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TREATMENT OF EXPERIMENTAL RESULTS
Physics is an experimental science. This means that physical laws are estab-

lished and verified by the accumulation and comparison of experimental data.
However, the results obtained during any physical experiment always contain
certain errors, since measurement is practically impossible to do with absolute
precision. Possible errors play a significant role in comparing the results of the
experiment with the theoretical formulas, so you need to learn how to process the
measurement results.

1 Direct and indirect measurements
Measurement is the process of determining the physical value by an experimen-

tal way using special technical means. As a result of the measurement we find out
how many times the measured value is more (or less) than the corresponding value
taken for the unit of measurement. The measurements are direct and indirect.

Direct measurements are called the measurements, during which the required
value is found directly from the experimental data.

Indirect measurements are called the measurements, during which the value
is found based on the known dependence between this value and the quantities
subject to direct measurement. For example, the body density of a cylindrical
shape \rho is an indirect measurement and is determined by the formula

\rho =
4m

\pi d2h
where the mass, diameter and height of the cylinder (m, d and h) are determined
by the results of direct measurements.

2 Errors of direct measurements
The difference between the measured and the true values of the measured

magnitude is called the error (measurement error). Errors in measurements of
physical quantities are divided into two types: random and systematic.

2.1 Random (indeterminate) errors

Random errors are related to the measurement process. For example, by
measuring the distance of the flight of a body with a roulette, it is impossible to
lay it perfectly right; measuring body mass on scales, friction can not be avoided,
etc. Therefore, if you perform the same measurement several times, the results
will be slightly different.

Assume that, using the same equipment and measurement method, we made
N measurements of the quantity x and obtained N values: x1, x2, . . . , xN , where
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the quantity x1 is the result of the first measurement, x2 is the second, xN - Nth
measurement. To process the results, we have to answer two questions: how to find
the most probable value of the measured quantity? how to determine a random
measurement error? The answers to these questions are given by probability theory
and mathematical statistics.

According to the theory of probabilities, the most probable value of the
measured quantity (x\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{u}\mathrm{r}) is equal to average the arithmetic value \langle x\rangle obtained
as a result of measurements:

x\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{u}\mathrm{r} = \langle x\rangle = x1 + x2 + x3 + . . .+ xN
N

(E.1)

More informations

Only the measurements taken under the same conditions can be averaged, even
if it is considered that these conditions do not affect the measurement result.
If conditions are different, for example, measurements were made in different
laboratories, or the acceleration of free fall was determined on the Atwood
machine for different ratios h1 and h2, the best estimate of the measured value
is a weighted average. Determining the absolute error in this case also has its
own characteristics.

Random absolute error (\Delta x\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{d}) — an error resulting from all measurements,
is estimated using the so-called root mean squared error or root-mean-square
deviation \sigma \langle x\rangle and is calculated by the formula:

\Delta x\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{d} = t\alpha ,N\sigma \langle x\rangle =

\sqrt{}     
N\sum 
i=1

(xi  - \langle x\rangle )2

N \cdot (N  - 1)
. (E.2)

More informations

In mathematical statistics, it is substantiated that a more reliable estimate of
absolute random error (confidence interval) \Delta x\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{d} is determined by the:

\Delta x\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{d} = t\alpha ,N\sigma \langle x\rangle ,

where t\alpha ,N — the tabular value of Student’s statistical criterion for the selected
reliability of the hit measured quantity in the confidence level \alpha and the number
of measurements N , \sigma \langle x\rangle — root-mean-square deviation.
For confidence level of \alpha = 68\%, sufficient for laboratory work, and the number
of measurements N \leq 10 Student’s criterion t\alpha ,N \approx 1, therefore, in the following
formulas is not given.

2.2 Systematic (determinate) errors

Systematic errors (instrumental) are related to the choice of the device: it is
impossible to find a roulette with a perfectly accurate scale, absolutely accurate
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weights, ideally equal levers. Systematic errors are determined by the quality of
the device — its class, so they are often called instrumental errors. In Ukraine,
by magnitude of error devices are divided into seven classes. The accuracy class is
equal to the relative error of the instrument, given in percentages (here 0.1\%, 0.2\%,
0.5\%, respectively). Especially precise (precision) devices used in exact scientific
research are devices of classes 0.1; 0.2; 0.5 Such devices work, for example, in the
pharmaceutical industry. The technique uses less precise instruments — classes 1;
1.5; 2.5; 4.

For instruments with arrows with a well-known accuracy class r and scale
interval A:

\Delta x\mathrm{s}\mathrm{y}\mathrm{s}\mathrm{t} =
rA

100
. (E.3)

Devices with systematic errors used in the laboratory of physics are given in
Table T.1.

Table T.1

No Device Value of division \Delta x\mathrm{s}\mathrm{y}\mathrm{s}\mathrm{t}
1. Student’s ruler 1 mm \pm 0.5 mm

2. Ruler for measuring
the position of brackets 1 mm \pm 0.5 mm

3. Calipers 0,1 mm \pm 0.01 mm
4. Micrometer 0,01 mm \pm 0.005 mm
5. Electronic timer \pm 0.001 s
6. Stopwatch \pm 1 s
7. Scales training \pm 0.01 g

More informations

Sometimes there is no need to measure many times. For example, measuring the
length of the same section with a ruler, you are unlikely to get different results.
However, this does not mean that there are no random errors, because it is
impossible to accurately combine the zero of the ruler scale with the beginning
of the segment, in addition, it is quite probable that the end of the segment
does not coincide with the division of the scale. In such cases, we assume that
the random error is equal to one half of the smallest subdivision given on the
measuring device.

2.3 Total error. Absolute and relative errors of direct measurements

In order to correctly evalua\Delta x\mathrm{s}\mathrm{y}\mathrm{s}\mathrm{t}) and the random error (\Delta x\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{d}) due to
measuring errors. This total error is called the absolute measurement error (\Delta x)
and are determined by the formula:

\Delta x =
\sqrt{} 
\Delta x2\mathrm{s}\mathrm{y}\mathrm{s}\mathrm{t} +\Delta x2\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{d} (E.4)
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In this case, if one of the errors is more than three times smaller than the other
one, it can be neglected.

The absolute error itself does not characterize the quality of measurement. In
fact, if the distance of 10 m is measured with an error of 0.2 m, this indicates a
high quality of measurement. A completely different thing, if the same error has
been obtained, measuring a distance of 0.5 m. Therefore, it is better to speak of a
relative error.

The relative error \varepsilon x characterizes the measurement quality and is equal to
the absolute error (\Delta x) to the average (measured) value of the measured quantity
(\langle x\rangle ):

\varepsilon x =
\Delta x

\langle x\rangle \cdot 100\% (E.5)

Relative error is sometimes called precision.

3 Errors of indirect measurements. Absolute and relative errors
indirect measurements

Many physical quantities can not be measured directly. Their indirect measure-
ment has two steps. First, measure the values x, y, z, . . . , which can be obtained
by direct measurement, and then, using measured values, calculate the desired
value of f . How to determine the absolute and relative errors of measurements in
this case? The answer to this question is also given by probability theory.

