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PREFACE 

Mathematical modeling of processes and phenomena in various fields of 

science and technology is one of the main ways to obtain new knowledge and 

develop new technologies. When performing mathematical modeling, a 

modern engineer, regardless of his specialization, must have a minimum set of 

algorithms for computational mathematics, as well as methods of their software 

implementation on modern personal computers (PCs). 

The main purpose of the presented manual is to present the basics of 

modern methods of computational mathematics on the basis of the general 

course "Higher Mathematics" for technical universities in order to implement 

numerical methods using modern computer technology. 

The textbook consists of six sections. The first and second sections 

discuss the basic numerical methods for solving linear and nonlinear equations. 

For systems of linear algebraic equations - this is the Gaussian method, the 

method of LU - decomposition, iterative methods. For nonlinear equations, the 

method of simple iteration and Newton's method with conditions of their 

convergence are considered. The third and fourth sections are devoted to the 

issues of numerical interpolation and numerical integration of functions. The 

fifth section outlines the basic approaches to constructing numerical algorithms 

for solving ordinary differential equations. One-step and multi-step methods 

for solving differential equations are considered. The application of numerical 

methods for solving ordinary differential equations for problems that arise in 

modern technology is shown. The sixth section is devoted to methods of 

processing experimental data. 

In presenting the material in all sections of the manual are detailed 

examples and approaches to the application of numerical methods for solving 

specific problems with the presentation of appropriate graphic material. 
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The manual can also be used when conducting a computing workshop on 

modern PCs. 
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TITLE 1. NUMERICAL SOLUTION OF SYSTEMS OF LINEAR 

ALGEBRAIC EQUATIONS 

 

§ 1.1. Short theoretical information 

Will consider the system of linear equations in a matrix kind: 

 

,bxA =        (1) 

 

where A is a matrix of size nn  with permanent coefficients; b  is n - 

dimensional vector of the known constants; x - n - dimensional vector  of 

unknown values. 

In matrix-vector form this system can be written as 
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   (2) 

 

In practice for the solution of the systems of not high order ( 42n = ) the 

method of Cramer is used. In obedience to this rule, at the solution of the system 

(2), k- th component 
kx  of vector x  it is determined in obedience to formulas  

 

,
)Adet(

)Adet(
x k

k =       (3) 

 

where )Adet( -визначник matrices And, )Adet( k
– determinant  of matrix A, in 

what k-th column is replaced by a vector b . 
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In particular, for a case 3n =  formulas (3) have a next kind 

 

,
)Adet(

)Adet(
x,

)Adet(

)Adet(
x,

)Adet(

)Adet(
x 3

3
2

2
1

1 ===  

 

where 

,

aaa

aaa

aaa

)Adet(

333231

232221

131211

=     ,

aab

aab

aab

)Adet(

33323

23222

13121

1
=  

,

aba

aba

aba

)Adet(

33331

23221

13111

2
=    .

baa

baa

baa

)Adet(

33231

22221

11211

3
=  

 

As specified already, the rule of Cramer was used for the decision of the 

systems of equations of not high order and, mainly, at theoretical researches. At 

the increase of order of the systems this method requires the considerable 

expenses of machine time, and in calculable practice is used seldom. It is also just 

for being of decision of the systems of linear equations by means of inverse matrix  

 

,bAx 1−=  

 

where 
1A−
it is an inverse matrix to initial. 

 

§ 1.2. Gauss method of solution of the systems of linear equations 

 

Will consider system of equations (2) in a next kind 
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











=+++

=+++

=+++

.bxa...xaxa

................................................

bxa...xaxa

bxa...xaxa

nnnn22n11n

2nn2222121

1nn1212111

   (4) 

 

Will divide the first equation of the system (4) into 
11a  and will write down 

him in a kind 

 

,b...xaxax )1(

13

)1(

132

)1(

121 =+++  

 

where next denotations are entered: 1112

)1(

12 a/aa = , ..., 11n1

)1(

n1 a/aa = , .a/bb 111

)1(

1 =  

An overhead index specifies in brackets, that coefficients were one time 

changed. Will multiply this equation on 
21a−  and will add him to the second 

equation. The coefficients of the new got second equation look like 

;n,1j,aaaa )1(

j121j2

)1(

j2
=−= .babb )1(

1212

)1(

2
−=  Such approach at the choice of 

multiplier provides equality to the zero of coefficient   .a )1(

21    Like for other 

equations next substitution 

 

;n,1j;n,2i,babb,aaaa )1(

11ii

)1(

i

)1(

j11iij

)1(

ij
==−=−=  

 

provides equality to the zero of all coefficients in the first column of matrix A, 

after an exception ,a )1(

11  what equals 1. Actually it is not needed to calculate an 

element that becomes zero. Elements 
1ia  now does not occupy memory the 

personal COMPUTER, and calculations are executed, beginning from .2j =  

As a result of such transformation of initial matrix equations  take the form 
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.bxa...xaxa
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On a next step will exclude from consideration the first line and first column 

of the system (5) and will apply analogical foregoing procedure to equations from 

the second to n -th. Will write down formulas for the calculation of new values of 

coefficients: 
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Repeat this procedure for all lines of regenerate matrix. If to designate 

,aa ij

)0(

ij =  then the general formula of Gauss method of exception be written 

down as follows: 
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  (6) 

 

As a result the system of equations take the form 

 



11 
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Formulas are presented higher show by itself direct motion of method of 

Gauss method of exception. The system of kind (7) has a three-cornered 

structure, that allows consistently to calculate the value of unknown, beginning 

from the last 

 

.
a

xa...xab
x

;
a

xa...xab
x

...................

;b
a

b
x

11

nn12121

1

)1(

22

n

)1(

n23
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23
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2

2

)n(

n)1n(

nn
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n
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=

−−−
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==
−

−

   (8) 

 

This process of successive calculation of values unknown is named the 

reverse calculation of Gauss method of exception. 

An algorithmic process is described higher shows by itself the method of 

exception of Gauss. In the case when 0akk = , then it is impossible to use k -th 

line for the exception of elements of k -th column. In this case it is needed to 

change a k -th line placed with other line under a diagonal thus, that main element 

0akk  . If it not maybe to execute this condition, the initial matrix of coefficients 

of the system of linear equations means is degenerate and the system does not 

have an only decision.  
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The algorithm of method of exception of Gauss is realized by two groups 

of formulas is direct motion and countermove. Direct motion of method of 

exception consists of n steps that is set forth below. 

1-st step. Will divide the first equation of the initial system (4) into 

)0a(a 1111   and bring the system (4) over to the kind (5).   

2-nd step. Eliminate from consideration the first line and first column of 

regenerate matrix and will apply analogical foregoing procedure to equations 

from the second to n th taking into account the formulas of type (6). 

n- th step. The system over of equations is brought to the kind (7). The 

countermove of method of exception of of Gauss will be realized in obedience to 

formulas (8). 

For example: will consider the system of kind 

 








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=+++
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20xx2x2x4
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1–st step of exception. In the first equation coefficient at 1a11 = coming 

from it, will increase the elements of the first line accordingly on 

3a,4a,2a 413121 −===  and will take away them from the second, third and 

fourth equations. This is provide equality to the zero of coefficients at 
1x  

beginning from the second equation. Thus, the system of equations assumes a next 

type 

 


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2–nd step of exception. The last three equations of the previous system are 

examined. The coefficients of the second equation are divided by 4a )1(

22 −= then 

multiplied accordingly by 6a )1(

31 −=  and 7a )1(

41 =  and subtracted from the third and 

fourth equations of the system. The second step of exception results in the system 
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3–the step of exception results in the system of three-cornered kind (7) 
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Implementing ountermove of method of Gauss, from the last equation 

18x9 4 −=− find .2x4 =  Put 
4x  in the third equation get 4x3 = . From the second 

equation have 1x2 −=  and from the first 3x1 = . As a result, the decision of the 

initial system is got .)2,4,1,3(x T−=  

At application of direct motion of   Gauss method initial system over of 

equations is brought to the three-cornered kind. 

 













=

=+++

=++++

−− .bxa

......................

bxa...xaxa

bxa...xaxaxa

)1n(

nn

)1n(

nn

)1(

2n

)1(

n23

)1(

232

)1(

22

1nn1313212111

  (9) 
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Determinant of initial matrix A, in obedience to representation (9), it is 

determined after a formula 

 

.a...aaAdet )1n(

nn

)1(

2211

−=     (10) 

 

Thus, the determinant Adet  is equal to the product of all elements on the 

main diagonal of the system (9).  

For example: will calculate determinant for the system of equations, that 

was examined in a previous example 
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After application of direct motion of Gauss exception method   the initial 

system of equations has a next kind 

 



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Thus, the determinant of the system is calculated on a formula (2.10) 

.180)9()5()4(1aaaaAdet )3(

44

)2(

33

)1(

2211 −=−−−==  
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§ 1.3 LU method of calculation of the systems of linear equations 

One of widespread modern methods of calculation of the systems of linear 

algebraic equations of there is a triangular matrix decomposition method, or LU 

of – factorization. 

 The algorithms of this method are near to the method of exception of 

Гаусса. Main advantage of method of LU of -факторизації as compared to the 

method of exception of Gauss is possibility of receipt of more effective decisions 

for different vectors b  in right part of the system (2.1) at an unchanging initial 

matrix And.  

Possibly, that the matrix of the system of equations (1) can be decomposed 

on two factors: 

 

,LUA =       (11) 

 

where a matrix is L it is bottom three-cornered, and matrix U  - overhead three-

cornered (denotation of these matrices originates from the first letters of the 

English words of Low – lower and Upper – overhead, that becomes clear from 

presentation of kind (2.12)). Will mark, that on the main diagonal of matrix U   

there are units. Coming  from it, determinant of matrix A  equals the product of 

diagonal elements 
iil matrices L . 

Structure of matrices L  and U  it is determined by next representation 
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It is known that for every undegenerate matrix and curriculum of kind (11 - 

12) it exists and only. Will present the system of equations in a next kind: 

 

                                         .bxLU =                                           (13) 

 

Will define an auxiliary vector z  as 

                                                   .zxU =                                             (14) 

 

From this equation vector z  finding is impossible, as unknown is a vector x

. But, if to put z  in (2.13), will get 

 

                                         .bzL =                                              (15) 

 

Due to the nospread function of matrix L  vector z  it is possible easily to 

define. For this purpose will write (2.15) down as a system of equations 

 

,bzl...zlzlzl

.........................

bzlzlzl

bzlzl

bzl

nnnn33n22n11n

3333232131

2222121

1111

=++++

=++

=+

=

   (16) 

 

from where get  

 

 

..................

,l/)zlzlb(z

,l/)zlb(z

l/bz

3323213133

2212122

,1111

−−=

−=

=

   (17) 

or in a general view 
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.n,2i,l/zlbz

l/bz

ii

1i

1j

jijii

1111

=

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



−=

=


−

=

  (18) 

 

This process is named a direct exception (by a direct substitution or direct 

motion). That equation (2.18) made sense, diagonal elements of matrix L  must 

not zero.  

As a vector z  it is found, will come back to (2.14) and will find the vector 

of unknown x . For this purpose will write (2.14) down in a co-ordinate form 

 

.zx

zxux

.....................

zxu...xux

zxu...xuxux

nn

1nnn,1n1n

2nn23232

1nn13132121

=

=+

=+++

=++++

−−−

    (19) 

 

Beginning from the last equation, it is possible consistently to find the 

components of vector x . In a general view reverse substitution (or countermove) 

determined after formulas 

 

.1,1ni,xuzx

,zx

n

1ij

jijii

nn

−=−=

=


+=

    (20) 

 

Thus, the decision of СЛАР can be found by means of foregoing algorithm, 

if the curriculum of matrix is known and on the corresponding three-cornered 

matrices of L and U, in obedience to formulas (12). 

For example: to untie the system of equations, using L - U time-table.  Will 

consider the system of kind 
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










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−=−++−
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Find the coefficients of matrices L  and U  coming from presentation of 

their product (11 - 12) for the case of matrices of size 44  

 

.
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ululullulullull

ulululullull

ululull

44344324421441432342134142124141
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

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

++++++

+++++
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In obedience to the last presentation of product of matrices calculate the 

elements of matrices L  and U  in a next sequence: 

1) directly equating the elements of the first column with the corresponding 

elements of initial matrix A  get 

 

,al,al,al,al 4141313121211111 ====  or 

;1l,2l,5l,3l 41312111 ==−==  

 

2) find unknown 
141312 u,u,u  first to the line  

 

;
3

2

l

a
u,

3

1

l

a
u,

3

1

l

a
u
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14
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13
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12 ==−====  

 

3) find 
423222 l,l,l  from the second column of matrix  
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,ulal,ulal,ulal 124142421231323212212222 −=−=−=  or 

 

;
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3

2

3

1
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3

8

3

1
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4) find 
2423 u,u  in obedience to formulas 
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l
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u
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−
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1
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−−−

=  

 

5) sizes 
4333 l,l  calculate matrices coming from the values of the third column 

A  

 

,ululal,ululal 234213414343233213313333 −−=−−=  or 

 

;6
2

1
)

3

16
()

3

1
(13l,2

2

1
)

3

2
()

3

1
(21l 4333 =−−−−==−−−−=  

 

6) size 
34u  calculated on a formula 

 

,
l

ulula
u

33

2432143134
34

−−
=    ;

4

5

2

)
4

1
()

3

2
(

3

2
21

u34 −=

−−−−−

=  
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7) find the last element of matrix L  

 

,ulululal 3443244214414444 −−−=  or 

 

.
2

5
)

4

5
(6)

4

1
()

3

16
(

3

2
13l44 =−−−−−−−=  

 

Thus matrices L  and U  have a next kind 

 

.

1

25,11

25,05,01

6667,03333,03333,01

U,

5,263333,51

26667,02

6667,25

3

L





















−

−

−

=





















−

−

−
=  

 

Coming from equations (2.15), or in the unfolded kind are formulas (16), 

will get upshots for a vector z  

 

,
l

b
z

11

1
1 =  or ;2

3

6
z1 ==  

 

,
l

zlb
z

22

1212
2

−
=  or ;75,0

3

8

2)5(12
z2 −=

−−−
=  

 

,
l

zlzlb
z

33

2321313
3

−−
=  or ;75,1

2

)
4

3
()

3

2
(221

z3 −=

−−−−

=  

 

,
l

zlzlzlb
z

44

3432421414
4

−−−
= or 
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.3

2

5

)
4

7
(6)

4

3
()

3

16
(213

z4 =

−−−−−−

=  

 

Going back to the system (19) it is possible to define the components of 

vector x  

 

,44 zx =  or ;3x4 =  

 

,xuzx 43433 −=  or ;2x,3)25,1(75,1x 33 =−−−=  

 

2 2 23 3 24 4 ,x z u x u x= −  −  or 

 

;1x,3)25,0(25,075,0x 22 −=−−−−=  

 

,xuxuxuzx 41431321211 −−−=  or 

 

.1x,3
3

2
2)

3

1
()1(

3

1
2x 11 =−−−−−=  

 

 

§ 1.4. Error of decision of the system of linear equations 

 

Will enter the concept of norm of vector and matrix, and also concept 

conditionalities of matrix, with that there are the constrained questions of 

estimation of error of untiing of the systems of linear equations. 

By the norm of vector )x...,,x,x(x n21=  name a material number that is 

designated - ||x||  and satisfies next terms: 
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1) 0||x||  , thus 0||x|| =  then and only after, if 0x = ; 

2) ||x|||c|||xc|| = , where с is a scalar size; 

3) ||y||||x||||yx|| ++ . 

Function of kind 

 

p/1
n

1i

p

ip |x|||x|| 







= 

=

 

 

at arbitrary 1p   satisfies the indicated axioms of norm. The norm of such to the 

type is named the norm of Gelder with an index.  Among Gelder  norms most 

widespread are following: 

 

−−=
=

l|x|||x||
n

1i

il norm, 

 

−−







= 

=

k|x|||x||

2/1
n

1i

2

ik  norm 

 

−−=


m|x|max||x|| i
ni1

m norm. 

 

Norm 
k||x||  named also euclidean  and designated 

E||x|| . 

For example: let a vector is set )3,2,1(x = . In obedience to the brought 

norms over have 

 

;6321|x|||x||
3

1i

il =++==
=
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;74,314941321|x|||x|| 222

2/1
3

1i

2

ik =++=++=







= 

=

 

 

.3)3,2,1(max|x|max||x||
i

3i1
m

===


 

 

All norms of vectors are equivalent in the that understanding, that if 

sequence of vectors  )x,...,x,x(x j

n

j

2

j

1

j =  gathers on some norm to the vector 

)x,...,x,x(x 0

n

0

2

0

1

0 = id est  

 

,0||xx||lim 0j

j
=−

→
 

 

then she gathers to the vector 
0x  and on arbitrary to other norm. In finite-

dimensional  the rationed space from convergence on a norm coordinate-wise  

convergence swims out and vice versa. It is thus assumed that sequence of vectors 

}x{ j  coordinate-wise  gathers to the vector 
0x if for all n,...,2,1i =  correlations 

are executed  

 

.xxlim 0

i

j

i
j

=
→

 

 

By the norm of matrix A a material number is named ||A|| that satisfies 

next axioms: 

1) 0||A||  ,  0||A|| =  then and only after, if 0A = (0 is a zero matrix); 

2) ||A||||||A|| = , where   it is a scalar size; 

3) ||B||||A||||BA|| ++ ; 

4) ||B||||A||||AB||  , 
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where In is a matrix the dimension of that coincides with the dimension of matrix 

And. 

Norm of matrix ||A||  named concerted with the norm of vector ||x|| , if for 

arbitrary But also x  correlation is executed 

 

.||x||||A||||xA||   

 

Will mark, that with the  same  norm  of vector  can  be concerted different 

norms of matrices. 

Let ||A||  it is the norm of matrix, concerted with the set norm of vector  

||x|| . Norm ||A||  named inferior to the norm of vector ||x|| if there will be such 

vector 0x  that  

 

.||x||||A||||xA|| =  

 

Thus, among all norms concerted with the set vectorial norm, an inferior 

norm is minimum. Will mark, that for the arbitrary norm of vector exists even one 

inferior norm of matrix. 

The arbitrary norm of matrix satisfies inequalities: 

 

1||E||  , where Е is an unit matrix; 

 

,1||A||||A|| 1  −  if And is an undegenerate matrix. 

 

For an inferior norm correlations are executed 

 

            ;
||A||1

1
||AE||;1||E|| 1

−
= −

           .||B||||A||||AB||   
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It is thus assumed that corresponding operations have maintenance. 

The next norms of matrices have the most use: 

 


=

=
n

1j

ij
i

m |a|max||A||         –       (m is a norm); 

 


=

=
n

1i

ij
j

l |a|max||A||         –        (l is a norm); 

 

2
n

1j,i

ijk |a|||A|| 
=

=           –       (k is a norm). 

 

For example: let a matrix is set  

 

















=

987

654

321

A . 

 

In obedience to the brought norms over have 

 

;24)24,15,6max()987,654,321max(|a|max||A||
3

1j

ij
i

m ==++++++== 
=

 

 

;18)18,15,12max()963,852,741max(|a|max||A||
3

1i

ij
j

l ==++++++== 
=

 

 

=++++++++== 
=

2222222222
3

1j,i

ijk 987654321|a|||A||  
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              8,16285816449362516941 =++++++++= . 

 

In particular, norm of matrix 

 


=

=
n

1j

ij
i

m |a|max||A||  

 

inferior to the norm of vector 
m||x|| .  

Norm of matrix  

 


=

=
n

1i

ij
j

l |a|max||A||  

 

inferior to the norm of vector 
l||x|| . 

Euclidean  norm of matrix 

 

                                                   2
n

1j,i

ijk |a|||A|| 
=

=             

concerted with the norm of vector 
k||x||  . In general case a euclidean  norm is not 

inferior. 

In practical problems elements of matrix But also vector b  in the system 

bxA =  are close numbers. At untiing of the system the errors of rounding appear 

an arbitrary exact method. Will set dependence between the error of decision and 

properties of matrix And. 

Will examine the errors of calculations, that by визвані indignation of right 

part of the initial system of equations. Let xxx += it is a decision of the 

indignant system bb)xx(A +=+ where b it is indignation of vector b , x

it is a corresponding error of exact decision x . Then 
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,bAx;bxA;bbxAxA 1==+=+ −  

 

.||b||||A||||x|| 1  −  

 

Taking into account, that xAb =  and ,||x||||A||||b||   it is possible to 

write down .||b||||x||||A||||A||||b||||x|| 1  −  From where swims out 

 

.
||b||

||b||
||A||||A||

||x||

||x|| 1 


 −  

 

Thus, relative error of decision 
||x||

||x||
x


=  estimated through the relative 

error of right part 
||b||

||b||
b


=  by means of inequality 

 

                                             .||A||||A|| b

1

x  −                                 

(2.21) 

Size  

 

||A||||A||)A(cond 1−=                                 (2.22) 

 

named a measure or number of conditionality of matrix And. She is a maximally 

possible amplification factor ( 1)A(cond  ) relative error of untiing at indignant 

right part. Analogical results take place at the change of coefficients of matrix.  

In a number of cases the number of conditionality of matrix is related to the 

estimation of own numbers.  

By the own values of matrix And numbers are named  that satisfy equation  
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,0)EAdet( =−  

 

where Е is an unit matrix. 

Thus, the number of conditionality of matrix is determined in obedience to 

a formula 

 

.
|)A(|min

|)A(|max
)A(cond

i
i

i
i




=                                    (2.23) 

 

In case of symmetric matrix of value of sizes )A(cond got for to the 

formulas (2.22), (2.23) coincide at the choice of norm 
k||A|| . 

As follows from inequality (2.21), error of untiing of the system bxA =  it 

can appear considerable, if the matrix of the system is characterized by great 

variation of own numbers. 

For example: system of equations  

 





=+

=+

,33.2y33.1x0.1

0.7y0.4x0.3
 

 

has a decision 1y,1x == . Will consider the system of equations, that can be got 

from the initial system to small indignations of coefficients of right part of the 

system 

 

                                           




=+

=+

.32.2y33.1x0.1

0.7y0.4x0.3
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A decision of the last system will be 4y,3x =−= . In this case the small 

change of coefficients of equation (less than one percent) causes the considerable 

change of decision (hundreds of percents). 

Will conduct research of conditionality of matrix And in relation to 

different norms.   

In obedience to the conducted calculations follows, that )A(cond  on a norm 

l||A||  equals 3.7310e+003, on a norm 
k||A||  -  2.7769e+003. Size )A(cond  in 

obedience to a formula (2.23) equals 1.8769e+003. At the absolute error of right 

parts 01.0b1 =  the relative error of right parts of the indignant system in relation 

to the initial system is determined after a formula  
||b||

||b||
b


= and error of decision 

-  )A(condbx  . On a norm 
l||A||  relative error of decision (of x=3.9989, and 

on a norm 
k||A||  - (x=3.7639, that comports with the got results. 

 

§ 1.5. Iteration methods of untiing of the systems linear equations of algebra 

 

In a number of cases direct methods of decision of the systems of linear 

equations of algebra are effective not enough. Iteration methods are used in these 

cases. These methods will play an important role in calculable mathematics and 

will meet farther in next parts of manual. 

System of equations bxA = can be regenerate to the equivalent system of 

kind  

 

                                         ,cxBx +=                                          (24) 

 

where x it is a vector of unknown, and In and c  - a matrix and vector are some 

new accordingly. Setting some zero approaching ( )T)0(

n

)0(

2

)0(

1

)0( x,...,x,xx =  and 
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coming from representation (2.24), build a close decision 
)k(x  after next recurrent 

formulas 

 

                                     ....,2,1,0k,cxBx )k()1k( =+=+                     (25) 

 

The iteration process of kind (2.25) will name the method of simple 

iteration.  

In the unfolded kind the system (2.24) can be presented, for example,  in a 

kind 

               

,)bxa...xaxa(
a

1
x

.........................

,)bxa...xaxa(
a

1
x

,)bxa...xaxa(
a

1
x

n1n1n,n22n11n

nn

n

2nn2323121

22

2

1nn1313212

11

1

+−−−−=

+−−−−=

+−−−−=

−−

             (26) 

 

id est the first equation is untied relatively 
1x second relatively - 

2x and  т. д. An 

iteration process for the system (2.26) has a next kind in obedience to formulas  

                   

...,2,1,0k

,)bxa...xaxa(
a

1
x

.........................

,)bxa...xaxa(
a

1
x

,)bxa...xaxa(
a

1
x

n

)k(

1n1n,n

)k(

22n

)k(

11n

nn

)1k(

n

2

)k(

nn2

)k(

323

)k(

121

22

)1k(

2

1

)k(

nn1

)k(

313

)k(

212

11

)1k(

1

=

+−−−−=

+−−−−=

+−−−−=

−−

+

+

+

           (27) 

 

An iteration process (2.27) is completed at implementation of next condition 
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                               ,const;n,1i,
x

xx
max

)1k(

i

)k(

i

)1k(

i

i
==

−
+

+

               (28) 

 

where  it is the set exactness of decision. 

