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Introduction

This textbook is designed for students of the first year of technical university. It
covers two content areas to be studied in the first semester: Theory of Limits and
Differential Calculus of a Function of One Variable.

The manual can be helpful for students who want to understand and be able to use
standard differentiation techniques, analyze the behavior of a function and so on.

Each part contains basic mathematical conceptions and explains new mathematical
terms. The most important concepts of Calculus are explained and illustrated by figures
and examples.

The first part deal with the main definitions and concepts of the theory of limits:
limit of a numerical sequence, limit of a function, concept of infinitesimals, concept of
continuous function, the points of discontinuity of function.

The second part is concerned with the bases of differential calculus of function of
one variable: the derivative and the differential of a function, the tangent and the normal
line to the curve, applications of derivatives: monotonicity, extrema and concavity,
L Hospital’s rule.

There are also four appendices. In Appendix 1 it is presented the simplest bases of
set theory. The Appendix 2 is a rapid presentation of the concepts of functions, including
the properties and graphs of elementary functions. The remaining appendices can be
considered as giving some information about the polar coordinates and parametric

representation of a function.



1. Theory of Limits

1.1 The Limit of a Numerical Sequence

I. Numerical Sequences

The numerical sequence is a set of numbers enumerated by natural index in
ascending order of values of the index. The number of elements (possibly infinite) is
called the length of the sequence. Further we will consider infinite sequences.

Members of the sequences are called elements or terms. The sequence is ordered in
the sense that there is a first term (a,), a second term (a, ), a tenth term (a,,), and, if n
denotes an arbitrary positive integer, the nth term (a, ). The sequence usually has the rule
(formula) for the nth term which is a way to evaluate each term.

{a,,a,,a,...,a,,..;r={a,,ne N}.

Also the sequence can be represented by points on the numerical axis (Fig. 1).

-
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Figure 1.
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The sequence {a,} is an upper-bounded sequence, if there exists such real number

M that for any natural n: a, <M .(3IM eRVneN:a,<M.)
The sequence {a,} is a lower-bounded sequence, if IK e RVne N:a, > K.

The sequence 1a, ¢ is a bounded sequence, if IM,Ke RV neN: K <a, <M.

The sequence {a,} is a monotone increasing sequence, if vne N:a, <a, ;.

The sequence 1a,; is a monotone decreasing sequence, if VneN:a, >a,,,.



I1. Limit of the Numerical Sequence

Consider the numerical sequence {a,, ne IN}. What happens if n becomes larger

1
and larger (n—o0)? For example, terms of sequence {an ==—,ne N become smaller
n

{1, % % % 10100, 10100, } (closer and closer to zero), but terms of

sequence {a, =n,ne N} become larger {1 2, ..., 10", } (increase infinitely). In the

first case, the sequence is convergent and in the second it is divergent.

Definition. The sequence {a,, ne N} is convergent to the number a (lim a, = a) if

n—oo

for every arbitrary small >0 there exists a natural number N such that for all n> N:

la, —a <& (Fig. 2).

(lima,=a, if ve>03INeN vn>N:la,—a|<e)

n—o

aN {ﬂN"'l . aN""k} >
a4y Ay gle 4 gic Gy Gy

Figure 2.
If the sequence has a finite limit (a is a real number), then the sequence is
convergent (the sequence converges to a), otherwise the sequence is divergent (the
sequence diverges).

The sequence {a,, ne N} is infinitely large if lim a, = oo.

n—oo

The sequence {a,, ne N} is infinitely small (infinitesimal) if lim a, =0.

n—oo

For example lim 1 =0= {1 ne N} is infinitesimal.
n—wo N n

Lemma 1.1.

Every convergent sequence lima,=a can be expressed in the form

n—oo

b,=a+a,, n=1 where {a,} is infinitesimal (lima, =0).

n—o


https://en.wikipedia.org/wiki/Sequence

Example. Find lim 4n+1.

n—oo 2n

in+1 4n 1 1
=—+—=2+—.
2n 2n 2n 2n

Let rewrite the general term of sequence as

Since i Is an infinitesimal and lim i:0,

2n n—w 2N
lim L jiml 2+ 2 224 1im L =2,
n-wo 2N n—oo 2Nn n—w 2N

Properties of infinitesimals.

Let {a,, ne N} and {b,, ne N} are infinitesimals, then
a) lim(a, +b,)=lima, + limb, =0= {a, +b, } is infinitesimal;
n—oo n—o n—o0

b) if {c,, ne N} is bounded then lim(a,-c,)=0=>{a,-c,} is infinitesimal.