In a particular case, if in the formula that defines the physical quantity f , only
the operations of multiplication and division are present, then the relative error
of this value is equal to the sum of the relative errors of the quantities which are
«included» in the formula. The table shows a number of formulas for calculating
relative errors for some functions without derivation.

The absolute error (\Delta f) can be found using the relative error (\varepsilon f ). In fact, by
definition \varepsilon f = \Delta f

f from here:

\Delta f = \varepsilon f \cdot f
Formulas for relative errors of some functions are given it Table T.2.

Table T.2

Type of formula
(function) f = x\pm y f = xy f = x/y f = xn

Relative error \varepsilon f = \Delta x+\Delta y
x\pm y \varepsilon f = \varepsilon x + \varepsilon y \varepsilon f = n \cdot \varepsilon x
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More informations

According to the theory of errors (J. Taylor’s theory), the absolute error \Delta f
of indirect measurements of the value f(x, y, z, . . .) regardless of the type of
function can be calculated by the general formula:

Deltaf =

\sqrt{} \biggl( 
\partial f

\partial x
\Delta x

\biggr) 2

+

\biggl( 
\partial f

\partial y
\Delta y

\biggr) 2

+

\biggl( 
\partial f

\partial z
\Delta z

\biggr) 2

+ . . . (E.6)

or approximately:

\Delta f =

\bigm| \bigm| \bigm| \bigm| 
\partial f

\partial x

\bigm| \bigm| \bigm| \bigm| \Delta x+

\bigm| \bigm| \bigm| \bigm| 
\partial f

\partial y

\bigm| \bigm| \bigm| \bigm| \Delta y +

\bigm| \bigm| \bigm| \bigm| 
\partial f

\partial z

\bigm| \bigm| \bigm| \bigm| \Delta z + . . . (E.7)

where
\bigm| \bigm| \bigm| \partial f\partial x

\bigm| \bigm| \bigm| — modulus of partial derivative of the function f(x, y, z, . . .) with
respect to x (during differentiation all other variables are considered to be
stable),

\bigm| \bigm| \bigm| \partial f\partial y
\bigm| \bigm| \bigm| ,
\bigm| \bigm| \bigm| \partial f\partial z

\bigm| \bigm| \bigm| — moduluses of partial derivative of the function with respect
to other variables, respectively.
By definition, of relative error is \varepsilon f = \Delta f

f , then taking into account (E.6):

\varepsilon f =
\Delta f

f
=

\sqrt{} \biggl( 
1

f

\partial f

\partial x
\Delta x

\biggr) 2

+

\biggl( 
1

f

\partial f

\partial y
\Delta y

\biggr) 2

+

\biggl( 
1

f

\partial f

\partial z
\Delta z

\biggr) 2

+ ... (E.8)

Example

To determine the acceleration of body motion a path s = 10.000 m with an
error \Delta s = 0.005 m at time t = 20 s was measured. Error measuring the time
\Delta t = 1 s. Find the absolute error of acceleration.

We know, that S = at2

2 . From here a = f (S, t) = 2S
t2 = 2\cdot 10

(20)
2 = 0, 050 m/s2.

Acceleration a is an indirect measurement, that is, the function of direct mea-
surements s, t.

\Delta f = \Delta a =

\sqrt{} \biggl( 
\partial a

\partial s
\Delta s

\biggr) 2

+

\biggl( 
\partial a

\partial t
\Delta t

\biggr) 2

=

=

\sqrt{} \biggl( 
2

t2
\Delta s

\biggr) 2

+

\biggl( 
 - 4s

t3
\Delta t

\biggr) 2

= 0, 005 m/s2

Result: a = 0.050\pm 0.005 m/s2.

4 How to write the measurement results correctly
The absolute error of an experiment determines the accuracy with which it

makes sense to calculate the measured value.
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The absolute error is always rounded off to overstatement of one significant
digit, and the result of the measurement – to the same order of magnitude (located
in the same decimal position) as absolute error. The final result for the value of x
is written as:

x\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s} = \langle x\rangle \pm \Delta x,

where x\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s} — measured value.
Significant digits are all digits of the number, starting with the first digit to

the left, different from zero, to the last digit, for the correctness of which one can
«guarantee». For example, in the number 320.0 four significant digits (3; 2; 0; 0), in
the number 0.32 – two (3; 2), in the number 0.3 – one (3).

The last formula means that the true value of the measured value lies in the
interval between x\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s} = \langle x\rangle  - \Delta x and x\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s} = \langle x\rangle +\Delta x. The absolute error \Delta x
is assumed to be a positive value, so x\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s} = \langle x\rangle +\Delta x is always the most probable
value of the measured quantity, and x\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s} = \langle x\rangle  - \Delta x is its least probable value.

Example

Let me measure acceleration g of free fall. As a result of the processing of the
experimental data obtained, an average value was found: g = 9.736 m/s2. For
an absolute error, \Delta g = 0.123 m/s2 was obtained. The absolute error must be
rounded up to one significant digit with an overstatement: \Delta g = 0.2 m/s2. Then
the result of the measurement is rounded up to the same order of magnitude as
the order of error, that is, to the tenth: g = 9.7 m/s2.
The answer according to the experiment should be presented as

g = (9.7\pm 0.2) m/s2.

5 Graphical method of processing results
Sometimes it’s much easier to process experiment results if to submit them as

a graph. Assume that it is necessary to determine the stiffness of the spring. It
was decided to use the formula k = F\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{s}\mathrm{t}

x .
To obtain the most accurate result, spring elongation at different values of

elastic strength was measured. A series of measurements at one point (i.e. for one
elongation x) was performed to determine the absolute error of the \Delta F elastic
force. As an error, \Delta x the instrumental error of the ruler was taken. Considered
the errors \Delta F and \Delta x for all points are the same (on the plot of the length of the
segments, of which the «crosses» are the same for all points).

The results of the measurements and the absolute errors are given in Table T.3.
Let’s illustrate the experimental data presented in the table in the form of

points, putting the value of absolute elongation of the spring x and measurement
error \Delta x (in the form of a segment whose length corresponds to the confidence
interval in which the measured elongation x falls into the abscissa) and on the
ordinate axis – the corresponding values of the force of elasticity F\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{s}\mathrm{t} and the
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Table T.3

x, 10 - 2\mathrm{m} F\bfe \bfl \bfa \bfs \bft , \mathrm{N} \Delta x, 10 - 3\mathrm{m} \Delta F\bfe \bfl \bfa \bfs \bft , \mathrm{N}

0.00 0.00 0 0
2.20 0.40 5 0.1
3.80 0.80 5 0.1
5.80 1.20 5 0.1
9.00 1.60 5 0.1
10.10 2.00 5 0.1
12.30 2.40 5 0.1
13.00 2.80 5 0.1

errors of its measurement \Delta F\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{s}\mathrm{t} (Figure F.1). Since the coefficient of rigidity
k does not depend on the elongation of the spring, theoretically, the plot of the
dependence of F\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{s}\mathrm{t}(x) should be the form of a straight line passing through the
origin of the coordinate.