The method of simple iteration gathers to the sought after decision, if 

sufficient terms are executed convergences of iteration process, that can be written 

down in a kind 

                                                 .1
a

a
max

n

1j
ii

ij

i


=

                                  (29) 

 

Id est, maximal sum of the modules of relations of coefficients of any line to the diagonal coefficient 

less unit. This inequality means that  the diagonal elements of the system must meet a condition 

 

                                             .aa
n

1j
,ij

ijii 

=


                                          (30) 

 

Taking into account, that by the decision of the system on k th to the 

iteration there is a vector 
)k(x then for determination of condition of completion  

of convergence of iteration process it is expedient to apply the concept of distance 

between two vectors.  There are a few methods of distance-finding (or metrics) 

between two vectors y,x . It is possible to determine distance between vectors a 

next formula  

 

                                 .|yx|)y,x(
n

1i
ii

=

−=                                (31) 

 

Maybe application and another way of determination of metric 

 



32 

                                 .)yx()y,x(

2/1n

1i

2

ii 







−= 

=

                                (32) 

 

The condition of completion of iteration process looks like  

 

                                               ,)x,x( )k()1k(  +
                                    (33) 

where a metric is )y,x( it is determined in obedience to formulas (31) or (32). 

 Summarizing, will point the algorithm of decision of the system of linear equations (2.1) 

of algebra the method of simple iterations : 

1. In the system of equations (2.1) check up implementation of condition (3.30). If a condition 

is not executed, then the initial system of equations transforms to the equivalent system a 

condition (2.30) is executed in that.  

2. The equivalent system of equations appears in a kind (2.24).  

3. The initial approaching is set ( )T)0(

n

)0(

2

)0(

1

)0( x,...,x,xx = and size of exactness  . At 

implementation of condition (2.30) an iteration process gathers at any initial approaching. In 

practice a vector sets to the initial approaching c  in obedience to a formula (2.24).  

4. Calculate the next approaching on a formula (2.27). 

5.  Estimate the "closeness" of two progressive approximations 
)1k(x +
 and 

)k(x  by means of 

formulas of metric (2.31) or (2.32). Check up a condition  + )x,x( )k()1k(
. If a condition 

is not executed - go back to a point 4. If a condition is executed - a decision is got. 

For example: let the system of equations is set 

 

 

.6,24x1,12x3,1x5,2x9,0)D(

;7,13x8,10x5,8xx2,1)C(

;3,5x5,2x5,1x2,11x2,1)B(

;3,12x6,1x6,0x10x7,9)A(

4321

4321

4321

4321

=+++

−=−+−

=+++

−=−+−

 

 

The coefficients of the initial system dissatisfy to the necessary condition 

of convergence of iteration process in obedience to formulas (3.30). Will conduct 

the series of equivalent transformations.  
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In equation (В) coefficient at 
2

x there is a more sum of the modules of other 

coefficients on the module, that is why this equation can be left for the second 

equation of the new system. Coefficient at 
4

x  in equation (D) also anymore than 

sum of the modules of other coefficients of equation (D), that is why this equation 

can be taken for fourth equation of the new system. Thus, the new system has a 

next kind: 

 

.6,24x1,12x3,1x5,2x9,0)IV(

................)III(

;3,5x5,2x5,1x2,11x2,1)II(

................)I(

4321

4321

=+++

=+++
 

 

Analysing the set system, see that for the receipt of equation (І) with a 

maximal on the module coefficient at 
1

x  it is enough to take the sum of equations 

(А)+ (В) : 

 

          .7x9,0x1,2x2,1x9,10)I(
4321

−=+++  

 

For the receipt of equation (ІІІ) with a maximal on the module coefficient 

at 
3

x  it is enough to take the sum of equations (С)+  (D) : 

 

          .3,10x3,1x8,9x5,1x1,2)III(
4321
=+++  

Finally get the regenerate system of equations And - IV, that equivalent 

to the initial system and meets the condition of convergence of iteration 

process (2.30) 
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











=+++

=+++

=+++

−=+++

.6,24x1,12x3,1x5,2x9,0

;3,10x3,1x8,9x5,1x1,2

;3,5x5,2x5,1x2,11x2,1

;7x9,0x1,2x2,1x9,10

4321

4321

4321

4321

 

 

For application of method of iterations will write down the system in a 

kind  

 


















+−−−=

+−−−=

+−−−=

−−−−=

.)6,24x3,1x5,2x9,0(
1,12

1
x

;)3,10x3,1x5,1x1,2(
8,9

1
x

;)3,5x5,2x5,1x2,1(
2,11

1
x

;)7x9,0x1,2x2,1(
9,10

1
x

3214

4213

4312

4321

 

 

This system of equations in matrix - vectorial kind written down 

cxBx += where  

B = 

         0   -0.1101   -0.1927   -0.0826 

   -0.1071         0   -0.1339   -0.2232 

   -0.2143   -0.1531         0   -0.1327 

   -0.0744   -0.2066   -0.1074         0 

c = 

   -0.6422 

    0.4732 

    1.0510 

    2.0331 
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For a zero approaching of initial vector 
)0(x  accept the column of free 

members of the system cx )0( = . The results of calculations are driven to the 

next table 2.1 

 

                                                                                Table 2.1 

 

Numbe

r 

Iteratio

ns 

 

)k(

1
x  

 

 

)k(

2
x  

 

)k(

3
x  

 

)k(

4
x  

1 -1.0647 -0.0525 0.8465 1.8701 

2 -0.9539 0.0565 1.0391 2.0322 

3 -1.0164 -0.0174 0.9772 1.9807 

4 -0.9921 0.0091 1.0087 2.0073 

5 -1.0033 -0.0036 0.9960 1.9966 

6 -0.9985 0.0017 1.0017 2.0014 

7 -1.0006 -0.0007 0.9992 1.9994 

8 -0.9997 0.0003 1.0003 2.0003 

9 -1.0001 -0.0001 0.9999 1.9999 

10 -0.9999 0.0001 1.0001 2.0001 

11 -1.0000 -0.0000 1.0000 2.0000 

 

 

§ 1.6. Theoretical ground of iteration methods of untiing of the systems of 

linear equations of algebra 

 

Convergence of iteration processes can be led to going out theoretical generals, in particular, 

on principle squeezing reflections. Will enter the series of theoretical suppositions.  
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The plural of Х is named metrical space, if to every pair of elements Xy,x   an 

inalienable material number is put in correspondence )y,x(  (distance)that satisfies next 

axioms: 

1) 0)y,x(,0)y,x( =  then and only after, if yx = ; 

 

2) )x,y()y,x( =  (axiom of symmetry); 

3) )y,z()z,x()y,x( +  for arbitrary elements Xz,y,x   

(inequality of triangle). 

The elements of metrical space are named points. 

Element 
)0(x  metrical   space   of Х   named   границею  

sequences }x{ )k(
 points ,...,x...,,x,x )k()2()1(

 what Х belong, if sequence of distances 

)x,x( )k()0(  gathers to the zero at →k id est 

 

.0)x,x(lim )k()0(

k
=

→
 

 

 Sequence }x{ )k(
 on a plural Х can gather or scatter depending on the choice of metric 

)y,x( . Sequence }x{ )k(
 named fundamental, if for an arbitrary number 0  there 

will be such number )(N  that  )x,x( )m()k(
 at )(Nm,k  . If in metrical space 

of Х every fundamental sequence gathers to some границі that is the element of the same 

space, then space of Х is named complete.   

 Let Х and Y are two arbitrary plurals. If to every element Xx   it is put in 

correspondence one and only one element Yy  then it is said that on Х a reflection 

(operator) is set And plurals of Х in Y and write down xAy = . 

 Reflection And metrical space of Х for itself named squeezing, or by a clench, if for 

arbitrary two points Xy,x   inequality is executed 

 

                                       .)y,x()yA,xA(                                  (2.34)                       
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 Point x  named immobile point of reflection And, if xxA = .  For 

equations of kind xxA =  a next theorem takes place about an immobile point 

(or principle of squeezing reflections). 

 Theorem. Any squeezing reflection certain in complete metrical space of 

Х has one and only one immobile point 
*x . Sequence }x{ )k(

that is determined by 

equality 

 

                             ,...,2,1,0k,xAx )k()1k( ==+
                                 (2.35) 

 

gathers to the point 
*x  at the arbitrary choice of the initial approaching Xx )0( 

. Thus, an estimation takes place  

 

                                            .)x,x(
1

)x,x( )1()0(

k

)k((*) 
−


                 (36) 

 

 The method of simple iteration is based on transformations of the system 

of equations of algebra bxA =  to the kind  

 

                                               .cxBx +=                                          (37) 

 Possibly, that the initial approaching is chosen )x...,,x,x(x )0(

n

)0(

2

)0(

1

)0( =  to 

the exact decision x . Certainly, at calculations lay cx )0( = . Will calculate 

progressive approximations in the method of simple iteration 

                             ....,2,1,0k,cxBx )1k()k( =+= −
                          (38) 

 

 An iteration process (3.38) is named consilient to the decision x  systems 

(2.37), if at the arbitrary choice of the initial approaching 
)0(x  a condition is 

executed 
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.0||xx||lim )k(

k
=−

→
 

 

 As marked higher, from convergence on a norm покоординатна 

convergence of progressive approximations swims out also. 

 Will consider the terms of convergence of метода of simple iteration. Will 

take (3.37) away from (3.38), will get 

 

                                     .)xx(Bxx )1k()k( −=− −
                                  (39) 

From a recurrent formula swims out 

.)xx(B...)xx(B)xx(Bxx )0(k)2k(2)1k()k( −==−=−=− −−
 

 

 Thus, vector xx )k( →  at →k  then and only after, if degree of matrix 

kB  heads for a zero matrix  at →k . 

 It is known that for an arbitrary square matrix In matrix →kB  at →k  

then and only after, when all her own numbers on the module less unit. From this 

statement swims out necessary and sufficient terms of convergence of метода of 

simple iteration. 

 Theorem. Let the system (2.37) have a decision. The method of simple 

iteration (3.38) gathers at the arbitrary initial approaching 
)0(x  to the decision x  

then and only after, if all own numbers of matrix In on the module less unit. 

 In practice such criterion it is difficult  to take advantage of, so  as a problem 

being of own numbers more difficult, than untiing of the linear system. More 

comfortable than criterion of convergence to use the norm of matrix. Taking into 

account, that own numbers of matrix In and her norm bound by inequality  

||B||||  , 
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will set forth the sufficient terms of convergence : the method of simple iteration 

(3.38) gathers to the decision of the system (3.37), if the arbitrary concerted norm 

of matrix is In less unit 

                                                  .1||B||                                               (40) 

 

 If to choose in space 
nR  norm of vector ||x||  and to enter a metric 

||yx||)y,x( −= then a reflection (2.37) will squeeze, if the arbitrary concerted 

norm of matrix is In less unit, id est a condition (2.40) swims out on principle the 

compressed reflections. 

 In obedience to determination of matrix norms that is presented in a 

paragraph 1.4, the sufficient terms of convergence of метода of simple iteration 

(38) can be presented as follows: 

                                        ,1|b|max||B||
n

1i
ij

nj1
l

= 
=


                               (41) 

 

,1|b|max||B||
n

1j
ij

ni1
m

= 
=


 

 

.1|a|||B||

2/1
n

1i

n

1j

2

ijk









= 

= =

 

 

 If initial system  of equations of algebra  bxA =  to erect  to 

to the kind (37) : 

,n,...,2,1i,0a,
a

b
x

a

a
x

ii

n

1j,1j ii

i

j

ii

ij

i
=+−= 

=

 

 

then at presence of in a matrix And diagonal prevailing 
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                          ,n,...,2,1i,|a||a|
n

1j,1j
ijij

=
=

                                (42) 

 

the condition of convergence of метода of simple iteration is executed, so as 

1||B||
m
 . 

 For the error of метода of simple iteration concordantly (36) will get an 

estimation 

 

                       .||xx||
||B||1

||B||
||xx|| )1k()k()k( −−

−
−                             (44) 

 

 A method coincides with speed of geometrical progression, the 

denominator of that equals ||B|| . 

 For the achievement of the set exactness  id est for implementation of 

inequalities 

,n,...,2,1i,|xx| )k(

ii
=−  

 

an iteration proceeds until terms will not be executed 

                     .n,...,2,1i,
||B||

||B||1
|xx| )k( =

−
−                          (45) 

 

 For description of speed of convergence of iteration methods the concept 

of order of метода is entered. Consider that a method has p th order, if it exists 

0c
1
  and 

2
c  such, that  

 

p)k(

2

)1k( ))x,x((c)x,x(  +
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subject to condition 
1

)k( c)x,x(  . At small values 
1

c  an iteration process 

gathers the quicker, than anymore p. 

§ 1.7. Iteration Seidel's method 

 

The iteration method of Seidel assumes such modification of method of simple iterations of 

decision of the systems of linear equations of algebra, kind (2.37) at that at being of і-th 

component )1k( + it is the го approaching to the sought after vector 
*x  the already found 

is used thereon )1k( + th step new values and is a 1 component that can be presented in a 

kind 

 

     













++++=

++++=

++++=

+++

++

+

,cxb...xbxbx

.........................

,cxb...xbxbx

,cxb...xbxbx

n

)k(

nnn

)1k(

22n

)1k(

11n

)1k(

n

2

)k(

nn2

)k(

222

)1k(

121

)1k(

2

1

)k(

nn1

)k(

212

)k(

211

)1k(

1

                 (46) 

where ...,2,1,0k = and 
)0(

i
x  are components of the set (chosen) initial vector 

)0(x . 

The system (46) will write down in a matrix form: 

 

                 ,...,2,1,0k,XBXBcx )k(

2

)1k(

1

)1k( =++= ++
       (47) 

where 

,

b...00

b...00

b...b0

b...bb

B,

0b...bb

00...bb

00...0b

00...00

B

nn

n3

n222

n11211

2

1n,n3231

3231

21

1





















=





















=

−

 

 

.BBB
21
=+  

 

Method Seidel (2.47) equivalent to the method of simple iteration for the system  

,xBcx
31

+=  

where  
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.c)BE(c,B)BE(B 1

112

1

13

−− −=−=  

 

Therefore condition of convergence of process of iteration it easily reformulate  

for this case: the method of Seidel gathers, if arbitrary norm of matrix 
3

B  less 

unit. Area of convergence of method of simple iteration and Seidel does not 

coincide, but intersect. In particular, at implementation of condition (3.42) the 

method of Seidel gathers. Certainly, the method of Seidel gives more rapid 

convergence, than method of simple iteration, although so it is not always. 

 An iteration process is completed in practice, if two progressive approximations differ 

less than beforehand set   in obedience to the chosen norm 

.||xx|| )1k()k( − −
 

 

For example: by the method of Seidel to untie the system of equations 

(example that was examined in a paragraph 1.5) 













=+++

−=−+−

=+++

−=−+−

.6,241,123,15,29,0

;7,138,105,82,1

;3,55,25,12,112,1

;3,126,16,0107,9

4321

4321

4321

4321

xxxx

xxxx

xxxx

xxxx

 

 

This system over is brought equivalent transformations to the kind  

          













=+++

=+++

=+++

−=+++

.6,241,123,15,29,0

;3,103,18,95,11,2

;3,55,25,12,112,1

;79,01,22,19,10

4321

4321

4321

4321

xxxx

xxxx

xxxx

xxxx

                         

 

For application of iteration process will present this system as follows 

 



43 

            


















+−−−=

+−−−=

+−−−=

−−−−=

.)6,24x3,1x5,2x9,0(
1,12

1
x

;)3,10x3,1x5,1x1,2(
8,9

1
x

;)3,5x5,2x5,1x2,1(
2,11

1
x

;)7x9,0x1,2x2,1(
9,10

1
x

3214

4213

4312

4321

 

 

In a vectorial-matrix kind the last system can be written down  

 

,cxBx +=  

 

where type of matrix In and vector c  it is presented in a paragraph 2.5.  

In obedience to a theory, equation cxBx +=  will present in a kind  

 

,xBcx
31

+=  

where       

.BBB,c)BE(c,B)BE(B
21

1

112

1

13
=+−=−= −−

 

The results of calculations in obedience to the brought equations over on the method of Seidel 

are driven to the next table 2.2/ 

 

                                                                              Table 2.2   

 

Numbe

r 

Iteratio

ns 

 

)k(

1
x  

 

)k(

2
x  

 

)k(

3
x  

 

)k(

4
x  

1 -1.0678 0.0266 1.0302 1.9964 

2 -1.0086 -0.0023 1.0026 2.0009 

3 -1.0004 -0.0005 0.9999 2.0002 
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4 -1.0001 -0.0000 0.9999 2.0001 

5 -1.0001 -0.0000 0.9999 2.0001 

 

A task for independent implementation 

 

To this division 30 variants of tasks are driven for independent implementation by students. 

Every student elects a variant after the number in the list of group. 

A task consists in the decision of the system of four linear equations of algebra with four 

unknown. Every system of equations needs to be untied by a few methods, what the stated 

in this methodical manual, and to compare the got results inter se.  

To solve the system of equations: 

 

1.













=−+

=++−

−=−+−

=++−

2,4xx2x3

9,4x5xx2x

3,1x2,1xx1,3x

1x9,0xx2x7,1

432

4321

4321

4321

     2.













=−+

=+−+

=+−+

=++−

1,4xxx2

3x11x4x7x

2x4x1,1x2x5,1

1,1xxx9,0x1,2

431

4321

4321

4321

 

 

3.













=−+−

−=+−+

=−+−

=+−+

4x3xxx2

1,1x2xxx5

2x3x2x4,2x3,2

4,1xxx3,1x9,1

4321

4321

4321

4321

      4.













−=+−+

−=+−

=−−

=−+−

5,6x4,5x3,2x2x9,1

1,3xx7,1x3

7,2x2,3xx8,2

1x7,1x1,1x9,0x3,2

4321

431

421

4321

          

5.













−=++−

=−+

−=+−

=−+−

9,2x9,1x3x7x

1x7,3x3x9,0

5,3xx3,1x

4x2,4x1,3x6,2x

4321

421

432

4321

    6.













=+++

=+++

=+++

=+++

4,14x5,3x2x2,1x1,4

1,13x2x8,1x4x7,3

4,12x2,1x4,4x6,3x2

5,11x2,4x7,3x1,2x9,0

4321

4321

4321

4321

 

 

7.













=−+−

=+−+

=−+−

−=+−+

4x9,6x3,4x4,2x7,0

1,3x6,6x3,3x1,1x5,4

3,1x7,6x6,2x3,1x1,3

1,1x2,5x1,1x1,2x9,1

4321

4321

4321

4321

    8.













=−+−

−=+−+

=−+−

=+−+

2x1,3xxx4

1x15x13x11x09,3

0x2x3,3x5x2

1x7x5x4x2

4321

4321

4321

4321
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9.













=+++−

=+−+

=−−+

=−+−

8,0x4,4x4x2,2x2

2,3x3x1,2x3,4x8,6

3,2xx4,1xx1,2

1,1x2,3xx61,1

4321

4321

4321

432

   10.













=−−+

=++−

=−++

=+−

5,0x3,7x6,2x4x4,2

6,1x9,3x3,6x6,2x8,3

3,2xx1,2xx

1,8x3,3xx9,0

4321

4321

4321

421

  

 

11.













=+++

=++

−=+++

=+++

12x7,3x3x4x5

23x6,2x2x

2xxx3,2x3

4,7xx7,1xx5,1

4321

432

4321

4321

  12.













−=−+−

=+−−

=+−+

−=−+−

7,2x2xx4,5x2

2xx11,1x2x3

3x2x9,1xx4,2

1x8,1xx2x3,1

4321

4321

4321

4321

  

 

13.













=+−−

−=−−+

−=−−+

=++−

2xx2xx3

7,10x5x5x7x

2x3,1xxx6,2

2,2xxx2x

4321

4321

4321

4321

   14.













=+−−

=+−−

=−++−

=+−−

3x7,7x5x5x9,4

2x5,4x3x3x3,3

0x2,2xxx8,1

4,1xx3,1x1,1x

4321

4321

4321

4321

 

 

15.













−=−+−

=−+−

=+−+

=−+−

1x3,7x7x14x2

1x1,5x8,5x10x4

2,1xx7,1x4,2x

1xxx1,2x6,2

4321

4321

4321

4321

    16.













=−+−

=+−+

=−+−

=+−+

3x5,5x7x2x3

3,3x5x2,2x3x

2x3x7x1,1x2

1xx2xx3,3

4321

4321

4321

4321

 

 

17.













−=−+−

=+−+

−=−+−

=+−+

5x5,5x7x2x3

10x5x2,2x3x

3x3x7x1,1x2

4,2xx2xx3,3

4321

4321

4321

4321

    18.













=−+−

=−+−

=+−−

=−+

25x16x9,6x9x9

7x6,5x4x3x2

2xx3xx9,1

8,1x3x76,2x

4321

4321

4321

421

 

19.













−=+−

=−+−

−=−+

−=−+−

3,5x1,1xx5,1

10x3,3x4,2xx

47,3x7,1x4,2x

2x4x3x1,2x3,1

432

4321

321

4321

   20.













=−+−

−=−+

−=+−+

−=+−

10x7,3x2xx3,1

33,4x7,1x2,2x

3x8,1xx3x7,2

1xx6,1x9,1

4321

321

4321

432

 

 

21.













=+++

−=+++

=++

=+++

1,7x5,1xx7,1x

2x3xxx3,2

9,12x6,2x2x

10x5x7,3x3x4

4321

4321

321

4321

 22.













=++−−

−=+−+−

−=+−+−

=++−

44,2x3xx1,1x2

9,0x3,1x8,1xx2

1,2x2x2xx3,5

8,2x4,2x2x9,1x

4321

4321

4321

4321
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23.













−=−++−

−=−++−

=++−

=−+−

3x43,1x2xx

15x5xx7x5

2,3xxx4,2x

3x2x3xx8,1

4321

4321

4321

4321

    24.













=−−+

=−−+

=++−

=−−+

3x5x5x5,5x2,4

2x9,3x3x3,3x3

0xx6,1x9,1x

1x3,1xxx7,2

4321

4321

4321

4321

 

 

25.













−=−−

−=+−

=−+−

−=+−−

8,3x7x1,14x11

2,3x4,5x10x7

0xxx7,2

77,1xxx3,2

321

421

431

432

  26.













=+−+−

=−+−

=+−+−

−=−+−

0x5,8x8,5x7x2

4,2x7x5x6,2x8,3

0x5,7x3x3,7x

4x1,1xx2x9,1

4321

4321

4321

4321

 

 

27.













=+−+

=−+−

=+−+

=−+−

5x8,8x5x7x3,3

04,0x7x5,5x8,2x

3x3,5x5,3x7x2

0xxx1,2x8,2

4321

4321

4321

4321

    28.













=+−+−

=+−+−

=+−

=−+−−

16x2x16x6x1,9

5x2x5x9,4x3

67,0x2x1,3x2

1x7,3xx3x

4321

4321

431

4321

 

 

29.













−=+−+

=−+−

−=−+

−=−+−

3x3,1xx3x6,2

10x3x8,2xx

18,2x7,1x4,2x

4x4x3x3,2x5,1

4321

4321

321

4321

        30.













=−++

=+++

=−++

=−++

1x4,1x5,2x2x2

1x3,1xx6,3x2

1xxx4,2x2,3

1x6,1x3x6,2x

4321

4321

4321

4321
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TITLE 2. APPROXIMATE SOLUTION OF NONLINEAR 

EQUATIONS 

 

§ 2.2. Introduction 

 

The problem of solution of algebra and transcendent equations often meets 

at a study of technical and special disciplines, in engineering practice. To find 

the exact value of the root of the equation is possible only in some cases. 

Moreover, formulas are so cumbersome that it is very difficult to use them. 

Therefore, numerical methods are widely used that make it possible to obtain an 

approximate solution with an arbitrary given accuracy. 

 Let equation is given 

                                                  ,0)x(f =                                                 (1) 

where )x(f  is an algebra or transcendent function with one unknown. The 

calculation of the real roots of the equation (1) is reduced to finding the set of 

its roots in the interval at which the equation is transformed into the identity.  

  

If 0)x(f * = then 
*x  named  the root of equation (1). Roots of the given 

equation are the zeros of function )x(fy =  geometrically represent the points of 

intersection of its graph with the abscissa axis. 

 For example, will consider equation  02x)x(f 2 =−= . On figure 1 the 

graph t of this function is presented. Intersections of curve 2xy 2 −=  with an 

axis OX, in that ,0)x(f =  are the roots of equation. As we can see, roots are on 

segments ]1;5,1[ −−  and ]5,1;1[ thus the values of  roots  can be defined only 

approximately. 

The problem of finding the approximate roots of an equation with arbitrary 

given accuracy consists of two stages:  
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1) separation (isolation) of root, that is, finding a segment ]b;a[  that 

belongs to the domain of definition of the function )x(fy = and on 

which there is one and only one root of equation 0)x(f = ; 

2) a calculation or clarification of value of root  with the set exactness. 

 

 

Figure 1. 

 

§ 2.2. Separation of roots of equation 

2.2.1. Root separation conditions 

 

 Let function )x(f  in equation (1) certain and continuous on some interval 

);(   and has continuous first )x(f   and second )x(f   derivatives. 

