c → +∞. (7)
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It is proved in [8, Theorem 3] that such approximation exists and that the unique solution pc to problem (4)–(5) converges
to the unique solution p to problem (1)–(2) in the space C ([0, T ], X), where

X =


p ∈ L2 (R) :


R

|σ | |p| dσ < +∞


,

endowedwith the norm ∥p∥X = ∥p∥L2(R) +


R |σ | |p| dσ . It is important to remark that for all t ∈ [0, T ] the solution satisfies
R pc(t, σ )dσ = 1 and pc(t, σ ) ≥ 0, for a.a. σ ∈ R, since it is a probability density.
Further, we shall consider the following approximating infinite system of ordinary differential equations:

dpc,hi

dt
−


Dh(pch (t)) +

1
c


pc,hi+1 (t) − 2pc,hi (t) + pc,hi−1 (t)

h2
+

1
T0

χZ\[−2n1,2n1] (i) p
c,h
i (t) =

Dh

pch (t)


α

δi
c, (8)

pc,hi (0) = p0c,h,i, i ∈ Z, (9)

where h > 0 σi = ih, i ∈ Z, 1
h = 2n1, with n1 ∈ N,

χZ\[−2n1,2n1] (i) =


1, if i ∉ [−2n1, 2n1] ,
0, otherwise.

Here, pch(t) =


pc,hi (t)


i∈Z

denotes a sequence satisfying

pc,hi (t) ≃ pc (t, σi) ,

and we made the following approximations

D

pc(t)


=

α

T0


|σ |>1

pc (t, σ ) dσ ≃ Dh

pch(t)


=

αh
T0


|i|>2n1

pc,hi (t), (10)

δi
c = δc (σi) =

0, if i < −nh,c,
c, if − nh,c ≤ i < nh,c,
0, if i ≥ nh,c .

(11)

Also, c is taken such that 1
2ch = nh,c ∈ N and nh,c < 2n1.

We observe that the parameter h is the length of the intervals in the finite-difference approximation of the second
derivative ∂2

σσp, which is a diffusion term. The approximation is getting better as h goes to 0. Also, nh,c is the number
of subintervals of length h of the interval [0, 1

2c ], the support of the function δc in the positive semi-axis. The condition
nh,c < 2n1 is equivalent to say that 1

2c < 1, that is, the support of δc is strictly included in the interval [−1, 1].
We define the following partition of the real line:

Ωh = {σi = ih}i∈Z, Ihi = [σi, σi + h).

For p0c from (6) we define the step function

p0c,h(σ ) =


i∈Z

p0c (ih) χIhi
(σ )

and normalize it by setting

p0c,h(σ ) =
p0c,h(σ )p0c,hL1(R)

. (12)

It holds that p0c,h → p0c in L2(R) ∩ L1(R) as h → 0.
Further, we fix c ∈ N and take a sequence hn → 0 such that 1

2chn
= nhn,c ∈ N. Then conditions 1

hn
= 2n1, n1 ∈ N,

nhn,c < 2n1 are satisfied. We take p0c,hn,i = p0c,hn(ihn) as the initial data in problem (8) and define the step functions

pchn(t, σ ) =


i∈Z

pc,hni (t) χIhi
(σ ), (13)

where pchn(t) = {pc,hni (t)}i∈Z is the unique solution to problem (8)–(9). It is proved in [8, Theorem 2] that

pchn → pc strongly in C([0, T ]; L2(R)), (14)
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where pc is the solution to problem (4)–(5) with initial data p0c . As before, the solutions pchn satisfy that
R
pchn (t, σ ) dσ =


i∈Z

pc,hni (t) hn = 1 and pc,hni (t) ≥ 0, for any t ∈ [0, T ], i ∈ Z.

Let us consider now finite-dimensional approximations. We define the operator AN
h : R2N+1

→ R2N+1 by

AN
h :=

1
h2



1 −1 0 · · · 0 0 0
−1 2 −1 0 · · · 0 0

0 −1 2 −1
. . . · · · 0

... 0
. . .

. . .
. . . 0

...

0 · · ·
. . . −1 2 −1 0

0 0 · · · 0 −1 2 −1
0 0 0 · · · 0 −1 1


(2N+1)×(2N+1)

. (15)

Then we consider the finite-dimensional system
dpc,Nh,i

dt
= −


DN
h


pc,Nh (t)


+

1
c


AN
h p

c,N
h


i
−

1
T0

χZ\[−2n1,2n1] (i) p
c,N
h,i +

DN
h


pc,Nh (t)


α

δi
c,

pc,Nh,i (0) = pN,0
c,h,i, −N ≤ i ≤ N,

(16)

where N > 2n1, 1
h = 2n1, n1 ∈ N, 1

2ch = nh,c ∈ N, nh,c < 2n1 and

DN
h


pc,Nh


=

αh
T0


2n1<|i|≤N

pc,Nh,i .

What we have done is to cut the tails of the system (8) off in order to work with a finite number of equations. The condition
N > 2n1 implies that we solve the problem for σ in an interval containing [−1, 1]. It is obvious that N has to be large to get
good approximations.

For the initial data p0c,h from (12) we consider the approximations pN,0
c,h given by

pN,0
c,h,i =

p0c,h,i
|i|≤N

hp0c,h,i
, for |i| ≤ N, (17)

where p0c,h,i = p0c,h (ih). Then we define the step functions

pc,Nh (t, σ ) =


i∈Z

pc,Nh,i (t) χIi(σ ), (18)

where

pc,Nh,i (·)


|i|≤N

is the unique solution to problem (16) with initial data (17) and pc,Nh,i (t) = 0 if |i| > N . It is proved

in [8, Section 5] that

pc,Nh → pch in C([0, T ], L2(R)) as N → ∞,

where pch is the function defined in (13) with initial data (12). Again, the property of being a probability density is satisfied:
R
pc,Nh (t, σ ) dσ =


|i|≤N

pc,Nh,i (t) h = 1 and pc,Nh,i (t) ≥ 0, for any t ≥ 0, |i| ≤ N.

3. Fixed points of approximations

Our aim in this section is to study the fixed points of the approximative problems and their convergence to the fixed
points of the original problem (1). For simplicity, we shall consider the particular case where T0 = 1.

First, recall that for Eq. (1) with T0 = 1 the fixed points, given by the solutions of

D (p)
∂2p
∂σ 2

− χR\[−1,1] (σ ) p +
D (p)

α
δ0 (σ ) = 0, (19)

are the following [2]:
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• Any probability density p (·) with support in [−1, 1] solves (19). We note that all these solutions satisfy D (p) = 0;
• If α ≤

1
2 , there are no more equilibria. If α > 1

2 , then there exists a unique fixed point p with positive value of D (p),
which is given by

p (σ ) =



√
D∗

2α
e(1+σ)/

√
D∗

, if σ ≤ −1,
√
D∗ + 1
2α

+
1
2α

σ, if − 1 ≤ σ ≤ 0,
√
D∗ + 1
2α

−
1
2α

σ, if 0 ≤ σ ≤ 1,
√
D∗

2α
e(1−σ)/

√
D∗

, if σ ≥ 1,

(20)

where

D∗
=


−

1
2

+

√
4α − 1
2

2

(21)

and z =
√
D∗ is the unique positive solution of the equation

h (z) = z2 + z − α +
1
2

= 0.