Figure F.1
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Experimental values
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Let’s draw this line, How it can be done, we will describe below later. By
selecting an arbitrary point on the line and finding the corresponding values of
F\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{s}\mathrm{t} and x, we determine the mean value of the stiffness of the spring:

k =
F\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{s}\mathrm{t}

x
=

1.6 N
8 \cdot 10 - 2 m

= 20
N
m

More informations

In fact, when we drew a straight line to the experimental points, we approximated
the experimental data by linear dependence y = ax+b. The angular coefficient a
and the free term b can be determined using the Least Squares Metod. According
with dthis method:

a =
\langle xy\rangle  - \langle x\rangle \langle y\rangle 

D (x)
(E.9)

b = \langle y\rangle  - a \langle x\rangle (E.10)

where

\langle x\rangle = 1

N

N\sum 

i=1

xi (E.11)

\langle y\rangle = 1

N

N\sum 

i=1

yi (E.12)

\langle xy\rangle = 1

N

N\sum 

i=1

xi \cdot yi (E.13)

\bigl\langle 
x2
\bigr\rangle 
=

1

N

N\sum 

i=1

x2i (E.14)

D(x) =
\bigl\langle 
x2
\bigr\rangle 
 - \langle x\rangle 2 (E.15)

Formulas for estimating the errors in the parameters a and b:

\Delta a =
1\surd 
N

\sqrt{} 
D(y)

D(x)
 - a2 (E.16)

\Delta b = \Delta a
\sqrt{} 
D(x) (E.17)

To estimate, how the linear dependence is constructed corresponds to the
experimental data, it is possible with the help of linear correlation coefficient R:

R =
\langle xy\rangle  - \langle x\rangle \langle y\rangle 
D (x)D (y)

(E.18)

In laboratory and engineering calculations, the relative error with which the
function describes the experimental data is determined by the approximate formula:

11



\varepsilon =

\sqrt{} \bigl( 
\Delta x

\=x

\bigr) 2
+
\Bigl( 
\Delta y

\=y

\Bigr) 2

+ . . .

m
(E.19)

In the numerator, under the root, the squares of all types of relative errors of the
measured value are summed, m — the number of errors.

If there are several curves on the same graph, then each curve receives its
number, and the points on each of them have different markings. Under the figure,
write down its number and name, followed by an explanation of the physical
parameters that distinguish the numbered curves. The scale and boundaries in
which the argument and the function change, must be selected so that the graph
occupies the entire allocated area (Fig. F.2).

Figure F.2
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Control questions
1. What consecutive operations are performed by measuring any physical

quantity?
2. What types of measurement errors do you know?
3. How to find the most probable (average value) of the measured value in the

case of direct measurements?
4. How to determine a random measurement error?
5. What is the absolute systematic error determined?
6. What is called a relative measurement error?
7. How to round up and record measurement results correctly?
8. What is the advantage of the graphical method of processing the results of

the measurement?
9. How to draw up the graph correctly? How to display the errors on graph?

10. How to approximate the experimental data on the graph with the functional
dependence?
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Work 1

STUDY OF RECTILINEAR MOTION OF BODIES IN THE FIELDOF GRAVITY USING THE ATWOOD MACHINE

Work purpose:
The purpose of this work is to test Newton’s Second Law of Motion by utilizing an Atwood
machine apparatus and determination of the acceleration of free fall in the field of gravity of the
Earth. The Atwood machine will be used to study the relationship between mass, acceleration
and net forces, with the distribution of the mass between the two weights being the independent
variable and the time the dependent variable within the experiments.

Apparatus:Atwood machine consisting of one pulley with string attached over pulley to two
weight hangers; sets of gram-weights, meter stick and stopwatch.

Keywords:Rectilinear motion of bodies, acceleration, free fall acceleration.

References
[1] R. Feynman, R. Lejton, and M. Sends. Lectures on physics. Vol. 1. Mainly

mechanics, radiation, and heat. New Millenium Edition. Basic Books, 2010.
968 pp.
Please, read the following sections: Chapter 9 – 12.

[2] D. Halliday, R. Resnik, and J. Walker. Fundamentals of Physics. 10th ed.
1450 pp.
Please, read the following sections: Chapter 5,6.

[3] I. E. Irodov. Fundamental Laws of Mechanics. CBS publishers & distribu-
tors, 2004. isbn: 9788123903040
Please, read the following sections: § 2.2.

[4] Ch. Kittel et al. Mechanics (Berkeley Physics Course, Vol. 1). McGraw-Hill
Book Company, 1973. isbn: 0070048800
Please, read the following sections: Chapter 3, page 85.

1 Theoretibal background
The Atwood machine is designed to study the laws of motion of bodies in the

field of gravity. Of course, it is best to study the field of gravity by exploring the
free fall of bodies. But the acceleration of the Earth’s gravity is quite large, and
therefore the research must be carried out either at a very high device (height
from the Pisa Tower), or by means of devices that allow measuring time with high
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accuracy (fractions of a second). The Atwood machine allows you to slow down
the movement of the bodies at convenient speeds and using conventional devices
to determine the acceleration of free fall.

1

m

A

B

2

3

4

time

(a) The Atwood machine.

x

\vec{}TA

m

A

(M +m)\vec{}g

\vec{}TB

B

M\vec{}g

(b) Forces, acting on bodies.

Figure 1.1

The Atwood machine is depicted in Fig. 1.1a. Lightweight aluminum block
1 rotates freely around the horizontal axis, which is fixed to the top of the riser.
A thin thread is thrown through the block, at the ends of which are weights A
and B with equal masses M . If the body A loads a load of of m, then the balance
weights will be broken and the system will begin to move with acceleration.

On the vertical column are fixed three consoles 2, 3, 4. The console 2 fixes
the initial position of the body A. The body should be placed so that its the
bottom edge was on one level with a white stripe on the console. On the consoles
3 and 4 there are two photo sensors, which allow to measure the time of fall of the
body A. At the beginning of the experiment, the load carrier A with the load was
fixed thanks to the friction brake. Turning off the friction brake is released by the
weight carrier and the system of weight workers begins to move equally quickly.
When the body passes past the console 3, the additional load is removed using a
ring located on the same console, and then the system moves evenly. Thus, the
photo-sensors capture the time of a uniform motion of the body-taker.
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To determine the law of motion of body A, we choose a fixed reference system
centered on the axis of the block. Take a look in more detail the forces acting on
bodies A and B (Fig. 1.1b). The Ox axis is directed vertically down.

