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Series

INTRODUCTION

The Series section is included in the course of Higher Mathematics for engineering students
of Igor Sikorsky KPI. An important factor in the successful assimilation of the educational material

by the students is solving practical tasks on their own.

The practice book offers a systematized set of exercises that students of technical
specialties should be able to solve when studying Series. The book contains 30 different variants

and each variant consists of 12 exercises (21 tasks).

This practice book helps students to develop practical skills in solving basic exercises: to
determine convergence or divergence of positive series, to establish whether alternating series
converge absolutely or conditionally, to identify the interval and radius of convergence of power

series, to find the Fourier sine and cosine series for given functions.
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GENERAL RECOMMENDATIONS

The practice book is designed to control and improve the knowledge of university students
in the study of Series in the course of Higher Mathematics. The main goal is to develop and

consolidate the skills of independent work of students in the study of educational material.

In order to successfully complete the exercises, students need to thoroughly study the
lecture material and analyze the examples solved in practical classes. Only after that students can

start solving their individual tasks.

Students have to adhere to the following requirements:
1. The number of the variant of the individual exercises corresponds to the ordinal number of
the student in the list of the study group;
2. Individual work is written in a separate notebook, which should contain:
o the title page;
o the results table;
o solved exercises (the solution of each exercise starts from a new page).
3. Before solving each exercise, the condition and all specific data for the corresponding
variant are completely rewritten.
4. The solution of each task must contain detailed explanations and necessary formulas.
5. Completed work must be handed over to the teacher for verification within the prescribed

time limit.

Students who do not submit their completed individual work on time will not be allowed to

take the exam.
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Variant Ne1

Exercise 1. Find the partial sum S and calculate the sum S of the series: Z 3 .
n=11 n 1777/ + 70

Exercise 2. Use the comparison tests to determine whether each series converges or diverges:

~ 1

2> arctg'n__, 0) Y (n+ 1) (e ~1).

nlnn+1 n+2> n=1
Exercise 3. Determine the convergence or divergence (use the ratio test, root test or integral test):

n'n+3 o 3n2+6n & 2n
a) b) — c) .
Z (2n +1)! ; 2n° +4 %;(n2 +4)In(n® + 4)

Exermse 4. Determine whether each series converges absolutely, conditionally, or diverges:

3n +2 n=3

2 1 1 N 1
_1 n+l . = - . b n 1—. _1n—
K ;( )" sin n te n?’ ) Z 3 7 K Z( ) n«/ln(n -1)

o0 1 n
Exercise 5. Calculate approximately the sum of the series Zﬁ to within « = 0,001.
04" (3n +

Exercise 6. Find the domain of convergence of each series:
_ 1)n © (x _ 1)2n © )2
a) Z ;b)Y c) (-1 o) (z—3)".

( +1) 1 In"(n +1) =)
Exercise 7. Prove the uniform convergence of the series z )" ! ( )

= (n* +1\n

on the closed

interval [—5;—3].

Exercise 8. Find the sum of each power series on its interval of convergence:

00 2n+1
x
a) _1 n—1 : b) n+1 xn—t—l.
;( ) 2n +1 Z +2)
Exercise 9. Find the Taylor series of the function f(z)=In at z=-—2 and

* + 4z +13
determine its radius of convergence.
0,5

Exercise 10. Calculate the integral I zln(l+ 2°)dr to within a = 0,001.

0
Exercise 11. Find the first four nonzero terms of the power series for the solution of the Cauchy

problem: " +ycosz =sinz, y(z)=1 3(x)=0.

-1 -1<z<0,
Exercise 12. a) Find the Fourier series for the function f(z) = on the
x—1 O<z<l

interval (—1,1); determine the sum of the series at the discontinuity points of the function and at
the ends of the interval; graph the function and the sum of the corresponding series.

b) Find the Fourier sine and cosine series for the function y =z ) on the interval (0,7);

graph the function and the sum of each series.
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Variant Ne2
2
Exercise 1. Find the partial sum S and calculate the sum S of the series: Z—
—on +4n+3
Exercise 2. Use the comparison tests to determine whether each series converges or diverges:
—sinn) = 1 (n + 3)*
a) ; b) tg :
Z ; (n+1) n’
Exermse 3. Determlne the convergence or divergence (use the ratio test, root test or integral test):
> 5! > (n+6) = 3
) DS b) 2.2 )3
=2 (n+1)! = 4n—2 "= (30— 2)In*(3n —2)

Exercise 4. Determine whether each series converges absolutely, conditionally, or diverges:

a) > (-D'n [1 — COS %j, b) i G g; c) 2

(-1)"* arcsin

NgE

— n! " n+3

Il
o

n+l
Exercise 5. Calculate approximately the sum of the series Z% to within « = 0,00001.
n=0 n+ "

Exercise 6. Find the domain of convergence of each series:

o0 1n
a)z “#Jre)); b)2(1"+1n+1) "2, C)Zl(:fiz)

Exercise 7. Prove the uniform convergence of the series z:(—l)”+1 (z _24)

on the

closed interval [3;5].

Exercise 8. Find the sum of each power series on its interval of convergence:
2n 3

a)z "(n+ 1z b)zzn_

n=1

Exercise 9. Find the Taylor series of the function f(z) = (zctgz—1) sinz at z=0 and

determine its radius of convergence.
1

Exercise 10. Calculate the integral jcos z’dz  to within o = 0,001.
0
Exercise 11. Find the first four nonzero terms of the power series for the solution of the Cauchy

problem: ¢ =azyy/, 3(0)=1 (0)=1.

r+2, -2<z<0,

Exercise 12. a) Find the Fourier series for the function f(x) = 9 O<z<? on the
x
Y

interval (—2,2); determine the sum of the series at the discontinuity points of the function and at
the ends of the interval; graph the function and the sum of the corresponding series.

b) Find the Fourier sine and cosine series for the function y =2z —7 on the interval (0,7 );
graph the function and the sum of each series.
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Variant Ne3

Exercise 1. Find the partial sum S and calculate the sum S of the series: Z 0 .
n=10 ’n/ —15n -+ 54

Exercise 2. Use the comparison tests to determine whether each series converges or diverges:

> \nlnn ~~\Nn—1 . =
SpRL ) Y sin T
n=1 'fL + 1 n=1 n + 1 n
Exercise 3. Determine the convergence or divergence (use the ratio test, root test or integral test):

2n
2 n" . ~|4n+1| -~ 1
) ;2"(n+2)!’ g Z[Bn—Q] ’ Sy

n=1 n=1 1 (ln (37?,) —+ ]_)
Exercise 4. Determine whether each series converges absolutely, conditionally, or diverges:

a) Z(_1)”‘1 %; b) i(—l)"nln(l%— ij, c) y (-1 +l£§z+i] .

n=1 n n=0
( )n+l
Exercise 5. Calculate approximately the sum of the series ZW to within a = 0,001.
n —
Exercise 6. Find the domain of convergence of each series:

© Qn, | .30 0 n’
a)z 1y H); Dt c)Z(—l)”("—”j (z—4)".
n=1
37

~ (3n)! n
Exercise 7. Prove the uniform convergence of the series Z cos’ nz on the closed
n' +2
interval [0;7].

Exercise 8. Find the sum of each power series on its interval of convergence:
QrL 1

)ZQn—l b);(—l) dn ™" .

Exercise 9. Find the Taylor series of the function f(z) = (z + 2) e* " at £ =2 and determine

its radius of convergence.

05
dz

Exercise 10. Calculate the integral J \/7 dx towithin « = 0,001.

Exercise 11. Find the first four nonzero terms of the power series for the solution of the Cauchy

problem: " +y=e"+xzy’, y(0)=1 ¢ (0)=

3, 3<z<0,
Exercise 12. a) Find the Fourier series for the function f(x) = 3_ 0<z<3 on the
x, x

interval (—3,3); determine the sum of the series at the discontinuity points of the function and at
the ends of the interval; graph the function and the sum of the corresponding series.

