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Abstract. The paper proposes a new method of dynamic VaR and
CVaR (Expected Shortfall) risk measures forecasting. Quantile linear
model GARCH (QLGARCH) is chosen as the main forecasting model
for time series quantiles. To build a forecast, the values of quantiles are
approximated by the metalog distribution, which makes it possible to use
analytical formulas to evaluate risk measures. The method of forecasting
of dynamic VaR and CVaR is formulated as a step-by-step algorithm. At
the first stage, an initial model is built to obtain variance estimates. The
predicted variance values obtained from the constructed model are used
at the second stage to find the QLGARCH model coefficients by solving
the minimization problem. At the third stage, the QLGARCH models
are estimated on a non uniform quantile grid. The obtained predicted
values of quantiles are used to estimate the approximating metalog dis-
tribution. Estimated metalog distribution allows to use the analytical
formulas to find the predicted values of VaR and CVaR. The investi-
gated theory was applied to VaR and CVaR forecasting for time series
of daily log-return of the Dow Jones Industrial Average (DJI) index.
Using the proposed method, a set of one-step forecasts of risk measures
was obtained. Prediction quality was assessed using standard backtesting
methods. The results were also compared with the predictions obtained
by standard methods based on the LGARCH model with parametric and
non-parametric methods for static risk estimation for the model residu-
als.

Keywords: dynamic risk measures, VaR, CVaR, Expected Shortfall,
forecast, Quantile LGARCH model, metalog distribution

1 Introduction

The purpose of this study is to develop the new method of dynamic VaR and
CVaR risk measures estimation and forecasting. VaR and CVaR are classic mea-
sures that are used in financial risk assessment [9].In the practice of VaR and
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CVaR estimating for a random variable that describes the profitability of a finan-
cial instrument, two main approaches can be distinguished. The first approach
is a nonparametric estimation method that is based on an empirical distribution
function. The disadvantage of this estimation method is the critical dependence
of the effectiveness of the method on the presence in the initial data of values
that arise with low probabilities [9]. The second approach is parametric, based on
a priori estimation of the distribution function, which is the main disadvantage
of this approach [9].

In time series analysis, in particular, in time series forecasting, in addition
to static risks measures, in practice it becomes necessary to build more complex
risk models, which take into account the changes of the series over time. In
this case, to estimate risk measures, various time series models can be used,
such as, for example, ARMA, GARCH. With this approach, the problem of
risk measures modeling is reduced to estimate a model for variance and finding
static risk measures for its residuals using parametric or nonparametric methods.
Examples of this approach are described in [11], [1], [12].

The described above approaches of evaluation of risk measures are based on
the construction of a cumulative distribution function on the full space of events.
At the same time, to estimate risk measures, it is sufficient to evaluate only the
quantile of a given level (for VaR) or the distribution of values exceeding a given
level (for CVaR). At the same time, from a practical point of view, the most
significant are the quantities and distribution for a relatively small subset of
the event space leading to extreme consequences. Accordingly, it is possible to
simplify the forecasting task by using the quantile regression model proposed
in [15]. [8] contains a detailed description of the theory of quantile regression
estimation applicable to standard time series models. Since financial time series,
as a rule, are characterized by rather strong volatility, quantile GARCH models
are popular for risk analysis. The problem of building quantile models of the
GARCH class and their application in VaR forecasting for the series of log returns
of stock market indices is considered, for example, in [13], [16].

One of the possible solutions to the problem of approximation to the distribu-
tion of the GARCH model residuals is to use the metalog distribution proposed
in [6]. This choice is based on the simplicity of quantile formulas and the avail-
ability of a sufficient set of parameters of this distribution for an adequate fitting
of empirical data of various nature. Thus, in [14], the metalog distribution is used
in the development of the extended FAIR-BN combined approach for cyber secu-
rity risk assessment. In [4], the five-term metalog distribution is used to forecast
fertility rates in Canada. SPT (symmetric-percentile triplet) metalog distribu-
tion is used in [3] to statistically compare the forecasts of annual production in
the oil and gas industry in Norway. In the work [17], the metalog distribution
is used for dynamic risk measures VaR and CVaR estimating based on a het-
eroscedastic time series model, taking into account the strong dependence of the
data series. The method of smoothing of the autocorrelation function is used for
variance modeling. A metalog distribution is proposed to use for risk measures
model residuals estimating. The paper proposes two methods of metalog distri-
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bution estimating and explicit analytical formulas for VaR and CVaR modeling
and forecasting with different numbers of members in the metalog distribution.