On the payload A there are two forces — the gravity (M +m)g, and the force
of the tension of the left part of the thread TA. According to the second law of
Newton:

(M +m) g  - TA = (M +m) a (1.1)

where a – acceleration of the body A.
Assuming that the thread combining the bodies does not stretch, the accelera-

tion of the body B equals the absolute value of acceleration of the body A and is
directed to the opposite side, that is, equals  - a. Thus, for the body B, the second
law of Newton has the form

Mg  - TA =  - Ma (1.2)

where TB – tension force of the right (in the figure 1.1b) the end of the thread.
The relationship between the forces of tension TA and TB can be found from

the equation of moments for the block, if you neglect the force of friction in the
shafts of the axis of the block:

(TA  - TB) r =
Ja

r
(1.3)

where J – moment of inertia of the block, r – its radius. From the equations
(1.1) – (1.2) we get the connection between the acceleration of free fall g and the
acceleration of the body a:

a = g
m

2M +m+ J/r2
(1.4)

Thus, the A carrier moves smoothly according to equation (1.4). If the weight
of the load is much less than the mass of the masses m \ll M , then the acceleration
a is much less than g, and therefore it is easier to measure. Formula (1.4) is much
simpler if we neglect the moment of block inertia:

a = g
m

2M +m
(1.5)

Using the formula (1.4) or (1.5), we can determine the acceleration of free fall.
To do this, measure acceleration a. To determine a, we will use the fact that at
the interval h1 between the consoles 2 and 3 the gravity travels equally rapidly
and acquires speed:

\upsilon =
\sqrt{} 
2h1a (1.6)
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After the carrier A is released from the load near the console 3, it passes the
distance h2 between the consoles 3 and 4 at a constant velocity v. Measuring the
time of a uniform motion t, we find

\upsilon =
h2

t
(1.7)

Comparing (1.6) and (1.7), we finally calculate the acceleration:

a =
h2
2

2h1t2
(1.8)

Deriving the formula (1.8) we have neglected the force of air resistance.

2 Experimental details

The travel time of the weight is measured by an electronic stopwatch, which is
retracted and disabled when the optical axis of the photosensors 3 and 4 passes,
respectively. The stopwatch is ready for the next measurement only after pressing
the Reset button, which sets the stopwatch to zero.

In order for the system of heavy-duty loads to begin to move, it is necessary to
press the Start button (with locking). In this case, the friction brake, which
holds the weight in the initial position, is turned off; the stopwatch comes to a
standby state and starts when the photo dimension body is transmitted. After
passing the photo sensor, the stopwatch switches off and the friction brake is
activated.

The drop height is determined by the scale applied to the riser, by the difference
in positions of the optical axes of the upper and lower photosensors. The weight
of each of the weights and the mass of goods is determined experimentally. The
measurement error of the consoles 2, 3, 4 is \pm 1 mm. The measurement error
of time is determined experimentally. Instrumental measurement error of time –
0.001 seconds.

3 Tasks

Before starting systematic measurements, it is useful to do some experiments
with different h and m to ensure that the installation is working properly.

1. Determine the acceleration of the system of connected body with the load
(Fig. 1.1a). Fix the console 3. For selected h1 and h2 run a series of 10
measurements of the time t of the vehicle system between the 3 and 4
consoles. Is there enough data to determine a?

2. Repeat the experiment for all available loads and their various combinations.
3. Change the position of the console 3 and repeat steps 2 and 3 for new values

h1 and h2. Do this for the third pair h1 and h2.
4. Weigh heavyweights of m and M . Assess the value of g from your data.
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5. Make the necessary measurements to estimate the moment of inertia of the
dural unit 1. Consider the sources of probable errors. Rate them. If you
need experiments for this, make them.

4 Processing the results of the experiment
1. Average time t for each experiment with a separate load m and fixed h1 and

h2. Determine the random error of time and compare with the error that
the stopwatch inserts. Put the data in the table.

2. For each case, using the formulas (1.5) and (1.8), calculate the acceleration
a and g. Identify the errors.

3. Construct graphic dependence g from 1/m. What type is this relationship?
Using the obtained dependence, determine the value of g. By which masses
the resulting value is consistent with the best g tabulated?

4. Evaluate the error of the experiment. Make conclusions.

Control questions
1. Formulate the basic kinematic quantities and explain their physical meaning.
2. Write down the laws of velocity variation with time and the laws of motion

in vector and coordinate forms for uniformly accelerated motion.
3. Formulate the Newton’s Laws.
4. What is free fall? What is the acceleration of free fall g?
5. Is the motion of the bodies in the work free fall?
6. At what stage the motion of bodies is uniform (uniformly accelerated)?
7. Apply Newton Second Law for the motion of bodies in work.
8. Why to determine g we plot the dependence graph of 1/m, but not of m?
9. Is it possible to neglect the moment of inertia and friction? How do they

affect the definition of g for different loads? Is it possible somehow to prevent
this effect when calculating g?
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Work 2

STUDY OF THE LAWS OF ROTATIONAL MOTION ON THEEXAMPLE OF OBERBEK PENDULUM

Work purpose:
study of the rotational motion of the Oberbeck pendulum, depending on the applied torque
moment and the moment of inertia of the pendulum.

Apparatus:Oberbeck pendulum; set of loads; stopwatch; scale ruler, scales.

Keywords:Rotational motion of bodies, angular acceleration, torque, moment of inertia
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[3] I. E. Irodov. Fundamental Laws of Mechanics. CBS publishers & distribu-
tors, 2004. isbn: 9788123903040
Please, read the following sections: § 5.4.

[4] Ch. Kittel et al. Mechanics (Berkeley Physics Course, Vol. 1). McGraw-Hill
Book Company, 1973. isbn: 0070048800
Please, read the following sections: Chapter 8.

1 Theoretibal background
The rotational motion is an example of a simple mechanical motion. To

describe the rotational motion, the following categories are used: the moment of
inertia of the body and the moment of force (also known as torque). For a single
material point, the moment of inertia relative to the axis of rotation is called the
product of mass on the square of the distance to this axis. The moment of inertia
J of the system of material points with mass mi is the sum of the moments of
individual points.

J =
\sum 

i

mir
2
i (2.1)
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Torque \vec{}M relative to the point is called the vector multiplication of radius-vector
\vec{}r from the point to the place of application of force on the active force:

\vec{}M = \vec{}r \times \vec{}F (2.2)

Module (absolute value) of the moment of force:

M = r \cdot F \cdot \mathrm{s}\mathrm{i}\mathrm{n}\alpha (2.3)

where \alpha – angle between the vectors \vec{}F and \vec{}r. R \mathrm{s}\mathrm{i}\mathrm{n}\alpha – this is shoulder of force,
that equals to length of the perpendicular, carried out from the beginning of the
radius vector \vec{}r to the line of force. The torque relative to the rotation axis is a
scalar value equal to the projection of the vector moment of force on this axis
relatively to any point on the axis.

The motion of a body with a moment of inertia J , rotating at an angular
velocity \omega around the stationary axis, is described by the following equation:

d

dt
(J\omega ) = M (2.4)

where M – moment of external forces relative to the axis rotation. When the solid
is rotated its moment of inertia does not depend on time and equation (2.4) is
simplified:

J
d\omega 

dt
= M (2.5)

The equation (2.5) is similar to the Newton equation ma = F , which describes
the motion of a material point. The moment of force M plays the role of force F ,
the moment of inertia J plays the role of mass m, the angular acceleration \beta = d\omega 

dt

is analogous to linear acceleration a = dv
dt .