We observe that when α > 1
2 the stationary point p is asymptotically stable [4]. Moreover, the numerical simulations

in [7] suggest that every solution with initial data satisfying D

p0


> 0 converges to this fixed point as time goes to +∞.
We shall prove that for α > 1

2 the approximative problems possess a unique fixed point converging to (20).

3.1. Equation with large diffusion

Let us consider now the fixed points of problem (4). In order to find them we fix first D > 0 and solve first the following
ordinary differential equation:

D +
1
c


d2pc

dσ 2
− χR\[−1,1] (σ ) pc +

D
α

δc (σ ) = 0.

We note that in this case, unlike problem (1), there is no stationary solutions with D (p) = 0.
Taking into account the condition pc (σ ) → 0, as σ → ±∞, it is not difficult to check that this equation possesses a

unique solution defined by

pcD (σ ) =



D

2α

D +

1
c

e(1+σ)/


D+

1
c , if σ ≤ −1,

D
2α

1 +


D +

1
c

D +
1
c

+
D

2α

D +

1
c

σ , if − 1 ≤ σ ≤ −
1
2c

,

D
2α

1 +


D +

1
c

D +
1
c

−
1
8

D
α

D +

1
c


c

−
Dc

2α

D +

1
c

σ 2, if −
1
2c

≤ σ ≤
1
2c

,

D
2α

1 +


D +

1
c

D +
1
c

−
D

2α

D +

1
c

σ , if
1
2c

≤ σ ≤ 1,

D

2α

D +

1
c

e(1−σ)/


D+

1
c , if σ ≥ 1.

Since

D

pcD


= α


|σ |>1

pcD (σ ) dσ = D, for any D > 0,
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in order to obtain a fixed point it remains to find a positive value of D such that


R pcD (σ ) dσ = 1. Calculating the integral
we obtain

1
48c2α

2D
D +

1
c


24c + 24c2D + 24c2


D +

1
C

+ 12c2 − 1


= 1,

and after the change of variable z =


D +

1
c we finally have the equation

gc(z) = z4 + z3 −


1

24c2
+

1
c

−
1
2

+ α


z2 −

1
c
z −

1
2c

+
1

24c3
= 0. (22)

It follows from the Descarte’s rule of signs that for α > 0.5 and c large enough this polynomial possesses a unique positive
root zc . More precisely, c has to satisfy c > 1

√
12
. We will take c ≥ 1. Such condition is compatible with the meaning of the

term 1
c ∂

2
σσp in (4), as this is an artificial diffusion that has to be small in order to approximate the original system properly,

which means that we need c to be large.
If we pass to the limit as c → ∞ the polynomial gc (z) tends to

g (z) = z2

z2 + z +

1
2

− α


.

By continuity, the root zc converges to the unique positive root of h (z), which is equal to z∗
=

√
D∗. Therefore,

Dc
=

zc
2

−
1
c

→ D∗ > 0,

where D∗ is given in (21). Hence, Dc > 0, for c large enough, and thus there is a unique stationary point pc (σ ) = pcDc (σ ).
Moreover, it is easy to see using Dc

→ D∗ that

pc → p in X .

Therefore, we have proved the following result.

Theorem 1. Let α > 0.5. Problem (4) possesses a unique fixed point pc for c ≥ 1 and

pc → p in X, as c → ∞,

where p is the unique fixed point of problem (1) such that D(p) > 0 defined in (20).

3.2. Lattice dynamical system

Further, we will study the fixed points of Eq. (8) with 1
2ch = nh,c ∈ N and nh,c < 2n1 =

1
h . As before, we fix first D > 0

and solve the following equation in differences

−
D +

1
c

h2 (pi+1 − 2pi + pi−1) + pi = 0, if i < −2n1,

pi+1 − 2pi + pi−1 = 0, if − 2n1 ≤ i < −nh,c,

−
D +

1
c

h2 (pi+1 − 2pi + pi−1) =
D
α
c, if − nh,c ≤ i < nh,c,

pi+1 − 2pi + pi−1 = 0, if nh,c ≤ i ≤ 2n1,

−
D +

1
c

h2 (pi+1 − 2pi + pi−1) + pi = 0, if i > 2n1,

(23)

whose solution, taking into account that pi →
i→±∞

0, is given by

pc,hi,D =



C1λ
i
1, if i < −2n1,

A + Bi, if − 2n1 ≤ i < −nh,c,

E + Fi −
ch2D

2

D +

1
c


α
i2, if − nh,c ≤ i < nh,c,

A + Bi, if nh,c ≤ i ≤ 2n1,

C2λ
−i
1 , if i > 2n1,

(24)
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provided that

λ1 = λ
c,D
1,h = 1 +

h2

2

D +

1
c

 +
h

D +
1
c


1 +

h2

4

D +

1
c

 , λ2 = λ
c,D
2,h =

1

λ
c,D
1,h

, (25)

and the constants C1, A, B, E, F , A, B, C2 satisfy the compatibility conditions

A −
1
h
B − λ

−
1
h

1 C1 = 0,

A −
h + 1
h

B − λ
−

h+1
h

1 C1 = 0,

A −
1

2ch
B − E +

1
2ch

F = −
D

8c

D +

1
c


α

,

A −
2ch + 1
2ch

B − E +
2ch + 1
2ch

F = −
D (1 + 2ch)2

8c

D +

1
c


α

,

A +
1 − 2ch
2ch

B − E −
1 − 2ch
2ch

F = −
D (1 − 2ch)2

8c

D +

1
c


α

,

A +
1

2ch
B − E −

1
2ch

F = −
D

8c

D +

1
c


α

,

A +
h + 1
h

B − λ
−

h+1
h

1 C2 = 0,

A +
1
h
B − λ

−
1
h

1 C2 = 0.

(26)

Solving this system we obtain:

C1 =
λ

1
h
1 D

D +
1
c


α


−1 + λ−1

1


h (2 + h) − 2h2

4

−1 + λ−1

1

 
1 + h − λ−1

1

 , C2 =
λ

1
h
1 D

D +
1
c


α


−1 + λ−1

1


h (2 − h) − 2h2

4

−1 + λ−1

1

 
1 + h − λ−1

1

 , (27)

A =
D

D +
1
c


α


−1 + λ−1

1


(2 + h) − 2h

4

−1 + λ−1

1

 , A =
D

D +
1
c


α


−1 + λ−1

1


(2 − h) − 2h

4

−1 + λ−1

1

 ,

B =
−D

D +
1
c


α


−1 + λ−1

1


h (2 + h) − 2h2

4

1 + h − λ−1

1

 , B =
D

D +
1
c


α


−1 + λ−1

1


h (2 − h) − 2h2

4

1 + h − λ−1

1

 ,

F = −
Dh

2

D +

1
c


α

(1 + ch) −
D

D +
1
c


α


−1 + λ−1

1


h (2 + h) − 2h2

4

1 + h − λ−1

1

 ,

E = −
D

8c

D +

1
c


α

(1 + 2ch) +
D

D +
1
c


α


−1 + λ−1

1


(2 + h) − 2h

4

−1 + λ−1

1

 .

For simplicity of notation here and throughout the paper, if no confusion is possible, sometimes we omit the indexes
c, h,D and write just λ1.

