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RECOVERY OF HARMONIC SIGNAL FROM DISCRETE SAMPLES

Abstract: Measurement of harmonic signal parameters is based on the use of analog-
to-digital conversion (ADC) and microprocessor devices. It is important to have an accurate
and stable measurement process. A method for recovery a harmonic signal from discrete
samples is proposed. The accuracy of the calculation of signal parameters was evaluated.

Keywords: ADC, amplitude, accuracy rating, frequency, phase.

Description of the problem

It is known [1-3] that the problem of determining the parameters of analog signal from
its discrete samples, from the point of view of mathematics, is nothing but the well-known
problem of interpolating a continuous function F(x) from a finite number N of its points X,
X, ... Xi,... Xn. The classical problem solving of constructing an interpolation curve is to use
the interpolation formula, which is a consequence of the Kotelnikov theorem, in the form of a
sum of basis functions of the form Sin(X)/X. This approach involves the use of fast Fourier
transform algorithms.

As noted in the literature [4-6], the error in determining the amplitude and frequency
of a noisy harmonic signal when applying the fast Fourier transform (FFT) method can be
1.5-2%, which may be unacceptable.

Therefore, to determine with high accuracy the parameters of the signals under the
action of noise, it is desirable to use methods that have lesser errors.

For an important special case, when there is reason to believe that the signal under
consideration has only one spectral component, a simplified approach to determining the

amplitude, frequency, and phase of harmonic signal from several ADC samples is considered.

Solution to the problem of recovery a signal from its samples

Problem statement: for several samples of the harmonic signal voltage obtained using
the ADC, calculate its unknown parameters: amplitude U,,, frequency w = 2mf and the
initial phase . It is assumed that the initial phase can be tied to one of the samples.

Such a task is a special case of the problem of recovery an analog signal from its
discrete samples. Additional restrictions are imposed that facilitate the solution, namely: it is
known that a harmonic signal has only one component in its spectrum. Simplification of the
task should allow to have time to calculate the signal parameters for the time between ADC

readings. The interval between ADC readings At is determined in accordance with the well-

known theorem proved by V.A. Kotelnikov in 1933, and should not be more than %

We assume that the measured signal can be represented as
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U; = Uycos(wt; + ¢g).

Since the number of unknown parameters is three (o, @o, Un), three equations are
needed to find three unknowns:

U, = Uy cos(wty + ¢@y)
U, = Upcos(wt, + @g).
Us; = Upcos(wt; + @)

The initial phase ¢, must be coincide to one of the samples. Further, we assume that
this is the phase at the time of the central second sample.
If ADC codes are used to recovery the signal, which are obtained as a result of

digitizing the signal at regular intervals, then it’s convenient to apply in calculations t; =
_At, tz = 0, t3 = +At:

U; = Upcos(wty + @y) = Uy cos(wty) - cos g — Upsin (wty) - sing,
U, = Uy cos(wt, + @) = Upcos(wty) - cos @y — Uy,sin (wty) - sing, =
U; = Uy cos(wt; + @) = Upcos(wts) - cos @y — Uy, sin (wts) - sing,

Uy cos(—wAt) - cospy — U, sin (—wAt) - sing,
= U,,cos(0) - cos ¢y — U,,sin (0) - sing, =
U,,cos(wAt) - cosp, — U,,sin (wAt) - sing,

U,cos(wAt) + U,,sin (wAt) - sing,
= U cos@g .
U,cos(wAt) — U,,sin (wAt) - sing,

Summing up the first and third equations of the system, we obtain
U, + Us = 2U,cos(wAt) = 2U,,cos(wAt)cose. (1)

Where do we find the unknown frequency

—1[+ (U1+U3)+2 k]k—0+1+2 2
w—At +arccos 20, k|, k=0,+1,+2,.. (2)
We show that only one value k = 0 is possible. Already at k =+ 1, the minimum value

of the frequency modulus

1 Ui +U,
w = 2nf = —|—arccos (——=
At 2

)+2n|=Ait|+arccos( )—27T|2Ait[—7r+27r]=£

5 At

from here At = %, which contradicts the requirements of the Kotelnikov theorem [4].

It is also easy to show that the inequality 0 < % < 1is always satisfied. For
2

physical reasons, you need to take a positive value of the frequency. Finally

bt Uy N

1
W= [arccos ( 20,
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Subtracting the third from the first equation, we get
U, — Us = 2U,,sin(wAt)sing,.