Think about it

1. Why does the bicycle wheel have many knitting needles? What would be
if the knitting needles were only two?

2. Why, when they throw a stone, they try to take their hand as far away
from the body as possible?

2 Theoretical basis of the experiment

The Oberbeck pendulum is schematically represented in Fig. 2.1. Four needles,
fixed on the sleeve, form one another with straight angles. The common axis passes
through the sleeve and two pulleys with radii r1 and r2. The axis is secured in
the needle shafts so that the entire system can rotate freely around the horizontal
axis. The moment of inertia of the device can be changed by moving the loads m
along the needles.

A thin thread is wound on one of the pulleys of the pendulum. The weight of
the known mass is tied to the thread. (The set includes bodies of different masses).
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Rotating moment is formed by the force of the thread tension T :

Mi = riT, (2.6)

where i = 1, 2.

The force T can be found from the mass equation of body with mass m0:

m0g  - T = m0a (2.7)

Acceleration a is proportional to angular acceleration \beta :

ai = \beta ri, (2.8)

where i = 1, 2 and is determined experimentally. Indeed, by measuring the time t,
for which the body from the state of rest decreases by distance h, we find a by the
formula

a =
2h

t2
. (2.9)

The system of equations (2.6) – (2.9) allows determining the moment of inertia
of the pendulum and checking the general equation of dynamics (2.5) provided
that the moment of friction of the Mfric relative to the pendulum axis is much
smaller than the moment of tensile force of the thread T .

In fact, the moment of friction of the Mfric can be quite large and lead to
distortion of measurement results. At first sight, it seems that reducing the role of
friction forces can be due to an increase in the mass of solid m0. But such a view
is false because

1. an increase in the mass m0 leads to an increase in the pressure of the
pendulum on the axis and, thus, to increase the frictional forces;

2. an increase in m0 leads to a decrease in the time of the fall of the weight,
which reduces the accuracy of the measurement of time.

In the proposed installation, the friction forces are reduced due to the use of
needle bearings for attaching the pendulum axis. In spite of this, it is impossible
to completely prevent the influence of friction force and this should be taken into
account when processing the results of the experiment.

When processing the results of an experiment it is convenient to rewrite the
equation (2.5) in such a way that it contains the moment of frictional forces in
explicit form:

J
d\omega 

dt
= M  - Mfric. (2.10)

The moment of inertia of the system is determined by the formula:

J = J0 + 4mR2 (2.11)

where J0 – moment of inertia of the system without loads, R – distance from the
axis of rotation to the center of mass of loads.
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Figure 2.1

3 Experimental details
Time of movement of the body is measured by an electronic stopwatch, which

is activated and deactivated by signals from photo sensors. The beginning and
end of the motion of the body is recorded by its passage of the optical axis of the
photodetector, so before the experiment begins, the lower end of the body should
be located directly above the optical axis of the upper photosensor.

The photosensors and the digital display are activated when the device is
switched on. This also includes a friction brake that holds the pendulum in a
given position. The brake is deactivated if you press the Start button and
hold it in the pressed state.

The height of fall is determined by the scale applied to the riser, by the
difference in positions of the optical axes of the upper and lower photosensors.

4 Tasks
1. Investigate the rotational motion of the pendulum under the influence of

various weights at a constant moment of inertia of the system.
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(a) Place the loads m at a certain distance R from the axis of rotation
and achieve the indifferent equilibrium of the pendulum. Measure and
record the distance R.

(b) Conduct an experiment with the weight of the mass m0, measuring the
time of fall of the weight. The experiment should be repeated 8 - 10
times, and then t should be averaged.

(c) Repeat the experiment of point 1b on both pulleys for 3-4 different
values of m0.

2. Repeat measurements 1b, 1c for 3  - 4 different values of the moment of
inertia of the system.

3. Repeat measurements 1b for 3 - 4 different values of the masses m0 for the
system without loads m.

5 Processing the results of the experiment
1. Using measurements 1b and 1c find the angular acceleration \beta and the torque

moment M corresponding to the movement of each of the bodies on both
pulleys for all values of the moment of inertia of the system J . Determine
the error.

2. For each value of R, graphically represent the dependence of the angular
acceleration \beta on the rotating torque M . Determine the moments of inertia
of the system J and moments of the friction forces of the Mfric. What errors
have these values?

3. Compare the obtained values of Mfric. Does the value of Mfric depend on
the moment of inertia of the system? Averaging the value of Mfric.

4. The results of the definition of J at different values of R, are presented
graphically as the dependence of J(R2). Consider why it is proposed to build
such a dependence. After processing the results, determine the moment of
inertia of the system without loads J0. How do the results of the experiment
with formula (2.11) consist? How does the magnitude of the experiment
error with JB? What are the possible sources of experimental errors?

Control questions
1. Formulate the basic kinematic quantities of rotational motion and explain

their physical meaning.
2. Between what quantities does the basic law of dynamics of rotational motion

establish a relationship?
3. How is the magnitude and direction of the moments of forces (torque)

determined? In what units is this value measured?
4. What determines the moment of inertia, in what units is it measured? How

to understand that the moment of inertia is an additive quantity? How it
was used in the work?

5. Formulate and prove the parallel axes theorem.

23



Work 3

STUDY OF THE OF CONSERVATION LAWS OF ENERGY ANDLINEAR MOMENTUM FOR COLLISION OF THE BALLS

Work purpose:
On the example of collision of balls check the conservation laws; calculate the energy dissipation
coefficient and the mass correlation.

Apparatus: experimental installation, to which the balls are fastened; set of balls of different
weights and different materials; electronic stopwatch, scales.

Keywords:Total mechanical energy, linear momentum, conservation laws, collisions, absolutely
elastic collision, absolutely inelastic collision.
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1 Theoretibal background
When moving, the bodies often collide each other. During the colission, both

bodies are deformed, and as a result, the kinetic energy of the body before the
collision, partially or completely transforms into the potential energy of the elastic
deformation and the internal energy of the bodies. There are two limiting types of
collision – absolutely elastic and absolutely inelastic.

Consider these processes on an example of an elastic and inelastic collision
in a one-dimensional space. This will greatly simplify mathematical calculations,
without changing the essence. Simplification refers to the velocity, which in a
one-dimensional space is a scalar. Of course, in general, velocity is a vector.
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\vec{}v1 \vec{}v2 \vec{}v

Figure 3.1. Inelastic collision

With a completely inelastic collision, one body stick to another one. In this case,
the potential energy of deformation does not arise; kinetic energy is completely or
partially converted into internal energy; after the collision, both bodies move at
the same speed.