We need to check first that αh


|i|>2n1
pc,hi,D = D. Indeed, we can easily compute that

αh


|i|>2n1

pc,hi,D =
Dh2

D +
1
c

 λ1

(λ1 − 1)2

= D
4

D +

1
c


+ 2h2

+ 2h

4

D +

1
c


+ h2

h +


4

D +

1
c


+ h2

2 = D for any D > 0.

We need to find Dc
h > 0 such that Sch =


i∈Z pc,hi,Dc

h
h = 1. Using mathematical software we obtain

Sch (D) =


i∈Z

pc,hi,Dh =
bch (D)

wc
h (D)

, (28)
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where

bch (D) = D

−1 − 2c2


−6 + h2

+ 2D

1 + 4c2


−3 − 3h + 2h2 λc,D

1,h

+ D

−1 + 2c2


6 + 12h + 5h2 λc,D

1,h

2
,

wc
h (D) = 24c(1 + cD)α


−1 + λ

c,D
1,h

2
.

With the change of variable D = −
1
c −

h2
4 + z2 we derive first

i∈Z

pc,hi,Dh = Ich (z)

= −


4 + ch2

− 4cz2
 

1 − 12c2 − 12c2h + 2c2h2
− 24c2z − 12c2hz − 24c2z2


24c3(h − 2z)(h + 2z)α

= 1, (29)

and then the equation

gc
h (z) = z4 +


1 +

h
2


z3 −


1

24c2
+

1
c

−
1
2

−
h
2

+
h2

3
+ α


z2

−


1
c

+
h
2c

+
h2

4
+

h3

8


z −

1
2c

+
1

24c3
−

h
2c

+
h2

96c2
+

h2

12c
−

h2

8
−

h3

8
+

h2α

4
+

h4

48
= 0.

Again, it follows from the Descarte’s rule of signs that for α > 0.5, c ≥ 1 and h small enough this polynomial possesses a
unique positive root zch . Moreover, since gc

h → gc , as h → 0, we have

zch → zc,

where zc is the unique positive solution to (22). Therefore,

Dc
h = −

1
c

−
h2

4
+

zch
2

→ −
1
c

+

zc
2

= Dc > 0, as h → 0.

Hence, Dc
h > 0 for h small enough. More precisely, h has to satisfy the following conditions:

1
24c2

+
1
c

−
1
2

−
h
2

+
h2

3
+ α > 0,

−
1
2c

+
1

24c3
−

h
2c

+
h2

96c2
+

h2

12c
−

h2

8
−

h3

8
+

h2α

4
+

h4

48
< 0.

These conditions are satisfied for h small enough. This is compatible with the mechanical meaning of this parameter
as described in Section 2. We can also draw some conclusions about the relationship between α, c and h. From the first
inequality it is easily deduced that if α →

1
2 and c → +∞, then we need that h → 0. However, if c is fixed and α →

1
2 ,

then h does not need to go to 0. On the other hand, from the second inequality, since h2α
4 −

h2
8 > 0, it follows that when

c → +∞ or α → +∞, then h → 0. Therefore, we obtain the following implications:

1. When c increases, the parameter h decreases.
2. When α increases, the parameter h decreases.

On the other hand, we can see that the function Ich (z) defined in (29) is strictly increasing for z > 0, z ≠
h
2 . This follows

from the facts that the polynomial p (z) = 1 − 12c2 − 12c2h + 2c2h2
− 24c2z − 12c2hz − 24c2z2 is strictly decreasing for

z > 0 and that the rational function r (z) =
4+c(h2−4z2)

h2−4z2
is strictly increasing when z > 0, z ≠

h
2 . Also, since Ich (z) → +∞,

as z → +∞, and Ich (z) → −∞, as z →
 h
2

+
, it is clear that zch > h

2 . In particular, we also deduce that the function

D → Sch(D) = Ich


D +

1
c +

h2
4


is strictly increasing for D > 0.

We have obtained then the unique stationary solution of (8), given by pch =


pc,hi,Dc

h


i∈Z

. As before, we define then the step
function

pch (σ ) =


i∈Z

pc,hi,Dc
h
χIhi

(σ ).

We will prove that

pch → pc in L2 (R) . (30)
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We replace in (25) and (27) the value of D by Dc
h and add the indexes c, h to the notation of these constants (e.g. Awill be

now Ac
h). We note that λc

1,h = λ
c,Dc

h
1,h . Then it is not difficult to check that when h → 0 the following convergences are true:

λc
1,h − 1

h
→

1
Dc +

1
c

,

λc
1,h

 1
h → e

1√
Dc+

1
c , (31)

C c
1,h, C

c
2,h →

Dc

2

Dc +

1
c


α
e

1√
D+

1
c ,

Ac
h, A

c
h →

Dc

1 +


Dc +

1
c


2

Dc +

1
c


α

,

Bc
h

h
→

Dc

2

Dc +

1
c


α

,
B
c
h

h
→ −

Dc

2

Dc +

1
c


α

,

Ec
h →

Dc

1 +


Dc +

1
c


2α

Dc +

1
c

 −
Dc

8α

Dc +

1
c


c
,

F c
h

h
→ 0.

Thus, it follows that

pch (σ ) → pc (σ ) for any σ ∈ R. (32)

Let us estimate the tails of pch in the norm of the space L2 (R). Let ε > 0 be arbitrary. We will prove the existence of h0
and T (ε) > 0 such that

∞

T (ε)


pch (σ )

2 dσ < ε for all h ≤ h0. (33)

For any T > 0 we have that
∞

T


pch (σ )

2 dσ ≤

∞
i=K(T ,h)


C
c
2,h

2 
λc
1,h

−2i h =


C
c
2,h

2
h

λc
1,h

−2K(T ,h) 1

1 −

λc
1,h

−2

=


C
c
2,h

2 h
λc
1,h − 1


λc
1,h

−2K(T ,h)

λc
1,h

2
1 + λc

1,h
,

where K (T , h) ∈ N is such that T − h < K (T , h) h ≤ T . Then (31) implies that there exist C, h0 > 0 such that
∞

T


pch (σ )

2 dσ ≤ C

λc
1,h

−2(T−h)
h for all h ≤ h0.

Since 
λc
1,h

−2(T−h)
h → e

−
2T√
Dc+

1
c , as h → 0,

there are T (ε) > 1, h0 > 0 such that C

λc
1,h

−2(T (ε)−h)
h ≤ ε for all h ≤ h0. Therefore, (33) holds, and one can choose h0, T (ε)

such that the same result is true for the integral


−T (ε)

−∞


pch (σ )

2 dσ .
Now let us take the norm of the space L2 (−T (ε) , T (ε)). We observe that by (31) there exists a constant Rc (T ) such that

for all h ≤ h0 it holds
C c
1,h


λc
1,h

i2
≤

C c
1,h

2 
λc
1,h

− 2
h ≤ Rc (T ) , if − K (T (ε), h) − 1 ≤ i < −2n1,


Ac
h + Bc

hi
2

≤ 2

Ac
h

2
+ 2


Bc
h

2
h2

T 2 (ε) ≤ Rc (T ) , if − 2n1 ≤ i < −nh,c,
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Ec
h + F c

h i −
ch2Dc

h

2

Dc
h +

1
c


α
i2
2

≤ 3

Ec
h

2
+ 3


F c
h

2
h2

T 2 (ε) + 3
c2

Dc
h

2
4

Dc
h +

1
c

2
α2

T 4 (ε)

≤ Rc (T ) , if − nh,c ≤ i < nh,c,


A
c
h + B

c
hi
2

≤ 2

A
c
h

2
+ 2


B
c
h

2
h2

T 2 (ε) ≤ Rc (T ) , if nh,c ≤ i ≤ 2n1,
C
c
2,h


λc
1,h

−i
2

≤


C
c
2,h

2 
λc
1,h

− 2
h ≤ Rc (T ) , if 2n1 < i ≤ K (T (ε), h) + 1.

