На рис.4. видно, что скорость газа по всем составляющим не меняется, т.е. газ в рабочей зоне движется с постоянной скоростью, и значит частицы не будут покидать газовый поток до того времени как они достигнут нижней части циклона и будут отсеяны.

Рис.4 – График скорости газа в рабочей камере циклона

Частицы в циклонном аппарате удаляются достаточно хорошо при росте газового потока, и размера частиц до 100 мкм. Хотя при некоторых скоростях наблюдается вынос частиц из запыленного потока и попадание их в чисты поток (обычно происходит если частица не последовала за потоком, т.е. не было времени релаксации частицы).

1. *Арсеньев, В.В.* Математическая модель процесса пылеулавливания в циклонном аппарате [Текст] / В.В. Арсеньев, С.А. Богатых. – Ленинград, 1983. – 15 с. – Библиогр.: с. 14-15.

МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ ДИНАМІКИ РІВНОВАЖНОГО ОБМІНУ РІЗНОЗАРЯДНИХ ІОНІВ

Концевой А.Л., Концевой С.А., Таргонська О.О. Національний технічний університет України «КПІ», kontsev@xtf.kpi.ua

Рівновага іонного обміну. Реакції обміну, наприклад, $2RNa + Ca^{2+} = R_2Ca + 2Na^+$ за участю двовалентних (двозарядних) іонів, наприклад, обмін іонів Mg^{2+} , $Ca^{2+} - (далі позначено як B)^-$ на H⁺ (знесолення води) або Na⁺ (пом'якшення води) – (позначено A) – це найпоширеніші випадки при обробці води, при цьому частина іонів \overline{A} в іоніті заміняється іонами \overline{B} :

$$2\overline{A} + B \stackrel{1}{\underset{2}{\leftrightarrow}} \overline{B} + 2A$$
.

В стані рівноваги швидкості прямої і оборотної реакцій рівні і згідно закону діючих мас:

$$k_1 \cdot Q_A^2 \cdot C_B = k_2 \cdot Q_B \cdot C_A^2 \tag{1}$$

де k_1 , k_2 – константи швидкості прямої і оборотної реакцій; $Q_A = \frac{q_A}{q_0}$, $Q_B = \frac{q_B}{q_0}$ — відносні концентрації іонів A та B, що обмінюються, у фазі іоніту; $C_A = \frac{c_A}{c_0}$, $C_B = \frac{c_B}{c_0}$ — відносні концентрації іонів A та B у фазі розчину, при цьому концентрації A і B у розчині $c_A + c_B = c_0$, а в іоніті $q_A + q_B = q_0$. Якщо взяти до уваги, що $Q_A + Q_B = 1$ та $C_A + C_B = 1$, то у стані рівноваги рівняння швидкості прямої і зворотної реакцій (1) можна записати у вигляді:

$$k_1 \cdot (1 - Q_B)^2 \cdot C_B = k_2 \cdot Q_B \cdot (1 - C_B)^2$$
⁽²⁾

Розв'язок рівняння (2) відносно Q_B (константа рівноваги обміну $k = k_1/k_2$) має вид:

$$Q_{B} = 1 + \frac{\left(1 - C_{B}\right)^{2}}{2kC_{B}} - \sqrt{\left(1 + \frac{\left(1 - C_{B}\right)^{2}}{2kC_{B}}\right)^{2} - 1}.$$
(3)

Виходячи із рівності:

$$k_1 \cdot Q_A^2 \cdot (1 - C_A) = k_2 \cdot (1 - Q_A) \cdot C_A^2.$$
(4)

Отримано аналогічне рівняння для компонента А:

$$Q_{A} = \frac{-C_{A}^{2} + C_{A}\sqrt{C_{A}^{2} + 4k \cdot (1 - C_{A})}}{2k \cdot (1 - C_{A})} .$$
(5)

Таким чином, рівняння (3) і (5) є, відповідно, рівняннями випуклої (двовалентні іони) та увігнутої (одновалентні іони) ізотерми обміну різновалентних (різнозарядних) іонів, при цьому в обох рівняннях використано одне значення константи $k = k_1/k_2$. Відмітимо, що рівняння подібне рівнянню (5), отримано авторами [1] для процесу регенерації фільтру. Отримане нами рівняння (3) встановлює зв'язок безрозмірної концентрації двозарядного іону в іоніті від його безрозмірної концентрації у воді, що важливо саме для практичних цілей і умов. Нижче за текстом рівняння (3) використано вперше для аналізу динаміки іонного обміну.