The task is reduced to finding a segment of the domain of definition of the 

function on which three conditions are satisfied 

 The problem of separation of root of equation (1) is reduced to finding a 

segment ]b;a[  of  the domain of definition of the function on which three 

conditions are satisfied: 

1) function )x(f  at the borders of segment ]b;a[  has different signs 

0)b(f)a(f  ; 
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2) derivative )x(f   does not change a sign on ]b;a[  it is means the 

function )x(f is monotonous on ]b;a[ ; 

 second derivative of function  )x(f   does not change a sign on ]b;a[  it is a 

function )x(f keeps a curvature or bulge 

3) second derivative of function  )x(f   does not change a sign on ]b;a[  it 

is a function )x(f keeps a curvature or bulge on ]b;a[ . 

 Segment ]b;a[  at implementation of terms 1-3 for a function )x(f  named 

a segment that separates the root of the given function. 

 In general case there is not an algorithm for the separation of  root of 

equation 0)x(f = . For the separation of real root use a graphic method or make 

the table of values of function )x(f  on some interval (the change of signs in two 

nearest lines of table testifies to the presence even one root). For application of 

modern computer packages the special commands of graphic representation are 

used, that allows it easily enough to separate the roots of initial equation.  

 

2.2.2 Graphic method of separation of root 

Graphicly  roots  of equation  0)x(f =   it is possible  to separate,  if to build 

the graph of function )x(fy =  and approximately to define the points of  it 

crossing with an axis OX. But a problem of construction of graphic is not always  

simple. Usually equation 0)x(f =  is replaced by equivalent equation 

)),x()x()x(f()x()x(
2121

−==  and select functions )x(y
11

=  and

)x(y
22

= so that it is easier to build their graphic than graphic  of function 

)x(fy =  Abscissas of intersections of graphics )x(y
11

=  and )x(y
22

=  are 

the required roots of  initial equation. 

 For example: by a graphic method to separate the roots of equation 

 

.02xe 2x =−+−
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Will present the set equation in a type 
2x x2e −=−
 and will consider two 

functions 
x

1 e)x( −=  and 
2

2 x2)x( −= . Intersections of graphic of these 

functions are the roots of the set equation.  

 As evidently from picture 2, the given equation has two real root (graphics   

intersect in two points), thus  one  of  root is negative, and  second  is positive. 

These  roots  are  in  intervals )0;2(x1 −  but )2;0(x 2 . 

 

 

Figure 2 

 

 

2.2.3 Method of tests 

 

 The method of tests consists in that at random gets out point ax =  from an 

area determination of function (or from more narrow area), there is a sign of 

function )a(f and then the point of b sneaks up thus, that value of function )b(f  

small sign opposite to the sign )a(f . A sign is farther determined )x(f   on a 

segment ]b;a[ . If )x(f   does not change a sign on ]b;a[ then root separated, there 



51 

is a segment in another case ]b;a[  narrow, taking the point of с, that lies inwardly 

відрізка ]b;a[ . A sign is determined )c(f  and for a new segment examined or 

]c;a[  (if 0)c(f)a(f  )or ]b;c[  (if 0)b(f)c(f  ). Designating a new segment 

through ]b;a[
11

repeat the same operations, that and on a segment ]b;a[ and т. д. 

The indicated operation is closed, if the executed terms of separation of root on a 

corresponding segment - ]b;a[
nn

.  

For example: by the method of tests to separate the root of equation to 

positive 

 

.020x36xx 34 =−−+  

 

Function 20x36xx)x(f 34 −−+=  certain on all numerical line. As  it is 

needed   to separate   the root  of equation to positive,  

will consider півінтервал );0[  . 

1. Find 020)0(f −= . Then choose an arbitrary point, for example 1x =

and calculate 054)1(f −= . So as, 0)1(f)0(f  then pass to the next point. Pick 

up a point bx =  thus, that a condition was executed 0)b(f  . Let 4x = then 

0156)4(f = from where swims out, that on a segment ]4;1[  there is a root 

( 0)4(f)1(f  ). 

2. As 2323 x3)9x(436x3x4)x(f +−=−+= then   make sure direct 

verification, that on a segment ]4;1[  derivative )x(f   changes a sign 

( 0268)4(f;029)1(f =−= ). 

 Narrow a segment ]4;1[ . Will take, for example point 3x = . Then 

020)3(f −=  and 0)4(f)3(f  from it swims out, that on a segment ]4;3[  there 

is a root. Check up a sign )x(f  . Have 069)3(f = and for 3x  obviously, a 

derivative grows, that is why it remains positive. Thus, root separated. On a 
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segment ]4;3[  it is positive actual root of the set equation. Will mark, that 

0x6x12)x(f 2 +=  for ]4;3[x . Chart )x(fy =  it is presented on rice. 3. 

 

 

Figure 3. 

 

§ 2.3. Method of half-note division 

 

 Let function )x(f  certain and continuous at all ]b;a[x  and on ]b;a[  

changes a sign, id est 0)b(f)a(f  . From it swims out, that equation 0)x(f =  it 

is had on )b;a(  even one root. Will take an arbitrary point )b;a(c . In this case 

will name a segment ]b;a[  by the interval of existence of root, and point of с - 

by a trial point. As here the question is only about the actual functions of the real 

variable, then calculation of value )c(f  will result in that - небудь one of next 

mutually exceptional situations : 

 

а) ;0)c(f)a(f        б) ;0)b(f)c(f          в) .0)c(f =  

 

In relation to a problem that is examined they can be interpreted thus : 
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  а) root is on an interval )c;a( ; 

  b) root is on an interval )b;c( ; 

  c) point of с is the sought after root. 
 

 The most used case of part of метода dichotomy (from the Greek word that 

means a bipartioning) is a method of half-note division, that will realize the 

simplest method of choice of trial point - division of interval of existence of root 

in half. To execute the close calculation of root of equation 0)x(f =  with 

exactness   by the method of half-note division on condition that )x(f  continuous 

on ]b;a[  and 0)b(f)a(f  it is possible for example, on a next chart: 

     Step 0.  To set  the ends of відрізка but also  b, function  of f,   small  number  

0  (admissible absolute error of root or півдовжину of his interval of 

vagueness), small number 0 (admittance related to the real exactness of 

calculation of values of the set function). 

     Step 1.  To calculate )ba(5.0:c += . 

     Step 2.  If − 2ab to put c:=  ( it is a root) and to stop. 

     Step 3.  To calculate )c(f . 

     Step 4.  If )c(f to put c:  and to stop. 

     Step 5.  If 0)c(f)a(f  to put c:b =  and to go back to a step 

1; otherwise to put c:a = , )c(f:)a(f =  and to go back to a step 1. 

 For one step of method of half-note division the interval of existence 

of root grows short exactly twice. To Tom, if after k th approaching by this method 

to Cornu   equation 0)x(f =  will take a point 
kx that is a middle got on k th step 

of відрізка ]b;a[
kk

 as a result of the successive narrowing of this відрізка ]b;a[

will put b:b,a:a
11
== then will come to inequality  

 

                                   Nk
2

ab
|x|

kk


−
−                           (2) 
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(a priori  it is an arbitrary point of interval )b;a(
kk

and distance from her to the 

middle of this interval does not exceed the half of his length. It is visible from 

(4.2) at 1k = ). 

 Inequality (2), from one side, allows to assert that sequence )x(
k

 has a limit 

- sought after root   equation 0)x(f = ; on the other hand, being a priori 

estimation of absolute error of close equality 
k

x gives an opportunity to count 

up the number of steps (iterations) of метода of half-note division, sufficient for 

the receipt of root   with the set exactness  for what it is needed only to find 

least natural k, that satisfies inequalities 

                                                   ,
2

ab
k


−

                                              (3) 

namely: 

                   ,
2lg

|ab|
lg

k 

−

         or      .1
2lg

|ab|
lg

k

















+

−

=                    (4) 

 For example: to find the root of equation  

 

01x3x 23 =−+  
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with the set exactness. Initial function can be presented in a kind )x()x(
21

=

where 2

2

3

1 x31)x(,x)x( −== . From the construction of charts )x(y
11

=  

but )x(y
22

=  swims out, that the sought after root is on a segment ]1,0[  it is 

figure 4. 

 

Figure 4. 

 

For the calculation of number k  progressive approximations will take 

advantage of formula (4) in obedience to that it is necessary to conduct for the 

receipt of the set exactness  21k =  progressive approximations. For the receipt 

of results with exactness 
510−=  it is necessary to conduct 18k =  approaching, 

with exactness 
410−=  - 14k =  approaching, with exactness 

310−=  - 11k =  

approaching. 

The results of calculations are driven to the table 2.1. 

 

                                                               Table 2.1 

n  n
x  )x(f

n
 

1  0,5 -0,125 
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2 0,75 1,1094 

3 0,625 0,4160 

4 0,5625 0,1272 

5 0,5313 -0,0034 

6 0,5469 0,0608 

7 0,5391 0,0284 

8 0,5352 0,0124 

9 0,5332 0,0045 

10 0,5322 5,5656е- 4 

11 0,5317 -0,0014 

12 0,5320 -4,3027е- 4 

13 0,5321 6,3079е- 5 

14 0,5320 -1,8361е- 4 

15 0,5321 -6,0270е- 5 

16 0,5321 1,4032е- 6 

17 0,5321 -2,9434е- 5 

18 0,5321 -1,4015е- 5 

19 0,5321 -6,3061е- 6 

20 0,5321 -2,4515е- 6 

21 0,5321 -5,2414е- 7 

 

 

§ 2.4. Method of chords 

 

 The method of jigging of trial point is used in the method of half-note 

division it is possible to describe as passive, as he comes true after the beforehand 

set hard plan and in any way does not take into account the values of function 

calculated at every step. Logically to assume that in family of methods of 
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dichotomy it is possible to attain the best results, if segment ]b;a[  to divide the 

point of с to pieces not in half, but proportionally to the sizes of ordinates )a(f  

and )b(f  graphic arts of the set function )x(f . It means that the point of с can be 

found as an abscissa of intersection to the landmark OH straight-in, that passes 

through points ( ))a(f;aA  and ( ))b(f;bB otherwise, with the chord of АВ of arc. 

 The idea of метода chords consists in that on a segment ]b;a[  the chord of 

АВ, that tightens the ends of arc of chart of function, is built )x(fy = and for the 

close value of root 
0x  a number gets out 

1
cc = that is the abscissa of intersection 

of this chord with an axis OH. For determination of number 
1c  will lay down 

equation of chord as a line that passes through two points ( ))a(f;aA  and 

( ))b(f;bB : 

 

.
)a(f)b(f

)a(fy

ab

ax

−

−
=

−

−
 

 

At 
1

cx;0y ==  get 

 

                   
)a(f)b(f

)ab)(a(f
ac

1
−

−
−=       or     

)a(f)b(f

)ab)(b(f
bc

1
−

−
−=         (5) 

 

Number 
1

c  accept for the first approaching to the sought after Cornu. The 

schematically indicated procedure is presented on rice. 4.6. 

Obviously, that at the accepted suppositions about the signs of derivatives 

)x(f   and )x(f   on ]b;a[  point )0;c(
1

 it will be from the side of вгнутості 

crooked and will divide ]b;a[  on two segments ]c;a[
1

 and ]b;c[
1

there is a root 

in one of that 
0

x  (see rice. 4.6). A new segment that separates a root can be 

defined comparing signs )b(f),c(f),a(f
1

. From the analysis of lines. 4.6 
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evidently, that point 
1

c  nearer to the point and, than 
0

x if 0yy  then a segment 

that separates a root will be ]b;c[
1

; in another case, if 0yy  that separates a 

root a segment, it will be ]c;a[
1

.  

 Farther repeat the same procedure on a new segment that separates a root, 

and determine a number 
2

c  (second approaching) after the formulas got from (5) 

: 

 

                              ,)0yy(
)c(f)b(f

)cb)(c(f
cc

1

11

12


−

−
−=                        (6) 

.)0yy(
)a(f)c(f

)ac)(c(f
cc

1

11

12


−

−
−=  

 

After being 
2

c  find 
3

c  and so on (Figure 5). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 
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End a process then, when the estimation of the got approaching satisfies the 

set exactness. 

 For simplification of calculations usually set some small enough number 

0  (no more set exactness). A process is closed then, when an absolute value 

of difference is between two next approaching 
1n

c
−

 and 
n

c  less than  : 

 

−
−

|cc|
n1n

. 

 

Number 
n

c  accept for the close value of root, id est 
n

cx = . 

 

 

§ 2.5. Method of simple iteration 

 

 Equation is examined 0)x(f =  on a segment ]b;a[ . Laid, that on a 

segment ]b;a[  there is one and only one root. 

Will replace equation 0)x(f =  by equivalent to him equation 

 

                                                 .)x(x =                                                  (7) 

 

 Will mark that equation 0)x(f =  it is possible to replace equivalent to him 

equation (7), for example, putting many methods )x(f)x(x)x( += where 

)x(  it is an arbitrary continuous знакостала function. 

Set by some initial approaching 
0x next approaching to Cornu 

*x  find after 

a formula 

                                  ....,1,0n,)x(x
n1n

==
+

                            (8) 

 Formulas (8) is a method of simple iteration (or method of progressive 

approximations). 

If sequence of approaching }x{
n

 coincides then there is границя 
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,xxlim *

1n
n

=
+

→
 coming from what for a continuous function )x(  it is possible to 

write down 

,)xlim(xlim
n

n
1n

n →
+

→
=    or       )x(x ** = . 

  

 Decision 
*x  equation (4.7) is the immobile point of mapping )x( . Thus, 

the terms of convergence of iteration process (3.8) can be got on principle 

squeezing mapping (see the division of ІІІ). 

Will formulate the sufficient terms of convergence of method of simple 

iteration. 

 Theorem. Let function )x(  it is certain and differentiated on a segment 

]b,a[ thus all her values ]b,a[)x(  . Then, if there is such number of q, that on 

this segment  

                                               ,1q|)x(|                                            (9) 

 

then a sequence (3.8) coincides to only on a segment ]b,a[  upshot of equation 

(3.7)  for any initial approaching ]b,a[x
0
 . Thus, if on the noted segment 

derivative ,0)x(   

 

                                   ;|xx|
q1

q
|xx|

1nn*n −
−

−
=                             (10) 

 

if derivative 0)x(   then 

                                     .|xx||xx|
1nn*n −

−−                                    (11) 

 

 These conclusions are summarized on more wide class of functions, which 

satisfy the condition of  Lipschitz with a constant, less from unit. If a condition 

(8) is not executed, then iterations (3.9) can scatter. 
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 At every step iterations calculate a value )x(y
n

=  and, if ,|xy|
n

−  

then, putting yx
n
= pass to the next iteration. If ,|xy|

n
−  then, calculations 

stop and as a root is accepted by approaching 
nx . The error of the found result 

depends on a derivative sign .)x(  At 0)x(   the error of determination of 

root presents )q1/(q − ; if 0)x(  then an error does not exceed  . 

At application of method of simple iteration one of complexity  there is 

bringing equation over 0)x(f =  to the kind )x(x =  thus, that the terms of 

convergence of iteration process were executed. Will consider one of general 

approaches of bringing initial equation over 0)x(f =  to the equivalent kind 

)x(x = . Let the sought after root   initial equation is on a segment ]b,a[ thus  

 

                        ,M)x(fm0
11

    at    .]b,a[x                       (12) 

 

In particular, after 
1

m  it is possible to take on a the least value of derivative 

)x(f  on ]b,a[ which must be positive. After 
1

M  it is possible to take on a most 

value of derivative )x(f  on ]b,a[ . Will replace equation 0)x(f =  by equivalent 

to him equation  

.0,)x(fxx −=  

 

It is thus possible to put .)x(fx)x( −=  Parameter   sneaks up thus, that 

in околі ]b,a[  root   inequality was executed  

.1q)x(f1)x(0 −=  

 

Last inequality with the use of formula (4.12) it is possible to write down : 

 

.qm1M10
11
−−  
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From where swims out : 

1
M

1
=       and       .1

M

m
1q

1

1 −=  

 

In practical calculations number 
1

M  gets out thus, that ,2/Q|M|
1
 where 

|)x(f|maxQ = for all ]b,a[x  . Thus an iteration process coincides subject 

to condition 1|)x(|   on ]b,a[ . 

Will consider the example of application of method of simple iteration for 

solution of equation  

.01xx)x(f 3 =−−  

 

An initial function can be presented in a kind )x()x(
21

= where 

1x)x(,x)x(
2

3

1
+== . From the construction of charts )x(y

11
=  but 

)x(y
22

=  swims out, that the sought after root is on a segment ]2,1[  it is 

figure 6.  

 

 

Figure 6. 
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Initial equation 01xx3 =−−  it is possible to present in a kind 1xx 3 −=

or )x(x = where 1x)x( 3 −= . In the presented kind function )x(  

dissatisfies to the terms of convergence, so as 
2x3)x( =  and 3)x(   on a 

segment ]2,1[ .  

Will present initial equation in a kind 3 1xx += . In this case function  

 

3 1x)x( += ,         and           
3 2)1x(3

1
)x(

+
= . 

 

From swims out here, that 
33 43

1
)x(

93

1
  on a segment ]2,1[ or 

4

1
)x(  , what satisfies to the terms of convergence of iteration process. 

 The results of calculations are driven to the table 2.2. 

 

 

 

Table 2.2 

 

n  0 1 2 3 4 5 6 7 

nx  1 1,2599 1,3123 1,3224 1,3243 1,3246 1,3247 1,3247 

 

§ 2.6. Method of Newton 

 

 Let in equation 0)x(f =  function )x(f  has continuous second derivative 

)x(f   on a segment ]b;a[ which the separated root is on 
*x . It is assumed that 

derivatives  )x(f   but )x(f   different from a zero, знакосталі and initial 

approaching of root 
0

x  it is belonged to the segment ]b;a[ . In obedience to the 
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indicated requirements on a segment ]b;a[  absent extremums and in flection 

points of initial function, that allows in any point of segment ]b;a[  to build a 

tangent to the curve. Will consider arbitrary point-on-wave 

]b;a[x,))x(y,x(M
0000
  and will conduct a tangent to the curve in this 

point. Equation of tangent looks like 

 

.)xx)(x(f)x(fy
000

−=−  

 

A tangent crosses abscise axis in some point )0;x(
1

. Taking into account the 

last, it is possible to write down 

 

,)xx)(x(f)x(f
000

−=−  

 

 from where get the first approaching of root 

 

.
)x(f

)x(f
xx

0

0

01


−=  

 

 Through a point ))x(f,x(M
111

 again will conduct a tangent to the curve, 

the intersection of which with abscise axis gives the second approaching of root 

and т. д. 

 Described process of construction of tangents a calculation of points of their 

crossing with abscise axis is an iteration process of  Newton - Рафсона. 

 The construction of iteration sequence of approaching of chums takes place 

in obedience to next formulas 

 

                        ....,2,1,0n,
)x(f

)x(f
xx

n

n

n1n
=


−=

+
                              (13) 
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 Geometrical maintenance of метода Newton – Rafson consists in 

substituting of arc crooked by every iteration a tangent to her in a point 
n

x .

  

Method of Newton - Rafson  can be examined as a partial case of method 

of simple iteration (3.8), if to put .
)x(f

)x(f
x)x(


−= As 

 

( )
,

)x(f

)x(f)x(f
)x(

2



=  

 

from the condition of convergence of method of simple iteration swims out, that 

method of Newton - Rafson  coincides, when the initial approaching is chosen by 

near enough to simple root .)0)x((x ** =  

 Thus, if initial approaching 
0

x  it is chosen close enough to root 
*x then the 

method of Newton always coincides. At the arbitrary initial approaching an 

iteration method (3.13) coincides, if for all ]b;a[x   inequality is executed 

 

                                           
 

.1
)x(f

|)x(f)x(f|
2





                                       (14)                         

 

A next theorem takes place thus. 

 Theorem. Let ]b;a[C)x(f
2

 (function ,)x(f  derivatives )x(fi)x(f   

continuous on ]b;a[ ),  0)b(f)a(f   and derivatives )x(f,)x(f   keep a sign on 

a segment ]b;a[ . Then, if initial approaching ]b;a[x
0
  satisfies inequality 

 

                                                       ,0)x(f)x(f
00
                            (15) 
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a sequence (4.13) coincides (thus droningly) to only on a segment ]b;a[  root 
*x  

equation 0)x(f = .  

 For the estimation of speed of convergence of method  around the root 

point 

will take advantage of formula of  Taylor 

  

,)xx)(c(f
2

1
)xx)(x(f)x(f)x(f 2

n

*

n

*

nn

* −+−+=  

 

or          ,0)xx)(c(f
2

1
)xx)(x(f)x(f 2

n

*

n

*

nn
=−+−+  

 

where a point is cx =  lies between 
*

n
xix . From the last equation have  

 

       .)xx(
)x(f

)c(f

2

1

)x(f

)x(f
xx 2

n

*

nn

n

n

* −



−=


+−                          (16) 

 

In obedience to a formula (4.13) 

,x
)x(f

)x(f
x

1n

n

n

n +
=


−  

to the volume  

 

                            .)xx(
)x(f

)c(f

2

1
xx 2

n

*

n

1n

* −



−=−

+
                           (17) 

 

If to designate a most value through M |)x(f|   on ]b;a[ and through m is 

the least value |)x(f|   on a segment ]b;a[ then it is possible to write down next 

inequality for the estimation of error of two progressive approximations 
n

x  but 

1n
x

+
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                                 .)xx(
m2

M
|xx| 2

n

*

1n

* −−
+

                               (18) 

 

In obedience to an estimation (4.18) swims out, that the error of the next new 

approaching diminishes proportionally to the square of error previous, id est 

convergence  of method of Newton - Rafson is quadratic.  

If two progressive approximations are known 
n

x  but 
1n

x
+

 in obedience to 

the method of Newton - Rafson, then it is possible to write down on the basis of 

correlation (4.18) 

 

                                  .)xx(
m2

M
|xx| 2

n1n1n

* −−
++

                            (19) 

 

Thus, for determination of root of equation (4.1) in obedience to the method  

of Newton - Рафсона with the set exactness     an iteration process will be 

executed, while  

                                    .M/m2|xx|
n1n

−
+                                   (20) 

 

 Remark. If derivative )x(f   poorly changes on ]b;a[  and her calculation 

is bulky enough, then an iteration process can be conducted on a formula 

 

                        ....,2,1,0n,
)x(f

)x(f
xx

0

n

n1n
=


−=

+
                        (21) 

 

The iteration process of kind (3.21) has the name of the modified method of 

Newton. 

Will consider the example of application of method of Newton for untiing 

of equation  
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0x)4.0x3.0(tgy 2 =−+ . 

 

An initial function can be presented in a kind )x()x(
21

= where 

2
21 x)x(,)4.0x3.0(tg)x( =+= . From the brought graphic material over 

evidently, that graphic arts of functions )x(y
11

=  but )x(y
22

=  intersect in 

two points, roots belong to the intervals  )0,1[−  but ]1,0(  it is figure 7.  

 

 

Figure 7. 

 

Stopped for being of positive root. 

 

x2
)4.0x3.0(cos

3.0
)x(y

2
−

+
= ,   .2

)4.0x3.0(cos

)4.0x3.0sin(18.0
)x(y

3
−

+

+
=  

 

Coming from the presented chart it is expedient to accept for the initial 

approaching .1x
0
=  Thus 7408,1)x(y;1577,0)x(y

00
−=−=    and 
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accordingly 0)x(y)x(y
00
 . The results of calculations are driven to the next 

table 2.3                                                                           

                                                                           Table 2.3 

 

n  0 1 2 3 4 

nx  1 0,8940 0,8864 0,8863 0,8863 

 

 

 Will consider application of method of Newton to the decision of next 

equation 01xx)x(f 3 =−−  (this problem was examined at application of  

simple iteration method in a previous paragraph). A root of equation is on a 

segment ]2,1[  it is figure 6. First and second the derivatives of initial function 

are written down  

 

.x6)x(f;1x3)x(f 2 =−=  

 

A point sets to the initial approaching .2x
0
=  Thus 0)x(f)x(f

00
 . The 

results of calculations are driven to the table 2.4. 

 

   Table 2.4 

 

n  0 1 2 3 4 

nx  2 1,5455 1,3258 1,3247 1,3247 

 

The brought results over in a table 3.4 and comparing to the corresponding 

results according to calculations on the method of simple iteration (table 4.2) 

allow to draw conclusion about efficiency of application of метода Newton. 
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§ 2.7. Method of simple iteration 

 

 Equation is examined 0)x(f =  on a segment ]b;a[ . Laid, that on a 

segment ]b;a[  there is one and only one root. 

Will replace equation 0)x(f =  by equivalent to him equation 

 

                                                 .)x(x =                                                  (7) 

 

 Will mark that equation 0)x(f =  it is possible to replace equivalent to him 

equation (7), for example, putting many methods )x(f)x(x)x( += where 

)x(  it is an arbitrary continuous знакостала function. 

Set by some initial approaching 
0x next approaching to Cornu 

*x  find after 

a formula 

 

                                  ....,1,0n,)x(x
n1n

==
+

                            (8) 

  

Formulas (8) is a method of simple iteration (or method of progressive 

approximations). 

If sequence of approaching }x{
n

 coincides then there is границя 

,xxlim *

1n
n

=
+

→
 coming from what for a continuous function )x(  it is possible to 

write down 

,)xlim(xlim
n

n
1n

n →
+

→
=    or       )x(x ** = . 