Therefore,

pch (σ )

2
≤ Rc (T ) for all σ ∈ [−T (ε) , T (ε)]. Using this estimate, (32) and Lebesgue’s theorem we obtain

pch → pc in L2 (−T (ε) , T (ε)) . (34)

We can estimate the tails of pch in the norm of the space L1 (R) in a similar way, proving therefore that

pch → pc in L1 (R) . (35)

Finally, combining (34) and (33) we can prove in a standard way that (30) is true.
Summing up the results we have the following theorem.

Theorem 2. Let α > 0.5 and 1
2ch = nh,c ∈ N, nh,c < 2n1 =

1
h . If c ≥ 1 and h is small enough, then problem (8) possesses a

unique fixed point pch and

pch → pc in L2 (R) ∩ L1 (R) , as h → 0,

where pc is the unique fixed point of problem (4).

3.3. Finite-dimensional approximations

The last step consists in studying the fixed points of problem (16) for h, c fixed and satisfying 1
2ch = nh,c ∈ N, nh,c <

2n1 =
1
h . Assume that N > 2n1.

In the same way as before, we fix first D > 0 and solve the following difference equation

−
D +

1
c

h2 (pi+1 − 2pi + pi−1) + pi = 0, if − N ≤ i < −2n1,

pi+1 − 2pi + pi−1 = 0, if − 2n1 ≤ i < −nh,c,

−
D +

1
c

h2 (pi+1 − 2pi + pi−1) =
D
α
c, if − nh,c ≤ i < nh,c,

pi+1 − 2pi + pi−1 = 0, if nh,c ≤ i ≤ 2n1,

−
D +

1
c

h2 (pi+1 − 2pi + pi−1) + pi = 0, if − 2n1 < i ≤ N,

(36)

whose solution is defined by

pc,h,Ni,D =



C1λ
i
1 + C2λ

−i
1 , if − N ≤ i < −2n1,

A + Bi, if − 2n1 ≤ i < −nh,c,

E + Fi −
ch2D

2

D +

1
c


α
i2, if − nh,c ≤ i < nh,c,

A + Bi, if nh,c ≤ i ≤ 2n1,

C1λ
i
1 + C2λ

−i
1 , if 2n1 < i ≤ N.

(37)
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The compatibility conditions in this case are the following:


λ−2N
1 − λ−2N−1

1

1 − λ1


C1 + C2 = 0,

A −
1
h
B − λ

−
1
h

1 C1 − λ
1
h
1 C2 = 0,

A −
h + 1
h

B − λ
−

h+1
h

1 C1 − λ
h+1
h

1 C2 = 0,

A −
1

2ch
B − E +

1
2ch

F = −
D

8c

D +

1
c


α

,

A −
2ch + 1
2ch

B − E +
2ch + 1
2ch

F = −
D (1 + 2ch)2

8c

D +

1
c


α

,

A +
1 − 2ch
2ch

B − E −
1 − 2ch
2ch

F = −
D (1 − 2ch)2

8c

D +

1
c


α

,

A +
1

2ch
B − E −

1
2ch

F = −
D

8c

D +

1
c


α

,

A +
h + 1
h

B − λ
h+1
h

1 C1 − λ
−

h+1
h

1 C2 = 0,

A +
1
h
B − λ

1
h
1 C1 − λ

−
1
h

1 C2 = 0,

C1 +


λ−2N
1 − λ−2N−1

1

1 − λ1


C2 = 0.

(38)

If we add to system (26) the equations

C2 = 0,

C1 = 0,

and the same terms containing the constants C2, C1 in the first two and the last two equations, thenwe obtain a new system
which shares the same solution with system (26). We have therefore the same number of variables and equations in system
(38) and the modified system (26). Moreover, the coefficients in system (38) converge to the corresponding ones in system
(26) when N → ∞. Writing systems (26), (38) in the matrix form

Mc
h,Dx

c
h,D = bch,D,

Mc,N
h,D x

c,N
h,D = bch,D,

and noting thatMc
h,D, Mc,N

h,D are invertible for N large enough, we have

xc,Nh,D =


Mc,N

h,D

−1
bch,D →


Mc

h,D

−1 bch,D = xch,D in R10. (39)

For any DN > 0 we define then the step function

pc,N,DN

h (σ ) =


i∈Z

pc,h,Ni,DN χIhi
(σ ),

where pc,h,Ni,DN = 0 if |i| > N . We will prove that if DN
→ D, then

pc,N,DN

h → pc,Dh in L2 (R) ∩ L1 (R) , (40)

where pc,Dh =


i∈Z pc,hi,DχIhi
(σ ) is the step function which is defined from the solution of system (23) given by (24). For this

let us estimate the tails of this summatory. For K > 2n1, K ∈ N, we have that
+∞

Kh
pc,N,DN

h (σ ) dσ =


i≥K

pc,h,Ni,DN h =


i≥K


C
c,N
1,h,DN


λ
c,DN

1,h

i
+ C

c,N
2,h,DN


λ
c,DN

1,h

−i

h.

We note that xc,Nh,DN → xch,D is also true. Hence, for any ϵ > 0 there exists K (ϵ) > 2n1 such that
i≥K(ϵ)

C
c,N
2,h,DN


λ
c,DN

1,h

−i
h <

ϵ

8
, for any N > K (ϵ) .
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On the other hand, we have that
i≥K(ϵ)

C
c,N
1,h,DN


λ
c,DN

1,h

i
h = C

c,N
1,h,DN

h

λ
c,DN

1,h − 1


λ
c,DN

1,h

N+1
−


λ
c,DN

1,h

K(ϵ)


≤ C
c,N
1,h,DN


λ
c,DN

1,h

N+1 h

λ
c,DN

1,h − 1
.

Using mathematical software it can be calculated that

C
c,N
1,h,DN =

rc,Nh,DN

lc,Nh,DN

,

where

rc,Nh,DN = −cDNh

λ
c,DN

1,h

 1
h


(2 + h)

λ
c,DN

1,h

2/h
+ (−2 + h)


λ
c,DN

1,h

 2+h
h

+ (−2 + h)

λ
c,DN

1,h

2N
+ (2 + h)


λ
c,DN

1,h

1+2N


,

lc,Nh,DN = 4(1 + cDN)α

−1 + λ

c,DN

1,h


λ
c,DN

1,h

2/h
−


λ
c,DN

1,h

2N
(1 + h)


λ
c,DN

1,h

2/h
−


λ
c,DN

1,h

 2+h
h

−


λ
c,DN

1,h

2N
+ (1 + h)


λ
c,DN

1,h

1+2N


.