: T .
b) Find the Fourier sine and cosine series for the function y =x 7 on the interval (0,7 );

graph the function and the sum of each series.
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Variant Ne4

4
Exercise 1. Find the partial sum S and calculate the sum S of the series: Z—
n=0 N ‘+‘67l‘+ 8
Exercise 2. Use the comparison tests to determine whether each series converges or diverges:

n+1(3 + cosn) - n’ +3
; b) Y nln

n=2 n—1 n=1 TLQ + 2
Exercise 3. Determine the convergence or divergence (use the ratio test, root test or integral test):

a)in"(n—i—l)!; b)f)ﬁ[ omn ]; C)i 9

= 4"(n—1)! = (3n+2 "= (2n+3)\In(2n + 3)
Exercise 4. Determine whether each series converges absolutely, conditionally, or diverges:

2n
< . 1 1 \/ 3 2 - 4 5n -1
a -1)" —arctg —; b 1)+ c -1)
);( ) —arctg )Z( . );( ) [4n+7]
Exercise 5. Calculate approximately the sum of the series Zﬁ to within « = 0,01.
n=0 +on

Exercise 6. Find the domain of convergence of each series:

RS . C@e2) 1
a) ; b) "(n+2)1x""; c) sin —;
n—1
Exercise 7. Prove the uniform convergence of the series z:(—l)”‘1 —(42 1)2 221 on the
n=1 n —
closed interval [—f T]

Exercise 8. Find the sum of each power series on its interval of convergence:
2n+2

a) Z(—l)"n " b) Z2n ey

Exercise 9. Find the Taylor series of the function f(z)=1n(8+4xz) at z =1 and determine

its radius of convergence.

0,5
¢ sinz
Exercise 10. Calculate the integral J. dr to within a = 0,001.

T
0

Exercise 11. Find the first four nonzero terms of the power series for the solution of the Cauchy

problem: o =4° +2° yl) =1

—r—4, -4<z<0,
Exercise 12. a) Find the Fourier series for the function f(z) = on the
-4, 0O<z<4

interval (—4,4); determine the sum of the series at the discontinuity points of the function and at
the ends of the interval; graph the function and the sum of the corresponding series.

b) Find the Fourier sine and cosine series for the function y =x — 7 on the interval (0,7 )
graph the function and the sum of each series.
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Variant Ne5

Exercise 1. Find the partial sum S and calculate the sum S of the series: Z )
“~n®—13n + 40

Exercise 2. Use the comparison tests to determine whether each series converges or diverges:
; b) Z n" |1 — cos ———|.
; n(n + 1 (m —arctgn)’ 1 Jn® +3

Exercise 3. Determine the convergence or divergence (use the ratio test, root test or integral test):
- 1

2n?
b) — :
a) Z 2"( nz:; 3 1 n%/ln(Qn) +1

Exercise 4. Determine whether each series converges absolutely, conditionally, or diverges:

; ; c)
—1

n+1 Sln n s el 1 o (_1)71,
a — b “D)" o tg ———; )y —~
),LZ(:) 3n?+2 );( ) g5n—1 );nln(n+4)
Exercise 5. Calculate approximately the sum of the seriesZ(—l)"”ﬁ to within & = 0,001.
n=1 n+

Exercise 6. Find the domain of convergence of each series:

00 n _ . n n_mn 0 n -1
a) 22 snm :2:; b) Z 1y 5% Z (x =1)"
n=1

35,2 ~ e ( n+3 In(n +3)

. . : ~ (z+1)"
Exercise 7. Prove the uniform convergence of the series Z (z+1)

n=1 ('I’L3 -+ 4)%/;

cos® nx on the closed

interval [—2;0].

Exercise 8. Find the sum of each power series on its interval of convergence:
n+1

a) f:(_ n+1 L b) Z "(2n —3 .

n=1 + 1

. T o
Exercise 9. Find the Taylor series of the function f(x) = sz at =2 and determine its

radius of convergence.

—X

Exercise 10. Calculate the integral f dx to within o = 0,001.

X

Exercise 11. Find the first four nonzero terms of the power series for the solution of the Cauchy
problem: ¢" =yy' —2°, y(0)=1 %(0)=0
-5 -5<x<0,
Exercise 12. a) Find the Fourier series for the function f(x) = on the
r—5 0<zx<5

interval (—5,5); determine the sum of the series at the discontinuity points of the function and at
the ends of the interval; graph the function and the sum of the corresponding series.

r :
b) Find the Fourier sine and cosine series for the function y = 275 on the interval (0,7 );

graph the function and the sum of each series.
10
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Variant Ne6

Exercise 1. Find the partial sum S and calculate the sum S of the series: Z 0
—~n’+8n+ 15

Exercise 2. Use the comparison tests to determine whether each series converges or diverges:

a)z nt : b)z \fng—i—l—\/nz—l.
n=1 nNn(3 —sinn) n—1
Exercise 3. Determine the convergence or divergence (use the ratio test, root test or integral test):
00 2 00
n n
n=2 € —1 n=>2 ln n n=1 (n2—1—5)ln\/n2—|—5
Exercise 4. Determine whether each series converges absolutely, conditionally, or diverges:

% 3 " o o
a) Z (_1)77,71 ( 7/”/3 - 1} : b) Z( 1)n+1n2 arCtg zi C) Z (_1)77 2727/ + 1
n=0

n=1 5n + 2 n=1 n +4
(1) "
Exercise 5. Calculate approximately the sum of the series Z— to within o = 0,01.
“~n!Bn-2
Exercise 6. Find the domain of convergence of each series:

4n?
a) Z[1+ ] en(x2_5x)+x’\ﬁ; b) Z(_l)n+1 n(x + 4) Z n +1 _ 2)"

n=1 n=1 n=1

. . . - " w . T
Exercise 7. Prove the uniform convergence of the series Z(—l) (x —2) sm5—n on the closed
n=0
interval [1;3].

Exercise 8. Find the sum of each power series on its interval of convergence:

a) f:(—l)"(n — 12" b) z ! z

n=2

1
2x + 6

Exercise 9. Find the Taylor series of the function f(z) = at £ =4 and determine its

radius of convergence.

_ , 00 arctgzx
Exercise 10. Calculate the integral j

x
0

Exercise 11. Find the first four nonzero terms of the power series for the solution of the Cauchy

problem: ¢ =cosy+2z, y(0)=0.

dx towithin « = 0,001.

r+6, -6<z<0,

Exercise 12. a) Find the Fourier series for the function f(z) = 6 0<z<6 on the
x
Y

interval (—6,6); determine the sum of the series at the discontinuity points of the function and at
the ends of the interval; graph the function and the sum of the corresponding series.

b) Find the Fourier sine and cosine series for the function y =z — 27 on the interval (0,7 );
graph the function and the sum of each series.

11
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Variant Ne7

Exercise 1. Find the partial sum S and calculate the sum S of the series: Z 12
~n’—1ln+ 28’

Exercise 2. Use the comparison tests to determine whether each series converges or diverges:
Jn — = 1 ) n
a) b) ) —arcsin ———.
Zn +4lnn ;n? Jn® +5

Exercise 3. Determine the convergence or divergence (use the ratio test, root test or integral test):

n-l—l n—|—3) ‘| 5n° —4

Exercise 4. Determine whether each series converges absolutely, conditionally, or diverges:

. C = 1
’ : Z n(In(5n) +7)

n=1

0

a) Y (-1"n (1_(;08%} b) :g(_l)n Jn_—l Z s nv>)

) 3 +2n+1

: : R on +8 -
Exercise 5. Calculate approximately the sum of the series Z(—l)" n — towithin « =0,01.
n=1

Exercise 6. Find the domain of convergence of each series:

a) Z —3) ; b) Z )" :1:—2; c) i(x -3)" arcth%.

n=1 ) (Tl +1) n=1

Exercise 7. Prove the uniform convergence of the series z:(—l)”+1 —4%_'_ 3) 5
n=1 n —

on the closed

interval [—4;—2].

Exercise 8. Find the sum of each power series on its interval of convergence:

n 1 00
a) Z b) 2571 "
n=1

Exercise 9. Find the Taylor series of the function f(z)=In(z* + 6z +12) at z=—3 and
determine its radius of convergence.

(]"1 In(1+ x)

Exercise 10. Calculate the integral dx to within o = 0,001.

0 X

Exercise 11. Find the first four nonzero terms of the power series for the solution of the Cauchy

problem: ¢ =zy+e’, y(0)=1

7, -1<x<0,
Exercise 12. a) Find the Fourier series for the function f(x) = - 0<rpc7 ON the
, T

interval (—7,7); determine the sum of the series at the discontinuity points of the function and at
the ends of the interval; graph the function and the sum of the corresponding series.

b) Find the Fourier sine and cosine series for the function y = E — 27 on the interval (0,7);

graph the function and the sum of each series.

