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The study is dedicated to the issue of investigation of the lung sounds digital analysis processing methods,
searching for new informative features of pathological respiratory sounds and using machine learning methods
for classifying the state of the bronchopulmonary system. In particular, the use of various methods of
lung sounds analysis is considered, namely: frequency, time-frequency, wavelet, and mel-frequency cepstral
analysis. The application of signal processing methods to the problem of respiration signals analysis is
considered in the paper. In order to investigate the possibilities of machine learning to the problem of
classification of respiration signals, the dataset of lung sounds of 296 recordings, which represent 3 classes:
norm, bronchitis, and chronic obstructive pulmonary disease, was used in this work. The purpose of this
study is to identify and compare the informative features of the lung sounds obtained with different signal
processing methods, as well as to choose the classification method that provides the highest accuracy in
the identification of the bronchopulmonary system condition. To obtain frequency features, power spectrum
density dependence on frequency was calculated for respiratory signals using fast Fourier transform method.
The spectral measures, as well as ratios of spectrum powers in different frequency bands, were defined. To
extract the spectral-temporal features of the lung sounds, the spectrograms of the analyzed signals were
investigated. The mean time dependences of the power spectral density in the indicated frequency ranges
were determined. The sum of magnitudes values of the power spectrum curve for each frequency band was
used as the features obtained from the spectrogram. The ratios of the energies corresponding to detail levels
of the wavelet decomposition to the total energy of the decomposed signal were used as the parameters of
signal recognition based on wavelet analysis. The logarithmic (mel) filterbank energies, averaged over time
frames, depending on channel index and time, as well as mel frequency cepstrum depending on cepstrum
index and time, are proposed to use as features derived from mel-cepstral analysis. The supervised machine
learning based on decision trees, discriminant analysis, support vector machines, logistic regression, k-
nearest neighbors classifiers, and ensemble learning were applied to determine the best classification models
for computerized disease screening. The accuracy of the different classifiers using these feature sets was
determined and compared. Based on this, a combination of features and classifiers, which provides the
highest accuracy of lung condition recognition, reaching 93%, is proposed.
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Introduction

Respiratory diseases are a huge global health
burden. It is estimated that in 2019, 235 million people
had asthma, more than 200 million people had chronic
obstructive pulmonary disease (COPD), 65 million
patients had moderate to severe COPD, 1-6% of the
adult population (over 100 million people) had respi-
ratory problems during sleep, 8.7 million people get
suffer from tuberculosis each year, millions of people
live with pulmonary hypertension, and more than 50
million people struggle with occupational lung diseases,

totaling more than 1 billion people with chronic respi-
ratory disease [1, 2].

But 2020 year made significant adjustments to
these statistics, making it much worse. The global
catastrophe with the spread of COVID-19 posed new
tasks and challenges to humanity. Virologists are
searching for the development of a reliable vaccine
every day, and humanity hopes to solve this problem as
soon as possible. Unfortunately, many other problems
arose in parallel. Patients who have suffered and been
cured are needed further monitoring of their respi-
ratory condition, as it is not known what exactly

http://radap.kpi.ua/radiotechnique/article/view/1710


Investigation of Lung Sounds Features for Detection of Bronchitis and COPD Using Machine Learning Methods 79

complications may occur after such a severe illness.
Since the listed diseases are supplemented by the usual
seasonal colds, which may be accompanied to one
degree or another by lung disease, the problem of early
diagnosis is very urgent in our time. The joint work of
researchers, engineers and doctors to find a convenient
and reliable tool for diagnosing and monitoring lung
diseases is currently a promising and urgent task. Also,
with such a flow of lung diseases, it is important to
have an instrument that can quickly classify the state
of the bronchopulmonary system with high accuracy
according to certain categories [3]. Machine learning is
increasingly being used for this purpose [4–7].

The vast majority of respiratory diseases are
accompanied by various disorders of air movement
through the respiratory system, which lead to the
appearance of distinctive noises (sounds). Despite the
development of technical diagnostic tools, auscultation,
which is listening to the sounds of breathing, remains
the most common non-invasive method of diagnosing
respiratory diseases [8].

The sensitivity (threshold of audibility) of the
human hearing organ and its ability to distingui-
sh sounds by volume and frequency vary signifi-
cantly from individual to individual. In addition, due
to the peculiarities of the human organ of hear-
ing at high volume, high-frequency sounds subjectively
seem louder than low-frequency sounds. At the same
time, ”sound memory”, talent and training of a doctor
are extremely important for the auditory analysis of
breathing sounds. For the average doctor, memorizing
and analyzing all the nuances of such complex and
highly informative signals, such as noises and wheezing,
is a difficult task [9, 10].

Over the last 50-60 years, serious research work has
been carried out to study the possibility of recording,
visualization and classification of respiratory sounds
based on instrumentalities and methods of electronic
technology. The efforts of research centers around
the world are coordinated by the International Lung
Sounds Association [11].