Thus,

C
c,N
1,h,DN ≤ L


c, h,DN λc,DN

1,h

−2N
for all N,

where L

c, h,DN


is bounded as DN

→ D. Thus, using the formula for λ
c,DN

1,h given in (25) we can check that there exists
N (ϵ) > 0 such that

i≥K(ϵ)

C
c,N
1,h,DN


λ
c,DN

1,h

i
h <

ϵ

8
for all N > N (ϵ) .

Arguing in the same way for negative i, we obtain the existence of K (ϵ) > 0 and N (ϵ) > K (ϵ) such that
−K(ϵ)h

−∞

pc,N,DN

h (σ ) dσ +


+∞

K(ϵ)h
pc,N,DN

h (σ ) dσ <
ϵ

2
, for any N > N (ϵ) .

From (39) it follows also the existence of N1 (ϵ) such that K(ϵ)

−K(ϵ)

pc,N,DN

h (σ ) − pc,N,D
h (σ )

 dσ <
ϵ

2
, for any N > N1 (ϵ) .

Hence, pc,N,DN

h → pc,Dh in L1 (R). The convergence in the space L2 (R) is proved in a similar way.
Using again mathematical software we check that

αh


2n1<|i|≤N

pc,h,N
i,Dc,N

h
= D for any D > 0. (41)

In order to find a stationary point of (16) it remains to show the existence of Dc,N
h > 0 such that Sc,Nh (D) =

|i|≤N pc,h,N
i,Dc,N

h
h = 1. In view of pc,N,DN

h → pc,Dh in L1 (R), if DN
→ D, we have that

|i|≤N

pc,h,Ni,DN h →


i∈Z

pc,hi,Dh as N → ∞.

Since


i∈Z pc,hi,Dc
h
h = 1 and the function D → Sch (D) =


i∈Z pc,hi,Dh is strictly increasing for D > 0 (see Section 3.2), one can

find two values D1 < Dc
h < D2 satisfying

i∈Z

pc,hi,D1
h < 1 <


i∈Z

pc,hi,D2
h.
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Then there exists N0 for which
|i|≤N

pc,h,Ni,D1
h < 1 <


|i|≤N

pc,h,Ni,D2
h if N ≥ N0.

If we prove that the map D →


|i|≤N pc,h,Ni,D h is continuous, then the existence of Dc,N
h > 0 such that


i∈Z pc,h,N

i,Dc,N
h

h = 1

follows. Indeed, as the matrix Mc,N
h,D possesses a positive determinant and the coefficients of the system (38) depend

continuously on D > 0, it follows that the vector of solutions of (38), xc,Nh,D =


Mc,N

h,D

−1
bch,D, depends continuously on

D > 0 as well, and this implies easily the continuity of D →


|i|≤N pc,h,Ni,D h. Therefore, for any N ≥ N0 there is at least one

stationary point of (16), given by pc,Nh =


pc,h,N
i,Dc,N

h


i∈Z

. As before, we define then the step function

pc,Nh (σ ) =


i∈Z

pc,h,N
i,Dc,N

h
χIhi

(σ ),

where pc,h,N
i,Dc,N

h
= 0 if |i| > N . It is clear that Dc,N

h → Dc
h. Indeed, suppose that there is a subsequence such that

D
c,Nj
h → D∗

≠ Dc
h. Then (40) implies that 1 = Sc,Nh


D
c,Nj
h


→ Sch (D∗) ≠ 1, which is a contradiction.

Thus, in view of (40), pc,Nh converges in L2 (R) ∩ L1 (R) to the unique stationary point of (8), pch. Moreover, assume that

there exists another sequence Dc,N
h > 0 such that Sc,Nh

Dc,N
h


= 1. In view of (41) we have Dc,N

h ≤ α for any N . ThusDc,N
h → Dc

h and the corresponding stationary solutionpc,Nh converges to pch in L2 (R) ∩ L1 (R) as well.
It remains to check that in fact pc,Nh is the unique stationary point. Using mathematical software one can obtain that the

value of the summatory


|i|≤N pc,h,Ni,D is given by

Sc,Nh (D) =
f c,Nh (D) + pch (D)

gc,N
h (D) + qch (D)

,

where

pch (D) = D(1 + 2c2

−6 + h2) + 2D


−1 + 4c2(3 + 3h − 2h2)


λ
c,D
1,h − D


−1 + 2c2(6 + 12h + 5h2)

 
λ
c,D
1,h

2
,

qch (D) = −24c(1 + cD)α

−1 + λ

c,D
1,h

2
,

and

f c,Nh (D) = D

−1 + 2c2(6 + h(12 + 5h))

 
λ
c,D
1,h

 2
h −2N

− D

−2 + 8c2(3 + (3 − 2h)h)

 
λ
c,D
1,h

1+ 2
h −2N

+ D

1 + 2c2


−6 + h2 λc,D

1,h

2+ 2
h −2N

,

gc,N
h (D) = 24c(1 + cD)α


−1 + λ

c,D
1,h

2 
λ
c,D
1,h

 2
h −2N

.

It is easy to see that

lim
N→∞

Sc,Nh (D) =
pch (D)

qch (D)
= Sch (D) ,

uniformly in compact sets of (0, ∞), where Sch (D) is the summatory


i∈Z pc,hi,Dh in the previous approximation given in (28).
Also, from

f c,Nh (D) ,
d
dD

f c,Nh (D) → 0,

gc,N
h (D) ,

d
dD

gc,N
h (D) → 0,

uniformly for D inside a compact set of (0, ∞), and qch (D) > 0 for any D > 0 we obtain that

d
dD

Sc,Nh (D) →
d
dD

Sch (D) ,

uniformly in compact sets of (0, ∞). Let us consider an interval [Dc
h − a,Dc

h + a] with a > 0. As d
dDS

c
h (D) > 0 for D > 0,

there exists N1 > 0 such that d
dDS

c,N
h (D) > 0, for all D ∈ [Dc

h − a,Dc
h + a] and N ≥ N1, which implies that there can be
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only one value Dc,N
h ∈ [Dc

h − a,Dc
h + a] satisfying Sc,Nh


Dc,N
h


= 1. But there cannot be a sequenceDc,N

h ∉ [Dc
h − a,Dc

h + a]

satisfying this property, because this would be in contradiction withDc,N
h → Dc

h. Therefore, D
c,N
h is unique and consequently

so is pc,Nh .
We summarize the results of this section.

Theorem 3. Let α > 0.5 and 1
2ch = nh,c ∈ N, nh,c < 2n1 =

1
h . Assume that N > 2n1. Let c ≥ 1 and h be small enough.

Problem (16) possesses a unique fixed point pc,Nh for N large enough and

pc,Nh → pch in L2 (R) ∩ L1 (R) , as N → ∞,

where pch is the unique fixed point of problem (8).

3.4. Full convergence

Finally, we put together all the results of this section for a general perspective.
Let α > 0.5. We take sequences cm → ∞, cm ∈ N, hn,m → 0 (as n → ∞), such that 1

2cmhn
= nhn,cm ∈ N. Let p,

pc, pch, pc,Nh be the fixed points of problems (1), (4), (8), (16), respectively. We have proved that

pcm → p in X, as m → ∞,

pcmhn,m → pcm in L2 (R) ∩ L1 (R) , as hn,m → 0,

pcm,N
hn,m → pcmhn,m in L2 (R) ∩ L1 (R) , as N → ∞.

Hence, the following iterate limit holds:

lim
m→∞

lim
n→∞

lim
N→∞

pcm,N
hn,m = p in L2(R) ∩ L1 (R) .