Можливий варіант застосування рівняння увігнутої ізотерми на підставі рівняння (4) і нової константи рівноваги обміну $k^* = k_2/k_1$:

$$Q_{A} = \frac{-k^{*}C_{A}^{2}}{2(1-C_{A})} + \sqrt{\left(\frac{k^{*}C_{A}^{2}}{2(1-C_{A})}\right)^{2} + \frac{k^{*}C_{A}^{2}}{1-C_{A}}}.$$
(6)

Це відповідає звичному підходу – k > 1 для опуклої ізотерми згідно рівняння (3), $k^* < 1$ для увігнутої ізотерми згідно рівняння (6), тобто $k^* = 1/k$.

За даними ізотерм обміну Cu²⁺/Na⁺ на катіоніті Дауекс-50X8 (рис. 40 монографії [2]) складено наступну таблицю і розраховано значення константи k згідно рівняння (3). Розрахунок k проведено в середовищі Ехсеl за допомогою надбудови «Пошук рішення», критерій пошуку – мінімальне значення суми квадратів відхилення експериментальних і розрахункових значень Q_B .

Результати розрахунку k наведено в таблиці, в якій також надано середнє відхилення, %, експериментальних і розрахункових значень Q_{Cu2+} . Точність опису в даному випадку визначається точністю переводу графічних даних [2] у табличні. Залежність константи обміну від нормальності розчину Н з високою точністю апроксимується рівнянням:

$$\ln k = 0.9436 - 1.1783 \cdot \ln H.$$

Запропонований метод розрахунку є універсальним і може бути використаний і для обміну однозарядних іонів.

0,01H		<i>0,1H</i>		0,5H		1H	
C _{Cu2+}	Q _{Cu2+}						
0	0	0	0	0	0	0	0
0,002	0,007	0,007	0,2	0,05	0,21	0,05	0,11
0,03	0,017	0,017	0,3	0,1	0,33	0,1	0,2
0,14	0,04	0,04	0,5	0,2	0,48	0,2	0,35
0,23	0,07	0,07	0,59	0,3	0,59	0,3	0,46
0,4	0,14	0,14	0,69	0,4	0,67	0,4	0,56
0,5	0,23	0,23	0,77	0,5	0,74	0,5	0,64
0,6	0,5	0,5	0,89	0,6	0,8	0,6	0,72
0,7	0,7	0,7	0,94	0,7	0,85	0,7	0,8
0,84	0,84	0,84	0,965	0,8	0,9	0,8	0,87
1	1	1	1	0,9	0,95	0,9	0,94
k=572,4		k=40,6		k=5,68		k=2,56	
%сервілх=1.17		%сервідх=2.38		%сервідх=1.17		%сервідх=0.69	

Таблиця 1 – Залежність Q_{Cu2+} від C_{Cu2+} при різних концентраціях (нормальність H) розчину CuCl₂ + NaCl

Динаміка іонного обміну. Динаміка обміну рівнозарядних іонів описана за допомогою моделі динаміки рівноважної ізотермічної адсорбції, що реалізована в середовищі MathCad [3]. Математичною моделлю роботи фільтра, що працює у рівноважних умовах, є система рівнянь, що складається з рівняння матеріального балансу і статики обміну. У випадку обміну різнозарядних іонів рівнянням статики є рівняння (3), а рівняння матеріального балансу в безрозмірній формі має вид [3]:

$$\frac{\partial C(Z,t)}{\partial t} + V_{wave}(C)\frac{\partial C(Z,t)}{\partial Z} = 0.$$
(7)

Розрахунок хвильової швидкості V_{wave} здійснюється за наступним рівнянням, в якому враховано першу похідну від рівняння (3):

$$Vwave(Z,k) := \frac{rat}{\frac{-(1-C(Z))}{k \cdot C(Z)} - \frac{1}{2} \cdot \frac{(1-C(Z))^2}{k \cdot C(Z)^2} - \frac{1}{\left[\left[1 + \frac{1}{2} \cdot \frac{(1-C(Z))^2}{k \cdot C(Z)}\right]^2 - 1\right]^{\frac{1}{2}}} \cdot \left[1 + \frac{1}{2} \cdot \frac{(1-C(Z))^2}{k \cdot C(Z)}\right] \cdot \left[\frac{-(1-C(Z))}{k \cdot C(Z)} - \frac{1}{2} \cdot \frac{(1-C(Z))^2}{k \cdot C(Z)^2}\right] + p \cdot rat}.$$
(8)

У рівняннях (7) і (8); p – об'ємна частка води (порозність іоніту); Z - незалежна змінна – координата в безрозмірній і відносній формі Z=z/L; незалежна змінна – час в безрозмірній формі $t = \tau w/L$; z – направлення осі фільтру; L – висота завантаження іоніту; w –швидкість руху розчину у вільному перетині фільтру; τ - час роботи фільтра у міжрегенераційний період; rat – безрозмірне розподільче співвідношення: $rat = \frac{c_0}{c_0}$.