The advantages of using electronic auscultation
technology are obtaining high-quality audio signals
regardless of the ability of the hearing organ of the
doctor, the ability to repeatedly listen and compare
the recorded signal with samples or later recordings, for
example, in the recovery process. Due to the ability to
create databases of breathing sounds, it is now possible
to exchange relevant samples between research centers
and learn from a large number of samples. Finally,
such a system creates the preconditions for solving
telemedicine problems, as the received signals can be
accumulated and processed remotely, including the use
of mobile communications [12–14].

A large number of numerically diagnostically
valuable parameters can be obtained from the recorded
lung sound signal by means of digital processing and
analysis. The automated recognition of respiratory noi-

se types can be applied to recorded respiratory sounds.
Analysis of respiratory sounds by various methods
provides a large number of parameters, which can
be difficult for unambiguous perception by a doctor.
Therefore, an important task is to classify lung sounds
into certain categories. This problem can be solved by
creating systems for identifying and classifying lung
sound parameters that will help the doctor in the
diagnosis process.

Such systems can be used for mass monitoring
and screening of the population to detect respiratory
pathologies without the use of the X-ray or computed
tomography (СТ) methods and thus reduce radiation
exposure and congestion in CT labs.

Many technologies and mathematical approaches
are currently used for digital analysis of lung sounds.
Among these methods spectral analysis, spectral-time
analysis, correlation analysis, and wavelet transform
have gained wide popularity. Each of the methods has
its own disadvantages and advantages. Unfortunately,
a lot of the approaches, as a rule, are directed for
a specific task: either for certain diseases, or for a
database. Many of the methods require special signal
preprocessing. Therefore, the search for a universal
analysis method capable of giving high results for a
wide range of diseases and data sets is an urgent task
[15–18].

In recent years, mel-frequency cepstral analysis has
become increasingly popular among tasks for process-
ing human sounds signals, for example, voice, cardiac
sound [19] or even some types of lung sounds [20]. Thus,
the use of this method is promising for application to
audio signals of the human body.

1 Materials and methods

For assessing the efficiency of the methods for
lung diseases detection, a database CORA provided
by the Institute of Hydromechanics was used in this
research [21, 22]. The dataset of lung sounds consists
of 296 recordings with sampling frequency of 3496Hz
and duration of 18 seconds. According to literary
sources [23, 24], the main informative part of the
lung sounds spectrum is in the range from 100 to
1500Hz. Therefore, the sampling rate that was used
when recording the signals is sufficient. If the technical
characteristics of other recording devices are different,
it is advisable to oversample the signals using bandpass
filters for a given frequency range. In the used database,
classes of recordings can be distinguished as: class 1-
recordings of lung sounds in norm (112 signals), class 2
- lung sounds of patients suffering from bronchitis (84
signals), class 3 - lung sounds of patients with chronic
obstructive pulmonary disease (100 signals). With this
ratio of signals in classes, the sample can be considered
balanced.

To extract the features from frequency domain,
power spectrum density (PSD) dependence on
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frequency was calculated for respiratory signals using
fast Fourier transform method. The signal mean value
was subtracted from the investigated signals to avoid
taking into account the contribution of the signal
at zero frequency. Non-periodic symmetric Hamming
window was applied in order to minimize the effect
of spectral leakages. Four frequency bands were used
for feature extraction: high frequencies (HF) – from
1000 to 1500 Hz, mid frequencies (MF) – from 500 to
1000Hz, low frequencies (LF) – from 200 to 500Hz, and
very low frequencies (VLF) – from 100 to 200Hz. We
did not utilize the band from 0 to 100Hz to characterize
respiratory signals due to the significant influence of
the heart sounds in this frequency band.

The following 8 spectral measures were calculated
for each signal: normalized power in high, mid, low and
very low frequencies ranges, ratios of spectrum powers
in different frequency bands P𝑉 𝐿𝐹 /P𝐻𝐹 , P𝑀𝐹 /P𝐻𝐹 ,
P𝐿𝐹 /P𝐻𝐹 , P𝑉 𝐿𝐹 /P𝑀𝐹 , P𝑉 𝐿𝐹 /P𝐿𝐹 .

To extract the spectral-temporal features of the
lung sounds in norm, bronchitis, and chronic obstructi-
ve pulmonary disease, the spectrograms of the analyzed
signals were calculated (Fig. 1). The settings of the
spectrogram were defined as follows: hamming window
of duration 2ms, 50% windows overlap (1ms step) and
1Hz step for frequency in range from 100 to 1500Нz.