In view of equation (1), we obtain

Up—

Us )
Uirv, = 1990 - tg(wAd),

where do we find the solution for the initial phase of the oscillations at time #,:

Ul_U3 _
TR ctg(wAt)] +mk,k=0,1+1,12,.. 4)

@po = arctyg [

The principle of determining k and eliminating ambiguity is shown in Fig. 1

U(t)=cos®q

i

—— A — -

1

U

1

1

]

1

|

1

1

1

1
e G

1

1

1

1

1

1

S
o

N
o

B e T S

Figure 1. To the explanation of the choice of the value

of k from the samples of signal for different initial phase @g
It is known that the main value of the arc tangent satisfies the inequality

T

< Arct [Ul_U3 t(At)]<ﬂ
2~ gy, e 2

3

Therefore, for —Z < @ < 2, when cos@o > 0,U, > 0, and should be k = 0. In this

case, the equality ctg(arccosx) = \/% is correct, using which, we get
U, — U U, — U U, +U
Qo = arctg ﬁ . ctg(wAt)] = arctg {ﬁ - ctg [arccos (12723)]} =
U1 - U3 ]
= arctg
V4UZ — (Uy + Us)?

As can be seen in Fig.1, for - < ¢ < —g, when cosp, <0, U, <0, U; < Uz, and
should be k = —1:

U, — U
Qo = arctg [ﬁ . ctg(wAt)] — .
1 3
For % < @9 < m,when cospy < 0,U, <0, Uy > Us, and should be k = +1:

= arct [Ul_Ug t(At)]+
<p0—arcgUl+U3 ctg(w .
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When programming the microcontroller, the marks for calculating ¢, are the sign U,
and the relationships between U, and U3, which are visible in Fig.1.

Further, because U, = U,,,cos@,, we can find an expression for calculating the signal
amplitude

Uy

U = Coson ()

where ¢, calculated by the formula (4).

T T . 1
For —= < ¢y <7 we use the expression cos (arctgx) = s

UZ _ ZUZ\/ UZZ - U1U3
V4U3 — (U + Us)?
U,-Us
coS arctg —_——
/4U22—(U1+U3)2

Thus, if the requirements of Kotelnikov's theorem are fulfilled, were obtained

expressions (2...6), with the help of which it is possible to calculate the unknown amplitude,
phase and frequency of a monochromatic harmonic signal from three ADC samples.

Estimation of accuracy of signal parameters recovery

It is known that the lower bound for the error variance of an unknown parameter in the
sample is given by the Kramer — Rao inequality, or, in the multidimensional case, the Fisher
information matrix [7 - 8]. The least error variance has the parameter estimate by the position
of the maximum likelihood function (this is the best linear unbiased estimate). To obtain an
estimate of error variance, it is necessary to construct a multidimensional likelihood function.
Refinement estimates for error variance are also known using the Bhattacharia formulas [8].

In this case, the estimation of the signal parameters is obtained not from the analysis
of the likelihood function, but by solving the corresponding equations, the roots of which are
unknown parameters: frequency, phase and amplitude of the signal, formulas (2 ... 4).

For an important special case, if the passband of the preceding stages is several times
greater than the frequency of the measured signal, then the spectral density of the noise power
will have a corresponding wide band. Since, in accordance with the Khinchin — Kolmogorov
theorem, the autocorrelation function of a signal is the Fourier transform of its power spectral
density, the autocorrelation function of noise will rapidly decrease over a time several times
smaller than the oscillation period of the signal under study. In addition, the quantization
noise of different ADC samples is uncorrelated. Thus, noise voltages at times t, t;, t3 can be
approximately considered uncorrelated.

Then, due to the action of additive uncorrelated Gaussian noises, the normal
distribution law takes place [9]:

(U1-my)? (Uz-m3)? (U3—ﬂ;3)2

1 L n
f(Ull Uz; U3) =—> ¢ 207 e 203 .e 20%
(2m)20,0,04
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For example, the average of distribution of the angular velocity ® estimation, taking
into account formula (3), is determined by the expression

U + U
Ml[w(U,,U,, U3)] = fﬂ [A—arccos 20, 3)]f(U1, U,,U3)dU, dU,dU; =M, . (7)

The error variance is calculated by the formula

U, + U;

2
) = M| £ U, U5, dU,dU; = D, (8)
2

Dlw(Uy, Uy, Us)] = ]f g arecos (
Since the exact calculation using formulas (7, 8) is quite complicated, an approximate
method was used to calculate the average of distribution and error variance of the parameter
estimate.
1. The frequency estimation error
We expand the objective function (3) w(U;, U,, Us) in a Taylor series in the vicinity of
the point of the true voltage values (Uy, Usg, Usg) according to the powers of error of the

voltage measurement and keep the first four terms of series:
CU(U]_, U2, U3) = (U(Ulo + AUl, UZO + AUZ' U30 + AU3) =

dw(U ,U ,U dw(U ;U )U
(U10, Uz 30)+AU2 (U10, Uz0, Usp)
au, au,

0w (U1, Uzg, Uzp) .