A large number of publications devoted to the risk measures estimation and
forecasting testifies to the applied significance of this problem. At the same
time, the task of developing the new methods and approaches for risk modeling,
which more fully reflect the nature of the modeled series, remains relevant. Most
of the forecasting methods are based on the estimation of the entire distribution
function. On the one hand, this is an overstated requirement for the model,
and on the other hand, it often leads to an incorrect description of tails of
distribution. Therefore, in this paper, it is proposed to build volatile models
only for the tail parts of the distribution. In this case, the obtained point values
of the quantiles can be smoothed, for example, by metalog distribution.

2 Materials and Methods

On the probability space (Ω,Φt,P) a time series {ut, t ∈ T} with a finite mean
is considered (Φt is the information set containing all available at the time t
information about the time series). The series is set by its observations at times
u1, ..., uN .

For a fixed confidence level α risk measure V aRtα is defined as the conditional
α - quantile of the CDF of ut: V aR

t
α = F−1

t (α). The risk measure CV aRtα is

defined as the integral: CV aRtα = Et[ut̃ |ut̃ < −V aRtα(t) ] = − 1
α

α∫
0

V aRtγ dγ,

(α < 0.5), where Et[·] denotes expectation with respect to Φt. In this paper, the
continuity of the CDF is assumed.

As indicated in the introduction, most methods for dynamic VaR and CVaR
risk measures forecasting are based on time series modeling. The GARCH models
are among the models that describe volatility of financial time series. In this
paper, we consider the Linear GARCH model LGARCH (p, q). This model is
frequently used for fitting log-return volatility time series and appropriate for
quantile regression because of its linear structure [16].

The time series {ut, t = 0, 1, 2, ...} follows LGARCH (p, q) process if:

ut = σtεt, σt = β0 +
∑q

i=1
γi |ut−i|+

∑p

j=1
βjσt−j (1)

where {εt} are independent, identically distributed random variables with zero
mean and a conditional distribution function Fε(·), β0 > 0; (γ1, γ2, ..., γq)

T ∈ Rq+.
Using the heteroscedastic time series model, the dynamic risk measures can be
found under the following formulas [9]:

V aRtα = V aRα(ε)σt, CV aR
t
α = CV aRα(ε)σt, (2)

where the model for σt is defined in (1), V aRα(ε) and CV aRα(ε) are static risk
measures at time t. Then the P step forecast for dynamic risk measures can be
found by model (2) extrapolation:

V aRt+Pα = V aRα(ε)σt+P , CV aR
t+P
α = CV aRα(ε)σt+P . (3)
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In this work, the following methods are used to evaluate static risk measures
V aRα(ε), CV aRα(ε).

Historical simulation method. Let X be a random variable and its sample
values are X1, X2, ... XN . In accordance with the historical simulation method,
an empirical distribution function is constructed on the sample values. Then
according to [18]:

ˆV aRα = −X([Nα]), ˆCV aRα = −

[N α]∑
i=1

X(i)

 / ([N α]) , (4)

where X(1) ≤ X(2) ≤ ... ≤ X(N).

Using Student’s t-distribution. If the random variable has the local scale
Student’s t-distribution with the parameters µ, σ and the degrees of freedom
υ > 2, then the risk measures can be calculated as (see [18]):

VaRα = µ+ σt−1
υ (α),CVaRα = µ− σgυ(t−1

υ (α))

α
·
υ +

(
t−1
υ (α)

)2
υ − 1

, (5)

where gυ(·) is the standard PDF and tυ
−1(·) is the inverse standard CDF value

at α of t-distribution.

