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Investigation of electrical brain activity related to movement: a review

The work is devoted to consideration of differ-
ent problems which arise in studying of the move-
ment-related brain activity. Changes in the cortex
activity during performing of the movement both
real and imagery represent neural networks formed
for planning and performing of the particular mo-
tion.

The review of possible preprocessing methods
of the registered brain activity for increasing signifi-
cance of extracted features are shown. Regularities
and patterns which take place before and after
movement onset are described. The methods that
suitable for connectivity estimations in case of cor-
tico-muscular relationships and in case of evalua-
tions between brain regions are shown. In addi-
tion, possibility of movement classification and pre-
diction together with reconstruction of kinematics
features of the motion are considered.
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Introduction

In the study of real movements first of all the
relationship between the cortex activity and the
electrical activity of the muscles responsible for the
execution of certain movements is under consider-
ation. In addition, relationships arising in the brain
during the planning and execution of a movement
that reflects the functional connections in the brain
is also important. Many studies are focused on de-
veloping brain-computer interface (BCI) related to
the imaging or execution of movements.

Brain activity can be recorded by using of elec-
troencephalography (EEG), magnetoencephalog-
raphy (MEG) and electrocorticography (ECoG).
EEG is the most common method due to it is non-
invasive compared to ECoG and simpler compared
to EMG.

Muscle activity is recorded by using of electro-
myography (EMG).

The same brain areas are activated during im-
agination and the real action. In particular these are

the parts of the neural system which are associated
with preparing and commanding of movements: the
premotor cortex, the dorsolateral prefrontal cortex,
the inferior frontal cortex, the posterior parietal cor-
tex, the cerebellum and the basal ganglia. The ac-
tivation of the motor cortex (M1) during imaginary
movements is still unclear because some studies
found neural activation and others not [20]. PET
and fMRI indicate involvement of the sensorimotor
cortices in addition to other cortical regions during
tasks that trigger dystonia [9]. It is making im-
portant the investigation of movement-related brain
activity for studying different movement disorders
and dysfunctions.

In fact, motor activity, both actual and imagined
as well as somatosensory stimulation, modulates
the p-rhythm (8 — 13 Hz) [23]. The M1 cannot initi-
ate a movement alone, but needs to be stimulated
by neurons from the premotor cortex and the sup-
plementary motor area (SMA), which support and
coordinate the M1. One task of the premotor cortex
is to provide sensory guidance of movement while
the SMA is, among others, responsible for planning
and coordination of more complex movements [20].
The networks engaged in the early “volitional” part
of the task are widespread in many structures of
the brain [10].

The motor cortex displays synchronized rhyth-
mic activity modulated by motor behavior [7]. The
main phenomena observed on brain activity during
movement execution is event-related desynchroni-
zation (ERD). ERD is caused also by imagined
movements and by intended movements [23].

The aim of this work are review of different
branches of the movement-related brain activity in-
vestigation and definition of further research direc-
tions.

Data pre-processing

Data pre-processing is important for the further
analysis of the recorded signals. In all cases band-
pass filtering is the main step of pre-processing.

If the research is aimed to investigate the rela-
tionship between brain and muscle activities, the
guestion arises of the need for EMG processing.
For this purpose rectification is commonly used.
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Rectification of the EMG signal enhances firing rate
information [19]. But at the same time EMG rectifi-
cation had inconsistent effects on the power and
coherence spectra and obscured the detection of
cortico-muscular coherence (CMC) in some cases.
That’s why rectification is inappropriate [15].

One of the main challenges that is imminent in
EEG processing is that the EEG signals are very
noisy, having low signal to noise ratio and large tri-
al to trial variability [24]. The other problem that
complicates investigations is a volume conduction.

Described below the processing examples can
be used not only for EEG but also for MEG and
ECoG to improve extraction of brain activity fea-
tures.

In [1, 22] smoothing with a Savitzky-Golay filter
was used for the low-pass filtering of ECoG. In [2]
auto-correlation of the EEG signals was performed
to enhance the weak brain signals and reduce
noise.

The purpose of the spatial filter is to reduce the
effect of spatial blurring from the raw signal. The
most common spatial filters are small and large
Laplacian, bipolar, common average referenced
(CAR) and current source density (CSD).

The large Laplacian and CAR references are
most suited for a BCI instead of the small Laplacian
and ear reference. CAR (the mean of all electrodes
as reference) show the best performance in case of
imagery classification [26].