12



Series

Variant Ne8

Exercise 1. Find the partial sum S and calculate the sum S of the series: Z 8
~n®+10n + 24

Exercise 2. Use the comparison tests to determine whether each series converges or diverges:

o0

Jn 1
b t .
a)Z\/ 2 —cosn) );nQ"‘lamg\/n—Fl

Exercise 3. Determine the convergence or divergence (use the ratio test, root test or integral test):

3"7'(2n)! ~ 1 (5p+2) & 2Inn
a) Z n - 0) D ; Y
2 2 —I‘ ]_ n=2 4 n— ]- n=1 n(ll’l n + 9)
Exermse 4. Determine whether each series converges absolutely, conditionally, or diverges:
2 - X - —
a) z n+l n + b) Z( n an Sln L7 C) Z(_l)n \/n + 3 \/n 3

n + 1 n=1 n4 + 2 n=3 ’\/;
to within o = 0,001.

Exercise 5. Calculate approximately the sum of the seriesZ( )
n=1 n +1

Exercise 6. Find the domain of convergence of each series:

a) i(—l}“ In'w=e) i(—l)"(n +5)(z -2 o iLL] (z+3)".

n—e n=2 n=1

- . . L (z 1 2n
Exercise 7. Prove the uniform convergence of the series Z(—l) & on the closed

n=1 9n n -+ 3
interval [—3;1].

Exercise 8. Find the sum of each power series on its interval of convergence:

00 - 00 . x2n—3
a) Z(Qn — 3)1}2 4; b) Z(—l) H m
n=2 n=2

Exercise 9. Find the Taylor series of the function f(z)=(x—tgx) cosz at z=0 and

determine its radius of convergence.
05
Exercise 10. Calculate the integral '[ sin(4r%)dr to within o = 0,001.
0
Exercise 11. Find the first four nonzero terms of the power series for the solution of the Cauchy

problem: y" =azy+(v)’, v@ =1 (@)=

-8, -8<x<0,
Exercise 12. a) Find the Fourier series for the function f(x) = on the
r—8 0O0<x<8

interval (—8,8); determine the sum of the series at the discontinuity points of the function and at
the ends of the interval; graph the function and the sum of the corresponding series.

1
b) Find the Fourier sine and cosine series for the function y = Z(x — ) on the interval (0,7);

graph the function and the sum of each series.

13
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Variant Ne9

Exercise 1. Find the partial sum S and calculate the sum S of the series: Z 15
—~n?—9n+ 18

Exercise 2. Use the comparison tests to determine whether each series converges or diverges:

\/_Wikarctgn) — 1 2
a) : b) 3 —1).
nZ; \/n —1 nz::m/n—l-l< )

Exercise 3. Determine the convergence or divergence (use the ratio test, root test or integral test):

= (2n)" > 3n+2 ?m. >~
a) y ———; b);[%g] : o)y

= 3" (n+4)! =1 n(In( 6n) +3)?

Exercise 4. Determine whether each series converges absolutely, conditionally, or diverges:

a) i(—l)"+1 arcsin —— ) i(—l)” i(1+ 1] ; ¢) Y (-1)"*n’In (14- izj
n

Ms

n=0 \/?m_’ n=1 4" n n=1
Exercise 5. Calculate approximately the sum of the series i(—l)” #4'7“ to within o = 0,001.
Exercise 6. Find the domain of convergence of each seriesr:L:1
a) i(_ 1)1 w, b) Z z™ : o) c (z—-5)" _
=1 gnlte=a) (2n -1)(2n -1)! n=1 (n + 1)\/ln(n +1)
(2"

Exercise 7. Prove the uniform convergence of the series Z(—l) on the closed

n=1 nn
interval [—3;—1].

Exercise 8. Find the sum of each power series on its interval of convergence:
2n+3

a) Z 2 m 3 b) i(n +2)2"

n=1 n=1

Exercise 9. Find the Taylor series of the function f(z) = ze **° at 2 =1 and determine its

radius of convergence.

Exercise 10. Calculate the integral to within o = 0,001.

1

J' dx
oNz®+8
Exercise 11. Find the first four nonzero terms of the power series for the solution of the Cauchy
problem: 3 =y*+xz, y(0) =1

r+1 -l<z<0,

Exercise 12. a) Find the Fourier series for the function f(z)= 1 0 1 on the
<z<

interval (—1,1); determine the sum of the series at the discontinuity points of the function and at
the ends of the interval; graph the function and the sum of the corresponding series.

b) Find the Fourier sine and cosine series for the function y = ' 7z on the interval (0,7 );

graph the function and the sum of each series.

14
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Variant Ne10

Exercise 1. Find the partial sum S and calculate the sum S of the series: Z 2
—n?4+12n + 35

Exercise 2. Use the comparison tests to determine whether each series converges or diverges:

a) i 3sin2 n : b) i\/g(enu-l_
=1 \n® +3n+1 n=1

Exercise 3. Determine the convergence or divergence (use the ratio test, root test or integral test):

n

2n 7’1, -+ 2 > 4n 0 2n
oy 2t b) Y n' ) T o
n=1 n n' n=1 2n + 3 n=2 (n — 2) In (n — 2)
Exercise 4. Determine whether each series converges absolutely, conditionally, or diverges:

nl

[ee}

0 1 n23n
) b) Y (<1)"n*|l-cos—=—| c¢) » (-] ——.
) ;n«ﬂn n+7 ;( ' ( COS\/nTJ ’ n=0( ) 4"

Exercise 5. Calculate approximately the sum of the series Z(;—)' to within o = 0,001.
n!

Exercise 6. Find the domain of convergence of each series:

[e9) On 3 © © 1
a) ; b) » (=)' *(n+3)(z—-3)*"; c) Y (x+4)" arcsin :
Z ;( S A ) nz—; Jn+1

(2> — 42 —2)"

a3 !
Exercise 7. Prove the uniform convergence of the series 5 (=1 —(z +3)" on the closed
n=1 n

interval [—5;—1].

Exercise 8. Find the sum of each power series on its interval of convergence:

00 n+1
a) _1 "67?/ xGn—l; b)
;( ) ; n+1

Exercise 9. Find the Taylor series of the function f(z) =1n(20 —5x) at x =2 and determine

its radius of convergence.
®1-cosz
Exercise 10. Calculate the integral I ———dz towithin « = 0,001.
z?
0
Exercise 11. Find the first four nonzero terms of the power series for the solution of the Cauchy
problem: y" =z +ycosz, y(0)=1 ¢(0)=0.

2, —2<x<0,
Exercise 12. a) Find the Fourier series for the function f(z) = 5 O<upcp OF the
T, T

interval (—2,2); determine the sum of the series at the discontinuity points of the function and at
the ends of the interval; graph the function and the sum of the corresponding series.

b) Find the Fourier sine and cosine series for the function y = E —z on the interval (0,7 ),

graph the function and the sum of each series.
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Series

Variant Ne11

Exercise 1. Find the partial sum S and calculate the sum S of the series: Z 18
‘~n’—Tn+ 10

Exercise 2. Use the comparison tests to determine whether each series converges or diverges:

N 6 b)i(n%—?) tg‘njl

(n—2)In n’ — n
Exermse 3. Determine the convergence or divergence (use the ratio test, root test or integral test):

~ (D +1) n
V2 ot ) 3 [

n=1

—~ 3
] C) .
2n +2 = (n+5)yIn(n +5)°
Exercise 4. Determine whether each series converges absolutely, conditionally, or diverges:
- 3n \/ 2n+1— \/ 2n — 1
a) Z( ~1)"**n® s1n— b) Z(—l)" L — . ¢ Z
n=1 ‘\’57’),2 +n n=1 \/g

© 3
Exercise 5. Calculate approximately the sum of the series Z(—l)"ﬁ to within o = 0,001.
n=1 n—4).
Exercise 6. Find the domain of convergence of each series:

n

= o 32 c s 2)"
a) 2(‘”” _— b) Z c) Y.(-1) 1%-

2" cos" x w1 In”(n +4) =

: : . - N
Exercise 7. Prove the uniform convergence of the series Z( 1) (z+7) cos’nr onthe

= i

closed interval [—2;0].