Using metalog distribution. Suppose that X has a metalog distribution
FX(x), that is defined by a quantile function Mn(α,a(X,α)) [6]:

Mn(α,a) =



a1 + a2 ln α
1+α , n = 2

a1 + a2 ln α
1+α + a3(α− 0.5) ln α

1+α , n = 3

a1 + a2 ln α
1+α + a3(α− 0.5) ln α

1+α + a4(α− 0.5), n = 4

Mn−1 + an(α− 0.5)
n−1
2 , for oddn ≥ 5

Mn−1 + an(α− 0.5)
n
2−1

ln α
1+α , for evenn ≥ 5

The coefficients a = (a1, a2, ..., an)T can be found as a solution of the system of
equations:

a = [Yn
TYn]−1Yn

TX, (6)

where X = (X1, X2, ..., XN )T , the matrix Yn is defined on a vector of cumulative
probabilities α = (α1, α2, ..., αN )T = (FX(X1), FX(X2), ..., FX(XN ))T [6]:
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Yn =



 1 ln α1

1+α1

· · · · · ·
1 ln αN

1+αN

 , n = 2 1 ln α1

1+α1
(α1 − 0.5) ln α1

1+α1

· · · · · · · · ·
1 ln αN

1+αN
(αN − 0.5) ln αN

1+αN

 , n = 3 1 ln α1

1+α1
(α1 − 0.5) ln α1

1+α1
(α1 − 0.5)

· · · · · · · · · · · ·
1 ln αN

1+αN
(αN − 0.5) ln αN

1+αN
(αN − 0.5)

 , n = 4 (α1 − 0.5)
n−1
2

Yn−1| · · ·
(αN − 0.5)

n−1
2

 , for odd n > 5

 (α1 − 0.5)
n
2−1

ln α1

1+α1

Yn−1| · · ·
(αN − 0.5)

n
2−1

ln αN

1+αN

 , for even n > 6

Following the definitions, risk measures can be found under the formulas:

V aRα̃,n(X) = −Mn(α̃,a(X)),

CV aRα̃,n(X) = − 1

α̃

α̃∫
0

Mn(y,a(X)) dy.
(7)

Explicit formulas for CV aRα̃,n(X) estimating with different number of mem-
bers of the metalog distribution were obtained in [17]:

CV aRα̃,n(X) =



a1 + a2

(
ln(1−α̃)

α̃ + ln α̃
1−α̃

)
, n = 2

CV aRα̃,2(X) + a3
2

(
1 + (α̃− 1) ln α̃

1−α̃

)
, n = 3

CV aRα̃,3(X) + a4(α̃−1)
2 , n = 4

CV aRα̃,n−1(X) +
2an

α̃(1 + n)
×

×
(

(−1)
n−1
2 (0.5)

n+1
2 + (α̃− 0.5)

n+1
2

)
, oddn > 5

CV aRα̃,n−1(X) + 2
2−n
2 an
nα̃ 2(2α̃− 1)

n
2×

×arctg(2α̃− 1) + nG+ ln(1− α̃)+

+(−1)
n+2
2 ln α̃, evenn > 6

(8)

where G = 3F2 [1, 1, 1− n/2; 2, 2; 2] + (α̃ − 1)3F2 [1, 1, 1− n/2; 2, 2; 2− 2α̃] +

+(−1)
n/2α̃ 3F2 [1, 1, 1− n/2; 2, 2; 2α̃], 3F2 [c1, c2, c3; d1, d2; z ] is generalized hy-

pergeometric function.
For determining the parameters of the metalog distribution the Quantile

Metalog Method is proposed in [17]. This method uses the approximation of the
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empirical distribution function by sample quantiles X = (τα1 , ..., ταN
)T , where

ταi
=

{
X([Nαi]+1), Nαi /∈ Z

ᾱ−αi

ᾱ−α X(α) + αi−α
ᾱ−α X(ᾱ), Nαi ∈ Z

,

where α = [Nαi]
N , ᾱ = [Nαi+1]

N , αi ∈ (0, 1). Thus, the classical approach to
risk measures forecasting (3) involves building a model for variance estimating,
obtaining model residuals, and using methods for static risk measures V aRα(ε),
CV aRα(ε) estimating.

Another approach is based on estimating of quantile time series models, which
makes it possible to directly simulate the time series quantile of a given level.
The QLGARCH model is considered (see [8], [16]):

Qut
(τ |Φt−1 ) = θt(τ)T zt, (9)

where Qut
(τ |Φt−1 ) is a conditional τ - quantile for {ut},

zt = (1, σt−1, ..., σt−p, |ut−1| , ..., |ut−q|)T ,
θt(τ)T = (β0, β1, ..., βp, γ1, ..., γq)F

−1(τ) =

= (β0(τ), β1(τ), ..., βp(τ), γ1(τ), ..., γq(τ)).