CSD (Laplacian based) is a spatial filtering
technique reducing the redundancy and ambiguity
of volume conduction measures in EEG, which
used to work on reference free data. The use of a
CSD greatly improved CMC [17].

CSP (common spatial pattern) is more complex
method for spatial filtering based on a decomposi-
tion of the raw EEG signals into spatial patterns,
which are extracted from two populations of EEG
[23, 26]. CSP filters maximize the variance of the
signal under one condition and minimize it for the
other condition. In [14] discriminative spatial pattern
(DSP) filtering was proposed to extract the ampli-
tude features of slow potentials of the ICs (0.1-4
Hz) instead CSP.

In [12] the use of optimal spatial filters (OSF)
was evaluated in case of analysis of ERD and
movement related cortical potentials (MRCP).

The other important group of pre-processing
methods includes different decomposition tech-
niques. For further analysis can be used the enve-
lope of the signals calculated by Hilbert transform,
the fitted curves calculated using the sigmoid fitting
function [10] or the time—frequency (TF) represen-
tations of single-trial EEG signals calculated using
the complex Morlet’s wavelet [12, 27].

Independent component analysis (ICA) can de-
compose the overlapping source activities consti-
tuting the scalp EEG into functionally specific com-
ponents. ICA can be performed to identify and re-
move artifacts associated with eye-blinks and mus-
cle activation [9, 14].

For noise removing from the EEG empirical
mode decomposition (EMD) can be used. It de-
composes a signal into harmonics of various fre-
quencies. EMD is a data dependent decomposition
method without assumptions about the stationarity
[24].

Principal Component Analysis (PCA) is used
for dimensionality reduction of EEG signals or ex-
tracting features. In [26] the PCA is applied to the
training set to find the transformation matrix for cal-
culation of the final features.

Cortico-muscular connectivity

Coherence and phase synchronization are the
most common methods for estimation interdepend-
encies between two signals, which were used for
investigation the coupling between both EEG/EMG
and EEG/EEG during different tasks. In [21] partial
coherence was used instead of ordinary coherence
to solve reference problem, in [25] Regression-
CMC method was used for study EEG and EMG
relationship.

Long-range task-related coupling between pri-
mary motor cortex (PMC) and multiple brain re-
gions was found in the same frequency band [7].
The contralateral motor cortex drives muscle dis-
charge in the beta (15-30 Hz) and Piper (30-60 Hz)
bands. Coherence between cortex and muscle in
the beta band is found during weak or moderate
isometric contractions. CMC in the Piper band is
evident during strong isometric contractions or dur-
ing movements [3].

Cortico-muscular coherence is diminished dur-
ing a movement and appears predominantly during
periods of isometric contraction following the
movement. CMC was present in the beta band dur-
ing sustained contractions but vanished before
movement onset, being replaced by transient syn-
chronization in the alpha and gamma bands during
dynamic force output [16]. CMC features have task,
attention and age related modulations. The coher-
ence is smaller during a compliant condition.

In acute stroke CMC frequency decreases on
the affected side and CMC amplitude increases on
the unaffected side. In the chronic period there was
no inter-hemispheric difference in CMC parame-
ters. The changes in CMC parameters in acute
stroke could result from a decrease in inhibition
[25].
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EEGs over the contralateral sensorimotor cor-
tex is coherent with EMG (mean frequency: 19 Hz,
mean value: 0.12). The time lag from cortex to
muscle, computed by “constant phase shift plus
constant time lag model”, in 14-50 Hz was 14 ms
[17].

In [4] the delay between MEG and EMG signals
was estimated from mutual phase relationships by
using of synchronization index approach. Sources
were found in the primary motor cortex (M1) con-
tralateral to the contracted muscle. Significant co-
herence between EMG and M1 activity was seen in
the 20 Hz frequency range.

Frequency(Hz)

Time(s)

Figure 1. Time-frequency representation of CMC dur-
ing exerting isometric force against the load cell [16]

Cortico-muscular synchronization from MEG
and EMG in the beta band was found to be of par-
ticular importance in establishing bimanual move-
ment patterns in the context of polyrhythmic iso-
metric task [6].