Exercise 8. Find the sum of each power series on its interval of convergence:

00 2n+1 00
T
a) : b) —1)"2n 2> .
; 2n +1 ;( )
. . : . X _
Exercise 9. Find the Taylor series of the function f(z) = cos == at = = -3 and determine

its radius of convergence.
0,3

— 1;2 . .
Exercise 10. Calculate the integral e * dx towithin a = 0,001.
g )

0
Exercise 11. Find the first four nonzero terms of the power series for the solution of the Cauchy

problem: " +ye'+4y =0, y0)=1 ¢'(0)=-
—r—-3, -3<z<0,
Exercise 12. a) Find the Fourier series for the function f(z) = on the
-3, 0O<z<3
interval (—3,3); determine the sum of the series at the discontinuity points of the function and at
the ends of the interval; graph the function and the sum of the corresponding series.

b) Find the Fourier sine and cosine series for the function y =z + 5 on the interval (0,7 ),

graph the function and the sum of each series.
16



Series

Variant Ne12

Exercise 1. Find the partial sum S and calculate the sum S of the series: Z 4
—n? 4+ 14n + 48

Exercise 2. Use the comparison tests to determine whether each series converges or diverges:

n’+2 n+1
);n 2—|—cosn) Z»\/n _

Exercise 3. Determine the convergence or dlvergence (use the ratio test, root test or integral test):

’IL2 n 2
DSy DM 0yt

n=1 € nln 8n+1 nzln(lﬂ n+2)
Exercise 4. Determlne whether each series converges absolutely, conditionally, or diverges:

a) i(_]-)”_l (n:3)!; b) > (=1)"(3n —1)arcsin l; C) Z.O:(—l)n+l [—nz 1 ]

o0

n=1 2 n' n=1 n n=0 4n3 - 3n + 2
0 77+1
Exercise 5. Calculate approximately the sum of the series Z to within « = 0,001.

=1 n
Exercise 6. Find the domain of convergence of each series:

n 2

s

2n

a:2—4; b -1 7”'1—x X 3 -1)" —’fL 1)".
D DX >[n+lj (@ +1)

2
1+—=
n

\M8

n=1

Exercise 7. Prove the uniform convergence of the series Z(—l)"’l(x—kl)" tg% on the
n=1

closed interval [—2;0].

Exercise 8. Find the sum of each power series on its interval of convergence:

a) i(— )" (n—1)z"% b) Z o1

n=1

1
Exercise 9. Find the Taylor series of the function f(z) = T at x=-2 and determine
xz —

its radius of convergence.

05

arctgx
Exercise 10. Calculate the integral I —g dzr towithin o = 0,001.
z?
0

Exercise 11. Find the first four nonzero terms of the power series for the solution of the Cauchy
problem: ¢ +y+xy' =0, y0)=1 ¢'(0)=0.
-4, -4<x<0(,
Exercise 12. a) Find the Fourier series for the function f(z) = on the
r—4, 0O<z<4
interval (—4,4); determine the sum of the series at the discontinuity points of the function and at
the ends of the interval; graph the function and the sum of the corresponding series.

b) Find the Fourier sine and cosine series for the function y =2z + 7 on the interval (0,7 );
graph the function and the sum of each series.
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Series

Variant Ne13

: . . . - 21
Exercise 1. Find the partial sum S and calculate the sum S of the series: Z—
n 2
—n —bn—+4
Exercise 2. Use the comparison tests to determine whether each series converges or diverges:
2

a)z“:(m +1)(m —arctgn) b)z‘”: o,

Jn® = TR

Exercise 3. Determine the convergence or divergence (use the ratio test, root test or integral test):

n' 2n — — - — 4
)y S ; 3 —
=l n=i n=2 (4n — 3)\/In"(4n — 3)
Exercise 4. Determine whether each series converges absolutely, conditionally, or diverges:

> m 1 3 w1 N cos 2n
a) Z(—l) \/;ln[l+$]; b) Z(_]_) : Z( 1) 3+ 12

n+l
n=1 n=1 3 n ' n=2

14+
n

Exercise 5. Calculate approximately the sum of the series Z(—l n N F 56 to within a = 0,001.
n=0 n +
Exercise 6. Find the domain of convergence of each series:
(2" — 37 —3)" a . & ((n+2)) (z+4)"
a) ; b) » (-1)""(n+1)"z" C) .
2 Sy ey 2 (e
- - - — n+1 (.T - 1)2n
Exercise 7. Prove the uniform convergence of the series Z(—l) 3" N on the closed
n=1 ! n +

interval [—1;3].

Exercise 8. Find the sum of each power series on its interval of convergence:
2n 1

a) Z 1 b) nf;(_

Exermse 9. Find the Taylor series of the function f(z) =sin2x +2zcos2z at z=0 and

determine its radius of convergence.
0,25

Exercise 10. Calculate the integral J In 1+\/_ dzr to within o = 0,001.

Exercise 11. Find the first four nonzero terms of the power series for the solution of the Cauchy
problem: ¢ =¢° +2° +2, y(0)=1

r+5 -5<x<0,

Exercise 12. a) Find the Fourier series for the function f(z) = 5 O<z<5 on the
x
Y

interval (—5,5); determine the sum of the series at the discontinuity points of the function and at
the ends of the interval; graph the function and the sum of the corresponding series.

b) Find the Fourier sine and cosine series for the function y =z + 2 on the interval (0,7 );

graph the function and the sum of each series.
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Series

Variant Ne14

Exercise 1. Find the partial sum S and calculate the sum S of the series: Z 0
n—0 n/‘+‘167l‘+'63

Exercise 2. Use the comparison tests to determine whether each series converges or diverges:

00 2 2
)Zn\/_S—i—Slnn)’ b)zn _4[arctg 1 ]

n=1 n n + 2
ExerC|se 3. Determine the convergence or divergence (use the ratio test, root test or integral test):
5" (n +2)! ~ 1 (7n+2) o 1
SpPR e 0 Y| 2 O -
n=1 2 n' n=1 4 2”’ - 1 n=1 n(ln(4n) + 5)

Exercise 4. Determine whether each series converges absolutely, conditionally, or diverges:

n 1 . 5 2n . i
Y 0 3 R g 3
n=0

n=11m lnn+2 n®—2 )
Exercise 5. Calculate approximately the sum of the series Z ———— to within ¢ = 0,001.
n=1 (n + S)n
Exercise 6. Find the domain of convergence of each series:
L In"z Z”n'x < 1(z+5)" 1
a) X b) )" tg—.
> (- > o R 2 By gl

n
Exercise 7. Prove the uniform convergence of the series g ( sin’ nz on the closed

n— 1(n+3)\/_

interval [1;3].

Exercise 8. Find the sum of each power series on its interval of convergence:

2n+3
Z o Zgn 5
_ . . . 1
Exercise 9. Find the Taylor series of the function f(x) = lnz— at r=-—1 and
z° +2x+10

determine its radius of convergence.
1

Exercise 10. Calculate the integral Isin 2> dx  to within o = 0,001.
0
Exercise 11. Find the first four nonzero terms of the power series for the solution of the Cauchy

problem: y" =cosy' +y, y(0)=1 ¢(0)=0.

6, 6<z<0,
Exercise 12. a) Find the Fourier series for the function f(z) = 6 O<z<6 on the
z, x

interval (—6,6); determine the sum of the series at the discontinuity points of the function and at
the ends of the interval; graph the function and the sum of the corresponding series.
b) Find the Fourier sine and cosine series for the function y =x + 7 on the interval (0,7 )

graph the function and the sum of each series.
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Variant Ne15

: . . . 24
Exercise 1. Find the partial sum Sn and calculate the sum S of the series: ZZ—
s n-—n—2
Exercise 2. Use the comparison tests to determine whether each series converges or diverges:

—l)lnn — [ 1l @
)Z b)nz_; n [ cosnl].

“pt+n®+3
Exermse 3. Determine the convergence or divergence (use the ratio test, root test or integral test):

e’ n' o n+2 2n
a) ; b) 3" In" ;
Z Z ! ["_2] Z \flnn —1

n=3 n= 2 n — 1
Exercise 4. Determine whether each series converges absolutely, conditionally, or diverges:

- L [4n® +1 - ., sin’n 1
a) > (1) " b) > (1) 1m; c) Z( 1)"(n* +1)arctg3 Y

n=0 n + 3 n=1 n=1

. : R < n -
Exercise 5. Calculate approximately the sum of the series Z(—l)"+1 = to within « = 0,001.
n=1
Exercise 6. Find the domain of convergence of each series:

nl —1 S " S n+ +1n
Y e Y e ik

n=1 1N +17’L' n=1 n-+2
0 Snfl
Exercise 7. Prove the uniform convergence of the series Z(—l)”“ﬁx%_l on the
- on —1
n=1

closed interval [—— _]

Exercise 8. Find the sum of each power series on its interval of convergence:
n+1 00
a) Z b) Z(—l)"?m A
n=2

Exercise 9. Find the Taylor series of the function f(z)=(z—3)e® ™ at z=3 and

determine its radius of convergence.