Nn—o0

c) lim(a, -bn)zr!imoan -lim b, =0={a,-b,} is infinitesimal;

Nn—o0

d) VceR, limca, =clima, =0= {ca,} is infinitesimal;

N—o0 N—o0

.1 1. . ..
e) lim— =0 = {—} isinfinitely large sequence.
n—oo an an

I11. Basic Theorems About Limits

In general, verifying the convergence directly from the definition is a difficult task.
Thus, there are some methods to find limits of certain sequences and some sufficient
conditions for the convergence of a sequence.

Theorem 1.1.

If lima, =a then a is unique.

N—o0

Proof. Let lima, =a and lima, =b (a<Db). Then a, must satisfy, at one and the

N—o0 N—o0

same time, two inequalities |a, —a<e and |a, —b| <& for an arbitrary small £>0. But it

Is impossible if € < aT—b.



Theorem 1.2,
Let lima,=a and limb, =b, then
Nn—o0 n—oo

a) limca,=clima, =ca, ceR;

n—oo n—oo

b) lim(a, +b,)=lima, + limb, =a+b;

n—oo n—oo0 n—oo

c) lim(a, -b,)=lima, - limb, = ab;

n—oo n—oo

o=\ b, ) limb, b

Nn—o0

lima,
d) |im(ﬁJ:m:§, if 0.

Proof.

According to Lemma 1.1 a,=a+a, and b, =b+p, where {o,, ne N} and
{B,, ne N} are infinitesimals.
a) Since ca, =c(a+a,)=ca+ca, and {ca,} is infinitesimal we conclude that

lim ca, = lim(ca+ca,) = ca.

b) Whereas a, +b, =(a+a,)+(0O+p,)=(@+b)+(a, +p,), then

lim(a, +b, )_Ilm((a+b)+(a +B,)) = a+b+I|m(a +B,)=a+b=Ilima,+limb,.

n—oo n—oo n—oo
c) Rewrite a,-b,=(a+a,)(0+p,)=ab+ba,+ap,+a,p, where {ba,+ap,+
+a,B,} is an infinitesimal.

Hence lim(a, -b,)=ab=lima,-limb,.

d) Let & _atro, _a rara, a a+ba aB”. Here the fraction 2 is a
b, b+B, b \b+p, b) b bb+p,) b
: : boa, —ap, . P :
real number, while the fraction b(t;—B)n is an infinitesimal ({ba, —ap,} is an
+ n

infinitesimal and b(b+p,) = b* = 0,n > ).

lima,
Thus, lim| 2o =8 222 ™ f p 0.
ool b ) b limb,

n—o0



Theorem 1.3.
Iflima, =a,then 3CeR Vn>1:|a|<C.

N—o0

Proof.
According to definition of limit: for e=1 3N e N vn>N: |a, —a|<1.
Let C:=max{|a,|,|a,|...|a,;|:[a]+L}. Then for n, 1<n<n-1, [a,|<C, and for

n>n, l|a,|=la,—a+a/<[a,—a|+[a|<1l+[a]<C.Hence Vnx1:|a,|<C.

Theorem 1.4.

Iflima,=a and b>a, then INeN Vvn>N:a,<b.

N—o0

Proof.

According to definition of limit: for e=b-a>0 INeN vn>N:|a,-a<e.

Then a—e<a,<a+e=b=a, <b.

Theorem 1.5,

Let lima,=a and limb,=b,and Yn>N a, <b,, then a<b.
nN—00 N— oo

Proof.

It is given that b, —a, >0. Evidently lim(b, —a,)>0 and
n—oo n n

lim(b,—a,)=1limb, —lima,=b—a>0=a<h.

n—o n—oo

Theorem 1.6.

Let Yn>N:a,<c,<b,and lima,=a and limb, =a, thenlimc,=a.
n—oo n—oo n—oo

Proof.

Let an arbitrary € >0 be given.
According to definition of limit
AN, eN Vn>N;:|a,-a<g;

AN, eN vn>N,:|b, —a/<e.
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Then for ¥ n>max(N;,N,):
a-e<a,<c,<b <at+te=a-e<c,<a+e=|c,—a <,

This means limc, =a.

n—o

Theorem 1.7.

If the sequence {a,, n e N} is bounded and monotone, then JacR: lima, = a.

n—oo
Proof.

Let {a,, ne N} be monotone increasing upper-bounded sequence and a<R be

the least upper bound of the sequence. It means that

- all terms of satisfy the condition a, <a;

-Ve >0, a—eisnotan upper bound of sequence{a,, ne N}.