  

 Decision 
*x  equation (4.7) is the immobile point of mapping )x( . Thus, 

the terms of convergence of iteration process (8) can be got on principle squeezing 

mapping. 
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Will formulate the sufficient terms of convergence of method of simple 

iteration. 

 Theorem. Let function )x(  it is certain and differentiated on a segment 

]b,a[ thus all her values ]b,a[)x(  . Then, if there is such number of q, that on 

this segment  

                                               ,1q|)x(|                                            (9) 

 

then a sequence (3.8) coincides to only on a segment ]b,a[  upshot of equation (7)

  for any initial approaching ]b,a[x
0
 . Thus, if on the noted segment 

derivative ,0)x(   

 

                                   ;|xx|
q1

q
|xx|

1nn*n −
−

−
=                             (10) 

 

if derivative 0)x(  then 

                                     .|xx||xx|
1nn*n −

−−                                    (11) 

 

 These conclusions are summarized on more wide class of functions, which 

satisfy the condition of Lipschitz with a constant, less from unit. If a condition 

(4.8) is not executed, then iterations (9) can scatter. 

 At every step iterations calculate a value )x(y
n

=  and, if ,|xy|
n

−  

then, putting yx
n
= pass to the next iteration. If ,|xy|

n
−  then, calculations 

stop and as a root is accepted by approaching 
nx . The error of the found result 

depends on a derivative sign .)x(  At 0)x(   the error of determination of 

root presents )q1/(q − ; if 0)x(  then an error does not exceed  . 

 At application of method of simple iteration one of складностей there is 

bringing equation over 0)x(f =  to the kind )x(x =  thus, that the terms of 
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convergence of iteration process were executed. Will consider one of general 

approaches of bringing initial equation over 0)x(f =  to the equivalent kind 

)x(x =  . Let the sought after root   initial equation is on a segment ]b,a[ thus  

 

                        ,M)x(fm0
11

    at    .]b,a[x                       (12) 

 

In particular, after 
1

m  it is possible to take on a the least value of derivative )x(f 

on ]b,a[ which must be positive. After 
1

M  it is possible to take on a most value 

of derivative )x(f  on ]b,a[ . Will replace equation 0)x(f =  by equivalent to 

him equation  

.0,)x(fxx −=  

 

It is thus possible to put .)x(fx)x( −=  Parameter   sneaks up thus, that in 

околі ]b,a[  root   inequality was executed  

 

.1q)x(f1)x(0 −=  

 

Last inequality with the use of formula (4.12) it is possible to write down : 

 

.qm1M10
11
−−  

 

From where swims out : 

1
M

1
=       and       .1

M

m
1q

1

1 −=  
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In practical calculations number 
1

M  gets out thus, that ,2/Q|M|
1
 where 

|)x(f|maxQ = for all ]b,a[x  . Thus an iteration process coincides subject 

to condition 1|)x(|   on ]b,a[ . 

Will consider the example of application of method of simple iteration for 

untiing of equation  

.01xx)x(f 3 =−−  

 

An initial function can be presented in a kind )x()x(
21

= where 

1x)x(,x)x(
2

3

1
+== . From the construction of charts )x(y

11
=  but 

)x(y
22

=  swims out, that the sought after root is on a segment ]2,1[  it is 

figure 8. 

 

 

Figure 8. 

  

Initial equation 01xx3 =−−  it is possible to present in a kind 1xx 3 −=

or )x(x = where 1x)x( 3 −= . In the presented kind function )x(  

dissatisfies to the terms of convergence, so as 
2x3)x( =  and 3)x(   on a 

segment ]2,1[ .  
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Will present initial equation in a kind 3 1xx += . In this case function  

 

3 1x)x( += ,         and           
3 2)1x(3

1
)x(

+
= . 

 

From swims out here, that 
33 43

1
)x(

93

1
  on a segment ]2,1[ or 

4

1
)x(  , what satisfies to the terms of convergence of iteration process. 

 The results of calculations are driven to the table 2.5. 

 

Table 2.5. 

 

n  0 1 2 3 4 5 6 7 

nx  1 1,2599 1,3123 1,3224 1,3243 1,3246 1,3247 1,3247 

 

§ 2.8. Method of Newton 

 

 Let in equation 0)x(f =  function )x(f  has continuous second derivative 

)x(f   on a segment ]b;a[ which the separated root is on 
*x . It is assumed that 

derivatives  )x(f   but )x(f   different from a zero, знакосталі and initial 

approaching of root 
0

x  it is belonged to the segment ]b;a[ . In obedience to the 

indicated requirements on a segment ]b;a[  absent extremums and 

inflectionpoints of initial function, that allows in any point of segment ]b;a[  to 

build a tangent to the curve. Will consider arbitrary point-on-wave 

]b;a[x,))x(y,x(M
0000
  and will conduct a tangent to the curve in this 

point. Equation of tangent looks like 
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.)xx)(x(f)x(fy
000

−=−  

 

A tangent crosses abscise axis in some point )0;x(
1

. Taking into account the 

last, it is possible to write down 

 

,)xx)(x(f)x(f
000

−=−  

 

 from where get the first approaching of root 

 

.
)x(f

)x(f
xx

0

0

01


−=  

 

 Through a point ))x(f,x(M
111

 again will conduct a tangent to the curve, 

the intersection of which with abscise axis gives the second approaching of root 

and т. д. 

 Described process of construction of tangents a calculation of points of their 

crossing with abscise axis is an iteration process of Newton - Рафсона. 

 The construction of iteration sequence of approaching of chums takes place 

in obedience to next formulas 

 

                        ....,2,1,0n,
)x(f

)x(f
xx

n

n

n1n
=


−=

+
                        (13) 

 

 Geometrical maintenance of метода Newton - Рафсона consists in 

substituting of arc crooked by every iteration a tangent to her in a point 
n

x .  

Method of Newton - Rafson can be examined as a partial case of method 

of simple iteration (3.8), if to put .
)x(f

)x(f
x)x(


−=  As 
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( )
,

)x(f

)x(f)x(f
)x(

2



=  

 

from the condition of convergence of method of simple iteration swims out, that 

method of Newton - Рафсона coincides, when the initial approaching is chosen 

by near enough to simple Cornu .)0)x((x ** =  

 Thus, if initial approaching 
0

x  it is chosen close enough to Cornu 
*x then 

the method of Newton always coincides. At the arbitrary initial approaching an 

iteration method (13) coincides, if for all ]b;a[x   inequality is executed 

 

                                           
 

.1
)x(f

|)x(f)x(f|
2





                                       (14)                         

 

A next theorem takes place thus. 

 Theorem. Let ]b;a[C)x(f
2

 (function ,)x(f  derivatives )x(fi)x(f   

continuous on ]b;a[ ),  0)b(f)a(f   and derivatives )x(f,)x(f   keep a sign on 

a segment ]b;a[ . Then, if initial approaching ]b;a[x
0
  satisfies inequality 

 

                                                       ,0)x(f)x(f
00
                             (15) 

 

a sequence (4.13) coincides (thus droningly) to only on a segment ]b;a[  root 
*x  

equation 0)x(f = .  

 For the estimation of speed of convergence of method around root will take 

advantage of formula of Taylor 

,)xx)(c(f
2

1
)xx)(x(f)x(f)x(f 2

n

*

n

*

nn

* −+−+=  
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or          ,0)xx)(c(f
2

1
)xx)(x(f)x(f 2

n

*

n

*

nn
=−+−+  

 

where a point is cx =  lies between 
*

n
xix . From the last equation have  

 

       .)xx(
)x(f

)c(f

2

1

)x(f

)x(f
xx 2

n

*

nn

n

n

* −



−=


+−                          (16) 

 

In obedience to a formula (13) 

,x
)x(f

)x(f
x

1n

n

n

n +
=


−  

to the volume  

 

                            .)xx(
)x(f

)c(f

2

1
xx 2

n

*

n

1n

* −



−=−

+
                           (17) 

 

If to designate a most value through M |)x(f|   on ]b;a[ and through m is 

the least value |)x(f|   on a segment ]b;a[ then it is possible to write down next 

inequality for the estimation of error of two progressive approximations 
n

x  but 

1n
x

+
 

  

                                 .)xx(
m2

M
|xx| 2

n

*

1n

* −−
+

                               (18) 

 

In obedience to an estimation (18) swims out, that the error of the next new 

approaching diminishes proportionally to the square of error previous, id est 

convergence  of  Newton - Rafson method is quadratic.  
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If two progressive approximations are known 
n

x  but 
1n

x
+

 in obedience to 

the method of Newton - Rafson, then it is possible to write down on the basis of 

correlation (18) 

                                  .)xx(
m2

M
|xx| 2

n1n1n

* −−
++

                            (19) 

 

Thus, for determination of root of equation (4.1) in obedience to the method  

of Newton -  Rafson  with the set exactness     an iteration process will be 

executed, while  

                                    .M/m2|xx|
n1n

−
+                                   (20) 

 

 Remark. If derivative )x(f   poorly changes on ]b;a[  and her calculation 

is bulky enough, then an iteration process can be conducted on a formula 

                         

....,2,1,0n,
)x(f

)x(f
xx

0

n

n1n
=


−=

+
                        (21) 

The iteration process of kind (3.21) has the name of the modified method of 

Newton. 

Will consider the example of application of method of Newton for untiing 

of equation  

0x)4.0x3.0(tgy 2 =−+ . 

 

An initial function can be presented in a kind )x()x(
21

= where 

2
21 x)x(,)4.0x3.0(tg)x( =+= . From the brought graphic material over 

evidently, that graphic arts of functions )x(y
11

=  but )x(y
22

=  intersect in 

two points, roots belong to the intervals  )0,1[−  but ]1,0(  it is figure 9.  
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Figure 9. 

 

Stopped for being of positive root. 

 

x2
)4.0x3.0(cos

3.0
)x(y

2
−

+
= ,   .2

)4.0x3.0(cos

)4.0x3.0sin(18.0
)x(y

3
−

+

+
=  

 

Coming from the presented chart it is expedient to accept for the initial 

approaching .1x
0
=  Thus 7408,1)x(y;1577,0)x(y

00
−=−=    and 

accordingly 0)x(y)x(y
00
 . The results of calculations are driven to the next 

table 2.6.                                                                           

                                                                           Table 2.6 

 

n  0 1 2 3 4 

nx  1 0,8940 0,8864 0,8863 0,8863 

 

 



80 

 Will consider application of method of Newton to the decision of next 

equation 01xx)x(f 3 =−−  (this problem was examined at application of 

simple iteration method in a previous paragraph). A root of equation is on a 

segment ]2,1[  it is figure 7. First and second the derivatives of initial function 

are written down  

 

.x6)x(f;1x3)x(f 2 =−=  

 

A point sets to the initial approaching .2x
0
=  Thus 0)x(f)x(f

00
 . The 

results of calculations are driven to the table 2.7. 

 

   Table 2.7 

 

n  0 1 2 3 4 

nx  2 1,5455 1,3258 1,3247 1,3247 

 

The brought results over in a table 2.7 and comparing to the corresponding 

results according to calculations on the method of simple iteration (table 2.6) 

allow to draw conclusion about efficiency of application of  Newton method. 

 

 

 

§ 2.9. Method of secant 

 

If at the calculation of derivative )x(f   there are some difficulties, then 

more comfortable is application of method of secant. In this case derivative 

)x(f n
  replaced by the first up-diffused difference, found for to two last iterations 

 

.
xx

)x(f)x(f
)x(f

1nn

1nn

n

−

−

−

−
=  
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If to put expression )x(f
n

  in  a formula  (13),  then  will get 

iteration process of method of secant 

 

     ....,2,1n,
)x(f)x(f

)xx)(x(f
xx

1nn

1nnn

n1n
=

−

−
−=

−

−

+
                      (22) 

 

It is needed to set for the beginning of iteration process 
0

x  but 
1

x . From 

the geometrical point of view at every step iteration method of secant part of curve 

is replaced by secant which passes through points with abscissas 
n

x  but 
1n

x
−

.  

It is known that if   it is a root of equation 0)x(f = and 

0)(f,0)(f   and )(f   it is a continuous function, then there is such окіл 

points  that if 
0

x  but 
1

x  are different points of this околу, then the method of 

secant (22) coincides to root  =x . A next estimation takes place thus 

 

,|x|C|x| p

n1n
−−

+
 

 

where .6,1p,const0C −  

 Thus, the method of secant coincides more slowly as compared to the 

method of Newton, but here at every step iterations are calculated only value of 

function in the set points. 

Will consider application of method of secant to the decision of next 

equation 01xx)x(f 3 =−−  (this problem was examined for evidentness at 

application of метода of simple iteration and method of Newton in previous 

paragraphs). A root of equation is on a segment ]2,1[  it is figure 7. Points set to 

the initial approaching 2x
0
=  but 8,1x

1
= . The results of calculations are driven 

to the table 2.8. 
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                    Table 2.8 

 

n  1 2 3 4 5 6 

nx  1,8 1,4919 1,3760 1,3317 1,325 1,3247 

1nx −  2 1,8 1,4919 1,3760 1,3317 1,325 

 

 

As see, in obedience to the brought results over, there is more slow convergence 

of iteration process of secant as compared to the iteration method of Newton (table 

2.7). 

 

§ 2.10. A method of simple iteration is for the systems of two equations 

 

 Let the set system of two equations with two unknown 

 

                                                   




=

=

.0)y,x(F

,0)y,x(F

2

1
                                     (23) 

 

The problem of decision of the initial system of equations consists in being 

of actual chums with the set exactness. 

Laid, that the system (23) assumes the only isolated roots. Number of these 

chums and them close values can be set, if to build curves )y,x(F1  but )y,x(F2  

and to define the co-ordinates of their intersections. 

For application of method of simple iteration the system (3.23) over is 

brought to the kind 

                                                




=

=

).y,x(y

),y,x(x

2

1
                                      (24) 
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The algorithm of decision is set by formulas 

 

                         




==

=

+

+

),...,2,1,0n(),y,x(y

),y,x(x

nn21n

nn11n
                   (25) 

 

where 00 y,x it is some initial approaching. 

A next theorem takes place thus. 

Theorem. Let in some limited area )Byb,Axa(R   there is one 

and only one decision == y,x  systems (24). If  

1) functions )y,x(,)y,x( 21   certain and continuously differentiated in R ; 

2) initial approaching 00 y,x  and all next approaching )...,2,1,0n(y,x nn =  

areas belong R ; 

3) in area of R  inequalities are executed 

 

                                        

















+









+





;1q
yy

,1q
xx

2
21

1
21

                               (26) 

 

then the process of progressive approximations (25) coincides to the decision 

== y,x  if there are 

 

=
→

n
n

xlim and       .ylim n
n

=
→

 

Consequence.  The indicated theorem remains faithful, if to replace terms 

(26) terms 
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















+









+





.1q
yx

,1q
yx

2
22

1
11

                                 (27) 

 

 Estimation of error −n the го approaching is determined by inequality 

 

                   ( ),yyxx
M1

M
yx 1nn1nnnn −− −+−

−
−+−          (28) 

 

where M - most from numbers 21 q,q  in inequalities (26) or (27). Convergence 

of метода iterations is considered satisfactory, if 2/1M  thus 1)M1/(M − . 

 For example, will consider being of decision for the next system of 

equations 

 









=

=
−

+
−

,xy

,1
4

)2y(

9

)3x(

3

22

 

 

with an error .10 3−=  

For determination of number of chums and them close values will present 

the initial system of equations graphicly. The first equation of the indicated 

system is equation of ellipse, semi-axles  which .2b,3a елел ==  A center of 

ellipse is in a point .2y,3x ==  The second equation of the system is equation 

of cube parabola. The graphic image of the indicated equations is presented on 

figure 10.  
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Intersections of charts of equations of the system are the roots of equations, 

upshots of which are. As evidently from the brought graphic representation over, 

the indicated system has two pair of chums. 

For  application of method of simple iteration will write down the initial 

system of equations in a next kind 

,)y,x(yx
1

3/1 =  

 

.)y,x()3x(
9

4
42y

2

2 −−=  

 

 

0 1 2 3 4 5 x 
0 

1 

2 

3 

4 

5 

6 

7 

y 

 (x-3) 
2 
/9+(y-2) 

2 
/4=1 

 y=x 
3 

 

Figure 10. 

 

Coming from graphic presentation of the system of equations – lines 10, 

for the separation of chums of the system will consider areas  

 

}1y5,0;1x6,0{1 =  and }.4y5,3;7,1x3,1{2 =  
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Will consider being of the first pair of chums in area of 1 . It is undifficult 

to show that at any choice )y,x( 00 that belong 1 value of sequence 

)...,2,1n(),y,x( nn = will belong also 1 . In particular, at 

1)y,x(794,01y5,0 nn1 −  and at 

894,0)y,x(509,01x0 nn2 − . 

For the points of area 1  have 

 

,529,0
y

1

3

1

yx 3/2

11 =



+




 

 

.889,0

)3x(
9

4
4

)x3(
9

4

yx 2

22 

−−

−

=



+




 

 

Coming from the brought inequalities over it is possible to draw conclusion, 

that in area of 1  there are an only decision of the initial system of equations and 

this decision can be found the method of iterations in obedience to formulas 

 

,yx
3/1

n1n
=

+
 

 

.)3x(
9

4
42y 2

n1n
−−=

+
 

 

For a case 5,0yi6,0x 00 ==  the results of calculations are driven to the 

table 2.10. 

 

Table 2.10. 
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And root 

  

ІІ root 

N 

 

nx  

 

ny  

 

nx  ny  

0 0,6 0,5 1,3 3,5 

1 0,7937 0,8 1,5183 3,6479 

2 0,9283 0,6448 1,5394 3,7390 

3 0,8634 0,5535 1,5521 3,7469 

4 0,8210 0,5957 1,5532 3,7516 

5 0,8414 0,6253 1,5538 3,7520 

6 0,8551 0,6111 1,5539 3,7523 

7 0,8486 0,6017 1,5539 3,7523 

8 0,8442 0,6061   

9 0,8463 0,6091   

10 0,8477 0,6077   

11 0,8470 0,6067   

12 0,8466 0,6072   

13 0,8468 0,6075   

14 0,8469 0,6074   

15 0,8469 0,6073   

16 0,8468 0,6073   

17 0,8468 0,6073   

                                                                          

Will consider being of decision of the system for the case of area 

}.4y5,3;7,1x3,1{2 =  In obedience to formulas 

),y,x(yx 1
3/1 =  
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).y,x()3x(
9

4
42y 2

2 −−+=  

As well as in previous case, will show that at be - what choice )y,x( 00 that 

belong 2 value of sequence )...,2,1n(),y,x( nn =   areas will    belong  also     

2 . At  

}.89,3)y,x(65,37,1x3,1 2 −  

 

For an area 2  next inequalities are executed 

,145,0
y

1

3

1

yx 3/2

11 =



+




 

 

.459,0

)3x(
9

4
4

)3x(
9

4

yx 2

22 

−−

−

=



+




 

 

For a case 5,3yi3,1x 00 ==  the results of calculation are driven to the 

table 2.10. 

From the brought numeral results over see that for being of decision 

6073,0yi8469,0x ==  in area of 1  it is necessary to conduct 15 iterations, 

and for being of decision 7520,3yi5538,1x ==  it is necessary to conduct 5 

iterations. Speed of convergence of method of iterations depends on a size M  in 

correlation (28). For the case of decision in 1  889,0)889,0;529,0max(M ==

. For a decision in area of 2  - 459,0)459,0;145,0max(M == . In practical 

calculations convergence of метода iterations is considered satisfactory, if 

5,0M  . 

In a number of cases, for the decision of the system of kind (3.23) the 

iteration method of Seidel, which is modification of метода of simple iteration, 
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is used. Basic essence of this method consists in that at a calculation −+ )1n( the  

approaching is for a size 
1n

y
+

 the already calculated value of size is taken into 

account 
1n

x
+

. 

For the decision of the system (24) the algorithm of  Seidel method is set by 

formulas 

                                  




==

=

++

+

)....,2,1,0n(),y,x(y

),y,x(x

n1n21n

nn11n
                   (29) 

 

The theorem of convergence and consequence of theorem of convergence of 

метода of simple iteration take place thus. 

For example, to untie the next system of equations the iteration method of 

Seidel 

 









=

=
−

+
−

.xy

,1
4

)2y(

9

)3x(

3

22

 

 

This system was examined higher at application of метода of simple 

iteration. Coming from graphic presentation of the system of equations - lines 10, 

for the separation of chums of the system two  areas are examined  

 

}1y5,0;1x6,0{1 =  and }.4y5,3;7,1x3,1{2 =  

 

There is an iteration process in area of }1y5,0;1x6,0{1 =  and  

 

}4y5,3;7,1x3,1{2 =  set by formulas 
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 ,yx
3/1

n1n
=

+
            .)3x(

9

4
42y 2

1n1n
−−=

++
 

 

In the last formula sign minus before підкореневим expression answers the value 

of root from an area 1 and sign plus - root from an area 2 . 

The results of calculations are driven to the table 2.11.  

As evidently from the brought calculations over, for being of розв'язкув area 

1  it is necessary to conduct 8 iterations (for comparison in the case of method 

of simple iteration - 15 iterations), and for being of decision in area of 2  it is 

necessary to conduct 4 iterations (in the case of method of simple iteration - 5 

iterations). 

 

                                                                                    Table 2.11 

 

And root  ІІ root 

n nx  ny   nx  ny  

0 0,6 0,5  1,3 3,5 

1 0,7937 0,6448  1,5183 3,7390 

2 0,8639 0,5957  1,5521 3,7516 

3 0,8414 0,6111  1,5538 3,7523 

4 0,8486 0,6061  1,5539 3,7523 

5 0,8463 0,6077    

6 0,8470 0,6072    

7 0,8468 0,6074    

8 0,8469 0,6073    

9 0,8468 0,6073    
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§ 2.11. A method of Newton is for the systems of two equations 

 

Will consider the system of two equations with two unknown 

 

                                                  




=

=

,0)y,x(F

,0)y,x(F

2

1
                                     (30) 

 

where 21 F,F are the continuously differentiated functions for to the variables of х 

and y. 

Will consider that the system of equations has the separated decision and will 

designate this decision through )y,x( **
. Every function in the system (30) it is 

possible to decompose in the series of Taylor arround decision. Ignoring the 

elements of high order in this time-table, system of equations in the linearized 

form it is possible to write down in a kind 

 

  ,)yy(
y

)y,x(F
)xx(

x

)y,x(F
)y,x(F)y,x(F *

**

1*

**

1

1

**

1
−




+−




+         (31) 

 

  .)yy(
y

)y,x(F
)xx(

x

)y,x(F
)y,x(F)y,x(F *

**

2*

**

2

2

**

2
−




+−




+  

 

If in the system (31) to equate right parts with a zero, then a decision of the 

system will be different from )y,x( **
 in connection with that in equations (31) 

cast aside the elements of higher orders. As a result will get some new value (х, 

у). Coming from it, iteration procedure can be written down in a kind 

 

                                    ,0)xx(M)x(F k1kk =++ +                              (32) 
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where vectors are )y,x(x),F,F(F 21 == and the matrix of  M looks like 

 

                                       .

y

F

x

F

y

F

x

F

M
22

11



































=                                      (33) 

 

The matrix of kind (33) is named the matrix of Jacobi. Formally the 

decision of the system (32) is determined in obedience to next formulas 

 

                                    .)x(FMxx
k

1

k1k

−

+
−=                                      (34) 

 

In practice being of matrix of Jacobi 
1M−
  it is inadvisable. If to designate  

 

                                         ,xxx k1kk −= +                                        (35) 

 

then the system (34) can be presented in a kind  

 

                                            .)x(FxM kk −=                                      (36) 

 

The system (36) is the system of two equations in relation to unknown kk y,x  . Untiing the 

system (36), determine sizes  

 

                                          .xxx kk1k +=+                                       (37) 

 

Equation (36 - 37) are an iteration method of Newton for the initial system 

of equations (3.30).  

The algorithmic chart of Newton method consists in the following.  
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It is considered that it is set some k of the -те approaching )y,x(x kkk = . 

 І-й step. The value of component of vector is calculated  

 

.
)y,x(F

)y,x(F
)x(F

kk2

kk1
k 








=  

 

ІІ-й step. The matrix of Jacobi calculates at a point )y,x( kk  

 

.

y

)y,x(F

x

)y,x(F

y

)y,x(F

x

)y,x(F

)x(M
kk2kk2

kk1kk1

k



































=  

ІІІ-й step. The linear system of equations gets untied relatively kx  

 

)x(Fx)x(M kkk −= , 

or 

.

)y,x(F

)y,x(F

y

x

y

)y,x(F

x

)y,x(F

y

)y,x(F

x
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k

k
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

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

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
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

 

 

ІV step. There is a value of next point  

 

,xxx kk1k +=+  or  

,xxx kk1k +=+      kk1k yyy +=+ . 

 

Farther an iteration process recurs beginning from the first step. 

For example, will consider the system of equations of kind 



94 
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This system was examined in a previous paragraph. The graphic image of 

equations is presented on figure 9. It is considered that the roots  of the system of 

equations are separated and are in areas  

 

}1y5,0;1x6,0{1 =  and }.4y5,3;7,1x3,1{2 =  

 

Will apply the iteration process of Newton for being of decisions of the initial 

system. 