Exercise 10. Calculate the integral j to within « = 0,001.

o Vz® +33

Exercise 11. Find the first four nonzero terms of the power series for the solution of the Cauchy
problem: 3" =yy — 2%, y0)=1 (0)=
—r—1, =1 <z<0,
Exercise 12. a) Find the Fourier series for the function f(x) = on the
-7, O<z<7

interval (—7,7); determine the sum of the series at the discontinuity points of the function and at
the ends of the interval; graph the function and the sum of the corresponding series.

1
b) Find the Fourier sine and cosine series for the function y = E(x + ) on the interval (0,7);

graph the function and the sum of each series.
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Variant Ne16

Exercise 1. Find the partial sum S and calculate the sum S of the series: Z 3

Exercise 2. Use the comparison tests to determine whether each series converges or diverges:

\Jn cos’ n =1

a)z : )3 = Jn+2-n-2.
1on’ +n+1 — N

ExerC|se 3. Determine the convergence or divergence (use the ratio test, root test or integral test):

>Z PP il 03—

n=1 n n=1 2"\n +1 n=1 n(ln (27?,) + 4)

Exercise 4. Determlne whether each series converges absolutely, conditionally, or diverges:
3

- oo 2 @
a) ) (-1)" arctg” %; Z i —1 z )" nllen’ - 1.

n=0 3 n=1 2n + 3’]?, n=1

Exercise 5.Calculate approximately the sum of the seriesZ(_l)" n to within ¢=0,01.
n=1 (n + 1)'(2” - 1)

Exercise 6. Find the domain of convergence of each series:

= 8"(n+1) 5 2 (n!)? 3:+3)
a) g : b) )" n +1)"(z —4)" .
n=0 x _337_2)” ; ) n=1

_ . .« T+ 3)"
Exercise 7. Prove the uniform convergence of the series Z ( )

=1 (n +1)yIn*(n +1)

on the closed

interval [—4;—2].
Exercise 8. Find the sum of each power series on its interval of convergence:

00 2n+1

e

a) _1 n+1 n_|_2 $n+1; b) 7Z+1

> (-0 +2) S
Exercise 9. Find the Taylor series of the function f(z)=In(5z+10) at z =1 and determine
its radius of convergence.

05
j 1-coszx

Exercise 10. Calculate the integral dr towithin a = 0,001,

0 X

Exercise 11. Find the first four nonzero terms of the power series for the solution of the Cauchy
problem: 3 =4y* -z, y(0)=1.

8 -8<z<0,
Exercise 12. a) Find the Fourier series for the function f(z) = g 0<s<g ON the
T, T

interval (—8,8); determine the sum of the series at the discontinuity points of the function and at
the ends of the interval; graph the function and the sum of the corresponding series.

b) Find the Fourier sine and cosine series for the function y =z + 27 on the interval (0,7 );
graph the function and the sum of each series.
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Variant Ne17

4
Exercise 1. Find the partial sum S and calculate the sum S of the series: E _
—in?—An + 3

Exercise 2. Use the comparison tests to determine whether each series converges or diverges:

)Z H Z\/_

(n +5)°(m + arctgn)
ExerC|se 3. Determine the convergence or divergence (use the ratio test, root test or integral test):

00 en(n!>3 00 1 1 ’
2 Gy g

n 0o 2
1+—{ ; C) g .
1D n ‘= (n+1)In(n +1)°

Exercise 4. Determine whether each series converges absolutely, conditionally, or diverges:

] ' 00 0
a) Z(_1>n+l (ﬂn +3) : b) Z( IL 4[1 COSEJ Z 71 -1 \/n + 2 \/n 1
n=0 2 (n + 1) ' n=1 n n=1 \ASTL
Exercise 5. Calculate approximately the sum of the series Z(— )" ?;(n — 7 to within a = 0,01.
n=1 n+

Exercise 6. Find the domain of convergence of each series:

7L2

gz T C | ntd x "
S Pt b) 2 (-1) Y m— ) Z{ J (z+4)

27
n=0 n+1 n=3

: : . o (x—=2)
Exercise 7. Prove the uniform convergence of the series Z(—l)” lu on the closed

n=1 n~Nn
interval [1;3].

Exercise 8. Find the sum of each power series on its interval of convergence:
b) Z Y'(n+1x

. T .
Exercise 9. Find the Taylor series of the function f(x) = sm? at x =3 and determine its

radius of convergence.
01 2z
Exercise 10. Calculate the integral I
0
Exercise 11. Find the first four nonzero terms of the power series for the solution of the Cauchy

dr towithin a = 0,001.
x

problem: 3" +2°+¢°* =0, 9(0)=-2 ¢(0)=-

1 -1<z<0,

Exercise 12. a) Find the Fourier series for the function f(z)= 1_ 0<z<1 on the
x, x

interval (—1,1); determine the sum of the series at the discontinuity points of the function and at
the ends of the interval; graph the function and the sum of the corresponding series.
b) Find the Fourier sine and cosine series for the function y = > + 27 on the interval (0,7);

graph the function and the sum of each series..
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Variant Ne18

Exercise 1. Find the partial sum S and calculate the sum S of the series: Z 6
—~n®+15n + 54

Exercise 2. Use the comparison tests to determine whether each series converges or diverges:

—Ccosn)
g g \Nn+5
a) \/71 2 n arcsm o 1)

ExerC|se 3. Determine the convergence or divergence (use the ratio test, root test or integral test):

In"n
b)
) o > Doy e

Exercise 4. Determine whether each series converges absolutely, condltlonally, or diverges:

® 2 " o 2 w
a) 3 (-1 (4”+—2n_1j . b)Y (-1 _cosn Z tg
2

3n° —3n+2 0 n® +2n+1 3n3 +3

- 5
Exercise 5. Calculate approximately the sum of the series Z(—l 2 )' to within ¢ = 0,001.
n=1 n)n

Exercise 6. Find the domain of convergence of each series:

o0 1 5”2 3 9 o0 N 1 n
a) Z[l + E] e:p\ﬁ+n(zz +6z); b) (_1>n,—1n2n(x _ 2)271,; Z n 1 )
n=1

n’
n=1 n=1 3

M

o |
. : . n!
Exercise 7. Prove the uniform convergence of the series » (—1)""' — (z +2)" on the closed
n=1 n
interval [—4;0].
Exercise 8. Find the sum of each power series on its interval of convergence:
2n 1

a) f:(—l)"éln ' b) z T

Exercise 9. Find the Taylor series of the function f(x) =

1
2 +8

at x =1 and determine its

radius of convergence.
0,5
Exercise 10. Calculate the integral I
x
0
Exercise 11. Find the first four nonzero terms of the power series for the solution of the Cauchy

T —arctgx
2

dx towithin o = 0,001.

problem: ¢ ' =ze'+y, y(0)=0

—r—2, -2<z<0,
Exercise 12. a) Find the Fourier series for the function f(z) = on the

-2, O<x<?2
interval (—2,2); determine the sum of the series at the discontinuity points of the function and at
the ends of the interval; graph the function and the sum of the corresponding series.
. : : T T :

b) Find the Fourier sine and cosine series for the function y = 2 + N on the interval (0,7 );

graph the function and the sum of each series.
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Variant Ne19

6
Exercise 1. Find the partial sum S and calculate the sum S of the series: Z—
n=5 10 — on -+ 8
Exercise 2. Use the comparison tests to determine whether each series converges or diverges:

nlnn = =
a) Z 22; b) > \n +2(e” ~1).
- n=1
Exermse 3. Determine the convergence or divergence (use the ratio test, root test or integral test):
an
>N (3n—1)! >~[2n +5 2 2n
a)z ( |) |; b)z ) C)Z 2 47, 2 )
= (n—=1!(2n)! w1 (4n—3 = (n”+1)In"(n° +1)
Exercise 4. Determine whether each series converges absolutely, conditionally, or diverges:

< 1 2+ cosn = n’
a) » (-1)"n®arcsin —; b) )y — c) > (=1 :
; 2" Z \n® -2 ; \/2n4—n2+1

0 n+1
Exercise 5. Calculate approximately the sum of the series Z(sm—)' to within « = 0,001.
=1 n.

Exercise 6. Find the domain of convergence of each series:

(2> — 4z -3)" nsxnl. . & n_l(x—Z)"Sini
)Z 9'(n+d) )Z );( Y (5n—4) 3"

Exercise 7. Prove the uniform convergence of the series Z(—l) on the closed

n=1 n
interval [—4;—2].