Suppose two bodies with masses m1 and m2 move towards each other (Fig. 3.1)
with velocities v1 and v2, respectively. After an inelastic collision, they form
one body of net mass m1 + m2, which moves at a velocity v. From the linear
momentum conservation law:

m1v1  - m2v2 = (m1 +m2)v (3.1)

From here we find the speed of the bodies after the collision:

v =
m1v1  - m2v2
m1 +m2

. (3.2)

In the case of an inelastic collision there is a law of conservation of momentum.
Mechanical energy is not stored. Indeed, the total mechanical energy of the system
before the collision (initial energy) is equal to the sum of the kinetic energies of
each of the bodies:

E\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l} =
1

2

\bigl( 
m1v

2
1 +m2v

2
2

\bigr) 
. (3.3)

Mechanical energy after an collision (final energy) is defined as

Efi\mathrm{n}\mathrm{a}\mathrm{l} =
1

2
(m1 +m2) \upsilon 

2 =
1

2

(m1\upsilon 1  - m2\upsilon 2)
2

m1 +m2
. (3.4)

When one writing the second equality in formula (3.4), we used the correlation (3.2).
It is convenient to characterize the recoverment of mechanical energy using the
coefficient k, which is defined as the ratio of Efi\mathrm{n}\mathrm{a}\mathrm{l}/E\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}. Taking into account (3.3),
(3.4), we obtain

k =
Efi\mathrm{n}\mathrm{a}\mathrm{l}

E\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}
= 1 - m1m2(v1 + v2)

2

(m1 +m2)(m1v21 +m2v22)
. (3.5)

Formula (3.5) indicates that the coefficient of mechanical energy recovery at a
non-elastic collision is always less than one. In the case when one of the bodies,
say, the first, before the collision was immovable (that is v1 = 0), k is determined
only by the mass ratio of the bodies:

k =
m2

m1 +m2
(3.6)
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\vec{}v10 \vec{}v20 \vec{}v1 \vec{}v2

Figure 3.2. Absolutely elastic collision

In the case of equal masses (m1 = m2) and nonzero initial velocities:

k = 1 - (v1 + v2)
2

2(v21 + v22)
. (3.7)

and depends only on the initial velocities.

Is called an absolutely elastic collision, in which the mechanical energy of
the system is stored. When the elastic collision of the body first deformed and
their kinetic energy passes into potential energy of elastic deformation. Then
the bodies restore their shape and push away each other, while the energy of the
elastic deformation again becomes kinetic. Body movement after elastic collision
is determined by laws conservation of momentum and kinetic energy. Consider
the central collision of two bodies moving toward each other with velocities v1 and
v2 (Fig. 3.2).

If the bodies move only translationally and do not rotate, then the equations
of conservation of energy and momentum have the following form:

1

2

\bigl( 
m1v

2
10 +m2v

2
20

\bigr) 
=

1

2

\bigl( 
m1v

2
1 +m2v

2
2

\bigr) 
, (3.8)

m1v10  - m2v20 =  - m1v1 +m2v2, (3.9)

where v1 and v2 – body speed after the collision and it is believed that after the
collision of the body move along the same line as before the collision. Rewrite
equations (3.8), (3.9) in the following form:

m1 (v10 + v1) (v10  - v1) = m2 (v20 + v2) (v2  - v20) , (3.10)
m1 (v10 + v1) = m2 (v20 + v2) . (3.11)

Comparing (3.10) and (3.11), we arrive at the conclusion that

v10  - v1 = v2  - v20. (3.12)

From (3.11) and (3.12) it is easy to determine the velocity of both bodies after
the collision:

v1 =
(m2  - m1) v10 + 2m2v20

m1 +m2
, (3.13)

v2 =
(m1  - m2) v20 + 2m1v10

m1 +m2
. (3.14)
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(b) Calculation of the ball’s lifted height.

In the case when the first body before the collision was in a state of rest
(v10 = 0), formula (3.13) – (3.14) takes the form:

v1 =
2m2

m1 +m2
v20, (3.15)

v2 =
m1  - m2

m1 +m2
v20. (3.16)

Formula (3.15) – (3.16) indicates that in case of equal masses (m1 = m2) the
bodies after the collision exchange of the speedes, namely, after the collision, the
second body stops, and the first body moves with the speed v20, which is the
second body before the collision. The greater the difference between body masses,
the less the speed of the first and the greater speed of the second body after the
collision.

2 Theoretical basis of the experiment
Experimental installation is shown in Fig. 3.3a. Two balls, 1 and 2, are

suspended to a riser on conducting threads of length l. In the bottom of the riser
there are two scales 3 and 4, by which the deviations of balls from the equilibrium
position are measured.

At the beginning of the experiment, the ball 1 is in equilibrium, and the
ball 2 is deviated at an angle \alpha from the vertical axis and fixed with the help
of an electromagnet 5. After the electromagnet is switched off, ball 2 begins to
move (initial ball speed is zero). The velocity of the ball 2 before the collision is
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determined at the initial angle of deviation \alpha , based on the law of conservation of
mechanical energy.

mgh =
1

2
mv220 (3.17)

where h – height at which the ball was lifted, g – acceleration of free fall, v20 –
the velocity of the ball 2 at the point of equilibrium. For geometric reasons (See
Fig. 3.3b):

h = l(1 - \mathrm{c}\mathrm{o}\mathrm{s}\alpha ) = 2l\mathrm{s}\mathrm{i}\mathrm{n}2
\alpha 

2
(3.18)

Thus, if the maximum angle of deviation of a ball is equal to \alpha then its velocity
at the equilibrium point is determined by the formula:

v20 = 2
\sqrt{} 
gl \mathrm{s}\mathrm{i}\mathrm{n}

\alpha 

2
. (3.19)

Similarly, by measuring the angle of deviation of the ball 1, we can find its
velocity v20 immediately after the collision.

In the theoretical guide, we considered two limiting cases of an absolutely
elastic and absolutely inelastic impact. In real experiments, during impact, energy
is partially dissipated. In this paper, the energy dissipation coefficient \beta , which
is defined as the ratio of energy loss during impact with the initial energy, is
measured:

\beta =
E\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}  - Efi\mathrm{n}\mathrm{a}\mathrm{l}

E\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}
. (3.20)

Consider the case when the first ball before the impact is at rest (v20 = 0).
Then the laws of conservation of energy and momentum (3.8), (3.9) taking into
account (3.20) will look like:

(1 - \beta )m2v
2
20 = m1v

2
1 +m2v

2
2, (3.21)

m2v20 = m1v1  - m2v2. (3.22)

(in the formula (3.22) the modules of velocities are inserted!).

An experimental setup allows you to measure v20 and v1 speeds. Consequently,
by excluding from equations (3.21), (3.22) v2, we can find the coefficient \beta . For
identical balls:

\beta =
2v1 (v20  - v1)

v220
= 2R (1 - R) , R =

v1
v20

(3.23)

On the other hand, according to the known coefficient \beta of equations (3.21),
(3.22) we can find the relation of the masses of the impacting balls. Indeed, solving
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these equations for v2, m1/m2 we obtain:

m1

m2
=

2 - R\pm 
\sqrt{} 
(2 - R)2  - 4\beta 

2R
. (3.24)

3 Experimental details
The electromagnet is switched off by pressing the Reset button. In the

intervals between experiments, it is desirable to switch off the electromagnet!
The time of contact of the balls is fixed by an electronic stopwatch, which is

attached to the electrical circuit formed by balls and threads of the suspension.
When impact balls electrical circuit is closed and the stopwatch is triggered.