In [18] the directed transfer function (DTF) was
proposed for investigation of coupling between
brain and muscles. DTF is useful in analyzing a re-
ciprocally-connected system. Directional infor-
mation flow from EEG to EMG reflects the motor
control command. The finding of the directional in-
formation flow from EEG to EMG within the gamma
band indicates that 40 Hz coherence is not specific
to the muscle Piper rhythm which is seen only with
strong contraction. Directional information flow
computed from EEG to EMG was significant in the
higher beta band (19-30 Hz).
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Figure 2. Rayleigh statistics of the phase-locking be-
tween M1 right and EMG left [6]

Movement-related brain activity

The largest, significant power decreases be-
tween pre and post unimanual conditions were
found in the M1s opposite to the moving finger in
all frequency bands. The largest, significant power
increases were found in the cerebellar hemi-
spheres [6]. The power spectrum of the activity in
M1 during motor control shows a significant in-
crease in the 3-5 Hz band compared with the rest
condition [7]. A decrease in relative spectral power
more prominent from 6 to 30 Hz, starting ~500 ms
before movement onset, and an increase in spec-
tral power in the range of 50-100 Hz, starting ap-
proximately 200 ms before movement onset [1].

In [7] using MEG and finger muscle recordings,
the central origin of the peripheral ~8 Hz oscilla-
tions was revealed by showing that they were gen-
erated by an oscillatory network formed by the con-
tralateral M1, the premotor cortex, the contralateral
thalamus, and the ipsilateral cerebellum.

The planning and execution of movement leads
to changes in the alpha and beta frequency bands,
known as event-related desynchronization [27].

The main pattern, which occur in association
with both real and imaginary voluntary movements
is movement related cortical potential - MRCP. Its
magnitude and latency are influenced by move-
ment-related parameters [5].

MRCPs can be divided into 2 main compo-
nents: a) the slow cortical potentials (SCPs) occur-
ring during intention or anticipation of an upcoming
movement and b) the motor potential (MP) occur-
ring during the execution itself. The SCP is also
known as the Bereitschaftspotential (BP) and has
two phases: early - slow increase in negativity, and
late - steeper slope [20]. The rebound after the
peak of maximum negativity in MRCP has been
associated with the precision of the movement [8].

Electro-cortical activity recorded during the
preparation of the bimanually incompatible actions
included a central positivity that began approxi-
mately 2.5 s before movement onset and was lo-
calized in medial frontal areas. Negative activity in
the supplementary motor area takes place 700 ms
before movement onset and a frontal lateral positiv-
ity emerged 1.8 s before the initiation of bimanual
drawing task that was localized in the dorsolateral
prefrontal cortex. All components are bilateral [13].

In [10] intracerebral electrodes during self-
paced clenching movements of the hand were ana-
lyzed and two groups of signals were found: with
EBS (Baseline shifts) and without. The onsets of
EBSs were from 1.6 to 3.2 sec. 82 % of the EBSs
started in various distant brain structures at the
same time. The simultaneous EBS onsets suggest

© Vavreshchuk A., 2016



BromeamuuHckne npmbopsbl U CUCTEMBI

65

significantly higher functional coupling of some
brain areas.

Connectivity between brain regions

Diverse neural networks with different
resonance-like frequencies exist in the brain. In
[21] premovement increase of coherence was
shown between the SMA proper and S1-M1 at the
frequency of 0-33 Hz and between the pre-SMA
and S1-M1 at 0-18 Hz. Coherence between the
SMA proper and M1 started to increase 0.9 sec
before the movement onset and peaked 0.3 sec
after the movement.

Coupling between the primary sensorimotor
cortices in the beta frequency band was reduced
with increasing movement speed. An increase of
coherence was observed in the active as compared
to the resting state.

In [11] directed coherence (from the dominant
to the nondominant hemisphere) between C3 and
C4 derivations was calculated. At rest, EEG-EEG
directed coherence in the alpha frequency (0.05—
0.23) was larger than in the beta frequency band
(0.04-0.11). Coherence in the alpha frequency
band decreased during bilateral compared with
unilateral task. Statistical effects of force and
condition (unilateral or bilateral) on normalized
directed coherence from the dominant to the
nondominant hemisphere were found in the alpha
band. EEG-EEG coherence from the nondominant
to the dominant hemisphere showed an effect of
force but not condition.