Will write down the initial system of equations in a kind 

 

,0)y,x(F,0)y,x(F 21 ==  

 

where                               

.xy)y,x(F

,1
4

)2y(
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The matrix of Jacobi looks like 

















−

−−
=
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2

M
2
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Will consider being of decisions in area of 

}1y5,0;1x6,0{1 = . For the initial approaching will accept 

.5,0y;6,0x 00 ==  In obedience to the algorithmic chart of  Newton have 

And root 

 

.5,0y;6,0x 00 ==  

 

And step.  
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ІІ step. 
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;8496,0x;0597,0x

2

2

==

=−=
 

 

ІІІ step. 

 

.6038,0y;8496,0x 22 ==  
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For being of the second root will consider an area 

}.4y5,3;7,1x3,1{2 =  

 

ІІ root. 

 

.5,3y;3,1x 00 ==  

 

And step.  
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ІІ step. 
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ІІІ step. 
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§ 2.12. Iteration methods of decision of the systems of nonlinear equations 

 

Will consider the system n nonlinear equations from n  unknown 

 

                      ,n,1i,0)x,...,x,x(f
n21i

==                             (38) 

 

where 
i

f are some algebra or transcendent functions. Will designate 

)x,...,x,x(x
n21

=  but )f,...,f,f(f
n21

= the system (38) will write down in 

a vectorial form 

 

                                                   .0)x(f =                                             (39) 

 

A decision of the system (39) is more intricate problem, than decision of one 

equation. For solution of such systems iteration methods are used. Will generalize 

the method of progressive approximations and method of Newton- Rafson for the 

case of the system (39). 

 Method of simple iteration. Will replace the nonlinear system (39) the 

equivalent system of the special kind 

                                                 )x(x = ,                                             (40) 

 

where ),...,,(
n21

= . 

Possibly, that the system (3.40) has in the limited protuberant closed area of 

D of n -size of space of Х only decision )x,...,x,x(x *

n

*

2

*

1

* = and components 

0

i
x  vector )x,...,x,x(x 0

n

0

2

0

1

0 =  are scalar sizes, accordingly near to 

n,1i,x*

i
= . 

Will find the next approaching to the exact decision by means of method of 

simple iteration (progressive approximations) after formulas: 
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                                             )x(x k1k =+
,                                           (41) 

or in a co-ordinate form 

 

....,2,1,0k,n,1i,)x,...,x,x(x k

n

k

2

k

1i

1k

i
===+

 

 

Let ||xx||)x,x( 2121 −=  it is distance between elements 
21 xix  in space 

of Х, where for the norm of vector it is possible to choose an arbitrary canonical 

norm. 

In obedience to principle of the squeezing mapping the system of equations 

(40) has an only decision Dx* which can be found the method of iterations (41) 

at any choice of the initial approaching Dx 0 if all progressive approximations 

...),2,1k(,Dx k =  and mapping )x(  squeezes in D. 

Will consider the sufficient terms of convergence of method of iterations 

which are comfortable during realization of practical calculations. 

Possibly, that in some protuberant closed area of D of function )x(
i

  have 

continuous derivatives of part 
j

i

x


 and in area of D the system (3.40) has an only 

decision 
*x . Let for the arbitrary initial approaching Dx 0  all next approaching 

Dx k . 

Arround of decision 
*x  after the generalized formula of  Lagrange 

 

 ;n,1i,)xx(
x

)(
)x()x(xx

n

1j

*

j

k

j

j

k

ii*

i

k

i

*

i

1k

i
=−




=−=− 

=

+
    (42) 

 

where 
k

i
 it is some point of segment of line which connects points   
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)x,...,x,x(x k

n

k

2

k

1

k =  and )x,...,x,x(x *

n

*

2

*

1

* = . 

 

To Tom 

 

                =−== + ||)x()x(||))x(),x(()x,x( *k*k*1k
          (43) 

 

,)xx(||)(J||||)xx()(J|| *kk*kk −−=  

 

where )x(J it is a matrix of Jacobi of the system (40) 
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2

2

2

1

2

n

1

2

1

1

1

x

)x(
...

x

)x(

x

)x(

.................

x

)x(
...

x

)x(

x

)x(

x

)x(
...

x

)x(

x

)x(

)x(J .                (3.44) 

 

In obedience to principle of the squeezing mapping (see the division of ІІІ) 

the method of progressive approximations (3.41) coincides to the decision 
*x  

systems (3.40), if the arbitrary concerted norm of matrix of Jacobi ||)(J|| k  there 

will be less unit. 

 Will write down inequality (3.43) in a kind 

 

      .)x,x(||M||)x,x(||)(J||))x(,x( *k*kk*k                  (45) 

 

In practice comfortably to examine the matrix of M with elements  
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,
x

maxM
j

i

D
ij




=  

 

the norm of which majorizes a norm ||)x(J|| . 

Mapping (40) will squeeze in D, if for the arbitrary concerted norm of 

matrix of M a condition is executed: 

                                                    .1||M||                                              (46) 

 

A next theorem takes place. 

Theorem.  If functions n,1i,)x,...,x,x(
n21i

=  in some protuberant 

area of D, which contains a decision )x,...,x,x(x *

n

*

2

*

1

* =  systems (3.40), 

continuous and have the continuous first derivatives, then for convergence of 

method of iterations sufficiently, that in the matrix of M with elements 

j

i

D
ij

x
maxM




=  all own values were on the module less unit, and initial 

approaching )x,...,x,x(x 0

n

0

2

0

1

0 =  it is near enough to the decision 

)x,...,x,x(x *

n

*

2

*

1

* = . 

Approaching of vector is to the decision 
kx  to the decision 

*x  will 

characterize одною from norms 
ml

||x||,||x||  or 
k

||x|| . 

Going out the generally accepted standard norms for convergence of 

iterations method (41) enough implementation of one of terms: 

 

                                           ;1qMmax
i

m

1j
ij

ni1
=

=


                                 (47) 
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;1qMmax
i

n

1i
ij

nj1
=

=


           .1qM
i

2/1
n

1j,i

2

ij
=









=

 

 

Will consider an example. Let the set system of equations 

 

.

0xy2zz

2,0xz3yy

1,0yz2xx

2

2

2









=−+

=++−

=−+

 

 

It is necessary to get a decision the method of simple iteration with the set 

exactness  . 

Will convert the initial system to the kind 

 

,

xy225,0
2

1
z

xz305,0
2

1
y

yz235,0
2

1
x

2

2

2
















+=







+

+=







−

+=







+

 

or 

              .

xy225,0
2

1
z

xz305,0
2

1
y

yz235,0
2

1
x















+−=

+=

+−=

 

 

Will build the graphic image of initial equations, which is presented on figure 

11.  
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Figure 11. 

 

In obedience to the presented graphic material - lines. 11, roots of equations 

of the initial system are in intervals }1,0z0;3,0y0;2,0x0{  . 

An iteration process for being of chums of the system build in obedience to 

next formulas 

 

)z,y,x(x
nnn11n

=
+

, 

 

)z,y,x(y
nnn21n

=
+

, 

 

)z,y,x(z
nnn31n

=
+

, 

where  

nnnnn1
zy235,0

2

1
)z,y,x( ++−= , 

 

                   
nnnnn2

zx305,0
2

1
)z,y,x( +−=  , 
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nnnnn3

yx225,0
2

1
)z,y,x( ++−= . 

 

At application of method of simple iteration it is necessary to adhere to the terms 

of convergence of iteration process. Will go out a condition in obedience to which 

for convergence of method of simple iteration sufficiently, that own values of 

matrix of M (elements of which 
j

i

ij
x

maxM



= ) there was less unit on the 

module in area of values of initial equations. In our case an area is certain in 

intervals ;3,0y0;2,0x0{   }1,0z0  . The matrix of M takes on 

next values (maximal values of derivatives of part
j

i

x


 arrive at in points 

1,0z;3,0y;2,0x === ) 

 

















=

03288,04932,0

9045,004523,0

4685,01562,00

M .                   

 

The own numbers of matrix of M have next values  

 

d = 0.8712, - 0.2629, - 0.6083. 

 

As see that value of own numbers of matrix of M on the module less unit, 

that allows to talk about convergence of iteration process.  

For a zero approaching accepted 0z;0y;0x
000
=== . The results of 

calculations are driven to the next table 2.12. 

                                                     Table 2.12 
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n 
n

x  
n

y  
n

z  

0 0  0 0 

1 0.0916 0.2764 0 

2 0.0916 0.2764 0.0483 

3 0.1138 0.2485 0.0483 

4 0.1116 0.2422 0.0537 

5 0.1132 0.2393 0.0514 

6 0.1120 0.2403 0.0515 

7 0.1122 0.2405 0.0512 

8 0.1121 0.2407 0.0513 

9 0.1121 0.2407 0.0513 

 

Method of Newton - Rafson. The system of nonlinear equations of kind 

(4.39) is examined - 0)x(f = . Will consider that the system (4.39) has a decision 

and will designate him 
*x . Will decompose a function )x(f  in the series of Тaylor 

limited to in a time-table the elements of a zero and first degree,  

that is, we linearize initial function )x(f  

                            ,)xx(J)x(f)x(f ** −+                               (48) 

 

where a matrix of J is a matrix of Jacobi of function )x(f  
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































































=

n

n

2

n

1

n

n

2

2

2

1

2

n

1

2

1

1

1

x

)x(f
...

x

)x(f

x

)x(f

.................

x

)x(f
...

x

)x(f

x

)x(f

x

)x(f
...

x

)x(f

x

)x(f

)x(J .                        (49) 

 

If to choose some initial approaching 
0

x  in near enough околі root 
*x

recognition (39), will get a next iteration process 

 

         ....),2,1,0k(,0)xx(J)x(f k1kk ==−+ +
               (50) 

 

In particular, if there is an inverse matrix of Jacobi )x(J k1−
then iteration 

process of  Newton - Rafson can be written down in a kind 

 

                               .)x(f)x(Jxx kk1k1k −= −+
                         (51) 

 

In practice being of matrix of  Jacobi  )x(J k1−
 it is inadvisable. If to 

designate  

 

                                         ,xxx k1kk −= +
                                       (52) 

 

then the system (50) can be presented in a kind  

 

                                            .)x(fx)x(J kkk −=                                 (53) 
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The system (53) is the system of equations in relation to an unknown vector 

kx . Untiing the system (53), determine sizes  

 

                                          .xxx kk1k +=+
                                      (54) 

 

Equation (3.53), (3.54) are an iteration method of Newton - Rafson for the 

initial system of equations (3.39).  

Algorithmic chart of method of Newton - Rafson for the system of n 

equations consists in the following.  

It is considered that it is set some k of the -те approaching 

)x,...,x,x(x k

n

k

2

k

1

k = . 

І-й step. The value of компонент of vector is calculated  

 

.

)x(f

...

)x(f

)x(f

)x(f

k

n

k

2

k

1

k





















=  

 

ІІ-й step. The matrix of Jacobi calculates at a point )x,...,x,x(x k

n

k

2

k

1

k =  

 

































































=

n

k

n

2

k

n

1

k

n

n

k

2

2

k

2

1

k

2

n

k

1

2

k

1

1

k

1

k

x

)x(f
...

x

)x(f

x

)x(f

.................

x

)x(f
...

x

)x(f

x

)x(f

x

)x(f
...

x

)x(f

x

)x(f

)x(J . 
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ІІІ-й step. The linear system of equations gets untied relatively 
kx  

 

)x(fx)x(J kkk −= , 

or 

.

)x(f

.

.

.

)x(f

)x(f

x

.

.

.

x

x

x

)x(f
...

x

)x(f

x

)x(f

.................

x

)x(f
...

x

)x(f

x

)x(f

x

)x(f
...

x

)x(f

x

)x(f

k

n

k

2

k

1

k

n

k

2

k

1

n

k

n

2

k

n

1

k

n

n

k

2

2

k

2

1

k

2

n

k

1

2

k

1

1

k

1



























−=

































































































 

 

ІV step. There is a value of next point  

 

,xxx kk1k +=+
  

or  

,xxx k

1

k

1

1k

1
+=+

   ,xxx k

2

k

2

1k

2
+=+

  … , .xxx k

n

k

n

1k

n
+=+

 

Farther an iteration process recurs beginning from the first step. 

Will consider application of метода Newton for the decision of the next 

nonlinear system of the third order 

 

.

0xy2zz

2,0xz3yy

1,0yz2xx

2

2

2









=−+

=++−

=−+

 

 

Will present the initial system of equations in a kind 
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







=

=

=

,0)z,y,x(f

,0)z,y,x(f

,0)z,y,x(f

3

2

1

 

where  

 

.xy2zz)z,y,x(f

,2.0xz3yy)z,y,x(f

,1.0yz2xx)z,y,x(f

2

3

2

2

2

1

−+=

+−−=

+−+=

 

 

The matrix of Jacobi of the initial system of equations looks like 

 

















+−−

−−−

−−+

=

1z2x2y2

x31y2z3

y2x21x2

)z,y,x(J . 

 

A graphic system of equations image is presented on rice.4.10, coming 

from what for the initial approaching lay 0z;0y;0x
000
=== .  

And step. 

 

;0)z,y,x(f

;2.0)z,y,x(f

;1.0)z,y,x(f

0003

0002

0001

=

=

−=

                 

















−=

100

010

001

)z,y,x(J
000 ; 

 

;1.0xxx;1.0x 1

01

1 =+==  

;2.0yyy;2.0y 1

01

1 =+==  

.0zzz;0z 1

01

1 =+==  
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ІІ step. 

 

;04.0)z,y,x(f

;04.0)z,y,x(f

;01.0)z,y,x(f

1113

1112

1111

−=

=

=

     

















−−

−−

−

=

12.04.0

3.06.00

4.002.1

)z,y,x(J
111 ; 

 

;1089.0xxx;0089.0x 2

12

2 =+==  

;2408.0yyy;0408.0y 2

12

2 =+==  

.0517.0zzz;0517.0z 2

12

2 =+==  

 

ІІІ step. 

 

;0019.0)z,y,x(f

;0003.0)z,y,x(f

;0041.0)z,y,x(f

2223

2222

2221

=

=

−=

      

 

















−−

−−−

−−

=

1034.12178.04816.0

3267.05184.01552.0

4816.01034.02178.1

)z,y,x(J
222 ; 

 

;1121.1xxx;0032.0x 3

23

3 =+==  

;2406.0yyy;0002.0y 3

23

3 =+=−=  

.0513.0zzz;0004.0z 3

23

3 =+=−=  

 

If  to compare the brought results over with corresponding results, which 

are got the method of simple iteration (table 4.8), then see that for achievement of 

necessary exactness in the method of Newton it is needed to execute three 
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iterations (concordantly метода of simple iteration it is necessary it was to execute 

eight iterations).  

 

A task is for independent implementation 

 

I. To find the least on the module actual root of equation  with exactness, 

here: а) to separate a root a graphic method; б) to calculate a root by means of 

method of simple iteration; в) to calculate a root by means of method of Newton 

– Rafson and compare the amount of iterations which are needed for the receipt 

of root with the set exactness in obedience to the method of simple iteration. 

 

1. .0xlnx2x2 =+−      2. .08x12x6x 24 =−+−  

 

 3. .0)2xlg(2x 2 =+−      4. .03x22 2x =−+  

 

 5. .013x2x3 =−+      6. .05.0xarctgx2 =−+  

 

 7. .04xe x2 =−       8. .0x2x8.0ctg 2 =−  

 

 9. .01x5x5 =++     10. .034x18x 35 =−+  

 

11. .0e)2x( x2 =−−     12. .05e2
2x =−  

 

13. .011x2x 23 =−+     14. .04x3e2
2x =+−−

 

 

15. .0x2.1cos1x2 =−−    16. .01x2sin3x2 =−−  
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17. .0xsin)5.0x( 2 =−−    18. .01x6x3x 23 =−−+  

 

19. .0xcos2x3 =−     20. .02xx8.0tg =−−  

21. .0x32x2.1tg =+−    22. .03x3x4 =−+  

 

23. .0e5.0)1x( x2 =−−    24. .0x
2

sinx3 3 =


+−  

 

25. .0x5.0arcsin1 =−     26. .01)x(log)2x(
2

=−+  

 

27. .03x2)1x(arcctg =−+−   28. .010xx2 24 =−−  

 

29. .01
2

x
xlg2 =+−     30. .01x2cosx 2 =+  

 

II. Using the method of iterations, to untie the system of nonlinear equations 

within 0,0001. 

 

1. 




=+

=−+

.2ycosx2

;2,1y)1xsin(
   2. 





=−

=+−

.3ycosx

;5,0y)1xcos(
 

 

3. 




=+−

=+

.7,0x)1ycos(

;2y2xsin
   4. 





=−−

=+

.1)5,0ysin(x2

;5,1yxcos
 

 

5. 




=+−

=−+

.0x)2ycos(

;1y)5,0xsin(
   6. 





=−

=++

.6,1x2ysin

;8,0y)5,0xcos(
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7. 




=+−

−=−

.8,0)1ysin(x

;y3,1)1xsin(
   8. 





−=+

=+−

.4,0ysinx

;0)1xcos(y2
 

 

9. 




=−

=−+

.1x2ysin

;2y)5,0xcos(
          10. 





=−+

=−+

.5,0)2ycos(x

;5,1y)2xsin(
 

 

11. 




=+

=−+

.2xcosy2

;2,1y)1ysin(
  12. 





=−

=+−

.3xcosy

;5,0x)1ycos(
 

 

13. 




=+−

=+

.7,0y)1xcos(

;2x2ysin
  14. 





=−−

=+

.1)5,0xsin(y2

;5,1xycos
 

 

15. 




=+−

=−+

.0y)2xcos(

;1x)5,0ysin(
  16. 





=−

=++

.6,1y2xsin

;8,0x)5,0ycos(
 

 

17. 




=+−

=+−

.8,0)1xsin(y

;3,1x)1ysin(
  18. 





−=+

=+−

.4,0xsiny

;0)1ycos(x2
 

 

19. 




=−

=−+

.1y2xsin

;2x)5,0y(cox
  20. 





=−+

=−+

.5,0)2xcos(y

;5,1x)2ysin(
 

 

21. 




=+

=−+

.2ycosx2

;1y)1xsin(
   22. 





=−

=+−

.2ycosx

;8,0y)1xcos(
 

 

23. 




=+−

=+

.1x)1ycos(

;6,1y2xsin
   24. 





=−−

=+

.2)5,0ysin(x2

;2,1yxcos
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25. 




=+−

=−+

.0x)2ycos(

;2,1y)5,0xsin(
  26. 





=−

=++

.2x2ysin

;1y)5,0xcos(
 

 

27. 




=+−

=+−

.1)1ysin(x

;5,1y)1xsin(
  28. 





=+

=−+

.2xcosy2

;1x)1ysin(
 

 

29. 




=−

=+−

.2xcosy

;8,0x)1ycos(
  30. 





=+

=+−

.6,1x2ysin

;1y)1xcos(
 

 

IІI. Using the method of Newton, to untie the system of nonlinear equations 

within 0,001. 

 

1. 





=+

=+

.0y,0x,1y2x6,0

;x)4,0xy(tg

22

2

    

2. 




=+

=−+

.0y,0x,1yx

;0x6,1)yxsin(

22
 

 

3. 





=+

=+

.1y2x

;x)1,0xy(tg

22

2

   4. 




=+

=−+

.1yx

;2,0x2,1)yxsin(

22
 

 

5. 





=+

=+

.1y2x9,0

;x)3,0xy(tg

22

2

   6. 




=+

=−+

.1yx

;0x3,1)yxsin(

22
 

 

7. 





=+

=

.1y2x8,0

;xxytg

22

2

   8. 




=+

=−+

.1yx

;1,0x5,1)yxsin(

22
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9. 





=+

=

.1y2x7,0

;xxytg

22

2

            10. 




=+

=−+

.1yx

;1,0x2,1)yxsin(

22
 

 

11. 





=+

=+

.1y2x6,0

;x)2,0xy(tg

22

2

   12. 




=+

−=+

.1yx

;1,0x5,1)yxsin(

22
 

 

13. 





=+

=+

.1y2x8,0

;x)4,0xy(tg

22

2

   14. 




=+

−=+

.1yx

;1,0x2,1)yxsin(

22
 

 

15. 





=+

=+

.1y2x9,0

;x)1,0xy(tg

22

2

   16. 




=+

=−+

.1yx

;0x4,1)yxsin(

22
 

 

17. 





=+

=+

.1y2x5,0

;x)1,0xy(tg

22

2

   18. 




=+

−=+

.1yx

;1,0x1,1)yxsin(

22
 

 

19. 




=+

=−−

.1y2x

;0xy)yx(tg

22
              20. 








=−

−=−−

.
4

3
yx

;1xy)yxsin(

22
 

21. 





=+

=+

.1yx

;x)2,0xy(tg

22

2

   22. 




=+

=−+

.1yx

;0x5,1)yxsin(

22
 

 

23. 





=+

=

.1y2x5,0

;xxytg

22

2

   24. 




=+

−=+

.1yx

;2,0x2,1)yxsin(

22
 

 

25. 





=+

=+

.1y2x7,0

;x)1,0xy(tg

22

2

   26. 




=+

=−+

.1yx

;2,0x5,1)yxsin(

22
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27. 





=+

=

.1y2x6,0

;xxytg

22

2

   28. 




=+

=−+

.1yx

;0x2,1)yxsin(

22
 

 

29. 





=+

=+

.1y2x5,0

;x)3,0xy(tg

22

2

             30. 




=+

=−−

.1y5,1x8,0

;4,0x2,1)yx2sin(

22
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TITLE 3. NUMERICAL APPROACH OF FUNCTIONS 

 

§ 3.1. Formulation of the problem 

 

The simplest case of function approximation is the interpolation of  the 

function of one variable. Suppose points are given and we need to find a function 

)x(f that passes through these points, that is 

 

n,1i,y)x(f
ii

== . 

 

A function that interpolates the source data is called an interpolator or 

interpolating function. 

The fixed data set   n,1i,)y,x(
ii

=  alone cannot determine the 

interpolator. Obviously, there are infinitely many interpolators for a fixed data set. 

In particular, as an example, in Fig. 1 shows the curves xcos2y = that 

interpolate a discretely given function, according to step interpolation and spline 

interpolation, respectively denoted by the numbers '1' and '2'. 

 

Figure. 1 
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We will assume that the set of points }x{
i

 is arranged in ascending order 

n321
x...xxx  . The problem is finding an interpolant )x(f that gives 

acceptable values for 
i

xx  . This cannot be done completely rigorously because 

it all depends on the process under study, our understanding of  the acceptability 

of the source data, etc. 

In the standard approach, a set of basic functions )x(b,...),x(b),x(b
n21

 is 

predefined. These functions can be selected for experience, on the basis of 

mathematical or physical intuition, etc. But in any case, it is relies that these 

functions are known to be known. 

 

Let the set of points { }ix  be arranged in ascending order 
1 2 3 ... nx x x x   

. The problem is finding an interpolant ( )f x  that gives acceptable values for 

ix x . This cannot be done completely rigorously because it all depends on the 

process under study, the acceptability of the raw data, and so on. In the standard 

approach, a set of basic functions is predefined. 

These functions can be selected from experience, based on mathematical or 

physical intuition and the so on. In any case, these functions are  known. Based 

on the basic functions, the model is built 

                                             
1

( ) ( ) ,
n

j j

j

f x b x
=

=                                  (1) 

 

in which the numbers j are unknown and are determined so that the function 

( )f x is an interpolator. Therefore, the model must satisfy the interpolation 

conditions 

                ( )i if x y= ,    or     
1

( ) , 1, .
n

j j i

j

b x y i n
=

= =                (2) 
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From here we obtain a system of  n  linear equations for 
j with the 

coefficient matrix 

 

[ ], ( ) , , 1, .ij ij j iB b b b x i j n= = =  

 

If the functions ( )jb x  are chosen well enough, then the system of equations 

of form (2) can be solved relative to j  and the interpolator ( )f x is found. 

Two main approaches to the choice of basic functions are considered in 

interpolation problems: polynomial and piece polynomial. For each approach, 

matrix B has its own specificity, which in turn allows us to find effective 

interpolates. 

For historical and practical reasons, when considering the polynomial 

interpolation the greatest use was obtained the class of  basis functions, which is 

a set of algebraic polynomials. Polynomials have obvious advantages: they can 

be easily calculated, added, multiplied, integrated and differentiated. 

It is clear that a class of functions may satisfy these conditions, but may not 

be suitable for approximation of functions. On the other hand, it is known that any 

continuous function )x(g  can be approximated on a closed interval by some 

polynomial. This follows from the Weierstrass approximation theorem. 

Although it is theoretically known about the existence of some polynomial 

( )nP x  that approximates a function ( )g x  with some precision on [ , ]a b , but there 

is no guarantee that such a polynomial can be found using a practical algorithm. 

If we choose for the basic functions 1( ) , 1, ;i

ib x x i n−= =  the model (1) will 

take the form  
1

1 1 2( ) ... n

n nP x x x   −

− = + + +   with a matrix B has a kind 
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2 1

1 1 1

2 1

2 2 2

2 1

1 . . .