4 Tasks
1. Take two steel balls with the same numbers. Weigh them and carefully

fasten them on the hanging. Ensure that the contact is impact-centered.
2. Deviate the ball 2 (Fig. 4.3.) to some angle and release. Measure the angle

of deviation of the ball 1 after the first impact. Measurement should be
repeated at least 10 times.

3. Repeat measurement for point 2 for different initial angles of deviation of
the ball (we recommend 5\circ , 10\circ , 15\circ ).

4. Repeat steps 2, 3 for another pair of identical balls (you only need to explore
three pairs of balls).

5. Take a couple of balls with different numbers. Weigh them. Repeat steps 2
and 3. Why do you think the balls have different and identical numbers?

6. Select two more pairs of balls with different numbers and repeat experiment
5. So you have to get data for 6 pairs of balls at the three angles for each
pair (only 18 measurements of the angle of deviation).

7. Think about what kind of mistakes make the devices? Can they evaluate
how to do it? What are they: random or systematic?

Control questions
1. What are elastic and inelastic collisions?
2. Formulate and derive the laws of conservation of momentum and total

mechanical energy for elastic and inelastic collisions. In what conditions
these laws can not be applied?

3. What are central and noncentral collisions? Explain how the balls will move
for a noncentral collision.

4. Calculate the fraction of the energy of the balls passing into the internal
energy during an inelastic collision, using the results of the laboratory work.

5. How precisely are the laws of conservation of momentum and mechanical
energy in the experiments carried out? What leads to deviations from
conservation laws?
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Work 4

STUDY OF PHYSICAL PENDULUM

Work purpose:
Study of physical pendulum and determination of the acceleration of free fall by means of a
reversible pendulum.

Apparatus:Physical pendulum (homogeneous steel rod with a pair of loads and prisms); tripod
for pendant suspension; mathematical pendulum; oscillation counter; stopwatch; scale ruler.

Keywords:Physical pendulum, mathematical pendulum, harmonic oscillations, axis of rotation,
proper oscillation frequency
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1 Theoretibal background
A physical pendulum is called any solid which can freely fluctuate around

the horizontal axis under the action of gravity. The motion of this pendulum is
described by the equation:

J
d2\varphi 

dt2
= M. (4.1)

where J – moment of inertia of the pendulum, \varphi – angle of deviation of center of
mass of pendulum from equilibrium position, M – torque acting on pendulum, t –
time. For example, for a homogeneous rod of length l, according to Parralel Axes
theorem, the moment of inertia is equal to:

J = ms2 +
ml2

12
(4.2)
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where m – mass of pendulum, s – distance between the center of mass and the
axis of rotation.

Torque of gravity force acting on the pendulum is based on the formula:

M =  - s \cdot mg \mathrm{s}\mathrm{i}\mathrm{n}\varphi 

If the angle \varphi is small, then \mathrm{s}\mathrm{i}\mathrm{n}\varphi \approx \varphi , and

M \approx  - s \cdot mg\varphi .

A well-tuned pendulum can make a few hundred oscillations without noticeable
extinction, so moment of frictional force in first approximation can be neglected.
Substituting expression for M in (4.1), it is easy to obtain an equation for oscilla-
tions

\"\varphi + \omega 2\varphi = 0 (4.3)

with frequency

\omega =

\sqrt{} 
mgs

J
(4.4)

Equation (4.3) describes the harmonic oscillations that occur under the law
\varphi (t) = A \mathrm{s}\mathrm{i}\mathrm{n} (\omega t+ \delta ) .

The amplitude of the oscillations A and their phase \delta depends on the mode
of oscillation excitation, that is, on the initial conditions. The proper oscillation
frequency \omega , according to (4.4), is determined only by the parameters of the
pendulum J and s.

The period of oscillations of the physical pendulum T = 2\pi /\omega , as well as its
frequency, does not depend on the phase and amplitude of the oscillations and is
equal to

T = 2\pi 

\sqrt{} 
J

mgs
(4.5)

The motion of the pendulum is described by the equation of harmonic oscil-
lations (4.3) only in the case of small amplitudes, namely, when \mathrm{s}\mathrm{i}\mathrm{n}\varphi \approx \varphi . The
suitability of this assumption can be verified experimentally, ensuring that the
period of oscillation is independent of amplitude.

If you type designation

L =
J

ms
(4.6)

then formula (4.5) will have the same form as the formula for the period of
oscillations of a mathematical pendulum with a length L:

T = 2\pi 

\sqrt{} 
L

g
(4.7)
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Therefore, the value of L is called the reduced length of the physical pendu-
lum (Fig. 4.1b). Point O\prime that is remote from the support point O at a distance L
is called the center of the oscillation of the physical pendulum. The oscillation
point of the pendulum and the pivot center of the pendulum are reciprocal, that
is, when the pendulum is oscillated around the point O\prime , the oscillation period
must be the same as in the case of the oscillation around point O. We propose to
prove this fact on your own.

2 Theoretical basis of the experiment

In this paper we use the method of finding the acceleration of free fall by deter-
mining the period of free oscillations of the physical pendulum by the formulas (4.5),
(4.7).

Here J – the moment of inertia of the pendulum relative to the oscillation axis,
m – its mass, s is the distance from the center of mass to the axis of oscillation,
L – the reduced length of the physical pendulum.

The mass of the pendulum and the period of its oscillations can be determined
with a sufficiently high accuracy. But it is difficult to do this for the moment of
inertia. Avoiding these difficulties is helped by the method of a reversible pendulum.
In it, instead of J , the reduced length of the pendulum is measured (4.6).

This method is based on the fact that the period of oscillations of the physical
pendulum will not change, if you move it so that the new point of the suspension
is the former center of rotation. This point is located at a distance equal to the
reduced length of the physical pendulum from the oscillation axis and on one
straight line with the axis of oscillation and the center of mass.

The reversible pendulum used in this work consists of a steel rod on which two
loads of B1 and B2, each with a mass m, and two supporting prisms P1 and P2

(Fig. 4.1a).
Assume that we found such position of loads in which the periods of oscillations

of the pendulum T1 and T2 coincide around the prisms of P1 and P2 that is,
\sqrt{} 

J1
mgs1

=

\sqrt{} 
J2

mgs2
(4.8)

This equality is possible provided that combined lengths L1 and L2. are equal.
On the other hand, by Huygens-Steiner theorem

J1 = ms21 + J0 J2 = ms22 + J0 (4.9)

where J0 – moment of inertia of the pendulum relative to the axis passing through
the center of mass in parallel with the oscillation axis. Deleting from formulas (4.8),
(4.9) J0 and m, and using (4.5) we find that

g =
4\pi 2 (s1 + s2)

T 2
(4.10)
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Thus, according to (4.7), L = s1+ s2. Note that formula (4.10) is derived from
formulas (4.8), (4.9) provided s1 \not = s2, otherwise the formulas (4.8) and (4.9) are
satisfied identically.

time

P1

B1

P2

B2

(a)

O

m\vec{}g

O\prime 

s

\varphi 

(b)