Exercise 8. Find the sum of each power series on its interval of convergence:
2n+2

)ZQn—i—Q )Y (=1)'n 2"

n=1

1].
Exercise 9. Find the Taylor series of the function f(z) = [ctgx ——) sinx at x=0 and
T

determine its radius of convergence.
01
Exercise 10. Calculate the integral I dJ: to within a = 0,001.
Exercise 11. Find the first four nonzero terms of the power series for the solution of the Cauchy
problem: ¢" =z’ Y1) =1 Y1) =~

-3, -3<z<0,
Exercise 12. a) Find the Fourier series for the function f(x) = on the
r—3 0<z<3
interval (—3,3); determine the sum of the series at the discontinuity points of the function and at
the ends of the interval; graph the function and the sum of the corresponding series.
b) Find the Fourier sine and cosine series for the function y = > + 7 on the interval (0,7 );
graph the function and the sum of each series.
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Variant Ne20

Exercise 1. Find the partial sum S and calculate the sum S of the series: z )
“~n’+13n + 40

Exercise 2. Use the comparison tests to determine whether each series converges or diverges:

f 00 3
a) b) Z n+1ln 3”
n=2 n —

‘= n’(3+sin n)
Exercise 3. Determine the convergence or divergence (use the ratio test, root test or integral test):

> 4"(2n) oo 2\ ~ 1
>23n+3 n_, b>Z3"[n+ ]; )

n=l )' i (2n+3 n=1 n\/(ln(?)n) +2)°
Exercise 4. Determine whether each series converges absolutely, conditionally, or diverges:
1 n—-1
(D

> 2
a) ~)"'n|l-cos——| h) e2n—1); c)
C [ JZJ Z 1) 2

“ nlin(n+3)

0 n+1
Exercise 5. Calculate approximately the sum of the series ZQ to within o = 0,01.

n=1 n'
Exercise 6. Find the domain of convergence of each series:
1 0 0
a) Z ) ”(;)1); b)Y (n+5)!(z - 2)*; )Y (<)) (w +3)" arctg 4i.
+ n=1 n=0 "

. : : - . (z+2)
Exercise 7. Prove the uniform convergence of the series Z(—l)” L on the closed

n=0 3" (571, + ].)
interval [—4;0].
Exercise 8. Find the sum of each power series on its interval of convergence:
00 n-‘rl
a) Z(_ 1)n (277, . 3)1;271—4; b) Z n-‘rl
n=2 + 1
Exercise 9. Find the Taylor series of the function f(z)=In(z° —6x+18) at z=3 and

determine its radius of convergence.
0,5
Exercise 10. Calculate the integral I cos(4x*)dxr towithin o = 0,001.

0
Exercise 11. Find the first four nonzero terms of the power series for the solution of the Cauchy

problem: ¢ =e’+zy, y(0)=

x+4, -4d<z<0,

Exercise 12. a) Find the Fourier series for the function f(x) = 4 O<z<4 on the
x
Y

interval (—4,4); determine the sum of the series at the discontinuity points of the function and at
the ends of the interval; graph the function and the sum of the corresponding series.

r T
b) Find the Fourier sine and cosine series for the function y = > + 0 on the interval (0,7 );

graph the function and the sum of each series.
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Variant Ne21

Exercise 1. Find the partial sum S and calculate the sum S of the series: Z 0
‘~n®—8n+ 15

Exercise 2. Use the comparison tests to determine whether each series converges or diverges:

2 00 3
n°+2 n 5 1
a) ; b) tg” —.
;n (m — arctgn) ;Ml —1 n
Exercise 3. Determine the convergence or divergence (use the ratio test, root test or integral test):
o n" > 1 On —1 ! S 3
a) R E— b) —|In ; c) .
;3"(n—|—1)! ;2"[ n+1 ;(3n—4)ln(3n—4)

Exercise 4. Determine whether each series converges absolutely, conditionally, or diverges:

o (n!y 2 \/n+3—\/n—l 2 1
a) 1 n— b) —1)" : C) n+1 4 (1 coS _J
Z (2n+1)! ;( ) \n+2 2, ’

n

n

Exercise 5. Calculate approximately the sum of the series Z(—l)"ﬁ to within « = 0,0001.
n=1 n+4)"

Exercise 6. Find the domain of convergence of each series:

3"(z +2) n+1 _n'z" = (x+1)"
)Z ’ b)z n+2) z

n=1 BH(JLZ —32) n=1 n=1 n + 2 111 (n + 2)

Exercise 7. Prove the uniform convergence of the series Z(—l)"(m +3)" arctg% on the
n=2
closed interval [—4;—2].

Exercise 8. Find the sum of each power series on its interval of convergence:

a) Z )y 1““" b) i(—l)”(n—nx"—?.

n=2
Exercise 9. Find the Taylor series of the function f(z)=xe™>" at z=-2 and determine its

radius of convergence.

Exercise 10. Calculate the integral to within o = 0,001.

2

_[ dx

o Nzt +4°
Exercise 11. Find the first four nonzero terms of the power series for the solution of the Cauchy
problem: ¢ +cosx=xy, y(0)=1 ¢'(0)=-1.

5 -b<z<0,
Exercise 12. a) Find the Fourier series for the function f(x) = 5 0<npeg O the
T, T

interval (—5,5); determine the sum of the series at the discontinuity points of the function and at
the ends of the interval; graph the function and the sum of the corresponding series.

b) Find the Fourier sine and cosine series for the function y = E —x on the interval (0,7 );

graph the function and the sum of each series.
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Variant Ne22

Exercise 1. Find the partial sum S and calculate the sum S of the series: Z 12
~n’+11ln+ 28’

Exercise 2. Use the comparison tests to determine whether each series converges or diverges:

a) Z \/_\/n;jos n), Z n\/—{;l sin® \/ﬁ

Exercise 3. Determine the convergence or divergence (use the ratio test, root test or integral test):

o0

2 oo " o 2
a)z nln ; b)zﬁ[n+3]; C)22n1n2(n —|—2).

n=1 2n (n + 2)' n=1 37L n n=1 n- —+ 2
Exercise 4. Determine whether each series converges absolutely, conditionally, or diverges:

= 3n+5 - 2 < _ N3 n
a) » ()t —————y b) » (-1)"nln (1 + —]; c) Y (-1)"tarctg" ——.
2 2. e 2. .

2
n=0 4n - 2n + 1 n=1 n=1
0 n+l

Exercise 5. Calculate approximately the sum of the series Z to within « = 0,001.
n=1 T
Exercise 6. Find the domain of convergence of each series:

00 6n 3
b) z 7L+1 27L x 4)2n

a)z

_ n+1 2(z+2)"
n=0 x _237_2)”’ n=1

2n)!

Ms

3
I

T +2
Exercise 7. Prove the uniform convergence of the series Z(— (z+ ) on the
n=3 (n —1)3In*(n —1)

closed interval [—3;—1].
Exercise 8. Find the sum of each power series on its interval of convergence:

00 n 1
a) -1 7L+15n x(m—l; b)

2 s
Exercise 9. Find the Taylor series of the function f(z) =In(3—-3z) at x = —3 and determine

its radius of convergence.

1
shz
Exercise 10. Calculate the integral _[—dq: to within a = 0,001.
T

Exercise 11. Find the first four nonzero terms of the power series for the solution of the Cauchy
problem: " =2zy—y-1 4(0)=0, ¢(0)=1.