The submatrices were extracted from the
spectrogram in order to define spectral-temporal
features in HF, MF, LF, VLF ranges. The mean time
dependences of PSD in mentioned frequency ranges,
obtained by averaging all the values in the taken
frequency range corresponding to the current time
moment, were defined. As features for lungs condition
recognition, derived from the spectrogram, the sum of
magnitudes values of the obtained curve was used for
each frequency band that gave us 5 features.
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Fig. 1. Spectrogram calculated for a respiration signal
of a patient suffering from bronchitis

To recognize the signs of pathological changes in
respiratory signals, the features of multilevel wavelet

transform (MWT) were also defined. The respi-
ratory signal can be represented by MWT as a sum
of an approximation component 𝑎𝑛 and the detail
components 𝑑𝑖:

𝑆=𝑎𝑛 +

𝑛∑︁
𝑖=1

𝑑𝑖 ,

where 𝑛 – the number of decomposition levels.
The investigated signals were decomposed using

symmetrical wavelet function of the 5-th order up to
the 5-th level of wavelet transform (Fig. 2).
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Fig. 2. Wavelet decomposition up to the 5-th level (with
a ”symmetric” wavelet of the 5-th order) performed
for a respiration signal in norm. The details 𝑑1−𝑑4
representing the frequency regions of interest are shown

in red color

The analyzed signals are sampled at 3496Hz and
have maximum informative frequency content till
1748Hz. The series of wavelet-based highpass and
lowpass filters repeatedly divide the input frequency
range. Consequently, the detail component 𝑑1 represent
the most high-frequency part of the signal in the range
from 874 to 1748Hz. The detail component 𝑑2 reflects
frequency content from 437 to 874Hz; 𝑑3 corresponds
to the subband from 218,5 to 437Hz; and 𝑑2 frequency
content lies from 109,25 to 218,5Hz.

The approximation 𝑎5 and the detail component 𝑑5
together capture the most low frequency components
of respiratory signals, which are below 109,25Hz. We
did not use these components for feature extraction
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of the lung sounds in order to avoid the heart sounds
influence.

The spectral parameters originated from the details
𝑑1−𝑑4 were calculated to distinguish between signals in
norm, bronchitis, and chronic obstructive pulmonary
disease. Power spectrum density dependence on
frequency was calculated for each wavelet component
𝑎5, 𝑑5, 𝑑4, 𝑑3, 𝑑2, and 𝑑1, using fast Fourier transform.

Then the total energy of each component was defi-
ned as sum of all magnitudes in PSD. As parameters
for signal recognition, we used the ratio of the energy
of each detail 𝑑4, 𝑑3, 𝑑2, and 𝑑1 to the total energy
of the decomposed signal, which can be defined as
the sum of energies of all the components of wavelet
decomposition:

𝑅𝑑𝑗
=

𝑃𝑑𝑗(︁
𝑃𝑎5

+
∑︀5

𝑖=1 𝑃𝑑𝑖

)︁ ,

where 𝑗=1, 2 . . . 4. Thus, we got 4 spectral parameters
𝑅𝑑1

, 𝑅𝑑2
, 𝑅𝑑3

, 𝑅𝑑4
, which reflect the contribution of

each detail component 𝑑1−𝑑4 to the total signal energy.

Cepstral features of lung sounds were also used
to distinguish normal and abnormal classes. The Mel
scale correlates the perceived frequency of the sound
by human hearing (pitch of the pure tone) with the
actual measured frequency (Hz). This dependence is
nonlinear and is described by the following equation:
𝑀(𝑓)=1127 * ln(1 + 𝑓/700).

To calculate the mel frequency cepstral coefficients
(MFCC), the respiratory signal is divided into the
frames. The duration of a frame affects the results
of the analysis and should be chosen based on the
assumption that the signal does not change its behavior
significantly over the duration of the frame. To defi-
ne MFCC, the next steps are applied to each frame.
As the recorded respiratory signal is finite and not
periodic, the effect of leakage occurs when applying the
Fourier transform due to the gaps at the end points of
the signal. In order to reduce this effect, each frame
is multiplied by the Hamming window function. The
discrete Fourier transform is applied to the result and
the periodogram for each frame is calculated. Next,
the set of mel filters is calculated. Triangular filters
are multiplied by the periodogram and summed. The
number of triangular filters also affects the results of
the cepstral analysis. The energy of a set of filters
is obtained, which is then logarithmized. Logarithm
process is performed to smooth the primary spectrum
and reduce the number of parasitic components in the
cepstrum. Finally, using discrete cosine transform, mel
cepstral coefficients are obtained. Filters overlap and
the filter energies are fairly correlated. Discrete cosine
transform decorrelates them.

Our anticipation was that cepstral analysis provi-
des information about the features of lung sounds
unapproachable to spectral or spectral-temporary
analysis. The application of mel frequency cepstral

analysis to the lung sounds investigation is justifi-
ed, because the spectrum is projected on a mel-scale,
allowing to select the most important sound frequenci-
es. Moreover, the method is largely insensitive to
changes in the phase of the studied signals.