In [9] coherence changes were investigated in
individuals with  arm  dystonia. Ipsilesional
sensorimotor cortical activation in the 8-12 Hz
range is abnormally reduced in patients and
correlates with weakness of the more affected
wrist. Coherence at the rest was significantly lower
in patients than controls.

Movement classification and prediction

Wavelet coefficients, power spectral density
and average power, wavelet packet along with
Fourier transform, wavelet packet entropy of EEG
data can be used as features for classification [2].
In addition, statistical differences in ERD and
MRCP correlates between different types of
movements allow to use them for distinguishing be-
tween different motor tasks [12].

In [2] the EEG signals are decomposed into
several bands of real and imaginary coefficients
using dual-tree complex wavelet transform
(DTCWT). The energy of the coefficients from rele-
vant bands have been extracted as features.

In [8] a technique for discriminating between
different levels of force and speed has been pro-
posed by using the marginal distribution of opti-
mized wavelets. Six temporal features were used
from the initial negative phase of the MRCP until
the point of detection to predict which of the four
tasks the subjects intended to do.

In case of few electrodes are available, adap-
tive autoregressive filtering or finite impulse re-
sponse multilayer perceptrons can be used as
classifiers [23].

Among different types of classifiers developed
K-nearest neighbor classifier has been shown to
provide a good mean accuracy of ~91 % which is
better than several existing techniques for imagery
movements with using of energy of the DTCWT
coefficients as features [2].

In [8] the temporal features, extracted from the
movement intention, were classified with an opti-
mized support vector machine. The system detect-
ed 81% of the movements and correctly classified
75+9% and 80+10% of these at the point of detec-
tion when varying the force and speed, respective-
ly. The movements were detected 317 £73 ms be-
fore the movement onset.

In [5] the single-trial EEG traces were classified
with a pattern recognition approach based on
wavelet coefficients as features and support vector
machine as classifier. The movements of right foot
with two different contraction torques and two rates
of torque were classified with misclassification less
than 30 %.

Movement kinematics from brain activity

Brain activity has been shown to correlate
strongly with movement velocity independent of
movement direction and coordination. Yet how
neural oscillations might be related to limb speed
control is still poorly understood [7].

Activity before movement onset from PMC rec-
orded by ECoG from the region showing hand mo-
tor responses carries most directional information
[1].

In [27] was demonstrated by using a single lin-
ear equation, that the parameters of the clenching
speed as well as the hand are simultaneously em-
bedded in the multi-channel EEG modulations as-
sociated with movement.

In [22] trajectories of 2D hand position was
predicted from the ECoG data. The prediction per-
formance for the random signals with the same au-
to-correlation as the ECoG signals is ~0, so corre-
lations between real and predicted trajectories ob-
tained from the ECoG really stem from informa-
tional content in the ECoG rather than from general
signal properties. The ECoG signals are correlated
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to several movement parameters, including posi-
tion, velocity and acceleration.

Most of the hand velocity energy during move-
ments investigated in [7] was concentrated in the
low-frequency range (<5 Hz). Hand speed is co-
herent with the activity of the contralateral primary
motor and sensory areas in the 2-5 Hz range, with
maximum coherence located on the precentral gy-
rus. In [14] was found that also 24-28 Hz band may
carry the information of hand velocity.

In [1] the ECoG signals were decoded on a
single-trial basis by regularized linear discriminant
analysis. In [22] predictions were made using mu-
tually exclusive test by using of the Kalman filter
with average correlation coefficient ~0.4. In [14]
hand movement velocity was reconstructed during
a drawing task by Kalman filtering and a smoothing
algorithm with average Pearson correlation coeffi-
cients ~0.37 for the h-dimension and ~0.24 for the
v-dimension.

The extraction of kinetic information from the
movement intentions in EEG signals can be done
using the marginal distribution of the discrete wave-
let transform (DWT) and the temporal features from
EEG signals [24].

Conclusions

Investigations of movement-related electrical
brain activity provide insight about mechanisms
that take place in the cortex during preparation and
execution of different movements. Functioning of
neural networks formed due to movement condition
can be studied in case of interdependencies esti-
mations.

Various combinations of preprocessing meth-
ods can be used to increase the significant infor-
mation from brain activity pertaining to movement
features. The most complicated but promising
methods are techniques of signal decomposition on
different components such as ICA, ERD or wavelet
decomposition, which allow to allocate particular
components reflected just movement-related brain
activity.