1 . . .
.

. . . . . . . . . . . . . .

1 . . .

n

n

n

n n n

x x x

x x x
B

x x x

−

−

−

 
 
 

=
 
 
  

 

 

The determinant of  the matrix  В  

 

                    

2 1

1 1 1

2 1

2 2 2

1

2 1

1 . . .

1 . . .
det( ) ( )

. . . . . . . . . . . . . .

1 . . .

n

n

i j

j i n

n

n n n

x x x

x x x
B x x

x x x

−

−

  

−

= = −  

 

is called Vandermond's determinant. If the interpolation nodes are different, that 

is 0)Bdet(  , then system (2) has a single solution. 

 Consider the partial cases of the above interpolation approach. In the case 

of  linear interpolation, the unique interpolator for points 
1 1( , )x y  and 

2 2( , )x y  

is determined by the formula 

1 1 2( ) ,P x x = +  

 

where 
1  and 

2  satisfy the system of equations 

 

1 2 1 1

1 2 2 2

,

.

x y

x y

 

 

+ =


+ =
 

 

The matrix 
1

2

1

1

x
B

x

 
=  
 

 corresponds to the specified system. If 
1 2x x , then 

matrix B is nondegenerate and one can find 
1  and 

2 2 . A linear interpolator 

has the form 
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                             1 2 2 1 2 1
1

2 1 2 1

( ) .
y x y x y y

P x x
x x x x

− −
= +

− −
                             (3) 

 

In the case of quadratic interpolation, the interpolator for points 
1 1( , )x y ,

)y,x(
22

, 
3 3( , )x y is given by the formula 

 

                                       2

2 1 2 3( ) ,P x x x  = + +                                (4) 

 

where  
1 , 

2 , 
3  satisfy the system of equations 

 

2

1 2 1 3 1 1

2

1 2 2 3 2 2

2

1 2 3 3 3 3

,

,

.

x x y

x x y

x x y

  

  

  

 + + =


+ + =


+ + =

 

 

The matrix 

2

1 1

2

2 2

2

3 3

1

1

1

x x

B x x

x x

 
 

=  
 
 

 corresponds to the specified system.  

If 
1 2 3x x x  , then matrix B is nondegenerate and the determinant of the 

system is 
3 2 3 1 2 1det( ) ( )( )( ) 0B x x x x x x= − − −  . The values 

1 , 
2 , 

3  can be 

found by Kramer formulas 

 

         31 2
1 2 3

det( )det( ) det( )
, , ,

det( ) det( ) det( )

BB B

B B B
  = = =                         (5) 

 

where the matrix ( 1, 2, 3)iB i =  is obtained by replacing the corresponding vector 

-column with the vector of the right-hand sides of the original system of equations. 

The determinants of these matrices are given by formulas 
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1 1 2 3 3 2 2 1 3 3 1 3 1 2 2 1det( ) ( ) ( ) ( ),B y x x x x y x x x x y x x x x= − − − + −  

 

2 2 2 2 2 2

2 1 3 2 2 3 1 3 2 1det( ) ( ) ( ) ( ),B y x x y x x y x x= − − + − − −  

 

3 1 3 2 2 3 1 3 2 1det( ) ( ) ( ) ( ).B y x x y x x y x x= − − − + −  

 

In the examples of linear and quadratic interpolations, the coefficient matrix 

B is nondegenerate, so the systems of equations are solved uniquely. In the general 

case, as already mentioned, if the interpolation nodes do not coincides, then matrix 

B has a determinant det( ) 0B  . 

Thus, if no two abscissa of the original data coincide, then the system of 

equations for polynomial interpolation always has a nondegenerate matrix of 

coefficients and, accordingly, a single solution, that is, for given n points, there 

exists a single polynomial of degree not higher than n – 1, which passes through 

all these points. 

 

§ 3.2. Lagrange interpolation polynomial 

 

A linear interpolator of the form (3) is considered. By equivalent 

transformations 
1( )P x can be represented as 

 

                                 2 1
1 1 2

1 2 2 1

( ) ,
x x x x

P x y y
x x x x

− −
= +

− −
                          (6) 

or    

1 1 1 2 2( ) ( ) ( )P x b x b x = + ,  де  2 1
1 2

1 2 2 1

( ) ; ( ) .
x x x x

b x b x
x x x x

− −
= =

− −
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In this case, the basic functions 
1 2( ), ( )b x b x  are accepted for interpolation. 

The corresponding matrix B has the form 

1 1 2 1

1 2 2 2

( ) ( ) 1 0
,

( ) ( ) 0 1

b x b x
B

b x b x

   
= =   

  
 

 

that is, the basic functions 
1 2( ), ( )b x b x satisfy the conditions 

 

1, i j,
( ) {

0, i j.
j i

if
b x

if

=
=


                                             (7) 

 

Therefore, matrix B is singular. In this case, the solution of the equation 

system B y =  will be y =  either 
1 1 2 2,y y = = . 

In the case of quadratic interpolation of the form (4) by means of equivalent 

transformations, we have 

 

2 3 1 3

2 1 2

1 2 1 3 2 1 2 3

( )( ) ( )( )
( )

( )( ) ( )( )

x x x x x x x x
P x y y

x x x x x x x x

− − − −
= + +

− − − −

3 1
3

3 1 3 2

( )( )
,

( )( )

x x x x
y

x x x x

− −

− −
               (8) 

or  

2 1 1 2 2 3 3( ) ( ) ( ) ( )P x b x b x b x  = + + ,  

 where 

2 3

1

1 2 1 3

( )( )
( ) ,

( )( )

x x x x
b x

x x x x

− −
=

− −
 1 3

2

2 1 2 3

( )( )
( )

( )( )

x x x x
b x

x x x x

− −
=

− −
, 

3 1

3

3 1 3 2

( )( )
( )

( )( )

x x x x
b x

x x x x

− −
=

− −
. 

In this case, during interpolation for the basis functions 
1 2 3( ), ( ), ( )b x b x b x  

is taken which satisfy condition (7). The corresponding matrix B is a unit B = E. 

In this case, the solution of the equation system B y =  is y =  or 

1 1 2 2 3 3, ,y y y  = = = . 
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Let us generalize the results obtained when considering the linear and 

quadratic interpolations of the form (6), (8). 

Suppose that we have a set of functions 
1 2( ), ( ),..., ( )nl x l x l x , each of which 

is a polynomial of degree n – 1 and satisfies the condition 

1, ,
( )

0, .
j i

if i j
l x

if i j

=
= 


 

 

That is, functions ( )jl x take values of  1 at points jx x=  and are zero for all 

other values ( )ix x i j=  . It should be noted that functions ( )jb x  with similar 

properties were used to construct the interpolants of the form (6), (8). 

Any linear combination of functions ( )jl x  is a polynomial of degree no more 

( 1)n − . In particular, we consider a polynomial 

                

              
1 1 1 2 2( ) ( ) ( ) ... ( ).n n nP x y l x y l x y l x− = + + +                          (9) 

 

According to the properties of the functions ( )jl x  it follows that 

 

1 1 1 2 2( ) ( ) ( ) ... ( ) ( ) ,n i i i n n i i i i iP x y l x y l x y l x y l x y− = + + + = =  

 

and 
1( )nP x−

 is an interpolation polynomial. Functions are defined by formulas 

 

1 2 1 1

1 2 1 1

( )( ) ... ( )( ) ... ( )
( )

( )( ) ... ( )( ) ... ( )

j j n

j

j j j j j j j n

x x x x x x x x x x
l x

x x x x x x x x x x

− +

− +

− − − − −
=

− − − − −

1,

1,

( )

.

( )

n

i

i i j

n

j i

i i j

x x

x x

= 

= 

−

=

−




      

(10) 
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The polynomial of the form (9), in which the coefficients ( )jl x  are 

determined according to formula (10), is called the Lagrange interpolation 

polynomial. 

When finding a Lagrange polynomial, in some cases it is convenient to use 

the Aitkin interpolation scheme, a feature of which is the uniformity of 

calculations. 

If the function f  is given at two points 
0x and 

1x  (its values are respectively 

equal 
0y  to and 

1y ), then its value at the point 
0 1( ; )x x x  can be calculated by 

the linear interpolation formula (6). If the value of the function f  at  x  is denoted 

by 0,1( )P x , then the linear interpolation formula (.6) can be written in equilateral 

form 

 

0 0

0,1

1 11 0

1
( ) ,

y x x
P x

y x xx x

−
=

−−
 

 

the right part of which contains the second-order determinant. It's easy to make 

sure 

0 0

0,1 0 0

1 11 0

1
( ) ,

y x x
P x y

y x xx x

−
= =

−−
        

0 0 1

0,1 1 1

1 1 11 0

1
( ) .

y x x
P x y

y x xx x

−
= =

−−
 

 

Now let the function f  be given at three points 
0x , 

1x , 
2x  (corresponding 

values 
0y , 

1y , 
2y ), and it is necessary to calculate its value at a point 

0 2 1( ; ),x x x x x  . In this case, the values of two linear polynomials are first 

calculated using the Eitkin scheme at x. 

 

0 0

0,1 0

1 11 0

1
( )

y x x
P x

y x xx x

−
=

−−
  and  

1 1

1,2

2 22 1

1
( ) ,

y x x
P x

y x xx x

−
=

−−
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and then the quadratic three-term view 

 

                          
0,1 0

0,1,2

1,2 22 0

( )1
( ) .

( )

P x x x
P x

P x x xx x

−
=

−−
                     (11) 

 

Direct verification convinces you that 0,1 0 0( )P x y= , 0,1 1 1( )P x y= , 

1,2 1 1( )P x y= , 1,2 2 2( )P x y= , 0,1,2 1 1( )P x y= , 0,1,2 2 2( )P x y= . 

We prove that 0,1,2 ( )P x  coincides with the second-order Lagrange 

interpolation polynomial. Indeed, since 

 

01
0,1 0 1

0 1 1 0

( ) ,
x xx x

P x y y
x x x x

−−
= +

− −
   2 1

1,2 1 2

1 2 2 1

( ) ,
x x x x

P x y y
x x x x

− −
= +

− −
 

 

revealing the determinant of the second order of formula (11), we obtain 

 

01
0,1,2 0 1 2

2 0 0 1 1 0

1
( ) ( )

x xx x
P x y y x x

x x x x x x

 −−
= + − − 

− − − 
 

2 1
1 2 0

1 2 2 1

( )
x x x x

y y x x
x x x x

 − −
− + − = 

− −  
 

0 21 2
0 1

0 1 0 2 1 0 1 2

( )( )( )( )

( )( ) ( )( )

x x x xx x x x
y y

x x x x x x x x

− −− −
= + +

− − − −

0 1
2

2 0 2 1

( )( )
.

( )( )

x x x x
y

x x x x

− −

− −
 

 

This scheme generalizes to higher-degree interpolation polynomials. If the 

function f  is set at four nodes, then cubic interpolation is performed by the formula 

 

0,1,2 0

0,1,2,3

1,2,3 33 0

( )1
( ) ,

( )

P x x x
P x

P x x xx x

−
=

−−
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where 0,1,2 ( )P x  і 1,2,3 ( )P x  – the value of the quadratic three terms in a point 

 
0 3 1 2( ; ), ,x x x x x x x   . In this case, the values of the polynomials 

0,1,2 ( )P x are calculated by the formula (11) and the values 1,2,3 ( )P x by the 

formula: 

 

1,2 1

1,2,3

2,3 33 1

( )1
( ) ,

( )

P x x x
P x

P x x xx x

−
=

−−
   

2 2

2,3

3 33 2

1
( ) .

y x x
P x

y x xx x

−
=

−−
 

 

By direct verification we make sure that 1,2,3 1 1( )P x y= , 1,2,3 2 2( )P x y= , 

1,2,3 3 3( )P x y= , 0,1,2,3( ) , ( 0,1,2,3)i iP x y i= =  and 0,1,2,3 ( )P x , and coincide with the 

Lagrangian cubic interpolation polynomial. 

Generally, if at (n + 1)  interpolation nodes the function f  acquires values 

( 0,1,..., )iy i n= , then the value of the interpolation polynomial of degree n at a 

point 
0( ; )nx x x  that does not coincide with the interpolation nodes can be 

calculated by the formula 

 

0,1,..., 1 0

0,1,...,

1,2,...,0

( )1
( ) ,

( )

n

n

n nn

P x x x
P x

P x x xx x

− −
=

−−
 

 

where 0,1,..., 1( )nP x−  and 1,2,..., ( )nP x  are the values of the interpolation polynomials 

of (n – 1) degree calculated at the point x in the previous step of the calculations. 

It is easy to be sure that 0,1,..., ( ) , ( 0,1,..., )n i iP x y i n= =  and 0,1,..., ( )nP x  coincides 

with the n-th degree Lagrange interpolation polynomial. 

Therefore, to calculate at point x the value of the n-th degree interpolation 

polynomial according to the Aitkin scheme (Table 3.1), it is necessary to calculate 

at this point the values of n linear, n – 1 quadratic, n – 2 cubic polynomials, etc., 
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two polynomials (n – 1) –th degree and, finally, one n-th degree polynomial. All 

these polynomials are expressed in terms of the second-order determinant, and 

this makes the computations homogeneous, cyclic. 

                                    

Table 3.1.  

Interpolation Aitkin scheme 

 

i
x  

i
y  1,i iP−  2, 1,i i iP− −  3, 2, 1,i i i iP− − −  

ix x−  

0
x  

0
y  – – – 0x x−  

1
x  

1
y  0,1( )P x  – – 1x x−  

2
x  

2
y  1,2 ( )P x  0,1,2 ( )P x  – 2x x−  

3
x  

3
y  2,3 ( )P x  1,2,3( )P x  1,2,3,0 ( )P x  

3x x−  

. . . . . 

. 

. . . . . . . . . . . . 

 

In calculations according to this scheme, new nodes 
ix  (corresponding to the 

transition to higher-degree interpolation polynomials) involve until the 

calculations themselves show that the required accuracy has already been 

achieved. 

Example: The function 3y x=  is set as follows: 

 

x  1,0 1,1 1,3 1,5 1,6 

y  1,000 1,032 1,091 1,145 1,170 

 

Apply the Aitkin scheme to find the value 3 1,15 . We write the output of the 

values of the function in table. 3.2 and calculate the difference at. Then we find 

consistently 
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0 0

0,1

1 11 0

1 0,151 1
1,048,

1,032 0,050,1

y x x
P

y x xx x

− −
= = =

−−−
 

 

1 1

1,2

2 22 1

1,032 0,051 1
1,047,

1,091 0,150,2

y x x
P

y x xx x

− −
= = =

−−
 

 

2 2

2,3

3 33 2

1,091 0,151 1
1,050,

1,145 0,350,2

y x x
P

y x xx x

−
= = =

−−
 

 

3 3

3,4

4 44 3

1,145 0,351 1
1,057.

1,170 0,450,1

y x x
P

y x xx x

−
= = =

−−
 

 

Table 3.2 

i  x  y  
ix x−  

1,i iP−  2, 1,i i iP− −  

0 1,0 1,000 -0,15   

1 1,1 1,032 -0,05 1,048  

2 1,3 1,091 0,15 1,047 1,048 

3 1,5 1,145 0,35 1,050  

4 1,6 1,170 0,45 1,057  

 

The calculated values are entered in table. 2, after which we calculate 

 

0,1,2

1,048 0,151
1,048.

1,047 0.150,3
P

−
= =  

 

The values 0,1P  and 0,1,2P  coincide with the third character. This calculation 

can be completed up to 
310 −=  and written down 3 1,15 1,048.=  

 



130 

§ 3.3. Error estimation of Lagrange interpolation formula 

 

If the function f on a segment [ ; ]a b  is a polynomial of degree less than or 

equal to n, it follows from the unity of the interpolation polynomial that the 

interpolation polynomial ( )nP x  is also equal to f, that is 

( ) ( ) 0, [ ; ]nf x P x x a b−   . 

If f on a segment [ ; ]a b  that containing interpolation nodes ( 0, )ix i n=  is 

not a polynomial of degree less than or equal to n, then the difference 

                                      

( , ) ( ) ( )n nR f x f x P x= −                                  (12) 

 

will be zero only at the interpolation nodes ( 0, )ix i n= , and at other points of the 

segment is different from the identity zero. A function ( , )nR f x  that characterizes 

the accuracy of  the approximation of a function f  to an interpolation polynomial 

( )nP x  is called a residual term of the Lagrangian interpolation formula or an 

interpolation error. If an analytic expression of the function f is known, then it 

can be estimated. This holds true for this theorem. 

Theorem. If the interpolation nodes ( 0, )ix i n=  are different and belong 

to the segment [ ; ]a b , then for any point [ ; ]x a b  there is such a point ( ; )a b 

that for the error of interpolation equals 

 

( 1)

0

( )
( , ) ( ) ,

( 1)!

n n

n j

j

f
R f x x x

n

+

=

= −
+

  

where  

0 1

0

( ) ( )( )...( )
n

j n

j

x x x x x x x x
=

− = − − − . 
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If 
( 1)

1
[ ; ]

max ( ) ,n

n
x a b

M f x+

+


= than  for the absolute error of the Lagrange 

interpolation formula, we obtain the following estimate: 

 

              1

0

( , ) ( ) ( ) ( ) .
( 1)!

n
n

n n j

j

M
R f x f x P x x x

n

+

=

= −  −
+

            (13) 

 

From formula (12) it is obvious that the residual term of the linear 

interpolation formula (6) is equal to 

1

0

1

( )

( , ) ( ) ,
2!

j

j

x x

R f x f 
=

−

=


 

 

where  

;)x;x(),xx)(xx()xx(
1010

1

0j
j

−−=−
=

 

and the residual term of the quadratic interpolation formula (8) 

2

0

2

( )

( , ) ( ) ,
3!

j

j

x x

R f x f 
=

−

=


 

where                     

2

0 1 2 0 2

0

( ) ( )( )( ), ( ; ).j

j

x x x x x x x x x x
=

− = − − −   

For example, construct a Lagrange interpolation polynomial for a function 

3( )f x x=  with interpolation nodes 
0 1 21, 2, 3x x x= = = . Estimate the error of an 

interpolation polynomial at a point 2,5x = . 

The output is written as follows. 

 

ix  1 2 3 
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3
i iy x=  1 1,280 1,442 

 

The Lagrange interpolation polynomial for the case 2n =  is of the form 

 

2 3 1 3

2 1 2

1 2 1 3 2 1 2 3

( )( ) ( )( )
( )

( )( ) ( )( )

x x x x x x x x
P x y y

x x x x x x x x

− − − −
= + +

− − − −

3 1
3

3 1 3 2

( )( )
,

( )( )

x x x x
y

x x x x

− −

− −
 

or taking into account the output 

 

2

( 2)( 3) ( 1)( 3)
( ) 1 1,260

2 1

x x x x
P x

− − − −
=  +  +

−
 

.662,0x377,0x039,0442,1
2

)2x)(1x( 2 ++−=
−−

+  

 

To estimate the error, we use formula (13), which in this case has the form 

0 1 2

2 3

| ( )( )( ) |
| ( ) | ,

3!

x x x x x x
R x M

− − −
  

 

where  3
[1; 3]
max | ( ) |M f x= .  

According to the condition 3( )f x x= , then 

 

2/3 5/3 8/3

2 3

1 2 10 10
( ) , ( ) , ( ) .

3 9 27 27
f x x f x x f x x

x x

− − −  = = − = =  

 

The function ( )f x  is positive and descending on the interval [1; 3] . 

Therefore, 

37,0
27

10
)1(f|)x(f| =  

and  
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2 2

| (2,5 1)(2,5 2)(2,5 3) |
| (2,5) | 0,37 , | (2,5) | 0,023.

3!
R R

− − −
   

 

It follows from formula (13) that the absolute error of the Lagrange 

interpolation formula is proportional to the product of two factors 
1nM +
 and 

0

( )
n

j

j

x x
=

− , of which the value of the first depends only on the function f, and 

the value of the second is determined solely by the choice of nodes of 

interpolation. The magnitude of the absolute error of the Lagrangian interpolation 

formula can be reduced by the choice of nodes of interpolation, at which the factor 

0

( )
n

j

j

x x
=

−  acquires the smallest maximum value per segment [ ; ]a b . 
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TITLE 4. NUMERICAL APPROACH OF FUNCTIONS 

 

§ 4.1. Formulation of the problem 

 

The simplest case of function approximation is the interpolation of the 

function of one variable. Suppose points are given and we need to find a function 

)x(f that passes through these points, that is 

 

n,1i,y)x(f
ii

== . 

 

A function that interpolates the source data is called an interpolator or 

interpolating function. 

The fixed data set   n,1i,)y,x(
ii

=  alone cannot determine the 

interpolator. Obviously, there are infinitely many interpolators for a fixed data set. 

In particular, as an example, in Fig. 1 shows the curves xcos2y = that 

interpolate a discretely given function, according to step interpolation and spline 

interpolation, respectively denoted by the numbers '1' and '2'. 

 

Figure. 1 
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We will assume that the set of points }x{
i

 is arranged in ascending order 

n321
x...xxx  . The problem is finding an interpolant )x(f that gives 

acceptable values for 
i

xx  . This cannot be done completely rigorously because 

it all depends on the process under study, our understanding of  the acceptability 

of the source data, etc. 

In the standard approach, a set of basic functions )x(b,...),x(b),x(b
n21

 is 

predefined. These functions can be selected for experience, on the basis of 

mathematical or physical intuition, etc. But in any case, it is relies that these 

functions are known to be known. 

 

Let the set of points { }ix  be arranged in ascending order 
1 2 3 ... nx x x x   

. The problem is finding an interpolant ( )f x  that gives acceptable values for 

ix x . This cannot be done completely rigorously because it all depends on the 

process under study, the acceptability of the raw data, and so on. In the standard 

approach, a set of basic functions is predefined. 

These functions can be selected from experience, based on mathematical or 

physical intuition and the so on. In any case, these functions are  known. Based 

on the basic functions, the model is built 

                                             
1

( ) ( ) ,
n

j j

j

f x b x
=

=                                  (1) 

 

in which the numbers j are unknown and are determined so that the function 

( )f x is an interpolator. Therefore, the model must satisfy the interpolation 

conditions 

                ( )i if x y= ,    or     
1

( ) , 1, .
n

j j i

j

b x y i n
=

= =                (2) 
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From here we obtain a system of  n  linear equations for 
j with the 

coefficient matrix 

 

[ ], ( ) , , 1, .ij ij j iB b b b x i j n= = =  

 

If the functions ( )jb x  are chosen well enough, then the system of equations 

of form (2) can be solved relative to j  and the interpolator ( )f x is found. 

Two main approaches to the choice of basic functions are considered in 

interpolation problems: polynomial and piece polynomial. For each approach, 

matrix B has its own specificity, which in turn allows us to find effective 

interpolates. 

For historical and practical reasons, when considering the polynomial 

interpolation the greatest use was obtained the class of  basis functions, which is 

a set of algebraic polynomials. Polynomials have obvious advantages: they can 

be easily calculated, added, multiplied, integrated and differentiated. 

It is clear that a class of functions may satisfy these conditions, but may not 

be suitable for approximation of functions. On the other hand, it is known that any 

continuous function )x(g  can be approximated on a closed interval by some 

polynomial. This follows from the Weierstrass approximation theorem. 

Although it is theoretically known about the existence of some polynomial 

( )nP x  that approximates a function ( )g x  with some precision on [ , ]a b , but there 

is no guarantee that such a polynomial can be found using a practical algorithm. 

If we choose for the basic functions 1( ) , 1, ;i

ib x x i n−= =  the model (1) will 

take the form  
1

1 1 2( ) ... n

n nP x x x   −

− = + + +   with a matrix B has a kind 
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2 1

1 1 1

2 1

2 2 2

2 1

1 . . .

1 . . .
.

. . . . . . . . . . . . . .

1 . . .

n

n

n

n n n

x x x

x x x
B

x x x

−

−

−

 
 
 

=
 
 
  

 

 

The determinant of  the matrix  В  

 

                    

2 1

1 1 1

2 1

2 2 2

1

2 1

1 . . .

1 . . .
det( ) ( )

. . . . . . . . . . . . . .

1 . . .

n

n

i j

j i n

n

n n n

x x x

x x x
B x x

x x x

−

−

  

−

= = −  

 

is called Vandermond's determinant. If the interpolation nodes are different, that 

is 0)Bdet(  , then system (2) has a single solution. 

 Consider the partial cases of the above interpolation approach. In the case 

of  linear interpolation, the unique interpolator for points 
1 1( , )x y  and 

2 2( , )x y  

is determined by the formula 

1 1 2( ) ,P x x = +  

 

where 
1  and 

2  satisfy the system of equations 

 

1 2 1 1

1 2 2 2

,

.

x y

x y

 

 

+ =


+ =
 

 

The matrix 
1

2

1

1

x
B

x

 
=  
 

 corresponds to the specified system. If 
1 2x x , then 

matrix B is nondegenerate and one can find 
1  and 

2 2 . A linear interpolator 

has the form 
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                             1 2 2 1 2 1
1

2 1 2 1

( ) .
y x y x y y

P x x
x x x x

− −
= +

− −
                             (3) 

 

In the case of quadratic interpolation, the interpolator for points 
1 1( , )x y ,

)y,x(
22

, 
3 3( , )x y is given by the formula 

 

                                       2

2 1 2 3( ) ,P x x x  = + +                                (4) 

 

where  
1 , 

2 , 
3  satisfy the system of equations 

 

2

1 2 1 3 1 1

2

1 2 2 3 2 2

2

1 2 3 3 3 3

,

,

.

x x y

x x y

x x y

  

  

  

 + + =


+ + =


+ + =

 

 

The matrix 

2

1 1

2

2 2

2

3 3

1

1

1

x x

B x x

x x

 
 

=  
 
 

 corresponds to the specified system.  