The paper proposes the following methodology. Model (9) is used to con-
struct a set of quantiles. For a more detailed description of the left tail of the
CDF, the quantile levels can be found on a non uniform grid. Assuming that the
obtained set of quantiles can be fitted by the metalog distribution, the quantile
function Mn(α,a(X,α)) is estimated using (6). To obtain forecasts of risk mea-
sures, formulas (7), (8) are used. The practical implementation of the method is
formulated as a step-by-step algorithm.

An Algorithm for Constructing the Dynamic Risk Measures VaR
and CVaR Forecast based on the method QLGARCH - Metalog

1. Building a variance model to get estimates σ̂t−i, i = 1, p. The model
LGARCH(p,q) (1) is written as ARCH(∞): σt = α0 +

∑∞
j=1 αj |ut−j |, where

the coefficients αj satisfy summability conditions implied by the regularity
conditions [8]. Due to the assumption of regularity, the coefficients decrease
geometrically, therefore, the model can be reduced to ARCH (m). The ap-
propriate lag for reducted ARCH model is chosen on the base of significant
values of ACF and PACF for squared values of returns (values that is more
than confidence bounds). Estimates of αj can be obtained in various ways.
QMLE is used in this work. The fitted model is used to obtain estimates
σ̂t, ..., σ̂t−p:

σ̂t−i = α̂0 +
∑m

j=1
α̂j |ut−j−i| , i = 0, p. (10)

2. Building a set of quantiles predictive estimates To obtain estimates
of the τ -quantile for ut, the QLGARCH model (9) is used. The orders of
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the model p, q can be estimated using Akaike Inform Criteria (AIC) and
Hannan-Quinn Inform Criteria (HQIC). It is also possible to use Bayes In-
form Criteria (BIC) and Shibata Inform Criteria (SIC). To estimate the
vector of parameters θ(τ)T , the minimization problem is solved using the
quantile regression estimation in the form (see [8]):

min
θ

∑
t

ρτ (ut − θT ẑt), (11)

where ρτ (u) = u(τ − I(u < 0)) is a check function,
ẑt = (1, σ̂t−1, ..., σ̂t−p, |ut−1| , ..., |ut−q|)T , taking into account that the esti-
mates σ̂t−1, ..., σ̂t−p were obtained at previous step (10). The solution of the
unconstrained minimization problem (11) makes it possible to estimate the

τ -quantile for ut in the form: Q̂ut(τ |Φt−1 ) = θ̂(τ)T ẑt. At this step, a grid
of τi-quantiles, i = 1, N , is constructed and the problem (11) is solved N
times. For every quantile regression with τi, i = 1, N the quantile estimates
are Q̂ut

(τi) = θ̂t(τi)
T ẑt, i = 1, N . In this case, the predicted values of the

conditional quantiles are calculated by extrapolation Q̂ut+1
(τi) = θ̂(τi)

T ẑt+1,
where ẑt+1 = (1, σ̂t, ..., σ̂t−p+1, |ut| , ..., |ut−q+1|)T , and σ̂t−i, i = 0, p− 1 are
obtained at the first step of algorithm (10).

3. Risk measures forecasting The predictive quantiles Q̂ut+1(τ1), ..., Q̂ut+1(τN )
(from previous step) are fitted using the metalog distribution. Estimates of
the metalog distribution parameters â = (â1, â2, ..., ân)T are found in accor-
dance with (6), where X = (Q̂ut+1

(τ1), ..., Q̂ut+1
(τN ))T , α = (τ1, τ2, ..., τN )T .

Specifying the quantile function Mn(α̃, â) for a given level α̃ allows the use
of analytical expressions (7), (8) to find the predicted values V aRt+1

α̃,n and

CV aRt+1
α̃,n .