As the features for recognition of lung diseases
using machine learning, log (mel) filterbank energies
depending on channel index and time as well as mel
frequency cepstrum depending on cepstrum index and
time were used (Fig. 3). However, for breath sounds
recorded at a sufficiently high sampling rate, such data
matrices contain thousands of values. Therefore, in
this work, we used the corresponding values of these
parameters averaged over time frames.
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Fig. 3. Сepstral analysis of the respiration signal in
norm

2 Application of Machine Learn-

ing Methods to Lung Sounds

Classification

To determine the best classification models for
computerized bronchitis and chronic obstructive
pulmonary disease screening, we implemented supervi-
sed machine learning based on decision trees, discrimi-
nant analysis, support vector machines (SVM), logistic
regression, k-nearest neighbors (KNN) classifiers, and
ensemble learning.

The Decision Tree Classifier is the most common
and widely used machine learning algorithm that
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performs regression and classification tasks. The classi-
fier divides the data into smaller subsets based on
different criteria, i.e. each subset has its own ordered
category. With each step, the number of objects of
a certain criterion decreases. The classification ends,
when the network reaches a subset with only one object
that contains the forecast or result of the decision trees.
To choose the best approach, we used three options for
decision trees: 1) coarse tree with maximum number
of splits equal to 4; 2) medium tree with maximum
number of splits equal to 20; 3) fine tree with maximum
number of splits equal to 100.

The k-Nearest Neighbor (kNN) algorithm is one of
the simplest machine learning algorithms. To make a
prediction for a new data sample, the kNN algorithm
finds the training set closest to it, i.e. finds its ”nearest
neighbors”. In the simplest case, the k-nearest neighbor
algorithm considers only one nearest neighbor - the poi-
nt of the training set closest to the point for which we
want to get a forecast. When more than one neighbor
is taken into account, the most common class is used to
assign a label, i.e. the class that has gained the majority
among the k-nearest neighbors is selected. In the case
of a multi-class classification, as in our case with 3
classes (”norm”, ”bronchitis”, and ”chronic obstructive
pulmonary disease”), the number of neighbors belongi-
ng to each class is counted and the most common
class is predicted. The kNN classifier considered two
important parameters: the number of neighbors and
the measure of the distance between data points. The
results are also affected by the size of the training
data sample. To define the best options, we utilized
and compared 6 customizations for kNN classifier: 1)
fine KNN with number of neighbors equal to 1 and
euclidean distance with equal weights; 2) medium KNN
with 10 neighbors and euclidean distance with equal
weights; 3) coarse KNN with 30 neighbors and eucli-
dean distance with equal weights; 4) cosine KNN with
10 neighbors and cosine distance with equalweights; 5)
cubic KNN with 10 neighbors and Minkowski (cubic)
distance with equal weights; 6) weighted KNN with 10
neighbors and euclidean distance with squared inverse
distance weights.

Classification method of discriminant analysis
assumes that different classes generate data based on
different Gaussian distributions, which are estimated
by the fitting function to train a classifier. To predict
the classes of new data, the trained classifier finds the
class with the smallest misclassification cost. We used
linear and quadratic discriminant machine learning
methods.

The Support Vector Machine (SVM) method is
a powerful machine learning method that has shown
good results in many biomedical applications. Using a
set of training data, SVM method finds the hyperplane
that best separates the two classes of training data.
Such a hyperplane is a boundary that has the maxi-
mum distance from different classes of training data.

Solution boundary maximizes the distance from the
nearest data points of all classes. The nearest points
to the decision surface are called support vectors. To
define the best solution, we used 6 options for SVM
classifier: 1) linear kernel function; 2) quadratic kernel
function; 3) cubic kernel function; 4-6) Gaussian kernel
function (with kernel scales 1,1; 4,5; and 18).

The implemented ensemble learning algorithms
included bagging, subspace, and boosting algorithms.
The number of learners was equal to 30.

Table 1 provides the results with the classification
accuracy percentage (% of correctly identified cases).
The given values correspond to the total percentage
of correctly determined signals. The percentages of
correctly determined cases for each class ”norm”,
”bronchitis”, and ”chronic obstructive pulmonary di-
sease” are also indicated separately.

Since the initial database doesn’t contain very large
number of signals, it is advisable to use cross-validation
approach for accuracy estimation with a commonly
used data splitting ratio of 80% training data and 20%
testing data. To assess the accuracy of the machine
learning algorithms in lung sounds classification, five-
fold cross-validation approach was used. The data were
divided into five folders: four folders repeatedly were
used for training, and one was used as a testing folder.
As each of the five folders once was used for testing,
it contributed to average classification accuracy of the
machine learning method.

After analyzing the data obtained as a result of
machine learning, we concluded that for the majority
of the classifiers, class ”chronic obstructive pulmonary
disease” was well recognized. The most often the
wrong decisions were made when recognizing the class
”bronchitis”, which very quite was classified as ”norm”.
Therefore, in the context of medical diagnostics, the
overall accuracy of machine learning algorithm is not
enough for its performance estimation. It is preferably
to have low false negative rates, i.e. to obtain the small
number of patients suffering with bronchitis or COPD,
who are tested and recognized as healthy. The opposite
case, when healthy person is mistakenly assigned to
the class corresponding to the presence of the lung
disease, is not so objectionable, because additional
investigations can discard the false positive results.