If 
1 2 3x x x  , then matrix B is nondegenerate and the determinant of the 

system is 
3 2 3 1 2 1det( ) ( )( )( ) 0B x x x x x x= − − −  . The values 

1 , 
2 , 

3  can be 

found by Kramer formulas 

 

         31 2
1 2 3

det( )det( ) det( )
, , ,

det( ) det( ) det( )

BB B

B B B
  = = =                         (5) 

 

where the matrix ( 1, 2, 3)iB i =  is obtained by replacing the corresponding vector 

-column with the vector of the right-hand sides of the original system of equations. 

The determinants of these matrices are given by formulas 
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1 1 2 3 3 2 2 1 3 3 1 3 1 2 2 1det( ) ( ) ( ) ( ),B y x x x x y x x x x y x x x x= − − − + −  

 

2 2 2 2 2 2

2 1 3 2 2 3 1 3 2 1det( ) ( ) ( ) ( ),B y x x y x x y x x= − − + − − −  

 

3 1 3 2 2 3 1 3 2 1det( ) ( ) ( ) ( ).B y x x y x x y x x= − − − + −  

 

In the examples of linear and quadratic interpolations, the coefficient matrix 

B is nondegenerate, so the systems of equations are solved uniquely. In the general 

case, as already mentioned, if the interpolation nodes do not coincides, then matrix 

B has a determinant det( ) 0B  . 

Thus, if no two abscissa of the original data coincide, then the system of 

equations for polynomial interpolation always has a nondegenerate matrix of 

coefficients and, accordingly, a single solution, that is, for given n points, there 

exists a single polynomial of degree not higher than n – 1, which passes through 

all these points. 

 

§ 4.2. Lagrange interpolation polynomial 

 

A linear interpolator of the form (3) is considered. By equivalent 

transformations 
1( )P x can be represented as 

 

                                 2 1
1 1 2

1 2 2 1

( ) ,
x x x x

P x y y
x x x x

− −
= +

− −
                          (6) 

or    

1 1 1 2 2( ) ( ) ( )P x b x b x = + ,  де  2 1
1 2

1 2 2 1

( ) ; ( ) .
x x x x

b x b x
x x x x

− −
= =

− −
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In this case, the basic functions 
1 2( ), ( )b x b x  are accepted for interpolation. 

The corresponding matrix B has the form 

1 1 2 1

1 2 2 2

( ) ( ) 1 0
,

( ) ( ) 0 1

b x b x
B

b x b x

   
= =   

  
 

 

that is, the basic functions 
1 2( ), ( )b x b x satisfy the conditions 

 

1, i j,
( ) {

0, i j.
j i

if
b x

if

=
=


                                             (7) 

 

Therefore, matrix B is singular. In this case, the solution of the equation 

system B y =  will be y =  either 
1 1 2 2,y y = = . 

In the case of quadratic interpolation of the form (4) by means of equivalent 

transformations, we have 

 

2 3 1 3

2 1 2

1 2 1 3 2 1 2 3

( )( ) ( )( )
( )

( )( ) ( )( )

x x x x x x x x
P x y y

x x x x x x x x

− − − −
= + +

− − − −

3 1
3

3 1 3 2

( )( )
,

( )( )

x x x x
y

x x x x

− −

− −
               (8) 

or  

2 1 1 2 2 3 3( ) ( ) ( ) ( )P x b x b x b x  = + + ,  

 where 

2 3

1

1 2 1 3

( )( )
( ) ,

( )( )

x x x x
b x

x x x x

− −
=

− −
 1 3

2

2 1 2 3

( )( )
( )

( )( )

x x x x
b x

x x x x

− −
=

− −
, 

3 1

3

3 1 3 2

( )( )
( )

( )( )

x x x x
b x

x x x x

− −
=

− −
. 

In this case, during interpolation for the basis functions 
1 2 3( ), ( ), ( )b x b x b x  

is taken which satisfy condition (7). The corresponding matrix B is a unit B = E. 

In this case, the solution of the equation system B y =  is y =  or 

1 1 2 2 3 3, ,y y y  = = = . 
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Let us generalize the results obtained when considering the linear and 

quadratic interpolations of the form (6), (8). 

Suppose that we have a set of functions 
1 2( ), ( ),..., ( )nl x l x l x , each of which 

is a polynomial of degree n – 1 and satisfies the condition 

1, ,
( )

0, .
j i

if i j
l x

if i j

=
= 


 

 

That is, functions ( )jl x take values of  1 at points jx x=  and are zero for all 

other values ( )ix x i j=  . It should be noted that functions ( )jb x  with similar 

properties were used to construct the interpolants of the form (6), (8). 

Any linear combination of functions ( )jl x  is a polynomial of degree no more 

( 1)n − . In particular, we consider a polynomial 

                

              
1 1 1 2 2( ) ( ) ( ) ... ( ).n n nP x y l x y l x y l x− = + + +                          (9) 

 

According to the properties of the functions ( )jl x  it follows that 

 

1 1 1 2 2( ) ( ) ( ) ... ( ) ( ) ,n i i i n n i i i i iP x y l x y l x y l x y l x y− = + + + = =  

 

and 
1( )nP x−

 is an interpolation polynomial. Functions are defined by formulas 

 

1 2 1 1

1 2 1 1

( )( ) ... ( )( ) ... ( )
( )

( )( ) ... ( )( ) ... ( )

j j n

j

j j j j j j j n

x x x x x x x x x x
l x

x x x x x x x x x x

− +

− +

− − − − −
=

− − − − −

1,

1,

( )

.

( )

n

i

i i j

n

j i

i i j

x x

x x

= 

= 

−

=

−




      

(10) 
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The polynomial of the form (9), in which the coefficients ( )jl x  are 

determined according to formula (10), is called the Lagrange interpolation 

polynomial. 

When finding a Lagrange polynomial, in some cases it is convenient to use 

the Aitkin interpolation scheme, a feature of which is the uniformity of 

calculations. 

If the function f  is given at two points 
0x and 

1x  (its values are respectively 

equal 
0y  to and 

1y ), then its value at the point 
0 1( ; )x x x  can be calculated by 

the linear interpolation formula (6). If the value of the function f  at  x  is denoted 

by 0,1( )P x , then the linear interpolation formula (.6) can be written in equilateral 

form 

 

0 0

0,1

1 11 0

1
( ) ,

y x x
P x

y x xx x

−
=

−−
 

 

the right part of which contains the second-order determinant. It's easy to make 

sure 

0 0

0,1 0 0

1 11 0

1
( ) ,

y x x
P x y

y x xx x

−
= =

−−
        

0 0 1

0,1 1 1

1 1 11 0

1
( ) .

y x x
P x y

y x xx x

−
= =

−−
 

 

Now let the function f  be given at three points 
0x , 

1x , 
2x  (corresponding 

values 
0y , 

1y , 
2y ), and it is necessary to calculate its value at a point 

0 2 1( ; ),x x x x x  . In this case, the values of two linear polynomials are first 

calculated using the Eitkin scheme at x. 

 

0 0

0,1 0

1 11 0

1
( )

y x x
P x

y x xx x

−
=

−−
  and  

1 1

1,2

2 22 1

1
( ) ,

y x x
P x

y x xx x

−
=

−−
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and then the quadratic three-term view 

 

                          
0,1 0

0,1,2

1,2 22 0

( )1
( ) .

( )

P x x x
P x

P x x xx x

−
=

−−
                     (11) 

 

Direct verification convinces you that 0,1 0 0( )P x y= , 0,1 1 1( )P x y= , 

1,2 1 1( )P x y= , 1,2 2 2( )P x y= , 0,1,2 1 1( )P x y= , 0,1,2 2 2( )P x y= . 

We prove that 0,1,2 ( )P x  coincides with the second-order Lagrange 

interpolation polynomial. Indeed, since 

 

01
0,1 0 1

0 1 1 0

( ) ,
x xx x

P x y y
x x x x

−−
= +

− −
   2 1

1,2 1 2

1 2 2 1

( ) ,
x x x x

P x y y
x x x x

− −
= +

− −
 

 

revealing the determinant of the second order of formula (11), we obtain 

 

01
0,1,2 0 1 2

2 0 0 1 1 0

1
( ) ( )

x xx x
P x y y x x

x x x x x x

 −−
= + − − 

− − − 
 

2 1
1 2 0

1 2 2 1

( )
x x x x

y y x x
x x x x

 − −
− + − = 

− −  
 

0 21 2
0 1

0 1 0 2 1 0 1 2

( )( )( )( )

( )( ) ( )( )

x x x xx x x x
y y

x x x x x x x x

− −− −
= + +

− − − −

0 1
2

2 0 2 1

( )( )
.

( )( )

x x x x
y

x x x x

− −

− −
 

 

This scheme generalizes to higher-degree interpolation polynomials. If the 

function f  is set at four nodes, then cubic interpolation is performed by the formula 

 

0,1,2 0

0,1,2,3

1,2,3 33 0

( )1
( ) ,

( )

P x x x
P x

P x x xx x

−
=

−−
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where 0,1,2 ( )P x  і 1,2,3 ( )P x  – the value of the quadratic three terms in a point 

 
0 3 1 2( ; ), ,x x x x x x x   . In this case, the values of the polynomials 

0,1,2 ( )P x are calculated by the formula (11) and the values 1,2,3 ( )P x by the 

formula: 

 

1,2 1

1,2,3

2,3 33 1

( )1
( ) ,

( )

P x x x
P x

P x x xx x

−
=

−−
   

2 2

2,3

3 33 2

1
( ) .

y x x
P x

y x xx x

−
=

−−
 

 

By direct verification we make sure that 1,2,3 1 1( )P x y= , 1,2,3 2 2( )P x y= , 

1,2,3 3 3( )P x y= , 0,1,2,3( ) , ( 0,1,2,3)i iP x y i= =  and 0,1,2,3 ( )P x , and coincide with the 

Lagrangian cubic interpolation polynomial. 

Generally, if at (n + 1)  interpolation nodes the function f  acquires values 

( 0,1,..., )iy i n= , then the value of the interpolation polynomial of degree n at a 

point 
0( ; )nx x x  that does not coincide with the interpolation nodes can be 

calculated by the formula 

 

0,1,..., 1 0

0,1,...,

1,2,...,0

( )1
( ) ,

( )

n

n

n nn

P x x x
P x

P x x xx x

− −
=

−−
 

 

where 0,1,..., 1( )nP x−  and 1,2,..., ( )nP x  are the values of the interpolation polynomials 

of (n – 1) degree calculated at the point x in the previous step of the calculations. 

It is easy to be sure that 0,1,..., ( ) , ( 0,1,..., )n i iP x y i n= =  and 0,1,..., ( )nP x  coincides 

with the n-th degree Lagrange interpolation polynomial. 

Therefore, to calculate at point x the value of the n-th degree interpolation 

polynomial according to the Aitkin scheme (Table 3.1), it is necessary to calculate 

at this point the values of n linear, n – 1 quadratic, n – 2 cubic polynomials, etc., 
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two polynomials (n – 1) –th degree and, finally, one n-th degree polynomial. All 

these polynomials are expressed in terms of the second-order determinant, and 

this makes the computations homogeneous, cyclic. 

                                    

Table 4.1.  

Interpolation Aitkin scheme 

 

i
x  

i
y  1,i iP−  2, 1,i i iP− −  3, 2, 1,i i i iP− − −  

ix x−  

0
x  

0
y  – – – 0x x−  

1
x  

1
y  0,1( )P x  – – 1x x−  

2
x  

2
y  1,2 ( )P x  0,1,2 ( )P x  – 2x x−  

3
x  

3
y  2,3 ( )P x  1,2,3( )P x  1,2,3,0 ( )P x  

3x x−  

. . . . . 

. 

. . . . . . . . . . . . 

 

In calculations according to this scheme, new nodes 
ix  (corresponding to the 

transition to higher-degree interpolation polynomials) involve until the 

calculations themselves show that the required accuracy has already been 

achieved. 

Example: The function 3y x=  is set as follows: 

 

x  1,0 1,1 1,3 1,5 1,6 

y  1,000 1,032 1,091 1,145 1,170 

 

Apply the Aitkin scheme to find the value 3 1,15 . We write the output of the 

values of the function in table. 3.2 and calculate the difference at. Then we find 

consistently 
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0 0

0,1

1 11 0

1 0,151 1
1,048,

1,032 0,050,1

y x x
P

y x xx x

− −
= = =

−−−
 

 

1 1

1,2

2 22 1

1,032 0,051 1
1,047,

1,091 0,150,2

y x x
P

y x xx x

− −
= = =

−−
 

 

2 2

2,3

3 33 2

1,091 0,151 1
1,050,

1,145 0,350,2

y x x
P

y x xx x

−
= = =

−−
 

 

3 3

3,4

4 44 3

1,145 0,351 1
1,057.

1,170 0,450,1

y x x
P

y x xx x

−
= = =

−−
 

 

Table 3.2 

i  x  y  
ix x−  

1,i iP−  2, 1,i i iP− −  

0 1,0 1,000 -0,15   

1 1,1 1,032 -0,05 1,048  

2 1,3 1,091 0,15 1,047 1,048 

3 1,5 1,145 0,35 1,050  

4 1,6 1,170 0,45 1,057  

 

The calculated values are entered in table. 2, after which we calculate 

 

0,1,2

1,048 0,151
1,048.

1,047 0.150,3
P

−
= =  

 

The values 0,1P  and 0,1,2P  coincide with the third character. This calculation 

can be completed up to 
310 −=  and written down 3 1,15 1,048.=  
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§ 4.3. Error estimation of  Lagrange interpolation formula. 

 

If the function f on a segment [ ; ]a b  is a polynomial of degree less than or 

equal to n, it follows from the unity of the interpolation polynomial that the 

interpolation polynomial ( )nP x  is also equal to f, that is 

( ) ( ) 0, [ ; ]nf x P x x a b−   . 

If f on a segment [ ; ]a b  that containing interpolation nodes ( 0, )ix i n=  is 

not a polynomial of degree less than or equal to n, then the difference 

                                      

( , ) ( ) ( )n nR f x f x P x= −                                  (12) 

 

will be zero only at the interpolation nodes ( 0, )ix i n= , and at other points of the 

segment is different from the identity zero. A function ( , )nR f x  that characterizes 

the accuracy of  the approximation of a function f  to an interpolation polynomial 

( )nP x  is called a residual term of the Lagrangian interpolation formula or an 

interpolation error. If an analytic expression of the function f is known, then it 

can be estimated. This holds true for this theorem. 

Theorem. If the interpolation nodes ( 0, )ix i n=  are different and belong to 

the segment [ ; ]a b , then for any point [ ; ]x a b  there is such a point ( ; )a b 

that for the error of interpolation equals 

 

( 1)

0

( )
( , ) ( ) ,

( 1)!

n n

n j

j

f
R f x x x

n

+

=

= −
+

  

where  

0 1

0

( ) ( )( )...( )
n

j n

j

x x x x x x x x
=

− = − − − . 
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If 
( 1)

1
[ ; ]

max ( ) ,n

n
x a b

M f x+

+


= than  for the absolute error of the Lagrange 

interpolation formula, we obtain the following estimate: 

 

              1

0

( , ) ( ) ( ) ( ) .
( 1)!

n
n

n n j

j

M
R f x f x P x x x

n

+

=

= −  −
+

            (13) 

 

From formula (12) it is obvious that the residual term of the linear 

interpolation formula (6) is equal to 

1

0

1

( )

( , ) ( ) ,
2!

j

j

x x

R f x f 
=

−

=


 

 

where  

;)x;x(),xx)(xx()xx(
1010

1

0j
j

−−=−
=

 

and the residual term of the quadratic interpolation formula (8) 

2

0

2

( )

( , ) ( ) ,
3!

j

j

x x

R f x f 
=

−

=


 

where                     

2

0 1 2 0 2

0

( ) ( )( )( ), ( ; ).j

j

x x x x x x x x x x
=

− = − − −   

For example, construct a Lagrange interpolation polynomial for a function 

3( )f x x=  with interpolation nodes 
0 1 21, 2, 3x x x= = = . Estimate the error of an 

interpolation polynomial at a point 2,5x = . 

The output is written as follows. 

 

ix  1 2 3 
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3
i iy x=  1 1,280 1,442 

 

The Lagrange interpolation polynomial for the case 2n =  is of the form 

 

2 3 1 3

2 1 2

1 2 1 3 2 1 2 3

( )( ) ( )( )
( )

( )( ) ( )( )

x x x x x x x x
P x y y

x x x x x x x x

− − − −
= + +

− − − −

3 1
3

3 1 3 2

( )( )
,

( )( )

x x x x
y

x x x x

− −

− −
 

or taking into account the output 

 

2

( 2)( 3) ( 1)( 3)
( ) 1 1,260

2 1

x x x x
P x

− − − −
=  +  +

−
 

.662,0x377,0x039,0442,1
2

)2x)(1x( 2 ++−=
−−

+  

 

To estimate the error, we use formula (13), which in this case has the form 

0 1 2

2 3

| ( )( )( ) |
| ( ) | ,

3!

x x x x x x
R x M

− − −
  

 

where  3
[1; 3]
max | ( ) |M f x= .  

According to the condition 3( )f x x= , then 

 

2/3 5/3 8/3

2 3

1 2 10 10
( ) , ( ) , ( ) .

3 9 27 27
f x x f x x f x x

x x

− − −  = = − = =  

 

The function ( )f x  is positive and descending on the interval [1; 3] . 

Therefore, 

37,0
27

10
)1(f|)x(f| =  

and  
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2 2

| (2,5 1)(2,5 2)(2,5 3) |
| (2,5) | 0,37 , | (2,5) | 0,023.

3!
R R

− − −
   

 

It follows from formula (13) that the absolute error of the Lagrange 

interpolation formula is proportional to the product of two factors 
1nM +
 and 

0

( )
n

j

j

x x
=

− , of which the value of the first depends only on the function f, and 

the value of the second is determined solely by the choice of nodes of 

interpolation. The magnitude of the absolute error of the Lagrangian interpolation 

formula can be reduced by the choice of nodes of interpolation, at which the factor 

0

( )
n

j

j

x x
=

−  acquires the smallest maximum value per segment [ ; ]a b . 
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TITLE 5. EXPERIMENTAL DATA PROCESSING METHODS  

 

§ 5.1. The least squares method 

 

It is known that if given values of  a  function f at 1n +  different points 

n10
x,...,x,x , then there exists a unique polynomial of degree n such that 

 

.n,...,1,0i,)x(f)x(p
ii

==  

 

Suppose now that the function f  itself  is a polynomial of n degree, and the 

problem is to determine its coefficients. Then, according to the above result, if the 

values of the function f were given accurately, it would be sufficient to know 

these values at different points. 

But in many cases the values f are determined  by the measurements and 

may contain errors. However, they usually perform much more than 1n +

measurements, hoping  that  as a result of "averaging" these errors will disappear. 

How these errors are “averaged” depends on the measurement processing method 

used to determine the polynomial coefficients. For statistical reasons, the least-

squares method is often chosen for this method. This method  is also extremely 

simple. 

Now suppose that  there are given m points 
m21

x,...,x,x where 

1nm + , and  at least of 1n +  these points are different. Let 
m21

f,...,f,f  be 

approximate values of  a  function f in points 
m21

x,...,x,x .  It is necessary to 

find such a polynomial 
n

n10
xa...xaa)x(p +++=  that on it the value 

                                                


=

−
m

1i

2

ii
)]x(pf[                                               (1) 
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has reached a minimum among all polynomials of degree n , that is, it is 

necessary to find such coefficients 
n10

a,...,a,a  that the sum of squares of 

errors  )x(pf
ii

−  is minimal. 

 The simplest case of such a problem occurs when 0n = and the polynomial 

)x(p is simply constant. Suppose, for example, that we have m measurements and 

m21
w,...,w,w  are the weight of an object, and this data is obtained on m

different scales. All points  
m21

x,...,x,x  are identical and are not clearly 

included in the expression. Using the least squares principle, we come to the 

problem of minimizing a function 

 

.)ww()w(g
m

1i

2

i
=

−=  

From mathematical analysis it is known that the function g reaches a 

minimum (local) at the point w~  at which  0)w~(g =  and 0)w~(g  . Since 

 

,m2)w(g,)ww(2)w(g
m

1i
i

=−−= 
=

 

 

it follows 

.w
m

1
w~

m

1i
i

=

=  

 

Since the equation 0)w(g =  has only one solution, the point  w~  will be 

the only point of minimum of  g. Thus, the least squares approximation for the 

value of  w will be simply the arithmetic mean of the measurements 

m21
w,...,w,w . 
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The next simple situation is when a linear polynomial xaa)x(p
10

+=  is 

used. Such situations often occur in practice when it is assumed that the data is 

subject to some linear dependence. In this case, function (2) takes the form 

 

                               
=

−−=
m

1i

2

i10i10
,)xaaf()a,a(g                              (2) 

 

this requires a minimum of coefficients 
0

a  and 
1

a . It is known from 

mathematical analysis that the necessary condition for the minimum of  the  

function g  is the fulfillment of relations 

 

,0)xaaf(2
a

g m

1i
i10i

0


=

=−−−=



 

 

.0)xaaf(x2
a

g m

1i
i10ii

1


=

=−−−=



 

 

Grouping together the coefficients for 
0

a  and 
1

a , we arrive at a system of  

two linear equations 












=







+









=







+





===

==

,fxaxax

,faxma

i

m

1i
i1

m

1i

2

i0

m

1i
i

m

1i
i1

m

1i
i0

 

 

relatively unknown 
0

a  and  
1

a  whose solution is found by explicit formulas: 

 

( )
,

xxm

xfxfx
a

2

i

2

i

iiii

2

i

0

 

   
−

−
=  
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( )
,

xxm

xffxm
a

2

i

2

i

iiii

1

 

  
−

−
=  

 

m,1i = . 

 In the general case, when considering polynomials of  degree n, we arrive 

at the problem of minimizing the function (1), that is, looking for the minimum of 

the function 

                  
=

−+++=
m

1i

2

i

n

ini10n10
.)fxa...xaa()a,...,a,a(g             (3) 

As in the case  2n = , the necessary condition for the minimum of  the 

function  g  is  zero for all its partial derivatives of  the first order: 

 

.n,0j,0)a,...,a,a(
a

g
n10

j

==



 

 

Writing out these partial derivatives explicitly, we get the ratio 

 

              
=

==−+++
m

1i

2

i

n

ini10

j

i
,n,0j,0)fxa...xaa(x               (4) 

 

which are a system of  1n +  linear equations relatively 1n +  unknown 

n10
a,...,a,a . These equations are called normal equations. Collecting the 

coefficients for 
i

a  and rewriting equation (4) in vector-matrix form, we arrive 

at the system 
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      ,

fx

...

fx

f

a

...

a

a

x...x

...............

........xx

........xx

x...xxm

i

n

i

ii

i

n

1

0

n2

i

n

i

3

i

2

i

2

ii

n

i

2

ii























=























































 

 

  

        (5) 

 

where all sums are taken from 1 to m. 

Note that system (4) can be rewritten as 

                                                ,fEaEE TT =                                         (6) 

 

where 

             .

f

f

f

f,

a

a

a

a,

x...x1

........

x...x1

x...x1

E

m

2

1

n

1

0

n

mm

n

22

n

11





















=





















=





















=        (7) 

 

Matrix E  is a Vandermond  type  matrix with size )1n(m + . Assuming  

that at least 
i

x  the points 1n + are different, we can show that the rank of the 

matrix E is equal 1n + . Therefore, the matrix is positively defined. It follows 

that the solution of system (5) gives a single point of minimum of the function g 

of (4), so that the least-squares approximation problem has a uniform solution. 

 

 Consider an example. Suppose 

 

.1y,0y,1y,2y,1y

,1x,4/3x,2/1x,4/1x,0x

54321

54321

=====

=====
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Five points 
i

x  are considered in this case, so these data uniquely 

determine the fourth-degree interpolation polynomial. We obtain the linear and 

quadratic polynomials of the least squares method on the basis of normal 

equations. 

The following quantities are required to calculate a linear polynomial of the 

least-squares method based on normal equations: 

 

          
= ===

====
5

1i

5

1i
iii

5

1i

2

i

5

1i
i

.2fx,5f,
8

15
x,

2

5
x      (8) 

Then, by the formulas above for the coefficients 
0

a  and  
1

a , we obtain 

 

,
5

7

4

25

8

15
)5(

2

5
)2()5(

8

15

a
0

=









−

















−









=  

 

.
5

4

4

25

8

15
)5(

2

5
)5()2)(5(

a
1

−
=









−

















−

=  

 

Therefore, the linear polynomial of the least squares method constructed  

from this data looks like this 

 

                                      .x)5/4(5/7)x(p
1

−=                                    (9) 

 

 To determine the coefficients of a quadratic polynomial using the least 

squares method from normal equations, it is necessary to solve system (5) with: 
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.

fx

fx

f

a

a

a

xxx

xxx

xxm

i

2

i

ii

i

n

1

0

4

i

3

i

2

i

3

i

2

ii

2

ii

















=







































 

 

 
 

 

With given data, this system looks like 

 

.