The most important researches are focused on
classification of different movements and move-
ment prediction which can be used for brain-
computer interface and rehabilitation systems. Im-
provement of movement classification and predic-
tion is possible by extracting the features of cortex
activity that best describe the changes in the brain
in case of movement. As such features CMC esti-
mations obtained by using of EMG data can be
used.

References

1.

10.

11.

Ball, T., Schulze-Bonhage, A., Aertsen, A., &
Mehring, C. (2009). Differential representation
of arm movement direction in relation to cortical
anatomy and function. Journal of Neural Engi-
neering, 6.

Bashar, S. K., Hassan, A. R., & Bhuiyan, M. 1.
H. (2015). Identification of Motor Imagery
Movements from EEG Signals Using Dual Tree
Complex Wavelet Transform. Advances in
Computing, Communications and Informatics
(ICACCI), 2015: Precedings, pp. 290-296.
Brown, P. (2000). Cortical drives to human
muscle: the Piper and related rhythms. Pro-
gress in Neurobiology, vol.60, pp. 97-108.
Gross, J., Tass, P. A., Salenius, S., Hari, R.,
Freund, H.-J., & Schnitzler, A. (2000). Cortico-
muscular synchronization during isometric
muscle contraction in humans as revealed by
magnetoencephalography. Journal of Physiol-
ogy, 527.3, pp. 623—631.

Gu, Y., do Nascimento, O., Lucas, M.-F., & Fa-
rina, D. (2009). Identification of task parame-
ters from movement-related cortical potentials.
Med Biol Eng Comput, 47, pp. 1257-1264.
Houweling, S., van Dijk, B. W., Beek, P. J., &
Daffershofer, A. (2010). Cortico-spinal syn-
chronization reflects changes in performance
when learning a complex bimanual task. Neu-
rolmage, 49, pp. 3269-3275.

Jerbi, K., Lachaux, J.-P., N'Diaye, K., Pantazis,
D., Leahy, R. M., Garnero, L., & Baillet, S.
(2007). Coherent neural representation of hand
speed in humans revealed by MEG imaging.
PNAS, vol.104, no.18, pp.7676-7681.
Jochumsen, M., Niazi, |., Mrachacz-Kersting,
N., Farina, D., Dremstrup, K. (2013). Detection
and classification of movement-related cortical
potentials associated with task force and
speed. Journal of Neural Engineering, 10.
Kukke, S., de Campos, A., Damiano, D., Alter,
K., Patronas, N., Hallet, M. (2015). Cortical ac-
tivation and inter-hemispheric sensorimotor co-
herence in individuals with arm dystonia due to
childhood stroke. Clinical Neurophysiology,
126, pp. 1589-1598.

Kukleta, M., Bob, P., Turak, B., & Louvel, J.
(2015). Large-scale synchronization related to
structures manifesting simultaneous EEG
baseline shifts in the pre-movement period.
ANS: Journal for Neurocognitive Research, 67,
pp. 101-109.

Long, J., Tazoe, T., Soteropoulos, D., & Perez,
M. (2015). Interhemispheric connectivity during

© Vavreshchuk A., 2016



BromeamuuHckne npmbopsbl U CUCTEMBI

67

12.

13.

14,

15.

16.

17.

18.

19.

20.

bimanual isometric force generation. Journal of
Neurophysiology, 115, pp. 1196-1207.
Lopez-Larraz, E., Montesano, L., Gil-Agudo,
A., & Minguez, J. (2014). Continuous decoding
of movement intention of upper limb self-
initiated analytic movements from pre-
movement EEG correlates. Journal of neu-
roengineering and rehabilitation, 11:153.

Lucci, G., Berhicci, M., Spinelli, D., & Di Russo,
F. (2014). The motor preparation of directional-
ly incompatible movements. Neurolmage, 91,
pp. 33-42.

Lv, J., Li, Y., & Gu, Z. (2010). Decoding hand
movement velocity from electroencephalogram
signals during a drawing task. BioMedical En-
gineering OnLine, 9:64.

McClelland, V., Cvetkovic, Z., & Mills K. (2012).
Rectification of the EMG is an unnecessary
and inappropriate step in the calculation of Cor-
ticomuscular coherence. Journal of Neurosci-
ence Methods, 205, pp. 190-201.

Mehrkanoon, S., Breakspear, M., & Boonstra,
T. W. (2014). The reorganization of cortico-
muscular coherence during a transition be-
tween sensorimotor states. Neurolmage, 100,
pp. 692—-702.