dUs

~ w(U1g, Uz, Usp) + AU,

+AU; 9)

Hence, the average of distribution of the measuring error of frequency w
M, = Mlw(Uyo + AUy, Uzg + AU, Uz + AU3)] — @ (Uyg, Uzo, Usg) =

~ M(AU,) 90W10Uz0Us0) | M(AU,) 90WU10U20Us0) | M(AUS) 0w (U10,U20,U30)

If random thermal noise has a zero constant component, then M(AU;) = M(AU,) =
M(AU;3) = 0. Then from the above formula we get that if we keep the first four terms of
series, then the frequency estimate is unbiased, M, = 0.

Similarly, we find the error variance of the frequency for uncorrelated samples of the
ADC samples:

D, = D[w(Uyy + AU, Uyg + AU,, U3y + AU3) | =

0w Uy, Uz, U dw Uy, Uy, U
rw(UIOJ UZO, U30) + AUl ( 106U20 30) + AUZ ( 1OaU20 30) _I_-I
=D 1 5 _
+AU; a“’(Ul(g g:o Us)
0w (Uso, Uzo, Uso)]' 0w (Uso, Uz, Uso)]”
dw(Uy o, Urg, Usg)]?
+D(AU3) [ ( T 30)] . 1)
3
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Denote
4U22 - (Ul + U3)2 =A, U22 - U1U3:B.

For function (3), after obvious but cumbersome transformations, we obtain:

a(D(Uw: Uszo, U3o) — _ 1
U, AtVA

0w Uy, Uzg, Usp) _ U +U;
U, AtU,VA

aw(Uw» Uzo, Uso) — 1
oU; AtVA

2. The signal phase estimation error

Similarly to what was done in Sec. 1 for estimating the error in measuring the
frequency, we expand the objective function (4) ¢, (U;, U, U3) in a Taylor series in the vicinity
of the point of the true voltage values (U, U, Usp) according to the powers of measurement
error voltages. Keep the first four terms of series, we obtain expressions for estimating the
phase measurement error. These expressions are similar to formulas (10) and (11).

With a linear restriction, the estimate of the average of distribution of the error in the

phase measurement is also unbiased, and the expression for the variance has the form

Dy, = D[@o(Uyg + AU, Uy + AU,, Uzg + AU3)] =
000 (Uso, Uno, Uso) P 99010, Uzo, Usp)]?
_ D(AUl)[ @o( 1;U120 30)] +D(AU2)[ ®o( 1;U220 30)] n

(12)

2
©o(U10, Uz, U30)]

d
+D(AU5) [ ETT
3

For function ¢, (U,, U,, U3) (4) after transformations we get:

090Uy, Uzg, Uzp) _ A+ (UE-U3)

ou,; 4+/AB
09o(U10, Uzp, Uzp) __ 4U,(U; — U3)
U, AVA
09y (U10, Uzg, Usp) _ (U12 - U32) —A
oU; 4+/AB

3. The signal amplitude estimation error

A similar expansion of the objective function (6) U,,(U;, U,, U3) in a Taylor series in
the vicinity of the point of the true voltage values (U;q, Usg, Usp) according to the powers of
voltage measurement errors and the calculation of the variance of the amplitude estimate

gives the result:
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DUm = D[Um(Ulo + AUl, Uzo + AUz, U30 + AU3)] =~

_ AU (Uso, Uz, Usp) OU, (Usg, Uz, Uso)]
= D(AU,) [ au, + D(AU,) ot +
U (Usg, Uso, Usp)|
+D(AU) [ 30 : (13)

For function U,,,(U,, U,, U3) (6) after transformations we get:

U (U190, Uz0, Uso) _ UpUs " 2U,(U; + Us)\/E_

U, VAVB AVA
OUp (U0, Uzo,Uso) _ 8USVB  2UF +2B
U, B AVA VvAB
U (Uqo, Uzo, Usp) _ U,U, n 2U,(U;y + U3)VB
dUs VAVB AVA '

If the root-mean-square (RMS) values of noise voltages in the ADC samples o, =

\/Wl]i) are known, then the RMS values of the error in determining the signal amplitude
can be calculated using the above formulas.