4. An implicit Euler numerical method

In order to complete the sequence of approximations developed in Section 2 we shall discretize now system (16) with
respect to the time variable using an implicit Euler scheme. Using the step s > 0 we consider the discrete moments of time
tn = ns, n ≥ 0, and denote by pc,N,n

h = {pc,N,n
h,i }|i|≤N the approximation of the solution pc,Nn (t) of problem (16) at t = tn. For

simplicity of notation we will write for the time being just pni instead of pc,N,n
h,i for the components of the vector pc,N,n

h . Then
we obtain the following algebraic system:

pn+1
i − pni

s
= −


DN
h


pc,N,n
h


+

1
c


AN
h p

c,N,n+1
h


i
−

1
T0

χZ\[−2n1,2n1] (i) p
n
i +

DN
h


pc,N,n
h


α

δi
c, (42)

with initial data

pN,0
c,h = {p0i }|i|≥N ∈ R2N+1. (43)

System (42) can be rewritten as

−


DN
h


pc,N,n
h


+

1
c

 
d1pn+1

i+1 + d2pn+1
i−1


+


h2

s
+ d3


DN
h


pc,N,n
h


+

1
c


pn+1
i

=
h2

s
pni −

h2

T0
χZ\[−2n1,2n1] (i) p

n
i +

h2DN
h


pc,N,n
h


α

δi
c

where d1 = 1 if i ≤ N −1 and d1 = 0 if i = N , whereas d2 = 1 if i ≥ −N +1 and d2 = 0 if i = −N , and d3 = 2 if |i| ≤ N −1
and d3 = 1 otherwise.

Denote β = h2/s, Dn
= DN

h


pc,N,n
h


+

1
c , T

n
= 2Dn

+β , T
n

= Dn
+β . Then we can express the system in thematrix form

Mnpc,N,n+1
h = Cnpc,N,n

h + ∆n, (44)
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where

Mn
=



T
n

−Dn 0 · · · 0 0
−Dn T n

−Dn 0 · · · 0

0 −Dn T n
−Dn . . .

...
... 0

. . .
. . .

. . . 0

0
...

. . .
. . . T n

−Dn

0 0 · · · 0 −Dn T
n


,

∆n
i =

h2DN
h


pc,N,n
h


α

δi
c and Cn is a diagonal matrix such that

Cn
ii =


h2

s
−

h2

T0
, if |i| > 2n1,

h2

s
, if |i| ≤ 2n1.

The matrixMn is invertible, so system (44) has a unique solution for any n ≥ 0 and pc,N,n
h ∈ R2N+1.

Denote by ∥·∥R2N+1 and (·, ·)R2N+1 the usual norm and scalar product in the space R2N+1, in which we also consider the
following equivalent norms:

∥p∥
l1N

:=

N
i=−N

(|i| + 1) |pi| ,

∥p∥l1ND
:= h


|i|≤N

|pi| , for p ∈ R2N+1.

First, we will define a semigroup with discrete time in the phase space

DN
=


p ∈ R2N+1

: pi ≥ 0, ∥p∥l1ND
= 1


.

To this end we will establish some preliminary lemmas. Denote v+
= max{v, 0}, v−

= max{−v, 0} for v ∈ R, and p+
=

p+

−N , . . . , p+

N


for p ∈ R2N+1. Also, we introduce the matrix

BN
h :=

1
h



0 0 0 0 0 0
1 −1 0 · · · 0 0
0 1 −1 0 · · · 0
...

. . .
. . .

. . .
. . .

...
0 0 · · · 1 −1 0
0 0 0 0 1 −1


(2N+1)×(2N+1)

, (45)

which satisfies AN
h =


BN
h

t BN
h .

Lemma 4. Assume that s ≤ T0. If pni ≥ 0, for all i, then pn+1
i ≥ 0, for all i, as well.

Proof. Since DN
h


pc,N,n
h


≥ 0, multiplying (42) by


−pc,N,n+1

h

+

and arguing in a similar way to [6, Lemma 4.1] we obtain−pc,N,n+1
h

+
2

R2N+1
≤ −s


DN
h


pc,N,n
h


+

1
c


AN
h


−pc,N,n+1

h


,

−pc,N,n+1

h

+


R2N+1
. (46)

We will check that

AN
h


−pc,N,n+1

h


,

−pc,N,n+1

h

+


R2N+1
≥ 0. Indeed

AN
h


−pc,N,n+1

h


,

−pc,N,n+1

h

+


R2N+1
=


AN
h


−pc,N,n+1

h

+

−


−pc,N,n+1

h

−


,

−pc,N,n+1

h

+


R2N+1

=

BN
h


−pc,N,n+1

h

+
2

R2N+1
−


BN
h


−pc,N,n+1

h

−

, BN
h


−pc,N,n+1

h

+


R2N+1
,
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and the result follows from
BN
h


−pc,N,n+1

h

−

, BN
h


−pc,N,n+1

h

+


R2N+1
=

1
h2

N−1
i=−N


−pn+1

i+1

−
−

−pn+1

i

− 
−pn+1

i+1

+
−

−pn+1

i

+
= −

1
h2

N−1
i=−N


−pn+1

i

− 
−pn+1

i+1

+
−

1
h2

N−1
i=−N


−pn+1

i+1

− 
−pn+1

i

+
≤ 0.

Therefore, we get from (46) that
−pc,N,n+1

h

+
2

R2N+1
≤ 0. Hence


−pc,N,n+1

h

+

= 0, so pn+1
i ≥ 0 for all i. �

Lemma 5. Let pc,N,n
h be such that


|i|≤N pni h = 1. Then pc,N,n+1

h satisfies


|i|≤N pn+1
i h = 1.

Proof. It is easy to see that the matrix AN
h satisfies

AN
h u, v


R2N+1 =


u, AN

h v


R2N+1 = 0, ∀u ∈ R2N+1, (47)

if v = h

1, . . . , 1,

(i=0)
1 , 1, . . . , 1


. Therefore, multiplying (42) by v we have


|i|≤N

pn+1
i − pni

s
h =

1
T0

 
2n1<|i|≤N

pni h


|i|≤nc

δi
ch − 1


.

Since


|i|≤nc δi
ch =

 1
2c

−
1
2c

δc (σ ) dσ = 1, we obtain
|i|≤N


pn+1
i − pni


= 0,

and the result follows. �

It follows from these lemmata that if 0 < s ≤ T0 and pc,N,0
h ∈ DN , then pc,N,n

h ∈ DN for any n ≥ 1. Thus, we can correctly

define the discrete semigroup Sc,Nh,s : DN
→ DN by Sc,Nh,s


n, pc,N,0

h


= pc,N,n

h . This map is continuous with respect to the initial

data pc,N,0
h .

Further, we will obtain an estimate of the solution pc,N,n
h in the norm of the space l

1N
.

Lemma 6. Assume that 0 < s < T0. Then there exist C, δ > 0 (independent of N and s) such thatpc,N,n
h


l1N

≤ C + e−δsn
pN,0

c,h


l1N

, (48)

for all n ≥ 1 and pN,0
c,h ∈ DN .