The first feature vector presented in Table 1 conta-
ins 8 spectral features yielded from the fast Fouri-
er transform method. A preliminary analysis of the
spectrum of signals from different classes showed that
the spectra of signals of lung sounds in normal and
pathological conditions significantly intersect in the
frequency domain. Therefore, as we expected, machine
learning using spectral characteristics did not show
acceptable performance. Fine KNN appeared to show
the best results – 75.7% of overall accuracy, 82% of
correctly defined signals in norm, 71% of detected pati-
ents with bronchitis, and 72% of correctly identified
COPD signals.
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Table 1 Comparison of machine learning algorithms performance: total classification accuracy (%) and true
positive rate for classes ”norm”, ”bronchitis”, and ”chronic obstructive pulmonary disease” in parentheses

# Machine learning
method

Spectral
features-8

Spectrogram
features -5

Wavelet
features -4

Сepstral
features
-20

logFBEs -
20

Combined
(MFCC,
logFBEs)
-40

Combined
(logFBEs,
wavelet)
-24

1 Coarse Tree (max 4
splits)

67.6
(66, 64, 72)

66.6
(77, 51, 68)

86.1
(92, 62, 100)

75.7
(82, 62, 80)

73
(79, 61, 77)

74.7
(83, 60, 78)

85.5
(87, 67, 100)

2 Medium Tree (max 20
splits)

71.6
(78, 61, 74)

72.6
(72, 63, 81)

82.8
(80, 65, 100)

80.1
(79, 70, 90)

80.1
(83, 67, 88)

79.4
(82, 69, 85)

85.5
(84, 70, 100)

3 Fine Tree (max 100
splits)

72.6
(72, 71, 74)

70.9
(69,61,82)

83.1
(80, 67, 100)

80.1
(79, 70, 90)

81.1
(84, 69, 88)

79.4
(82, 69, 85)

85.5
(84, 70, 100)

4 Linear Discriminant
67.2

(69, 57, 74)
65.5

(54, 50, 91)
84.1

(88, 60, 100)
-

84.1
(80, 73, 98)

-
88.5

(89, 74, 100)

5 Quadratic Discrimi-
nant

-
60.5

(92, 51, 33)
80.1

(88, 51, 96)
-

92.9
(90, 93, 96)

-
93.2

(89, 90, 100)

6 Linear SVM linear
kernel function

68.9
(63, 63, 80)

72
(64, 54, 96)

82.8
(88, 56, 100)

85.1
(88, 71, 94)

79.7
(79, 65, 93)

86.1
(89, 71, 95)

85.8
(88, 67, 100)

7
Quadratic SVM
(quadratic kernel
function)

65.9
(71, 55, 69)

74.3
(76, 52, 91)

83.8
(86, 62, 100)

91.6
(96, 80, 96)

87.2
(92, 73, 94)

91.9
(98, 80, 95)

86.8
(87, 71, 100)

8 Cubic SVM (cubic
kernel function)

73.6
(79, 70, 70)

64.9
(62, 56, 76)

80.4
(81, 56, 100)

90.2
(98, 75, 94)

88.2
(96, 76, 89)

89.2
(96, 74, 94)

89.5
(92, 74, 100)

9 Fine Gaussian SVM
(kernel scale 1,1)

73.6
(76, 69, 75)

70.3
(62, 61, 88)

86.8
(85, 74, 100)

61.8
(66, 52, 65)

82.8
(87, 68, 91)

81.4
(89,49 100)

88.9
(86, 80, 100)

10 Medium Gaussian
SVM (kernel scale 4,5)

70.3
(65, 62, 83)

63.9
(45, 49, 98)

86.1
(90, 64, 100)

88.2
(91, 81, 91)

76
(80, 64, 81)

90.9
(96, 82, 93)

85.8
(85, 70, 100)

11 Coarse Gaussian SVM
(kernel scale 18 )

66.2
(61, 55, 82)

52
(93, 38, 18)

84.1
(92, 55, 100)

79.7
(95, 63, 77)

64.9
(79, 57, 55)

75.7
(91, 54, 77)

80.4
(88, 54, 94)

12

Fine KNN(number of
neighbors – 1, eucli-
dean distance, equal
weight)

75.7
(82, 71, 72)

80.7
92, 62, 84)

90.5
(96, 73, 100)

92.2
(100,83,91)

87.2
(98, 65, 93)

92.9
(100,86,91)

90.9
(95, 75, 100)

13

Medium KNN(number
of neighbors –10, eucli-
dean distance, equal
weight)

66.2
(71, 57, 68)

73.3
(81, 57, 78)

86.1
(88, 68, 100)

80.4
(91, 67, 80)