17

256

640

a

a

a

177200240

200240320

240320640

2

1

0

















=

































 

 

Finding out of this system 

 

                             .0a,5/4a,5/7a
210
=−==                          (10) 
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TITLE 6. APPROXIMATE SOLUTION OF COMMON 

DIFFERENTIAL EQUATIONS 

 

When studying various processes and phenomena containing elements of 

motion, they often use mathematical models in the form of equations, which, in 

addition to the independent quantities and dependent functions, also include 

derivatives of the sought functions. Such equations are called differential 

equations. 

A differential equation is called  ordinary  if  an unknown function is a 

function of one variable, and a differential equation in partial derivatives  if an 

unknown function is a function of many variables. In the following we will 

consider only ordinary differential equations. 

 

§ 6.1. Problem statement 

 

The first order differential equation is called the equation 

 

,0),,( =yyxF      (1) 

 

which associates the independent variable x, the unknown function )(xyy =  and 

their derivative y . 

The differential equation (1), which is not solved relative to the derivative y , is 

called the implicit differential equation. If equation (1) can be solved relatively 

y , then it is written as 

 

                                                ),( yxfy =                                              (2) 
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and is called the first-order equation, solved relative to the derivative, or the 

equation in the normal form. In the future, we will mainly consider such 

equations. 

Among the applied problems are those tasks for which the Cauchy problem is 

solved, which is to find a partial solution )(xyy =  of   the ordinary differential 

equation  (2)  that satisfies the given initial condition 

 

                                       
00

| yy
xx
=

=
     or 

00
)( yxy = .                       (3) 

 

The following theorem holds. 

Theorem (on the existence and uniqueness of a solution). Let the function 

),( yxf  and its partial derivative ),( yxf
y
  be defined and continuous in the 

open region D of  the plane xOy and point Dyx ),(
00

. Then there is a unique 

solution )(xy = of  equation (2) which satisfies the condition 

 

                               
0

yy =       at 
0

xx = , that is  
00

)( yx = .                    (4) 

 

This theorem gives sufficient conditions for the existence of a single solution of 

equation (2). 

From the point of view of geometry, to solve the Cauchy problem (2) - (3) 

means to select the one that passes through the point ),(
00

yx  from the set of 

integral curves. 

In what follows, we assume that the function ),( yxf  of equation (2) satisfies the 

condition of the above theorem. 

It is rare to integrate the differential equation in the finite form. In this case, for 

the most part, the expression to which the desired function is implicit is obtained, 

and therefore inconvenient to use. 
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In practice, the approximate integration of differential equations is mainly used. 

It allows you to find an approximate solution to the Cauchy problem. Solve the 

Cauchy problem (2) - (3) numerically - this means that for a given sequence of  

values 
n

xxx ,...,,
10

of  the independent variable x and numbers 
0

y  find a 

numerical sequence 
n

yyy ,...,,
10

, that is, for a given sequence of values 

),0( nkx
k

= , construct a table of approximate values of the desired solution of 

the Cauchy problem ),0( nky
k

= . 

If the approximate solution of problem (2) - (3) is known at the point 
k

x , then 

integrating equation (.2) from 
k

x  to 
1+k

x , we find its solution at the point 
1+k

x  by 

the formula 

 

.))(,()()(
1

1
dxxyxfxyxy

k

k

x

x

kk 
+

+=
+

                       (5) 

 

Formula (5) is the starting point for constructing many numerical methods for 

solving problem (2), (3). 

There are two main approaches to solving the Cauchy problem. 

 

1. One-step methods in which to find the values at the next point on the curve, 

only information about the value of the function in the previous step is required. 

The Euler method and its modifications and the Runge - Kutta methods are one-

step methods. 

2. Multistep methods (forecasting and correction methods) in which information 

is required to find values at the next point of  the curve  than at one of 

the previous points of the solution. In many cases, iterations are used to obtain a 

sufficiently accurate numerical solution. Such methods include Milne, Adams - 

Bashfort and Hamming. 

 

)x(fy =
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§ 6.2. Euler's method and its modifications 

 

The Euler method is the simplest method of solving a Cauchy problem, which 

allows to integrate first order differential equations. This method is practiced 

when precision is not required and the number of steps is small. In general, this 

method is illustrative. It helps you understand the essence of building more 

sophisticated and effective methods. 

The Euler method is based on the decomposition of a function )(xy  into a 

Taylor series around the point 
0

x : 

 

                                ....)(
2

1
)()()(

0

2

000
+++=+ xyhxyhxyhxy                  (6) 

 

If the integration step h is small, then additives containing h in the second and 

higher degrees are small orders of magnitude higher and can be neglected. Then 

,)()()(
000

xyhxyhxy +=+ where )(
0

xy  is determined from differential 

equation (2) under the initial condition (3). Therefore, it is possible to obtain an 

approximate value of  the dependent variable y for small values of  h according to 

the formula 

                                       .)...,2,1,0(,),(
1

=+=
+

nyxhfyy
nnnn

                  (7) 

 

The geometric interpretation of the Euler method is as follows. At every n-th step, 

starting from a point ),(
00

yx , the solution does not search on an integral curve 

)(xy  but on a segment tangent to that curve passing through the point ),(
nn

yx . 

The equation of such tangent .))((
nnn

xxxyyy −+=  Given that 

),()(
nnn

yxfxy =  and hxx
nn
+=

+1
, then the formula takes the form (7). 

The Euler method has the first order of accuracy. With the distance from the 

starting point ),(
00

yx , the errors in the determination are accumulated quickly 

enough. There are many ways to improve this method. Two methods are 
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considered from these methods: the Euler – Cauchy method and the modified 

Euler method, which have second order accuracy. 

The Euler – Cauchy method. If we calculate the integral in the right-hand side 

of formula (5) by the formula of the mean rectangles, that is, calculate the value 

of the integrand function ))(,( xyxf  at a point hxx
kk

2

1
2/1

+=
+

, then we find 

 

                                .)())(,()()( 2

2/12/11
hxyxhfxyxy

kkkk
++=

+++
                 (8) 

 

The value of the unknown value of the function )(
2/1+k

xy   is calculated by the 

formula 

 

)())(,()()( 2

1
hxyxhfxyxy

kkkk
++=

+
 

 

With the step  h
2

1
  we will 

 

.)())(,(
2

1
)()( 2

2/1
hxyxhfxyxy

kkkk
++=

+
 

 

Substituting this value )(
2/1+k

xy  into (8), we obtain 

 

++++=
++

))())(,(
2

1
)(,()()( 2

2/11
hxyxhfxyxhfxyxy

kkkkkk
 

 

.)())(,(
2

)(,)()( 3

2/12/1

2 hxyxf
h

xyxhfxyh
kkkkk

+







++=+

++
 

 

Having rejected the proportional to 
3h  addition, we have 
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.)(,(
2

1
)(,)()(

2/11 







++=

++ kkkkkk
xyxhfxyxhfxyxy  

 

The formulas for Euler's advanced method can be written in the form 

 

                                 ,),(
2

1
2/1 kkkk

yxhfyy +=
+

                                  (9) 

 

                                 .),(
2/12/11 +++

+=
kkkk

yxhfyy                              (10) 

 

Therefore, in the Euler advanced method, the first by the Euler method (formulas 

9) calculated  the approximate solution 
2/1+k

y  of problem 2 – 3 at the point 

hxx
kk

2

1
2/1

+=
+

 and then by the formula (10) the approximate solution 
1k

y
+

 at the 

point 
1k

x
+
. At each integration step, calculate the right-hand side of equation (2) 

twice (at points ),(
kk

yx  and ),(
2/12/1 ++ kk

yx ). 

Geometrically, this implies that in the segment ];[
1+kk

xx  the graph of the integral 

curve of problem (2) - (3) is replaced by the segment of the line passing through 

the point ),(
kk

yx  and having an angular coefficient  ),(
2/12/1 ++

=
kk

yxfk . In other 

words, this line forms with the positive direction the axis Ox angle 

),(
2/12/1 ++

=
kk

yxfarctg . 

The point ),(
2/12/1 ++ kk

yx  is the point of intersection of the problem tangent to the 

integral curve (6.2) - (6.3) at a point ),(
kk

yx  with a line hxx
k

2

1
+= . The error 

of Euler's advanced method at every step is in order. 

Modified Euler-Cauchy method. If the integral in the right part of formula 

(6.5) is calculated by the trapezoidal formula, then we have 

 



164 

                       .)())(,())(,(
2

)()( 3

111
hxyxfxyxf

h
xyxy

kkkkkk
+++=

+++
   (6.11) 

 

The unknown value )(
1+k

xy  included in the right-hand side of this equation 

can be calculated by the formula 

 

.,)1,...,2,1,0(,),(
11 kkkkkk

xxhnkyxhfyy −=−=+=
++

 

 

Substituting the value )(
1+k

xy  in the right part (6.11), we obtain 

 

 ++=
+

))(,(
2

)()(
1 kkkk

xyxf
h

xyxy  

 

=++++
+

)(]))())(,()(,( 32

1
hhxyxhfxyxf

kkkk
 

 

  .)()))(,())(,(())(,(
2

)( 3

1
hxyxhfxyxfxyxf

h
xy

kkkkkkk
++++=

+
 

 

Thus, for the improved Euler – Cauchy method we have the following 

calculation formulas: 

 

                                             ,),(~
1 kkkk

yxhfyy +=
+

                                      (6.12) 

 

                                  ( ).)~,(),(
2

111 +++
++=

kkkkkk
yxfyxf

h
yy                       (6.13) 

 

According to this method, at each step of integration, the right-hand side of 

equation (6.2) is calculated twice: first, using the Euler method (formula (6.12)), 

calculate the approximate value of the desired solution 
1

~
+k

y  at the point 
1+k

x , which 
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is then refined by formula (6.13). The error of the method at each step is in order 

)( 3h . 

This construction of the approximate solution of the problem (6.2) - (6.3) 

from the point of view of Homeric means that on the segment ];[
1+kk

xx  the graph 

of the integral curve is approached by the segment of the line passing through the 

point ),(
kk

yx  and having an angular coefficient ( ))~,(),(
2

1
11 ++

+=
kkkk

yxfyxfk . 

That is, this line forms an angle with the positive direction of the axis Ох 

2

)~,(),(
11 ++

+
= kkkk

yxfyxf
arctg . 

Euler's method with iterations is improved. If in equation (6.11) we 

reject the term proportional 
3h , then to find the value of the unknown solution 

1+k
y  at the point 

1+k
x  we obtain the formula: 

 

                     ( ).),(),(
2

111 +++
++=

kkkkkk
yxfyxf

h
yy                       (6.14) 

 

Since the unknown 
1k

y
+

 is included in both parts of the equation (6.14), the 

method defined by formula (6.14) belongs to the implicit methods of numerical 

integration of the problem (6.2) - (6.3). solution of equation (6.14), its solution 

can always be calculated with a predetermined accuracy 0 , if we use the 

method of iterations. 

 

            ( ) ...).,2,1,0(),(),(
2

)(

11

)1(

1
=++=

++

+

+
iyxfyxf

h
yy i

kkkkk

i

k
     (6.15) 

 

For the zero approximation 
)0(

1+k
y , we can take the value 

k
y  or the value 

1k
y

+
 

calculated by Euler's formula (6.7). The process of iterations according to the 

formula (6.15) is stopped with the fulfillment of the condition ,)(

1

)1(

1
−

+

+

+

i

k

i

k
yy , 
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ie when the modulus of the difference of two consecutive approximations to the 

desired value is less than 
1+k

y  the predetermined accuracy 0 . For the 

approximate value of the value 
1+k

y  at the point 
1+k

x  take the value )1(

1

+

+

i

k
y .  

It is easy to establish the conditions under which the iterative process given by 

formula (6.15) coincides. To do this, we subtract equality (6.15) from equality 

(6.14). We will receive 

 

( ).),(),(
2

)(

1111

)1(

11

i

kkkk

i

kk
yxfyxf

h
yy

++++

+

++
−=−  

 

Hence, using the condition Lipschitsa 

 

),(,|||),(),(|
212211

constyyyxfyxf =−−   

 

find 

,
2

)(

11

i

kk
yyK

h
++

−  

or 

.
2

)0(

11

1

)1(

11 ++

+

+

++
−








−

kk

i

i

kk
yy

h
yy   

 

Therefore, the iterative process (6.15) coincides, ie 
1

)1(

1 +

+

+
→

k

i

k
yy , when 

→i , and the integration step h is chosen so that the inequality holds 1
2

1
h . 

The rate of convergence is determined by the value h
2

1
. 

−−
++++

+

++
)y,x(f)y,x(f

2

h
yy )i(

1k1k1k1k

)1i(

1k1k
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For example, we apply Euler's method and its modifications to solve the equation 

y

x
yy

2
−=  with the initial condition 1)0( =y  and the integration step 2,0=h . 

The analytical solution to this problem is a function 1x2y += . 

Using the above algorithms for solving the Cauchy problem, we calculate the 

discrete values of the function (Table 6.1). 

Table 6.1 

x  Метод 

Ейлера 

Метод 

Ейлера–Коші 

Модифікований  

метод Ейлера 

Точний 

розв’язок 

0,2 1,2000 1,1867 1,1836 1,1832 

0,4 1,3733 1,3483 1,3426 1,3416 

0,6 1,5294 1,4937 1,4850 1,4832 

0,8 1,6786 1,6279 1,6152 1,6124 

1,0 1,8237 1,7543 1,7362 1,7320 

 

For clarity, these results are shown in Fig. 6.1. 

 

 

Fig. 6.1 
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Curve 1 corresponds to the solution according to the Euler method, curve 2 

corresponds to the exact solution and the results according to the modified Euler 

method (it should be noted that the graph data according to the modified Euler 

method coincide with the data of the exact solution). As can be seen from the table 

and graph, the approximate numerical solutions are markedly different from the 

exact ones. 

§ 6.3. Runge-Kutta method 

 

The Runge-Kutta method has the widest application among one-step methods of 

increased accuracy of the approximate solution of the Cauchy problem for the 

differential equation 

 

                                             ,),( yxf
dx

dy
=                                           (6.16) 

 

with the initial condition 

 

                                              .|
00

yy
xx
=

=
                                             (6.17) 

 

The idea of this method has much in common with the idea of Euler's 

methods and modifications and is to fit the Taylor series. 

Let us determine the desired solution )x(y  of the Cauchy problem (6.16) - 

(6.17) in the vicinity of each point )...,2,1,0( == nxx
n

 by the Taylor formula. 

Calculate the decomposition coefficients directly on the right-hand side of 

equation (6.16), using condition (6.17). The specified schedule will be written in 

the form  

 

                      ,...
!3!2

)(
3

33

2

22

0
++++=

dx

ydh

dx

ydh

dx

dy
hyxy                   (6.18) 
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where the values of the derivatives are taken at 
k

xx = . Depending on how many 

members of the schedule we are satisfied with in formula (7.18), we get one or 

another accuracy of the approximate solution. In the Runge-Kutta method, we 

limit ourselves to four or five members of the schedule (members with degrees up 

to 
3h  or  

4h  including are retained). 

Consider the Runge-Kutta method of the third order of accuracy: 

 

                      .
!3!2

)(
3

33

2

22

dx

ydh

dx

ydh

dx

dy
hyxy

n
+++                           (6.19) 

 

Suppose that 

 

                                              ,
1 nnn

yy +=
+

                                       (6.20) 

where 

                                 .
62 3

33

2

22

dx

ydh

dx

ydh

dx

dy
h

n
++=                            (6.21) 

 

Values 
n

  are determined using linear combinations of the form 

 

                                                 ,
4321

kkkk
n

 +++=                             (6.22) 

 

where   ,,,  - indefinite coefficients, and  - numbers 

determined by equations 
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2
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2 




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                          ;
2

,
2

2

3 







++=

k
y

h
xhfk

nn
 .),(

24
kyhxhfk

nn
++=            (6.23) 

 

To determine the coefficients  ,,, , we express the derivatives included in 

equation (6.22) through the right-hand side of equation (6.16) 
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For simplicity of the statement further we will enter the operator  

,
y

f
x

D



+




=  then 
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Substituting the found values of derivatives in (6.21), we obtain 

 

                          
2 3

2 .
2 6

n

h h f
hf Df D f Df

y


 
= + + + 

 
                    (6.24) 

 

Express 
2 3 4, ,k k k  as functions of two variables by the Taylor formula. 

We have: 
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1
2 ,

2 2
n n

h k
k f x y h

 
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 

2

1 11
... .

2 2 2 2 2
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We limit ourselves to the third powers of h and, given that 
1k hf= , we obtain: 

2
3

2
2 8

h h
k f f f f f

x y x y
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Similarly for 
3k  and 

4k  you can write: 

 

2

2 2
3

1

2 2 2 2 2

k kh h
k f f f h

x y x y

       
= + + + + =    

        

 

 

2
3

...
2 2 8

h h h
f f Df f f f h

x y y x y

        
= + + + + + + =    

         

 

 

2 2 3
2 ;

2 4 8

h h f h
hf Df Df D f

y


= + + +


 

 

2

4 2 2

1

2
k f h k f h k f h

x y x y

       
= + + + + =    

        

 

 

=






















+




+




+












+




+




+= hf...

y
f

x2

h
f

y
Df

2

h

y
f

x
hf

2
2

 

 

3 3
2 2 .

2 2

h f h
hf h Df Df D f

y


= + + +


 



172 

 

Now find the amount 
1 2 3 4n k k k k    = + + + . 

Comparing the coefficients at the same powers h in the last equation and 

expression (6.24) to determine , , ,    , taking into account the expressions 

for the coefficients , we obtain a system of equations 

 

1   + + + = ( at hf ); 
1

2 2 2

 
+ + =    (at 2h Df ); 

 

1

8 8 2 6

  
+ + =    (at 3 2h D f ); 

1

4 2 6

 
+ =    (at 3 f

h Df
y




). 

 

This system has a solution .
3

1
,

6

1
====  

So,  

                                              
1 2 3 4

1
( 2 3 ).

6
n k k k k = + + +                               (6.25) 

 

To calculate 𝑦𝑛+1 at a point 
1nx +
 we have the formula 

 

                                       
1 1 2 3 4

1
( 2 3 ).

6
n ny y k k k k+ = + + + +                          (6.26) 

 

In the case of the Runge - Kutta method of the fourth order of accuracy, ie when 

in development (6.18) members with degrees from h  to 
4h  inclusive are kept, the 

integration process is carried out similarly, only the numbers change 
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                          2
3 , ;

2 2
n n

kh
k hf x y

 
= + + 

 
     

4 2( , ).n nk hf x h y k= + +      (6.27) 

 

Similarly, you can build formulas of higher degrees. 

For example, solve a linear differential equation 2 21,5 0,5.xy e x x= − − +  

 

22 2
dy

x y
dx

= +  

 

with the initial condition (0) 1, 0 1y x=    and step 0,1h = . This equation has 

an exact solution 

The results of the calculations are presented in Fig. 6.2. and in table. 6.2. 

 

 

Рис. 6.2 

 

In fig. 6.2 curve 1 corresponds to the numerical solution according to the Euler 

method, curve 2 - according to the modified Euler method, curve 3 corresponds 
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to the exact solution and the solution according to the Runge - Kutta method (in 

the figure the curves coincide). 

These calculations allow us to compare the results of these methods. 

 

Table 6.2 

x  Euler's 

method 

Modified 

Euler's method 

Method 

Runge-Kutta 

Exact solution 

 

0,0 1,0000 1,0000 1,0000 1,0000 

0,1 1,2000 1,2210 1,2221 1,2221 

0,2 1,4420 1,4923 1,4977 1,4977 

0,3 1,7384 1,8284 1,8432 1,8432 

0,4 2,1041 2,2466 2,2783 2,2783 

0,5 2,5569 2,7680 2,8274 2,8274 

0,6 3,1183 3,4176 3,5201 3,5202 

0,7 3,8139 4,2257 4,3927 4,3928 

0,8 4,6747 5,2288 5,4894 5,4895 

0,9 5,7376 6,4704 6,8643 6,8645 

1,0 7,0472 8,0032 8,5834 8,5836 

 

 

Tasks for self-fulfillment 

 

        І. For this Cauchy problem, find the approximate Runge-Kutta solution on 

the given segment with accuracy 
310−=  and present the results in the form of 

graphs. 

 

1.   .]1;0[,0)0(y,xyy 22 =+=   

2.   .]2;1[,1)1(y,y2xx1y 22 =−++=  
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3.   .]5,0;0[,1)0(y,xy1y =+=  

4.   .]1,1;1,0[,5,0)1,0(y,xyy 23 =+=  

5.   .]2;1[,1)1(y,y
x

y
y 2 =−=  

6.   .]1;0[,8,0)0(y,xyxy 22 =++=  

7.   .]1,0;0[,0)0(y,ycosx2y =+=  

8.   .]1;0[,5,0)0(y,xyy 3 =−=  

9.   .]5,1;0[,0)0(y,yx1y)x1( =−+=−  

10.   .]1;0[,1)0(y,xyy 2 =+=  

11.   .]1;0[,1)0(y,yx1y 2 =−+=  

12.   .]5,0;0[,0)0(y,xsinyy =−=  

13.   .]1;0[,0)0(y,eyxy x22 =+=  

14.   .]1;0[,0)0(y,xyy 2 ==  

15.   .]1;0[,1)0(y,y2xsinxy 22 =++=  

16.   .]1;0[,5,0)0(y,xxyy 23 =+=  

17.   .]1,1;1,0[,1)1,0(y,xcosyxyyy 3 =+−=  

18.   .]1;0[,5,0)0(y,yxyxy 22 =++=  

19.   .]1;0[,1)0(y,1xyy 22 =−=  

20.   .]8,1;1[,2)1(y,x2y
x

1
y

2
=−−=  

21.   .]1;0[,5,0)0(y,1xyy 3 =−=  

22.   .]1;0[,1)0(y,y
x1

y
y 2 =−

+
=  

23.   .]5;0[,1)1(y),yx(1,0y 22 =+=  

24.   .]5,3;5,0[,5,0)5,0(y,
yx

1
y

22
=

+
=  
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25.   .]5,1;1[,1)1(y,
x

2
yy 2 =+=  

26.   .]1;0[,1)0(y,xy1y 2 =−+=  

27.   .]6,0;1,0[,5,0)1,0(y,yxy 33 =+=  

28.   .]1;0[,1)0(y,y2eyy x2 −=−=  

29.   .]1;0[,0)0(y,yxy 22 =−=  

30.   .]5,1;1[,1)1(y,x2yy 2 =+=  

 

 ІІ. Find the approximate solution of the second-order differential equation 

under the given initial Runge-Kutta conditions on the segment ]1;0[  with 

accuracy 
310−=  and present the results in the form of graphs. 

 

1. .1)0(y,0)0(y,0y)x1(y 2 ===++  

2. .1)0(y,0)0(y,0xyy ===+  

3. .0)0(y,1)0(y,0xyy ===+  

4. .1)0(y,1)0(y,xcosyyxy ==−=  

5. .0)1(y,1)1(y,yy
x

1
y ==+=  

6. .0)0(y,1)0(y,0yyxy ===−−  

7. .0)0(y,0)0(y,0xcosyy ===+  

8. .0)0(y,1)0(y,yyxy 2 ==−=  

9. .1)0(y,1)0(y,xyyy 2 ==−=  

10. .0)0(y,1)0(y,1yy3y 2 ==−=  

11. .1)0(y,1)0(y,yxy 2 ===  

12. .1)0(y,1)0(y,yxyy ===  

13. .0)0(y,1)0(y,xsinyxyy ==+−=  
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14. .1)0(y,0)0(y,yy2xey x ==+=  

15. .1)0(y,1)0(y,yxyy 22 ==−+=  

16. .0)0(y,1)0(y,eyyxy x ==+−=  

17. .1)0(y,0)0(y,0xsinyyxy ===+=  

18. .1)0(y,1)0(y,eyxcosxy x22 ==+−=  

19. .0)0(y,1)0(y,0yyx)x1(y 2 ===−++  

20. .1)0(y,1)0(y,0e2y2yxy x2 ===−+= −
 

21. .1)0(y,0)0(y,yy3xy2y 3 ==+−=  

22. .2)0(y,2)0(y,0y)x1(y 2 ===+−  

23. .1)0(y,1)0(y,eyyxy x2 ==−+=  

24. .1)0(y,0)0(y,y2yxy 22 ==+−=  

25. .1)0(y,0)0(y,1yxsinyy ==+−=  

26. .0)0(y,1)0(y,x3yyxcosy 2 ==++−=  

27. .1)0(y,0)0(y,yxcosyyy ==−−=  

28. .1)0(y,0)0(y,yy
x1

5
y ==+

+
=  

29. .0)0(y,1)0(y,0y2yxy ===−−  

30. .1)0(y,1)0(y,
x2cos

1
y4y ===+  
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