Figure 4.1

In deriving formula (4.10), we neglected the difference between periods T1 and
T2. In fact, it is impossible to ensure that the periods mentioned are not the same,
because

T1 = 2\pi 

\sqrt{} 
J0 +ms21
mgs1

, T2 = 2\pi 

\sqrt{} 
J0 +ms22
mgs2

(4.11)

Where we have

T 2
1 gs1  - T 2

2 gs2 = 4\pi 2
\bigl( 
s21  - s22

\bigr) 

Taking this into account, we obtain more accurate formula for g:

g = 4\pi 2 s21  - s22
T 2
1 s1  - T 2

2 s2
= 4\pi 2 L

T 2
0

(4.12)
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where the period entered

T 2
0 =

T 2
1 s1  - T 2

2 s2
s1  - s2

(4.13)

Let’s analyze the limits of the application of our theory. For this we consider
the error of the definition of T0, which itself depends on the errors of measuring
periods \sigma T1

and \sigma T2
:

\sigma T0
=

\sqrt{} \biggl( 
\partial T0

\partial T1

\biggr) 2

\sigma 2
T1
+

\biggl( 
\partial T0

\partial T2

\biggr) 2

\sigma 2
T2

(4.14)

With good equipment when \sigma T1

T1
\approx \sigma T2

T2
\equiv \varepsilon T \ll 1 we have

\sigma T0
=

\sqrt{} 
s21T

4
1 + s22T

4
2

(s1  - s2) (s1T 2
1  - s2T 2

2 )
\varepsilon T (4.15)

Note that with s2 \approx s1 error significantly increases and this is reflected in the
accuracy of determination g.

Therefore, the values of s2 and s1 should not be very close. On the other
hand, if these values are very different, then the period of oscillations increases
substantially, hence, the time of observation increases and, as a result, the role of
the force of friction also is increasing. Thus, while performing the experiment, it
is necessary to ensure that the ratio of s1/s2 is not very large and not very small,
the recommended interval

1, 5 < s1/s2 < 3 (4.16)

3 Experimental details
The system for determining the oscillation period consists of an electronic

stopwatch and period counter. The period counter works like this. Near the
position of the equilibrium of the pendulum is a photosensor. During oscillation,
the rod crosses the axis of the photosensor and thus sends signal to the counter. The
counter registers every second pulse. Since during the period the pendulum passes
through any position twice, in this way the display of the counter corresponds
to the number of periods. The period counter is activated by the Reset
button, which simultaneously resets the counter indication. Simultaneously with
the counter the electronic stopwatch is switched on. On the digital display of
the counter of periods you can observe the number of oscillations made by the
pendulum (from the moment the counter is turned on). Turning on of the Stop
button causes the counter of the periods and the stopwatch to stop after pendulum
passes another equilibrium position. Therefore, if necessary, to investigate a certain
number of periods (suppose 10), the Stop button should be pressed at the
moment when the digital display shows the number of periods per unit less than
necessary (in the example given, 9).
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Thus, the recommended measurement procedure is as follows:
1. deflecting the rod from the equilibrium position, excite the oscillations;
2. turn on the Reset button;
3. if necessary, to measure the time of n oscillations (for rough measurements

n = 10 - 15, for exact n = 20 - 25 periods) turn on the Stop button at
a time when the number of periods appears on the display of the number
n - 1;

4. determine the period of one oscillation, dividing the time recorded by the
stopwatch on the number of periods.

Own error of measurement of electronic stopwatch \pm 0.001 sec.
In this paper, for the independent estimation of the reduced length of the

physical pendulum, a mathematical pendulum model is used, which is a massive
ball suspended on two threads. The length of the threads is changed by winding
them on the axis. Turning the upper console on which the pendulum is mounted at
an angle 180\circ so that the pendulum ball crosses the optical axis, one can measure
the period of this pendulum. (The risk on the ball should be on the same level as
the photosensor).

4 Tasks
1. Define a range of amplitudes in which the oscillation period of the pendulum

T is independent of the amplitude. To do this, deviate the pendulum from
the equilibrium position at some angle \varphi 1 (about 10\circ ) and measure the time
at which the pendulum will make 50 oscillations. According to the results of
the experiment, find the period of oscillation T .
Repeat the experiment by reducing the initial deviation by 1.5 - 2 times,
and then again reducing the amplitude again. If the periods coincide with
the limits of the measurement error, then for further measurements, you
can choose any initial deviation, less than \varphi 1. If the periods are signifi-
cantly different, one must study the behavior of the pendulum with smaller
deviations.
Find out what makes the biggest mistake in the definition of the period and
try to reduce it.

2. Fix the loads on the rod asymmetrically, so that one of them is located near
the end of the rod, and the other one is near the middle of the rod. Place
the support prisms on both sides of the center of the masses of the system.
Measure the periods of oscillation of the pendulum T1 and T2 around the
prisms of P1 and P2.

3. Investigate the dependence of T1 and T2 oscillation periods on load positions
B1 and B2. It is enough to measure the time of 10 - 15 oscillations. Find
out:

\bullet which of the load has a greater effect on the size of the periods;
\bullet which of the load significantly affects the difference between periods.
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4. Moving loads, which significantly affects the difference in periods, reach a
rough coincidence of periods. Define periods for 10 - 15 oscillations. Measure
the distance between the loads and their position on the rod, find the position
of the center of the masses of the pendulum. Estimate the distances s1 and
s2. As noted above, they must differ by at least 1.5 and not more than 3
times.

5. Changing the position of the load, which has less effect on the periods,
achieve a coincidence of T1 and T2 periods with an accuracy of not less than
1%. Check whether the s1 and s2 inequalities (4.16) in this case are satisfied.
The final measurement of the period of oscillation of the pendulum should
be done in 20 - 30 full oscillations. It is also necessary to make sure that
the effect of friction with such a number of oscillations is insignificant (i.e,
the amplitude of oscillations is not noticeably diminished).

6. Find the reduced length of the physical pendulum. Check this value using
the mathematical pendulum model. By changing the length of the pendulum
with a coil, achieve the coincidence of periods of mathematical and physical
pendulums within the accuracy of measurements.

7. Repeat the measurement for several (not less than 4  - 5) values of the
reduced length of the physical pendulum (the distance between the reference
prisms).

5 Processing the results of the experiment
1. Plot the dependence graph L on T 2, and then determine the acceleration of

free fall (according to formula (4.10)).
2. Determine the error of the calculations at each step of the experiment and

estimate the overall error.

Control questions
1. Types of pendulums. Give the definition of a physical pendulum?
2. What are oscillations? What oscillations are harmonic?
3. What are period and amplitude of oscillations?
4. With which simplifying assumptions the formula is obtained (4.5)?
5. What is the period of oscillations of mathematical pendulum? What is the

reduced length of a physical pendulum?
6. Explain how the physical pendulum will move if the support point is located

in the center of the mass of the pendulum.
7. What is the absolute measurement error of the period of the oscillation of

the pendulum in this experiment?
8. Get (4.5), (4.10), (4.12).
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