—r—6, -6<z<0,

Exercise 12. a) Find the Fourier series for the function f(z) = 6 0<p<p O the
— T
Y

interval (—6,6); determine the sum of the series at the discontinuity points of the function and at
the ends of the interval; graph the function and the sum of the corresponding series.

b) Find the Fourier sine and cosine series for the function y =z —2z on the interval (0,7 );
graph the function and the sum of each series.
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Exercise 1. Find the partial sum S and calculate the sum S of the series: Z 10
“~n’—10n + 24’

Exercise 2. Use the comparison tests to determine whether each series converges or diverges:

- n—4 = n+2
a) ; b) arctg ———.
nz;\/n(;—l—éllnn nz:; n’\n +3

Exercise 3. Determine the convergence or divergence (use the ratio test, root test or integral test):
5n
- e"(n!) > [3n—1 2
Y e D e :
= (n—=1!(n+5)! o1\ 20+ 2 n=2 2n—1\/ln 2n—1)
Exercise 4. Determine whether each series converges absolutely, conditionally, or diverges:

2 n® 2 n+1 2
DD S 0 ) == ) —_—
) ;( ) [4”3_71} ;( ) \N3nf —n ) Vn®+1

. : T n -
Exercise 5. Calculate approximately the sum of the series Z(—l)" 6_" to within « = 0,001.
n=1
Exercise 6. Find the domain of convergence of each series:

M

(=1)"n arcsin

3
Il
o

3n+1 1y 4"n x" < (x+5)"
a) 1 n—1 < T = | b)
Z ) 2" sin®" x Z 4n)! “dn) nz (n+3)In(n +3)
Exercise 7. Prove the uniform convergence of the series Z (m — st nx on the closed
’ 7 _+_ 4
interval [0;7].
Exercise 8. Find the sum of each power series on its interval of convergence:
n—3 00
z’ _
a) Z 1) PR 0) Y (=1)"(2n —3)a™ "
n=2
: : . _ Tx .
Exercise 9. Find the Taylor series of the function f(x) = COST at z = —2 and determine

its radius of convergence.
0,2

( 2
Exercise 10. Calculate the integral I e dzx towithin o = 0,001.
0
Exercise 11. Find the first four nonzero terms of the power series for the solution of the Cauchy

problem: 3" +y' =ay®, y(0)=2, 4(0)=1
-7, -71<z<0,
Exercise 12. a) Find the Fourier series for the function f(x) = on the
xr—7, O<zx<7
interval (—7,7); determine the sum of the series at the discontinuity points of the function and at
the ends of the interval; graph the function and the sum of the corresponding series.
V4 .
b) Find the Fourier sine and cosine series for the function y = 1 x on the interval (0,7 );

graph the function and the sum of each series.
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Exercise 1. Find the partial sum S and calculate the sum S of the series: Z 15
—~n’+9n+ 18

Exercise 2. Use the comparison tests to determine whether each series converges or diverges:

\/n +1 =N, 3 1
b) n” +3n)|1 —cos—|
);n 2+31nn) ;( ) n2]

Exercise 3. Determine the convergence or divergence (use the ratio test, root test or integral test):

2"(2n +1)! > n? = 1
2) ) o D) Y ©) 2 -
o e'(2n)! ; In"(n +2) =1 n3(In(6n) + 2
Exercise 4. Determine whether each series converges absolutely, conditionally, or diverges:
1

n+l 3 en 341 l)

. 1y 3n® -1 _ 1 arctgn i

1\ b 1 T
a);( )2n3+2n2—n’ );( ) Jn* +4n n=0

Exercise 5. Calculate approximately the sum of the series Zﬁ to within o = 0,001.
= (3n-1)n!

Exercise 6. Find the domain of convergence of each series:

00 3”1_%7271_ 0 s ] n(x_4)n
a)Z[l—i——Q] e Y b) > (n+5)1z""; C)Z(—l) T 1

n=1 n n=1 n=2 — 1

: . . — " —2)
Exercise 7. Prove the uniform convergence of the series Z(— )"t ( ) on the closed
n=1 n —+ 1
interval [1;3].
Exercise 8. Find the sum of each power series on its interval of convergence:
2n+3
s

a) 71 n _+_2 7I+1 b) n+1

Z ; o +3 +3

1 L
Exercise 9. Find the Taylor series of the function f(z) = 3, _3 at z =3 and determine its
x J—
radius of convergence.
0,5 .
arcsin x
Exercise 10. Calculate the integral f— dr towithin o = 0,001.
x

0
Exercise 11. Find the first four nonzero terms of the power series for the solution of the Cauchy

problem: ¢"=xz+¢e’, y(0)=1 ¢'(0)=0

-r—-8 -8<z<0,

Exercise 12. a) Find the Fourier series for the function f(z) = 8 O<z<8 on the
- x
Y

interval (—8,8); determine the sum of the series at the discontinuity points of the function and at
the ends of the interval; graph the function and the sum of the corresponding series.

b) Find the Fourier sine and cosine series for the function y =z —x on the interval (0,7 );
graph the function and the sum of each series.
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Exercise 1. Find the partial sum S and calculate the sum S of the series: Z 12
“~n®—12n+ 35

Exercise 2. Use the comparison tests to determine whether each series converges or diverges:
- \/;(w — arctgn)
Ay s Z
=1 Yn’ 42 {Jn
Exercise 3. Determine the convergence or divergence (use the ratio test, root test or integral test):
n
n —|— 1! “~ 1 (3n+2 — 2n
23! 7 0) D D —
n=1 mn (dn+1 n=3 (n° — 3)y/In(n” — 3)
Exercise 4. Determine whether each series converges absolutely, conditionally, or diverges:
1

n®+2
a) —' b) )" n’ In c) Y (1) sin ————.
Z (n-1! Z n®+1 n=1 \N3n® +7

\jn—l—?) \/n—l—l

n

8

[ee] _1 n ) .
Exercise 5. Calculate approximately the sum of the series 25(—)2 to within o = 0,001.
n=0 "(n +

Exercise 6. Find the domain of convergence of each series:

2

(2 — 5z —3)" U - ' oy
)Z ’ b);(n+l)2n!’ nz [n+1) (z=3)"

n=0 11n n + 3)
Exercise 7. Prove the uniform convergence of the series Z(— )" (z+5)

=1 (n +2)In’

8

on the closed

interval [—6;—4].

Exercise 8. Find the sum of each power series on its interval of convergence:
n+1

a) Z n+1 K b) i(—l}"“Gn 261

n=1 n + 1 n=1
: . . _ tgx
Exercise 9. Find the Taylor series of the function f(z)=|1———|cosz at z=0 and
x
determine its radius of convergence.
0,1
FIn(l+ 2z
Exercise 10. Calculate the integral J.gdx to within « = 0,001.
x

0
Exercise 11. Find the first four nonzero terms of the power series for the solution of the Cauchy

problem: y"+ycosz =0, y(0)=1 ¢'(0)=0.
—-r-1 -1<z<0,
Exercise 12. a) Find the Fourier series for the function f(x) = on the
-1 O<z<l
interval (—1,1); determine the sum of the series at the discontinuity points of the function and at
the ends of the interval; graph the function and the sum of the corresponding series.
T :
b) Find the Fourier sine and cosine series for the function y = 5 —% on the interval (0,7 ),

graph the function and the sum of each series.
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Exercise 1. Find the partial sum S and calculate the sum S of the series: Z 18
~n’+Tn+ 10

Exercise 2. Use the comparison tests to determine whether each series converges or diverges:

a) Z (n+1° Z\/ —2 arcsm

— cos n)7 s
ExerC|se 3. Determine the convergence or dlvergence (use the ratio test, root test or integral test):

n+2 . 00 2
a) 23 (3n. ) ’ b) Z[l 3n — ) Z 241nn

= 23 - n+1 =i n(ln"n +4)
Exercise 4. Determlne whether each series converges absolutely, conditionally, or diverges:

o 5041 ) - 1 2 o Jn+5—n-2
gyt L N el 1y _
93D { L] St o St

n=1 3n n=2

58]

4

Exercise 5. Calculate approximately the sum of the series Z(—l)”ﬁ to within ¢ = 0,001.
— n +

Exercise 6. Find the domain of convergence of each series:

—1) x a1 > w1 (x—2)"
a) —; b) n+3)(z+1)" C) =)
Sy > (n+3)l(a +1 Sy
. . . n—1 ('T + 4)271
Exercise 7. Prove the uniform convergence of the series 5 (— 11 on the closed
n=1 ! n +

interval [—6;—2].

Exercise 8. Find the sum of each power series on its interval of convergence:

00 2n+1
a) _1 n+12n Q:Qn—l; b)
;( ) ; 2n +1

1
Exercise 9. Find the Taylor series of the function f(z)=In———— at =2 and

2
x°—4x+8
determine its radius of convergence.
0,2

Exercise 10. Calculate the integral I cos(252%)dx  to within a = 0,001.