75
(81, 56, 84)

80.4
(94, 65, 78)

83.1
(90, 54, 100)

14

Coarse KNN(number
of neighbors –30,
euclidean distance,
equal weight)

61.8
(66, 52, 65)

55.7
(53, 40, 72)

83.4
(93, 51, 100)

65.9
(99, 23, 65)

64.2
(75, 61, 55)

63.5
(89, 39, 55)

67.2
(81, 58, 59)

15

Cosine KNN(number
of neighbors –10,
cosine distance, equal
weight)

66.2
(64, 63, 71)

73
(81, 50, 83)

85.1
(85, 68, 100)

84.1
(84, 80, 88)

76.7
(67, 75, 89)

80.7
(73, 77, 92)

84.1
(84, 65, 100)

16

Cubic KNN(number
of neighbors – 10,
Minkowski (cubic)
distance, equal weight)

65.2
(70, 58, 66)

74.3
(82, 56, 81)

86.1
(88, 58, 100)

81.1
(92, 67, 81)

77
(83, 60, 85)

81.4
(92, 68, 81)

82.8
(88, 55, 100)

17

Weighted KNN
(number of neighbors –
10, euclidean distance,
squared inverse
distance weight)

74.7
(86, 63, 72)

81.4
(94, 61, 85)

90.9
(97, 71, 100)

86.1
(100, 69, 85)

83.4
(96, 60, 89)

87.5
(100, 71, 87)

87.5
95, 63, 100)

18

Boosted Trees (maxi-
mum number of splits -
20, number of learners
- 30)

74.7
(84, 65, 72)

76.7
(88, 55, 82)

87.2
89, 69, 100)

75.3
94, 58, 69)

85.8
94, 68, 92)

87.5
96, 76, 88)

67.9
(92, 45, 60)

19

Bagged
Trees(maximum
number of splits - 295,
number of learners -
30)

75.3
(84, 67, 73)

83.4
96, 65, 84)

88.5
(95, 67, 100)

88.5
(95, 75, 93)

86.5
(96, 67, 92)

87.8
(93, 76, 92)

89.5
(95, 70, 100)

20

Subspace Discriminant
(maximum number of
splits - 20, number of
learners - 30)

68.6
(71, 58, 75)

65.9
80, 51, 62)

84.5
(88, 61, 100)

81.1
(85, 73, 84)

81.8
(78, 70, 96)

86.5
(88, 73, 96)

86.1
(87, 69, 100)

21

Subspace KNN (maxi-
mum number of splits -
20, number of learners
- 30)

75
(84, 63, 75)

73.3
(90, 58, 67)

87.8
(92, 68, 100)

82.4
(94, 70, 80)

87.5
(98, 68, 92)

89.2
(100,73,91)

87.2
(96, 70, 91)
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Using 5 spectrogram features allowed us to obtain
higher total accuracy of lung sounds classification
comparing to the PSD based features – 83.4% for
ensemble learning algorithm of bagged trees, which
performed the best. However, despite the high accuracy
of recognition of healthy control signals (96%), the
spectral-temporal characteristics gave a very poor
result for the recognition of bronchitis – 65%, and 84%
of COPD signals were identified correctly.

Analyzing the machine learning results obtained for
4 features derived from wavelet transform, we can see
an interesting regularity: we still have problems with
”bronchitis” class recognition, but majority of machi-
ne learning methods unmistakably recognized class
”chronic obstructive pulmonary disease” (Fig. 4).

Fig. 4. Machine learning results obtained for 4 features
derived from wavelet transform (trained model using

weighted KNN algorithm)

The best achieved total accuracy of classification
was about 91% with using weighted KNN algorithm,
trained using 10 nearest neighbors and euclidean dis-
tance with squared inverse distance weight. True posi-
tive rates for classes ”norm”, ”bronchitis”, and ”chronic
obstructive pulmonary disease” reached 97%, 71%, and
100% respectively.

It is obvious that the selected wavelet parameters,
which reflect the contribution of each frequency-
related detail component 𝑑1 − 𝑑4 to the total signal
energy, perfectly convey the features of lung sounds
in COPD compared to the norm. Therefore, it makes
sense to combine wavelet features, for example, with
cepstral coefficients, in order to increase the recognition
accuracy when classifying lung sounds.

The results of cepstral analysis significantly depend
on a number of parameters, among which are frame
duration, frame shift, number of filterbank channels,
number of cepstral coefficients, as well as lower and
upper frequency limits. To find the optimal set of
parameters for calculating the cepstral characteristics
of breath sounds, we changed each of the parameters
with a fixed set of other parameters and performed

machine learning (Fig. 5). We selected the parameter
values that provided the highest accuracy in classifying
signals into 3 classes: norm, bronchitis and chronic
obstructive pulmonary disease. Especially we paid
attention to the possibility of distinguishing signals in
norm and bronchitis, because the accuracy of detecting
bronchitis was the lowest compared to other classes.
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Fig. 5. The results of machine learning performance
depending on cepstral parameters: number of cepstral
coefficients (a), frame duration (b), and number of

filterbank channels (c)

Finally, we selected the following set of parameters:
frame duration 𝑇𝑓=20ms, frame shift 𝑇𝑠ℎ=10ms,
number of filterbank channels 𝑁𝑐ℎ=20, number of
cepstral coefficients 𝑁𝑚𝑓𝑐𝑐=20, lower frequency limit
𝐹𝐿=100Hz, and upper frequency limit 𝐹𝑈=1500Hz.