It is important to note that for sufficiently large signal-to-noise ratios, until the
stability of the solutions of equation (4) is violated, the proposed estimation technique yields
results that closely coincide with the Kramer-Rao estimates.

4. Numerical calculation of errors in determining the noisy sinusoidal signal
parameters

The dependence of the error in calculating the unknown signal parameter from the
ratio of the quantization interval A¢ and the oscillation period 7 of the digitized signal was
analyzed.

The calculation was made for the harmonic signal (t) = U,,cos(wt + ¢,) at a
frequency f = 5139,6 Hz, the RMS noise value o, = 1 mV, the sampling interval At =30 ps.

The calculation results for different values of the phase ¢, are shown in table 1.

Table 1
RMS errors of measuring the frequency, phase and amplitude of harmonic signal

@y, deg -100 -80 -60 -40 -20 0 20 40 60 80 100

or, Hz 33,71 | 33,67 | 11,70 | 7,64 6,23 5,85 6,23 7,64 11,70 | 33,67 | 33,71

G,, deg 2,759 | 2,752 | 0,295 | 0,102 | 0,058 | 0,049 | 0,058 | 0,102 | 0,295 | 2,752 | 2,759

oum,mV | 6,421 | 5963 | 1,483 | 0,830 | 0,939 | 1,016 | 0,961 | 1,020 | 1,875 | 6,412 | 5,972
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Table 2 shows the calculation results for different ADC sampling frequencies F4 for
such data: the initial phase of the average readout ¢, = g, the frequency f'= 5139.6 Hz, and

the RMS noise value 6, = 1 mV.

Table 2
The influence of the sampling frequency on the RMS errors of single

measurement of the frequency, phase and amplitude of the harmonic signal

The ratio of the interval between samples to the period of the signal oscillation, At/T

Parameter
0,025 0,075 0,125 0,175 0,225 0,275 0,325 0,375 0,425 0,475

Fq4, kSPS 205,58 | 68,528 | 41,117 | 29,369 | 22,843 | 18,689 | 15,814 | 13,706 | 12,093 | 10,820

o, Hz 360,45 | 38,77 13,13 6,25 3,78 3,09 3,37 4,38 6,84 18,97

G,, deg 3,511 0,417 | 0,172 | 0,108 | 0,088 | 0,088 0,108 | 0,172 | 0,417 | 3,511

Oum, MV 35,31 3,685 1,414 1,038 | 0,926 | 0,787 | 0,577 1,000 | 4,599 51,83

The ratio of the error in the calculation of the amplitude to the RMS noise voltage

OUum

for various initial phases of the second sample ¢, (the phase can be random in the

On
interval O ... 2m) is shown in Fig. 2 ... 4.

Obviously, as % — 0,5, the error tends to infinity (the conditions of the Kotelnikov

theorem are not satisfied). If the sampling interval is small, % — 0, then the values of the
voltage samples U;, U,, Us; differ little from each other and the error also increases.
It can be concluded that at % ~ 0,175...0,375 the error in calculating the amplitude

oym = (0,4 ...1,5)0,, there is no noticeable deterioration in the accuracy of determining the
amplitude due to the described algorithm. But the number of calculated values of amplitudes
decreases three times in comparison with the rate of digitization.

By complicating the algorithm for selecting triples of samples U; U, U; (it is

advisable to choose not three consecutive samples, but spaced apart from each other by the
interval % ~ 0,20 ...0,35 samples from the array of more frequent measurements), it will be

possible to increase the number of measurements for one period of oscillation of the

resonator.
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Figure 2. The dependence of the error in calculating the signal amplitude

from the ratio of the sampling interval and the oscillation period % for @o =m/8
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Figure 3. The dependence of the error in calculating the signal amplitude

on the ratio of the sampling interval and the oscillation period % for o = /4
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Figure 4. The dependence of the error in calculating the signal amplitude

on the ratio of the sampling interval and the oscillation period % for @9 =3n/8

Conclusion

1. When ¢, — +m/2, the measurement errors of all parameters are increase
significantly. It is advisable to take this into account during secondary processing the results
of measurements series. It is advisable to calculate the corresponding weights of individual
measurements, depending of the ¢, estimate.

2. A potent dependence of the error in measuring the frequency, phase, and amplitude
of the signal from the ratio of the sampling period to the period of the estimated signal is
observed. From the point of view of a minimum of errors, the optimal values of At/T are in
the range of 0.175 ... 0.375.

3. The error in determining the amplitude in single measurement is commensurate
with the RMS noise for the phase range —m/3 < ¢, < /3.
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