Therefore, IN e N: a—-e<ay.

Since {a,, neN} is monotone increasing, ay <ay.,<ay.,<.. and
Vn>N:a-eg<a,<a.

Hence, lima, =a.

Nn—o0

IV. Indeterminate Forms
The limits can be calculated using theorem 1.2. But sometimes usage of this method

Is impossible.

. 2n-1 (2n-1)>x
For example, lim =
n>o3n+1 (3n+1) >

o0
o0

An expression — is an indeterminate form, and evaluating the limit requires a

e 2
n—e 31 11 Lﬂ} Hmﬂ[yl

special method:
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There are several types of indeterminate forms for sequences:

00
—, o0o—00, 0-00, 1%.
o0

Every indeterminate form has its own special method for computing. Most of these

methods are based on transformation of mathematical expressions and the most important

limits such as
.o 10, m<QO, .. 10, 0<ax]
limn" = lima" =
N—>00 0, m>0; N—>0 ©, a>1
Examples.
n>-1 [w nzﬂl_lzj
1. lim =1 2= lim N/ lim_=co;
n—o3n+1 0 N—o0 ( 1) N—o0
n 3+ -
n
n-1 n(l_l) 1
2. lim— =[f}=nm 5 = lim - =0;
n—-wo3n° +1 00 n—>wn2(3+2j n—oo 3N
n
1
2" 1-—
.o 2"-1 00 . ( 2“) 1
nsw 2" 41 00 n%wzn(z_i_) 2
2n

(n—+Vn?+1)(n++n?+1)

lim

4. lim(n—~v/n®+1) =0 —o0]=
n—oo n—o0

(N++/n?+1)

=lim
n—oo (n+

1 o
Jn?+1)

|im(1+1jn _e (L)

n—oo n

n?-n-1

Vn? +1) )

=lim
n—oo (n+
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1.2 The Limit of a Function

I. The Limit of a Function

Consider the function y = f (x), xe D(f) < R, and the point x, e D(f)c R.

Definition.
The limit of the function f(x) as x tends to x,, is 4y
aeR (Xli%rrx1o f(x)=a) if for every &>0, no matter how :E r
small, it exists §>0 such that V¥ x#X,, [x—X,|<8 we f&x/
have inequality |f(x)-a <& (Fig. 3). 0fo5% %75 X
(Ve>038>0 VX=X, [X—X|<8:|f(x)—a|<e.) Figure 3.
For example, let consider the function f(x)=x?—-9 4
at the point x, =3. It is easy to see that y approaches 0 as x \ / "
becomes closer to 3 (from both the left and the right sides) _EV/B )
(Fig. 4): N f0=x"-9
ler;(xz -9)=0. Figure 4.

Saying informally, the limit of function f(x) at the point x, (lim f(x)) is the
X—>Xq

value of y that the function approaches as its argument approaches x, .
For the function to have a limit as x tends to x,, it is not necessary that the function

be defined at the point x =Xx,. When finding the limit, we consider the values of the

function at the points near the point x, that are different from x, .

2
For example, the function f(x)=2 _?? is
X_
not defined for x, =3 (Fig. 5) but
2 J— J—
lim>X" =2 _jim $FIX=3) ik +3)=6.
x—>3 X—3 x-3 X—3 x—3 .
302 4 0 1 2 3 4
1

Figure 5.
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Definition.
The limit of the function f(x) asxtendsto oo,isaeR (lim f(x)=a) if
Ve>03CeR Vx>C: ‘f(X)—a‘<8.

If lim f(x)=0, then the function f(x) is infinitely small (infinitesimal) as x

X—>Xg

approaches to x, .

Examples.
lim x = 0; lim(x? —4) =0; IimE:O;
x—0 X—2 Xx—0o X
limsin x =0; lim(1-cosx) =0; limcosx =0;
x—0 x—0 X
2
lim(e* -1) =0; limlnx=0; limIn(x +1) =0.
x—0 x—1 x—0

If lim f(Xx) =00, then the function f(x) is infinitely large as x tends to x,.

X—)XO
Examples.
1 _ o o
x—0 X X—>»00 X—>+00
lim cot x = +oo; lim tan x = +oo; lim Inx = +oo:
x—0 X—>+00

Y
X—>—
2

1.3 Infinitesimals and Their Properties

If lim a(x)=0, then the function o(x) is infinitely small (infinitesimal) as x

X—>Xp

approaches to x, .