Mel frequency cepstrum depending on cepstrum
index averaged over time frames gave us 20 cepstral
features. The highest achieved model accuracy based
on these features was about 92% using KNN classifier
with 1 nearest neighbor and euclidean distance with
equal weight. In this case, absolutely all signals of the
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class ”norm” were classified without errors, bronchitis
was correctly identified in 83% cases and COPD was
identified correctly in 91% cases.

Log (mel) filterbank energies depending on channel
index averaged over time frames produced 20 energy
features. Their using for models machine learning
demonstrated promising results. The highest total
accuracy of classification was 93% using the model
build with quadratic discriminant method. True posi-
tive rates for classes ”norm”, ”bronchitis”, and ”chronic
obstructive pulmonary disease” were 90%, 93%, and
96% correspondingly. It should be noted that using
these features allowed us to significantly increase
the recognition accuracy of signals from the class of
bronchitis. As it was mentioned above, bronchitis class
was recognized worse than ”norm” and COPD when
using all other features, although the correct identi-
fication of bronchitis from the point of view of dia-
gnosis is more important than the overall classification
accuracy.

We also considered combining two types of dis-
cussed above cepstral features to build the models
for classification. This variant contained 40 features.
Moreover, we combined wavelet derived featureswith
log (mel) filterbank energies depending on channel
index averaged over time frames, which yielded 24
features. The total classification accuracy in these cases
it turned out to be very close in its values – near 93%.
The difference was in the redistribution of the accuracy
value of identifying different classes: norm, bronchitis
and COPD. Therefore, the doctor can choose the right
model depending on the prevalence of the patient’s
morbidity.

Conclusion

In this study the signal processing methods for
analysis of lung sounds and the possibility of using
machine learning approach to perform diagnosis of
bronchitis and chronic obstructive pulmonary disease,
are investigated.

The best results were obtained for features of
lung sounds derived from log (mel) filterbank energi-
es depending on channel index averaged over time
frames. The highest total accuracy of lung condition
recognition reached 93% using the model based on
quadratic discriminant method. True positive rates for
classes ”norm”, ”bronchitis”, and ”chronic obstructive
pulmonary disease” in this case reached 90%, 93%, and
96% correspondingly. This result is also one of the best
from the point of view of balancing the values of the
correctly identified classes. This is especially important
for recognizing the class of bronchitis, which was very
poorly detected by most other methods and models.

Also combining of cepstral and wavelet features
demonstrated the promising results. The most accurate
models for classifying lung sounds were obtained using
KNN classifier variations, as well as quadratic discrimi-

nant method. The proposed solutions will be useful for
monitoring pulmonary state in patients suffering from
bronchitis and COPD, as well as for routine scheduled
medical examinations.
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Дослiдження особливостей звукiв ле-
генiв для виявлення бронхiту та ХОЗЛ

за допомогою методiв машинного нав-
чання

Порєва Г. С., Iванько К. О., Семкiв Х. I.,

Вайтишин В. I.