Proof. Wemultiply (42) by the vector v = (|i|)|i|≤N. Arguing as in the proof of Lemma 16 in [8] we obtain


|i|≤N

pn+1
i − pni

s
|i| +

1
T0


|i|≤N

pni |i| ≤

DN
h


pc,N,n
h


α

nh,c
i=−nh,c

δi
c |i| +

1
T0


|i|≤2n1

pni |i| +


DN
h


pc,N,n
h


+

1
c


2pn0
h2

≤
3

2T0h2
+


α

T0
+

1
c


2
h3

+
1

T0h2
= K .

Thus, 
|i|≤N

pn+1
i |i| ≤


1 −

s
T0


|i|≤N

pni |i| + sK , ∀n ≥ 0.
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Since 0 < 1 −
s
T0

< 1, by induction we have


|i|≤N

pn+1
i |i| ≤


1 −

s
T0

n+1 
|i|≤N

p0i |i| + sK
n

j=0


1 −

s
T0

j

≤ e
−s
T0

(n+1) 
|i|≤N

p0i |i| + KT0, ∀n ≥ 0.

Then using


|i|≤N pi ≤
1
h we havepc,N,n+1

h


l1N

≤ C + e
−s
T0

(n+1)
pN,0

c,h


l1N

. �

Nowwe are ready to prove the main result of this section stating the convergence of the solutions of problem (42) to the
solutions of problem (16).

For s > 0 denote by pc,N,s
h = {pc,N,n

h }n≥0 the unique solution to problem (42) with initial data pN,0
c,h .

Lemma 7. Assume that 0 < s < T0. Let T > 0 and n0 be such that sn0 ≤ T < (n0 + 1) s. For any solution pc,N,s
h to (42) with

initial data pc,N,0
h ∈ DN and any solution pc,Nh (·) to (16) with initial data pc,N,0

h ∈ DN it holds:pc,Nh (tn+1) − pc,N,n+1
h


l1N

≤ eK1(tn+1)
pc,N,0

h − pc,N,0
h


l1N

+

eK1(tn+1) − 1


sD1, (49)

for n = 0, . . . , n0 − 1, where the constants K1,D1 can depend on pc,Nh (·),
pc,N,0

h


l1N

, c, h,N and T , but not on s.

Proof. First we note by Lemma 13 in [8] pc,Nh (·) ∈ C2

[0, T ], R2N+1


and then

pc,Nh,i (tn+1) = pc,Nh,i (tn) + s
dpc,Nh,i (tn)

dt
+

s2

2

d2pc,Nh,i (ξi)

dt2
,

for some ξi ∈ ]tn, tn+1[. Define the map Gc,N
h : R2N+1

× R2N+1
→ R2N+1 by

Gc,N
h (p, q)


i
= −


DN
h (p) +

1
c

 
AN
h q

i −

1
T0

χZ\[−2n1,2n1] (i) pi +
DN
h (p)
α

δi
c .

Since d2pc,Nh
dt2

is continuous, it is uniformly bounded in [0, T ]. Thenpc,Nh (tn+1) − pc,N,n+1
h


l1N

≤

pc,Nh (tn) − pc,N,n
h


l1N

+ s
GN

h


pc,Nh (tn) , pc,Nh (tn)


− GN

h


pc,N,n
h , pc,N,n+1

h


l1N

+ s2M (T ) . (50)

Following a similar argument as in [6, p. 2698] we obtain the estimate:GN
h (p1, q1) − GN

h (p2, q2)

l1N

≤ K

∥q1 − q2∥l1N

+ ∥p1 − p2∥l1N


∥q2∥l1N

+ 1


, (51)

for any pi, qi ∈ DN , where K depends on α, h, T0 and c .
On the other hand, in view of Lemma 6 we getpc,N,n

h


l1N

≤ C + e−δsn
pc,N,0

h


l1N

≤ C, for all n ≥ 0, (52)

where C does not depend on s.
Therefore, using (50)–(52) we havepc,Nh (tn+1) − pc,N,n+1

h


l1N

≤

pc,Nh (tn) − pc,N,n
h


l1N

+ sK
pc,Nh (tn) − pc,N,n+1

h


l1N

+ (C + 1)
pc,Nh (tn) − pc,N,n

h


l1N


+ s2M (T )

≤

pc,Nh (tn) − pc,N,n
h


l1N

+ sK1

pc,Nh (tn) − pc,N,n
h


l1N

+

pc,N,n+1
h − pc,N,n

h


l1N


+ s2M (T ) .
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Now by (42), (52) and
DN

h


pc,N,n
h

 ≤
α
T0

we deduce thatpc,N,n+1
h − pc,N,n

h


l1N

≤ sK2, (53)

so thatpc,Nh (tn+1) − pc,N,n+1
h


l1N

≤ (1 + sK1)

pc,Nh (tn) − pc,N,n
h


l1N

+ s2K3.

By induction we obtainpc,Nh (tn+1) − pc,N,n+1
h


l1N

≤ (1 + sK1)
n+1

pc,Nh (0) − pc,N,0
h


l1N

+
(1 + sK1)

n+1
− 1

sK1
s2K3

≤ eK1(n+1)s
pc,Nh (0) − pc,N,0

h


l1N

+

eK1(n+1)s

− 1
 sK3

K1
,

for n = 0, . . . , n0 − 1. �

We consider the initial data pN,0
c,h given by (17). Then we define the step functions

pc,N,s
h (t, σ ) =


n∈Z+


i∈Z

pc,N,n
h,i χ[tn,tn+1)(t)χIi(σ ),

where pc,N,s
h =


pc,N,n
h,i


|i|≤N, n≥0

is the unique solution to problem (42) with initial data pN,0
c,h and pc,N,n

h,i = 0 if |i| > N .

Lemma 8. Let T > 0. Then pc,N,s
h converges to pc,Nh in C([0, T ], L2 (R)) as s → 0+, where pc,Nh (t, σ ) is the function defined

in (18) with the same initial data pN,0
c,h .

Proof. Let T = T + 1 and t ∈ [0, T ]. For any 0 < s < 1 there exists n (s) such that t ∈ [tn(s), tn(s)+1) ⊂ [0, T ]. Thenpc,N,s
h (t, ·) − pc,Nh (t, ·)

2
L2(R)

= h

i∈R

pc,N,n(s)
h,i − pc,Nh,i (t)

2
≤ 2h


i∈R

pc,N,n(s)
h,i − pc,Nh,i


tn(s)

2 + 2h

i∈R

pc,Nh,i


tn(s)


− pc,Nh,i (t)

2 .