Mima, T., & Halett, M. (1999). Electroencepha-
lographic analysis of cortico-muscular coher-
ence: reference effect, volume conduction and
generator mechanism. Clinical Neurophysiolo-
gy, 110, pp. 1892-1899.

Mima, T., Matsuoka, T., & Halett, M. (2001).
Information flow from the sensorimotor cortex
to muscle in humans. Clinical Neurophysiology,
112, pp. 122-126.

Myers, L. J., Lowery, M., O’Malley, M.,
Vaughan, C. L., Heneghan C., St Clair Gibson,
A., Sreenivasan, R. (2003). Rectification and
non-linear pre-processing of EMG signals for
cortico-muscular analysis. Journal of Neurosci-
ence Methods, 124, pp. 157-165.

Niemeier, M., Schierup, A., Van, D. T., &
Zhang, X. (2011). MRCP-based brain-
computer interface system for stroke rehabilita-
tion. Biomedical Engineering and Informatics.

21.

22.

23.

24,

25,

26.

27.

Ohara. S., Mima. T., Baba. K., Ikeda, A., Ku-
nieda, T., Shibasaki H. (2001). Increased syn-
chronization of cortical oscillatory activities be-
tween human supplementary motor and prima-
ry sensorimotor areas during voluntary move-
ments. The Journal of Neuroscience, 21(23),
pp. 9377-9386.

Pistohl, T., Ball, T., Schulze-Bonhage, A.,
Aertsen, A., & Mehring, C. (2008). Prediction of
arm movement trajectories from ECo0G-
recordings in humans. Journal of Neuroscience
Methods, 167, pp. 105-114.

Ramoser, H., Miiller-Gerking, J., & Pfurtschel-
ler, G. (2000). Optimal spatial filtering of single
trial EEG during imagined hand movement.
IEEE TRANSACTIONS ON REHABILITATION
ENGINEERING, VOL. 8, NO. 4, pp. 441-446.
Riaz, F., Hassan, A., Rehman, S., Niazi, 1., Jo-
chumsen, M., & Dremstrup, K. (2014). Pro-
cessing Movement Related Cortical Potentials
in EEG Signals for Identification of Slow and
Fast Movements. 36th Annual International
Conference of the IEEE Engineering in Medi-
cine and Biology Society: Precedings, pp.
4908-4911.

Von Carlowitz-Ghori, K., Bayraktaroglu, Z.,
Hohlefeld, F., Losch, F., Curio, G., & Nikulin, V.
(2014). Corticomuscular coherence in acute
and chronic stroke. Clinical Neurophysiology,
125, pp. 1182-1191.

Yu, X., Chum, P., & Sim, K.-B. (2013). Analysis
the effect of PCA for feature reduction in non-
stationary EEG based motor imagery of BCI
system. Optik, 125, pp. 1498-1502.

Yuan, H., Perdoni, C., & He, B. (2010). Rela-
tionship between speed and EEG activity dur-
ing imagined and executed hand movements.
Journal of Neural Engineering, 7.

lNocmynuna e pedakyuro 24 masi 2016 2.

© Vavreshchuk A., 2016



68 ISSN 1811-4512. ElectronComm 2016, Vol. 21, Ne3(92)

YOK 621.391

A.B. BaBpeLluyyk

kad. pmnsnyeckomn n GUOMeaNLMHCKON 3NEKTPOHMKM,

HaunoHanbHbIA TEXHUYECKUA YHUBEPCUTET YKpauHbl «KMEBCKUI NONTUTEXHUYECKUIA MHCTUTYTY,
kab. 441, yn. MNonuTtexHudeckasi, 16, Kues-56, 030566 YkpanHa.