У статтi показана актуальнiсть розгляду питання
дослiдження методiв цифрового аналiзу i обробки звукiв
легень, пошуку нових iнформативних ознак для розпi-
знавання патологiчних звукiв легень i застосування ме-
тодiв машинного навчання для класифiкацiї стану брон-
холегеневої системи. Зокрема, в даному дослiдженнi
розглянуто застосування рiзних методiв аналiзу звукiв
легень, а саме: частотний, спектрально-часовий, вейвлет
i мел-частотний кепстральний аналiз. З метою дослi-
дження можливостi застосування методiв машинного
навчання до проблеми класифiкацiї дихальних сигналiв
у роботi використано набiр даних звукiв легень з 296
сигналiв, якi представляють 3 класи: норма, бронхiт та
хронiчне обструктивне захворювання легень (ХОЗЛ).
Метою даного дослiдження є порiвняння iнформатив-
них ознак звукiв легень, отриманих за допомогою рiзних
методiв обробки сигналiв, а також вибiр методу класи-
фiкацiї, що забезпечує найвищу точнiсть iдентифiкацiї
стану бронхолегеневої системи. Для отримання часто-
тних ознак розраховано залежнiсть спектральної густи-
ни потужностi вiд частоти для сигналiв звукiв легень
з використанням методу швидкого перетворення Фур’є.
Для кожного сигналу були розрахованi спектральнi
показники та спiввiдношення потужностей спектру в
рiзних дiапазонах частот. Для видiлення спектрально-
часових особливостей звукiв легень були проаналiзова-
нi спектрограми сигналiв дихання. Визначено середнi
часовi залежностi спектральної густини потужностi в
дослiджуваних дiапазонах частот. В якостi ознак, отри-
маних зi спектрограми використовувалася сума значень
кривої спектральної густини потужностi для набору ча-
стотних смуг. У якостi параметрiв для розпiзнавання
сигналiв дихання на основi вейвлет-аналiзу розрахова-
но спiввiдношення енергiй рiвнiв деталiзацiї вейвлет-
розкладу до повної енергiї аналiзованого сигналу. В
якостi ознак мел-кепстрального аналiзу пропонується
використовувати усередненi по часовим фреймам ло-
гарифмiчнi (мел) енергiї банку фiльтрiв, а також усе-
реднений по часовим фреймам мел-частотний кепстр.
З метою отримання кращих моделей класифiкацiї для
комп’ютеризованого скринiнгу захворювань легень було
застосовано машинне навчання з учителем на основi де-
рев рiшень, дискримiнантного аналiзу, методу опорних
векторiв, логiстичної регресiї, класифiкаторiв на основi
методу k-найближчих сусiдiв та ансамблевого навчання.
Визначено та порiвняно точнiсть класифiкацiї сигналiв
дихання для низки класифiкаторiв, що використовують
розглянутi набори ознак. Для побудови моделей, що
забезпечують найвищу точнiсть розпiзнавання стану ле-
гень, пропонується найкраще поєднання iнформативних
ознак звукiв легень та методiв машинного навчання.

Ключовi слова: звуки легень; бронхiт; хронiчне об-
структивне захворювання легень; спектральний аналiз;
вейвлет-розклад; мел-частотний кепстральний аналiз;
машинне навчання
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ХОБЛ с помощью методов машинного
обучения

Порева А. С., Иванько Е. О., Семкив К. И.,

Вайтышин В. И.

В статье показана актуальность рассмотрения во-
проса исследования методов цифрового анализа и обра-
ботки звуков легких, поиска новых информативных
признаков патологических звуков легких и примене-
ния методов машинного обучения для классификации
состояния бронхолегочной системы. В частности, в дан-
ном исследовании рассмотрено применение различных
методов анализа звуков легких, а именно: частотно-
го, частотно-временного, вейвлет и мел-частотного кеп-
стрального анализа. С целью исследования возможно-
сти применения методов машинного обучения к пробле-
ме классификации сигналов дыхания в работе исполь-
зован набор данных звуков легких, состоящий из 296
сигналов, представляющих 3 класса: норма, бронхит
и хроническая обструктивная болезнь легких (ХОБЛ).
Целью данного исследования является сравнение ин-
формативных признаков звуков легких, полученных с
помощью различных методов обработки сигналов, а
также выбор методов классификации, обеспечивающих
наиболее высокую точность идентификации состояния
бронхолегочной системы. Для получения частотных
признаков была рассчитана зависимость спектральной
плотности мощности от частоты для сигналов звуков
легких с использованием метода быстрого преобразо-
вания Фурье. Для каждого сигнала были рассчита-
ны спектральные показатели и отношения мощностей
спектра в разных диапазонах частот. Для выделе-
ния спектрально-временных особенностей звуков легких

были исследованы спектрограммы анализируемых си-
гналов. Определены средние временные зависимости
спектральной плотности мощности в исследуемых ди-
апазонах частот. В качестве признаков, полученных на
основе спектрограммы, использовалась сумма значений
спектральной плотности мощности для каждой полосы
частот. В качестве параметров распознавания сигналов
на основе вейвлет-анализа определены отношения энер-
гий уровней детализации вейвлет-разложения к полной
энергии исследуемого сигнала дыхания. В качестве при-
знаков мел-кепстрального анализа предлагается исполь-
зовать усредненные по временным фреймам логарифми-
ческие (мел) энергии банка фильтров, а также усреднен-
ный по временным фреймам мел-частотный кепстр. С
целью построения лучших моделей классификации для
компьютеризированного скрининга заболеваний лёгких
было применено машинное обучение с учителем на осно-
ве деревьев решений, дискриминантного анализа, мето-
да опорных векторов, логистической регрессии, клас-
сификаторов на основе метода k-ближайших соседей и
ансамблевого обучения. Определена точность класси-
фикации сигналов дыхания для ряда классификаторов,
использующих рассмотренные наборы признаков. Для
построения моделей, обеспечивающих наиболее высо-
кую точность распознавания состояния легких, пред-
лагается лучшее сочетание информативных признаков
звуков легких и методов машинного обучения.
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ская обструктивная болезнь легких; спектральный ана-
лиз; вейвлет-разложение; мел-частотный кепстральный
анализ; машинное обучение
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