3 Experiment, Results and Discussions

Proposed algorithm was applied for dynamic risk measures V aR0.1, CV aR0.1

forecasting for the time series of daily log returns of the Dow Jones Industrial
Average index (the DJI time series). The sample length was 3500 values from
2007/02/16 to 2021/01/11. The forecast model was based on 1500 historical val-
ues and was extrapolated one value forward. After that, the modeling window
was one step shifted, and the model was rebuilt. The procedure was repeated
2000 times (Rolling Forecast Method). The obtained one-step forecasts were
compared with real values for the corresponding period of time. To obtain vari-
ance estimates (10), the model ARCH(30) was built. Based on the historical val-
ues of the time series and the estimated variance values, quantile LGARCH(3,3)
models were built for different levels of quantiles. The orders of the models were
found using the AIC and HQIC criteria: p = 3, q = 3. For non uniform grid
a more detailed description of the left tail of the distribution, an of quantiles
was used: τi = ih, h = 0.01 for i = 1, 20, and τi = ih, h = 0.05 for i = 5, 19.
Estimates of the parameters were obtained using QMLE. The estimated models
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were used to generate one-step quantile predictions. The predicted quantile val-
ues were used to estimate the metalog distribution. Using (6), the estimates for
the coefficients of the metalog distributions for n = 4, 5, 6, 7 were obtained. Risk
measures estimates were calculated using formulas (7) and (8). The results were
obtained using R packages rugarch [5] and quantreg [7].

The results of dynamic VaR and CVaR risk measures forecasting using the
QLGARCH - Metalog (rq met) method are shown in Figure 1. along the his-
torical values (the first 1500) and the real values (1501-3500) of the DJI time
series. As can be seen from the graph, the obtained forecast estimates describe
the dynamic behavior of the time series quite well.

Fig. 1. Historical data of the time series of daily log return of the DJI index (TS
returns) from 2007/02/16 to 2021/01/11 and the forecast values for V aRt+1

0.1 (VaR
(0.1)) and CV aRt+1

0.1 (CVaR (0.1)) obtained by the QLGARCH - Metalog method
(n = 5) for the period 2013 / 02/01 - 2021/01/11

Historical data and the forecast values of dynamic risk measures over a short
period of time is shown on Figure 2. for more convenient visual analysis.

For a comparative analysis of the effectiveness of the proposed method, a fore-
cast of dynamic risk measures for a given time series was built with standard
approach on the basis of a heteroscedastic model (3). To estimate the variance,
the LGARCH(3,3) model was considered. The AIC and HQIC criteria were used
to determine the orders of the model. The QMLE was used to estimate the co-
efficients. To determine the risk measures for the residuals of the LGARCH(3,3)
model, the following methods were used: the Historical simulation method (4)
(hist method), explicit formulas (5) under the assumption that the residuals of
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Fig. 2. Historical data of the time series of daily log return of the DJI index (TS
returns) from 2007/02/16 to 2021/01/11 and the forecast values for V aRt+1

0.1 (VaR
(0.1)) and CV aRt+1

0.1 (CVaR (0.1)) obtained by the QLGARCH - Metalog method
(n = 5) for the period 2019/10/31 - 2020/08/18

the model have the local scale t-distribution (tLS method), explicit formulas (7),
(8) based on Quantile Metalog Method for n = 4, 5, 6, 7 (metal method).

The analysis of the constructed forecast estimates was carried out using the
backtesting procedure. The following tests were used in the work:

• for VaR estimates: the Kupiec test (LRuc), Christoffersen’s independence
test (LRind), PoE statistics [19];
• for CVaR estimates: two tests proposed in [10] were used: one-sided simple

conditional calibration test (scc 1) and two-sided simple conditional cali-
bration test (scc 2); three regression based backtests proposed in [2]: the
auxiliary ESR backtest (Aux), the strict ESR backtest (Str), the intercept
ESR backtest (Int).

The p-values of these tests are shown in Table 1. Table 2 shows the PoE
statistic values for the forecast estimates of dynamic risk measure VaR.

As follows from Table 1, the worst estimates were obtained using the histor-
ical simulation method (hist). In particular, as a result of applying the Christof-
fersen’s independence test (LRind) for VaR and the two-sided simple conditional
calibration test (scc 2) for CVaR, hypotheses with a significance level of 0.05 were
rejected. This indicates the inapplicability of the historical simulation method for
predicting the values of the DJI time series. At the same time, all tests showed
consistently good quality of forecasts obtained by the QLGARCH - Metalog
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Table 1. The results of the qualitative analysis of the forecast estimates of dynamic
risk measures VaR and CVaR for DJI time series