0
Exercise 11. Find the first four nonzero terms of the power series for the solution of the Cauchy

problem: 3"+ (1+2%)y =0, %0)=-2, #(0)=2

-2, 2<x<0,
Exercise 12. a) Find the Fourier series for the function f(z) = on the
r—2, 0O<z<?2

interval (—2,2); determine the sum of the series at the discontinuity points of the function and at
the ends of the interval; graph the function and the sum of the corresponding series.

b) Find the Fourier sine and cosine series for the function y =27 —xz on the interval (0,7 );
graph the function and the sum of each series.
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Exercise 1. Find the partial sum S and calculate the sum S of the series: Z 14
‘~n® —14n + 48

Exercise 2. Use the comparison tests to determine whether each series converges or diverges:

o

>Z (" +2)nn, 0 S (n+3)E 1)

n — ]. n=1
ExerC|se 3. Determine the convergence or divergence (use the ratio test, root test or integral test):

00 nn . 00 4n n+1 n- 00 27’1,
a);7"(n—1)!’ 2 [3n—2]’ )L :

= “~ (n* +3)In*(n* 4+ 3)
Exercise 4. Determine whether each series converges absolutely, conditionally, or diverges:

4n +3 —sinn 1
a) n -1 ; b) : C) _1 n+13n tgn -
X R e D

Exercise 5. Calculate approximately the sum of the series Z(—l)”— to within « = 0,01.
n=1 (2’)’L + 1)n
Exercise 6. Find the domain of convergence of each series:
n+1)e )" x" > n + 2 0
o3 By S (@4
n 4 +I) n=1 1 (Zn 1) n=1
. - . o i (Lli' _ 2)n2
Exercise 7. Prove the uniform convergence of the series Z(—l) ~——— on the closed
n=1 n

interval [1;3].

Exercise 8. Find the sum of each power series on its interval of convergence:
Qn 1

a) Z —; b) i;(— 1) (n = 1)z,

Exercise 9. Find the Taylor series of the function f(z) = (z +1) e®* at z=1 and determine

its radius of convergence.

Exercise 10. Calculate the integral to within « = 0,001.

2,5

_[ dx

o V2 +5°
Exercise 11. Find the first four nonzero terms of the power series for the solution of the Cauchy
problem: y" =ycosz+z, y0)=1 ¢'(0)=0.

r+3 -3<x<0,

Exercise 12. a) Find the Fourier series for the function f(x) = 3 0< <3 on the
x
Y

interval (—3,3); determine the sum of the series at the discontinuity points of the function and at
the ends of the interval; graph the function and the sum of the corresponding series.

b) Find the Fourier sine and cosine series for the function y = 27 — E on the interval (0,7);

graph the function and the sum of each series.
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21
Exercise 1. Find the partial sum S and calculate the sum S of the series: Z—
—on +5n+4
Exercise 2. Use the comparison tests to determine whether each series converges or diverges:
\/— ~o x/n+5
2+ sinn X n(n+1y
2D D S !

(n+1)(n+3) —
ExerC|se 3. Determine the convergence or divergence (use the ratio test, root test or integral test):

2
—n
o0

2"n! 0
a) Zm? 22

n=1 1 (N . n=1

= 1

; ) :
i ; nyIn(7n) + 3

Exercise 4. Determine whether each series converges absolutely, conditionally, or diverges:

1—|—

+1 n+5 = 42 (2n)!(n-1)!
a 1)t g b 1)"nln SHNEE .
)Z( 3 )Z( — )%( ) el
_ . < . 3n -
Exercise 5. Calculate approximately the sum of the series Z(—l) W to within o = 0,001.
n=1 n+
Exercise 6. Find the domain of convergence of each series:
< 477 ’fL + 1 +1 +5 S : 1
a) : b) )" (n+2)!(x+5)" sin —.
Z (2° —x—2)" Z A ; n’? +1 n

- 00 4n71 B
Exercise 7. Prove the uniform convergence of the series » _ ( "1 on the closed

n=2 v \/(n —1)5 '

Exercise 8. Find the sum of each power series on its interval of convergence:

interval [—21;1].

00 ., . 00 . an—l
a) > (=)™ (n—1a" b) > (=1 o1
n=1 n=2

Exercise 9. Find the Taylor series of the function f(z) =In(16 —2z) at z =2 and determine
its radius of convergence.

1
Exercise 10. Calculate the integral Icos \/;dx to within o = 0,001.
0
Exercise 11. Find the first four nonzero terms of the power series for the solution of the Cauchy

problem: 3 =g¢° +2°, y(0)=1.

4, -4<z<0,
Exercise 12. a) Find the Fourier series for the function f(z) = 4 O<q<4 on the
x, x

interval (—4,4); determine the sum of the series at the discontinuity points of the function and at
the ends of the interval; graph the function and the sum of the corresponding series.

T :
b) Find the Fourier sine and cosine series for the function y = ) on the interval (0,7 );

graph the function and the sum of each series.
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Exercise 1. Find the partial sum S and calculate the sum S of the series: Z 16 .
n=10 ’n/ —16n -+ 63

Exercise 2. Use the comparison tests to determine whether each series converges or diverges:

>, arctg’ n v .o 1
a) Y = b) » (n° +2n)arcsin :
21 «4fn5 +1 ; Nn’

Exercise 3. Determine the convergence or divergence (use the ratio test, root test or integral test):

= (2n +1)! S _ S
IR 0 Ziln"[?’” 1} )y ———

= 3"(n)) =3 |3n+42 "= (61 + 1)/ In(6n + 1)
Exercise 4. Determine whether each series converges absolutely, conditionally, or diverges:

© 2 n® © _ 0
a) Z(_l)nl(Snz +1J : b) Z(_l)n3 nz 1 : C) ( n+l 4{1 COS%J
1
7

— 3n° -2 " 3n°+1 - n

Exercise 5.Calculate approximately the sum of the seriesZ(—l) n— to within « = 0,001.

ri (3n—2)n
Exercise 6. Find the domain of convergence of each series:

n

2" cos™ N 0+l T : oS Ln I —1)"
DV "2 " (o +1) )Z[ j .

n=1 n+2 n=1

Exercise 7. Prove the uniform convergence of the series Z
n=1

interval [1;3].

Exercise 8. Find the sum of each power series on its interval of convergence:
271—}-3

a) Z n—l—l 2 - 3 b) ij;(_ 1)n—1(2n . 1)$2n—2'

. TTT o
Exercise 9. Find the Taylor series of the function f(z) = sm? at x =4 and determine its

radius of convergence.

_z
0,4 _ 2

Exercise 10. Calculate the integral j

0
Exercise 11. Find the first four nonzero terms of the power series for the solution of the Cauchy

problem: ¥ +zy=19y, y0)=1 ¢(0)=0.

dx towithin « = 0,001.
x

—-r—5 -5<z<0,
Exercise 12. a) Find the Fourier series for the function f(z) = on the
-5 0O<zx<5b

interval (—5,5); determine the sum of the series at the discontinuity points of the function and at
the ends of the interval; graph the function and the sum of the corresponding series.
b) Find the Fourier sine and cosine series for the function y =7 — > on the interval (0,7 ),

graph the function and the sum of each series.
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27
Exercise 1. Find the partial sum S and calculate the sum S of the series: Z—
n=2 T + n— 2
Exercise 2. Use the comparison tests to determine whether each series converges or diverges:
n’ +4 n
a Y )
\Flnn

1
~n = (n+1) Jﬁ]

Exercise 3. Determine the convergence or divergence (use the ratio test, root test or integral test):

0 n | o0 _ " 00

= e"(3n +1)! — | 4n 42 “~ n(In” 4n +16)
Exercise 4. Determine whether each series converges absolutely, conditionally, or diverges:

(o)

1—cos

2 ., arctgn " lom S nil n
a) Y () —e— b) Z(—l) n(2" —1); c) Z(—l) arcsin ———.
; vn'+n+5 n=1 =0 nd+2

Exercise 5. Calculate approximately the sum of the series Z(—l > towithin- «=0,001.

n
n=1 (1 + ng)
Exercise 6. Find the domain of convergence of each series:

6n’ n
00 1 P ’é/= ®© 2 r — 1
a z : 1 4= en(x 5z)+x n, b 2 : -1 n+l on |x2n, E )
) n—l[ n] ) nzl( ) 2n) (n+172 4

Exercise 7. Prove the uniform convergence of the series Z on the closed

interval [0;7].

Exercise 8. Find the sum of each power series on its interval of convergence:

00 n+1
a) —1)"*"'3n ¥ b)
;( ) nz; n+1

1
2v+4

at £ =1 and determine its

Exercise 9. Find the Taylor series of the function f(z) =

radius of convergence.
0,5

Exercise 10. Calculate the integral _[ In(1+ 2°)dr to within o = 0,001.

Exercise 11. Find the first four nonzero terms of the power series for the solution of the Cauchy
problem: " = (y)* +zy, y(0)=4, y'(0)=-
-6, 6<2x<0,
Exercise 12. a) Find the Fourier series for the function f(z) = on the
r—6, 0<z<6
interval (—6,6); determine the sum of the series at the discontinuity points of the function and at
the ends of the interval; graph the function and the sum of the corresponding series.

b) Find the Fourier sine and cosine series for the function y = Z — E on the interval (0,7 ),

graph the function and the sum of each series.
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