In view of tn(s) → t and pc,Nh ∈ C([0, T ], L2 (R)) there exists s1 > 0, which does not depend on t ∈ [0, T ], such that


i∈Rpc,Nh,i


tn(s)


− pc,Nh,i (t)

2 < ε
4h if s < s1. Applying Lemma 7 we obtain the existence of s2 > 0 (not depending on t ∈ [0, T ])

such that
i∈R

pc,N,n(s)
h,i − pc,Nh,i


tn(s)

2 =

pc,N,n(s)
h − pc,Nh


tn(s)

2
R2N+1

≤ C1

pc,N,n(s)
h − pc,Nh


tn(s)

2
l1N

≤ C2


eK1T − 1


s ≤

ε

4h
,

if s < s2. Thus, there is s3 > 0 such that for any t ∈ [0, T ] and any s < s3 one haspc,N,s
h (t, ·) − pc,Nh (t, ·)

2
L2(R)

≤ ε. �

Finally, we will put together the three convergences from Section 2 and this new one.
We take sequences cm → ∞, cm ∈ N, hn,m → 0 (as n → ∞), such that 1

2cmhn
= nhn,cm ∈ N. Let us consider the sequence

of initial data p0, p0c , p
0
cm,hn,m and pN,0

cm,hn,m described in Section 2. Let p, pcm , pcmhn,m , pcm,N
hn,m , pcm,N,s

hn,m be the solutions to problems

(1), (4), (8), (16) and (42), respectively, with the corresponding initial conditions p0, p0cm , p
0
cm,hn,m and pN,0

cm,hn,m .
Then from the results in Section 2 and Lemma 8 we have the following convergences:

pcm,N,s
hn,m → pcm,N

hn,m in C([0, T ], L2(R)) as s → 0+,

pcm,N
hn,m → pcmhn,m in C([0, T ], L2(R)) as N → ∞,

pcmhn,m → pcm in C([0, T ], L2(R)) as n → ∞,
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Table 1
α = 0.6; h = 0.001; N = 10 000; s = 0.1.

Value of c Time ∥pc,N,n
h ∥L1(R) ∥pc,N,n

h − p̄c,Nh ∥L2(R) ∥p̄c,Nh − p̄∥L2(R)

c = 50

t = 0.0 1.0 1.08085618491

0.125390802601

t = 0.1 1.0 0.882963512592
t = 0.5 1.0 0.494129450788
t = 1.2 1.0 0.23640717103
t = 4.8 1.0 0.0192086602722
t = 10.0 1.0 0.001139880963

c = 125

t = 0.0 1.0 1.10354101408

0.0831586822063

t = 0.1 1.0 0.907744048993
t = 0.6 1.0 0.46468164988
t = 1.3 1.0 0.241399232916
t = 6.2 1.0 0.019267902446
t = 10.0 1.0 0.00432273450475

c = 500

t = 0.0 1.0 1.12440163552

0.0400867762899

t = 0.1 1.0 0.930302934472
t = 0.6 1.0 0.490055110457
t = 1.5 1.0 0.234584869029
t = 9.2 1.0 0.0196430452113
t = 10.0 1.0 0.0163811084573

pcm → p in C([0, T ], L2(R) ∩ L
1
(R)) as m → ∞.

Hence, we obtain the iterate limit

lim
m→∞

lim
n→∞

lim
N→∞

lim
s→0+

pcm,N,s
hn,m = p in C([0, T ], L2(R)).

5. Numerical simulations

This section is devoted to illustrate graphically the numerical simulations given by the discrete finite-difference
approximations from the previous section. We shall consider two different initial conditions, the first one being a Gaussian
density and the second one being a constant density inside an interval and zero outside of it. Let us point out that the
examples reported below are only a small sample intended for showing the behaviour of the approximations, and that
similar results are obtained when initial conditions are changed.

Gaussian density

Consider the problem (1) with initial condition given by the Gaussian function having a mean of −2 and a standard
deviation of 0.4:

p0(σ ) =
1

0.4
√
2π

e−
1
2


σ+2
0.4

2
.

Let us fixed the parameters α = 0.6, h = 0.001, s = 0.1 and N = 104. Figs. 1–3 depict the solution pc,N,n
h of (42) (with initial

data pN,0
c,h givenby (17)) for different values ofn and c and the fixedpoints p, pc,Nh of problems (1) and (42), respectively. Table 1

collects, on the one hand, the numeric measures describing how fast the solutions of the discrete system (42) converge to
the unique fixed point of the system and, on the other hand, the distance in the space L2(R) of the unique fixed point pc,Nh
of system (42) to the unique fixed point p of Eq. (1) with positive value of D(p).

Uniform density on an interval

Consider the problem (1) with initial condition given by the function

p0(σ ) =


1, if σ ∈ [−2.5, −1.5],
0, otherwise.

Let us fixed the same parameters α = 0.6, h = 0.001, s = 0.1 and N = 104. Figs. 4–6 and Table 2 show similar results as in
the previous example.

These numerical simulations suggest that the fixed point p is not only asymptotically stable but every solutionwith initial
data p0 satisfying D(p0) > 0 converges to it as time tends to +∞.
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Table 2
α = 0.6; h = 0.001; N = 10 000; s = 0.1.

Value of c Time ∥pc,N,n
h ∥L1(R) ∥pc,N,n

h − p̄c,Nh ∥L2(R) ∥p̄c,Nh − p̄∥L2(R)

c = 50

t = 0.0 1.0 1.20499712827

0.125390802601

t = 0.1 1.0 0.931089684917
t = 0.6 1.0 0.447116512478
t = 1.2 1.0 0.239084976463
t = 4.8 1.0 0.0192266615085
t = 10.0 1.0 0.00112649297488

c = 125

t = 0.0 1.0 1.22968032642

0.0831586822063

t = 0.1 1.0 0.954905314626
t = 0.6 1.0 0.473224445693
t = 1.3 1.0 0.243729229683
t = 6.2 1.0 0.0192858187493
t = 10.0 1.0 0.00431010522074

c = 500

t = 0.0 1.0 1.24998608633

0.0400867762899

t = 0.1 1.0 0.976049250289
t = 0.6 1.0 0.498354753926
t = 1.5 1.0 0.236303475973
t = 9.2 1.0 0.0196628831918
t = 10.0 1.0 0.0163955298278

Fig. 1. α = 0.6; c = 50.0; h = 0.001; N = 10 000; s = 0.1.

6. Conclusions

In this paper we have completed the mathematical study of the numerical scheme which was introduced in [8] in order
to study the non-Newtonian suspensionmodel (1). In that paper, as explained in Section 2, the convergence of the solutions
of a sequence of approximative problems to the solution of the initial-value problem (1)–(2) was proved. In the present
paper, we have extended such results in two ways.

First, we have checked that in the approximative equations there exists a unique fixed point, and that it converges to the
unique equilibrium of the original equation with support outside the interval [−1, 1].

Second, we have considered a full discretized system (for both spatial and temporal variables), implementing in this
way numerical simulations of the solutions. What is more, these simulations allow for formulating an interesting and
realistic hypothesis about the asymptotic behaviour of solutions of the original equations.

The main advantage of our approximative scheme is the fact that we have been able to perform a rigorous mathematical
analysis of the convergence of the solutions and, moreover, we have shown that the essential features of the dynamics of the
approximative systems are the same as in the original equation (in particular, the limit point of the approximative solutions
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Fig. 2. α = 0.6; c = 125.0; h = 0.001; N = 10 000; s = 0.1.

Fig. 3. Parameters: α = 0.6; c = 500.0; h = 0.001; N = 10 000; s = 0.1.

as time goes to infinity is close to the unique equilibrium of the original equation with support outside the interval [−1, 1]).
Such results are much more difficult or even impossible to achieve for more complex approximations. Of course, since the
approximations are simpler, the convergence is slower as well, which is a drawback. However, as the dynamics in ourmodel
is quite simple (it seems that all the solutions with support outside the interval [−1, 1] converge to a given fixed point as
time increases), this is not relevant.
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Fig. 4. α = 0.6; c = 50.0; h = 0.001; N = 10 000; s = 0.1.

Fig. 5. α = 0.6; c = 125.0; h = 0.001; N = 10 000; s = 0.1.
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