Risk meashure VaR CVaR

Method LRuc LRind scc 1 scc 2 Aux Str Int

hist 0.0677 0.0091 0.0866 0.0076 0.6453 0.6191 0.5824

tLS 0.4582 0.3359 0.0657 0.1136 0.5364 0.5286 0.4710

metal, n=4 0.1497 0.0802 0.2301 0.0625 0.6980 0.7289 0.6267

metal, n=5 0.1726 0.1497 0.2411 0.0630 0.6883 0.7338 0.6461

metal, n=6 0.0945 0.0393 0.1251 0.0115 0.5707 0.6047 0.5355

metal, n=7 0.0945 0.0474 0.1245 0.0098 0.5261 0.5521 0.5180

rq met, n=4 0.4983 0.7643 0.1572 0.0869 0.8454 0.8914 0.8072

rq met, n=5 0.8810 0.5796 0.2741 0.1808 0.8842 0.9164 0.8475

rq met, n=6 0.4272 0.4072 0.1863 0.1082 0.8566 0.8931 0.8121

rq met, n=7 0.5476 0.3655 0.2688 0.1757 0.8671 0.8940 0.8450

Table 2. PoE statistic values for the forecast estimates of dynamic risk measure VaR
for DJI time series

Method hist tLS metal rq met

n=4 n=5 n=6 n=7 n=4 n=5 n=6 n=7

PoE 0.0879 0.1051 0.09045 0.09095 0.0889 0.0889 0.0954 0.0989 0.0944 0.0959

method (rq met) and maximum p-value statistics compared to other methods
(tLS and metal).

In the article the metalog distribution with the different number of parame-
ters (n = 4, 5, 6, 7) is considered (see Table 1). An increase in the number of pa-
rameters potentially increases the accuracy of the estimates, but can lead to the
problem of overfitting. As a result of the backtesting for forecasted dynamic risk
measures VaR and CVaR obtained with the Quantile Metalog Method (metal),
the choose of large n probably leads to overfitting. The estimates of VaR and
CVaR obtained using the metalog distribution for n = 4 and n = 5 are con-
sistently better than the estimates obtained using the same sample for n = 6
and n = 7. At the same time, the QLGARCH - Metalog (rq met) method shows
less dependence on the number of parameters of the metalog distribution. The
results of the qualitative analysis for VaR and CVaR forecasts obtained by this
method are relatively uniform for all n. Although it should be noted that accord-
ing to the results of all tests, the highest quality forecasts for risk measures were
obtained at n = 5. The best results of VaR forecasting (see Table 2) according
to PoE statistics is obtained also by rq met method for n = 5 (has the least
deviation from the target value of 0.1).

The paper proposes a method that is a natural continuation of existing re-
search and methods devoted to dynamic risk models developing. It combines
parametric and nonparametric statistical approaches to time series modeling.
Practical application of the method shows its effectiveness in the case of risk
modeling for highly volatile financial time series. The simplicity of the method
and its background make it possible to recommend it for using in various fields.
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However, the determination of the restrictions on applicability of this method,
as well as the automation of the procedure for adjusting its parameters, requires
further mathematical research, in particular, the construction of asymptotic es-
timates of the convergence of the model.

4 Conclusions

The paper considers the problem of dynamic VaR and CVaR risk measures
modeling and forecasting for financial time series. Since the VaR measure is a
conditional quantile of the distribution function of a given level, and CVaR for
continuous distributions can be specified as the average of the quantile function
it is proposed to use QLGARCH as a model for risk measures forecasting. The
advantage of using of this model is the ability to estimate and predict not the
full distribution, but the values of the quantiles of the required levels. Since
the risk measures are determined for the tail part of the distribution, an non
uniform grid is used in the work, which makes it possible to detail the quantiles
with a low level. To smooth point values, it is proposed to fit a set of quantiles
with metalog distribution. This approach is also convenient due to the presence
of explicit analytical expressions VaR and CVaR for the metalog distribution.
The proposed method for dynamic VaR and CVaR risk measures forecasting is
formulated in the form of a step-by-step algorithm.

The proposed methodology was tested on the time series of daily log return
of the Dow Jones Industrial Average (DJI) index for the period from 2007-02-16
to 2021-01-11. Using the formulated algorithm, a set of one-step forecasts of risk
measures was obtained. An analysis of the quality of the forecasts was carried
out using various standard backtesting techniques on real data. The results were
compared with the forecasts obtained by standard methods that are based on
the LGARCH model and various assumptions about distribution of the residuals.
The carried out qualitative analysis of the obtained predicted values showed the
effectiveness of using the method proposed in this work and its advantage in
comparison with standard methods.

The results of the work can be directly applied in dynamic risk modeling for
highly volatile time series, in particular, financial time series, and also can serve
as the basis for the development of new methods and algorithms for random
processes prediction.
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