Рівняння (7), до якого зводиться математична модель іонітного фільтра, являє собою квазілінійне однорідне рівняння в частинних похідних гіперболічного типу. Його рішення за допомогою метода характеристик в середовищі MathCad [3] використано нами з врахуванням особливості обміну різнозарядних іонів, тобто з урахуванням рівнянь (3) і (8), з наступними вихідними даними: порозність іоніту: p:=0.6; концентрація іону $B(Ca^{2+})$ у воді, г-екв/м³, с₀:=6; повна обмінна ємність катіоніту, г-екв/м³, q₀:=2000; константа рівноваги для опуклої ізотерми k:=40,6; лінійна швидкість води w:=10 м/год; висота шару іоніту L:=2,5 м; час роботи фільтра у міжрегенераційний період τ : =20 год.; rat:=6/2000 = 0,003.

Граничні значення координат точок Z: Zmin:=0; Zmax:=1. Згідно вихідних даних час в безрозмірній формі tmin:=0; tmax:=20·10/2.5=80. Початкове розподілення концентрації

вздовж фільтра C(Z) задається як:

$$C(Z) \coloneqq 0.99 \cdot e^{-(3 \cdot Z)^2}.$$

З урахуванням останнього виразу побудовано (рис. 1) дво- і тривимірні залежності концентрації двозарядного іону вздовж осі фільтру. Цифри 0, 40, 80 відповідають моментам безрозмірного часу *t*.

Рис. 1 – Двовимірна та тривимірна залежності концентрації двозарядного іону вздовж осі фільтру C_{i,0}, C_{i,40}, C_{i,80} від Z2_{i,0}, Z2_{i,40}, Z2_{i,80}

Аналіз ходу кривих показує більш крутий характер обривного фронту (більше затиснення фронту обміну) для різнозарядних іонів в порівнянні з однозарядними [3]. Зі збільшенням константи обміну k (за даними таблиці) спостерігається ще більше затиснення фронту обміну для різнозарядних іонів. При k=1 початковий розподіл зберігає свою конфігурацію в часі як для однозарядних, так і для різнозарядних іонів. Більш того, криві для всіх моментів часу в обох випадках співпадають. Розрахунки згідно вказаних вище вихідних даних і запропонованої математичної моделі свідчать про цілковиту можливість якісного очищення від двозарядних іонів в границях координати Zmax=1 (висота завантаження іоніту L=2,5 м).

- 1. *Громогласов, А.А.* Водоподготовка: процессы и аппараты. [Текст] / А.А. Громогласов, А.С. Копылов, А.П. Пильщиков Энергоатомиздат, 1990. 272 с.
- 2. Гельферих Ф. Иониты. Основы ионного обмена. [Текст] / М.: Изд-во иностранной литературы, 1962. 491 с.
- 3. *Очков, В.Ф.* Анализ изотерм ионного обмена в среде Mathcad. / В.Ф. Очков, А.П. Пильщиков, А.П. Солодов, Ю.В. Чудова // Теплоэнергетика, №7, 2003, с. 13 18.

МОДЕЛЮВАННЯ ПРОЦЕСУ ЗОВНІШНІШНЬОГО ТЕПЛООБМІНУ ПІДЧАС ФІЛЬТРАЦІЙНОГО СУШІННЯ

Барна І.Р., Атаманюк В.М.

Національний університет «Львівська політехніка», barnairuna@ukr.net

Серед промислових відходів одне з перших місць за обсягами займають золи та шлаки від спалювання твердих видів палива (вугілля різних видів, горючі сланці, торф) на теплових електричних станціях. Величезні кількості золи та шлаку нагромаджуються у відвалах, що займають цінні земельні угіддя. У той же час золи і шлаки теплових електричних станцій можна ефективно використовувати у виробництві теплоізоляційних будівельних матеріалів як вторинна сировина, що підтверджується науковими дослідженнями і практичним досвідом. В даний час одним з перспективних напрямків утилізації золошлакових відходів є виробництво з