MUccnepoBaHue 3neKTpMyYeCKOM akTUBHOCTU MO3ra, CBA3aHHOM C
ABUXEeHMAMU: 0630p

Paboma nocesiueHa paccCMOmMpPeHUro rnpobrieM, 803HUKAOWUX rpU U3yYeHUU OesimesibHOCmuU Mo32a,
cesi3aHHOU ¢ O8UXEHUSIMU. VI3MEeHeHUsT 8 KOpe 20/108H020 MO32a 80 8PEMS 8bIMOJSIHEHUST O8UXXEHUS, a
makxe eao npedcmasrneHusi, omobpakarom HelpPOHHbIE cemu, cchopMupoB8aHHbIe Oris N1aHUpo8aHus U
peanusayuu KOHKpPemHo20 08LXKEeHUS.

lNpusedeH 0630p memodos nepsuyHol 0bpabomku 3apeaucmpupo8aHHOU aKmueHOCMU 20/7108HO20
Mo3ea, Komopble Mo2ym 6bimb UCMO/b308aHb! 07151 MOBbILEHUS] 3HAaYUMOCMU 8bIOESIEHHbIX MPU3HAKO08.
OnucaHbl 3aKOHOMepPHOCMU, KOmopbkle umerom mecmo 00 Havana 08uxeHusi u nocrne Hezo. [Npedcmas-
nieHbl MemoO0bi, nodxodsuue Orns OUEHKU CB53U KakK MexOy akmueHOCMbIO MO32a U aKmueHOCMbIO
MbIWY, Mak u Mexdy akmugHocmbko obriacmeli 207108HO20 Mo32a. Kpome mozo, paccMompeHa 803MOX-
HOCMb Kraccughukayuu U rpoeHo3uposaHusi O8UXKEeHUU eMecme C PeKOHCMpyKuuel KuHemMamu4ecKux
ceoticms. bubn. 27, puc. 2.

KnroueBble cnoBa: 33/, OMI; mMo3208bie nomeHuyuaribl ces3aHHble ¢ 0suxeHusmu, MIC/L; decun-
XpOHU3ayus cesizaHHas ¢ cobbimuem; [JCC; kopmuko-MmbluiedyHast koeepeHmHocmbs;, KMK; npozHo3upoea-
Hue dsuXXeHusi; uHmepgelic Mo3e-komnsromep; VIMK.

YOK 621.391

A.B. BaBpeLuyk

kad. isanyHOT Ta BioMeanYHOT eNeKTPOHiKu,

HauioHanbHUin TexHiYHWMI yHiBepceuTeT YkpaiHn «KNiBCbKMIM MNOMITEXHIYHNI IHCTUTYTY,
kab. 441, Byn. MNonitexHiyHa, 16, Knie-56, 03056, YkpaiHa.

HocnigxeHHs1 eNneKTPUYHOI aKTUBHOCTI MO3KY, NOB'AA3aHOI 3 pyXxamMu:
ornspg

Poboma nipucesiyeHa po3ansady npobrem, Wo 8UHUKaomp rpu O0cnioxeHHi QisinnbHOCMi MO3KY, Mo 's-
3aHOI 3 pyxaMu. 3MiHU 8 KOpi 20/108HO20 MO3KY i0 Yac 8UKOHaHHS PyXy, a maKkoxX 1o20 ysierneHHs, 8i0o6-
paxarome HelpOHHI Mepexi, cchopmosaHi Onsi nnaHyeaHHs i peanizauii KOHKDemHo20 pyxy.

HaeedeHo oansad memodie nep8UHHOI 06pObKU 3apeecmpoaHol akmugHOCMi 20/108HO20 MO3KY, SIKI
MOXymb 6ymu eukopucmaHi 0551 nid8uwWeHHs1 3Ha4yumMocmi sudineHux o3Hak. OrnucaHO 3aKOHOMIPHOCMI,
AKi Maromb micye 0o nodamky pyxy i micris Hboeo. [NpedcmasneHi memodu, siki nNidxodssmpb Orid OUiHKU
38'dA3Ky K MiXK aKmue8HICMI0 MO3KY i akmugHicmio M'd3ig8, mak i MiXk akmueHicmro obsiacmeli 20/108H020
Mo3Ky. Kpim moezo, posansHyma Moxnusicme Kriacucgpikayii ma rposHOo3y8aHHsI pyxieé pa3oM 3 PEeKOH-
CMPYKUi€e0 KiHeMamuyHuUx enacmueocmed. bion. 27, puc. 2.

KnwouoBi cnoBa: EEI; EMI; mo3skosi nomeHujanu rnoe'sasaHi 3 pyxamu; MIITIP; decuHxpoHisauis no-
8'azaHa 3 nodieto; A, kopmuko-m'sizesa kocepeHmHicmb, KMK; npoeHo3ysaHHsI pyxy, iHmepgelc Mo-
30k-komn'tomep; IMK.
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