If lim f(x)=a,then lim(f(x)—a)=0 and f(x)—a is infinitesimal as x — x,.

X—>Xp X—=>Xp

Lemma 1.2.

The function f(x) could be expressed as f(x)=a+a(x), where oa(x) is

infinitesimal as X — X, .
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Properties of infinitesimals
Let a(x) and B(x) are infinitesimals as x — X,, then
a) a(x)+P(x) is infinitesimal as x — X,;
b) if f(x) isbounded as x — x, then a(x)- f (x) is infinitesimal as x — x,;
c) a(x)-B(x) is infinitesimal as x — X,;

d) VceR, ca(x) is infinitesimal as x — X,;

e) L is infinitely large function.
o(x)

Classification of infinitesimals

Let a(x) and B(x) be two infinitesimal functions as x — X, .

1. If lim () =0, then a(x) has a higher order of smallness with respect to (x)

=% B(x)

as X — Xy, a=0(p).

2.1f lim wzl, then a(x) and B(x) are equivalentas x — X,, o ~f.

X—>Xg B(X)

3. If lim m:c, c#0, c#1, then a(x) and B(x) have the same order of

X=X B(X)

smallness as x — X,.

1.4 Basic Theorems About Limits of Functions

Theorem 1.8.
If lim f(x)=a and a<C,then 38>0 V x# X,, [X—X|<&: f(x)<C.

X=X
Proof.
According to definition of limit of function: for given e=C—-a >0,

38>0 VX#X, [X=X|<8: ] f(x)—al<e= f(x)<e+a=C.



Theorem 1.9.
Let f,g:D—>R and VxeD: f(x)<g(x).

If lim f(x)=a and lim g(x)=b, then a<b.
X—>Xg

X—Xo

Proof.
Itis giventhat f(x)—g(x)>0. Evidently

lim (f(x)—g(x))>0

and
XILnxwo(f(x)—g(x))leirgo f(x)—xli%rrx10 g(x)=b—-a>0=a<h.
Theorem 1.10.
Let f,g,h:D—>R and VxeD: f(x)<h(x)<g(x).
Ifxli)rrxw0 f(x)=a and XIiﬁrrx10 g(x)=a, then XILTO h(x)=a.
Proof.
From the inequality f(x) <h(x) < g(x) follow inequalities
f(x)—a<h(x)—a<g(x)—a.
Let an arbitrary € >0 be given. According to definition of limit
38, >0 VX=X, [X—Xo| <8, 1 |f(X)—a|<¢;
38, >0 VX#Xy, [X—X|<8,:|g(x)—a|<ke.
Then for & =max(8,,8,) V X# Xy, [X—Xo|<8:
—eg< f(X)—a<e
and

—e<g(X)—a<e
and thus the inequalities

—e<h(x)—a<e
will be fulfilled.

This means limc, =a.

Nn—o0
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Theorem 1.11.
Let lim f(x)=a and lim g(x)=b, then
X—>Xg

X—>Xp

a) limcf(x)=ca, ceR;

X—>Xp

b) lim ((x)£g(x) = lim £(x)% lim g(x)=a:b;

c) lim(f(x)-g(x))= lim f(x)- lim g(x)=a-b;

lim f(x)
d) |im(f(x)]=X?X° _2 if b=o.
x=>xo\ g(X) limg(x) b

Proof.

Proving this theorem is similar to that for theorem 1.2. We suggest to prove it on
their own.

In the following two sections we shall consider the limits of two functions that find

wide practical application.

1.5 The Limit of the Function >1n X
X

as x —0.

This function is not defined at point x =0. Let us find the
C limit as 0.
IY; X—>
1 Let x be the central angle MOB (0< x<g) of the unit
x
o B A

circle. Note that function SIn x
Figure 6. X

only the case of positive values of x.

is even, that’s why we consider

Compare areas of triangle OBM, of sector OAM and triangle OAC (Fig. 6):
area of triangle OBM < area of sector OAM < area of triangle OAC
EOA- MB <10A- AR/I <10A- AC = l-l-sinx<1-1-x<l-l-tan X =
2 2 2 2 2 2

sinx<x<tanx.

Divide all terms by sinx:
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X 1
1<—«<
sinX COSX

or

sin x
cosx<——x<1.

X
As x — 0 we obtain Iingcosx =1 and IirT(1)1:1. Hence, according to Theorem 1.10
X— X—>
lim2"X _ 1 (1.2)
x—=>0 X

The graph of the function y = SINXis shown in figure 7.

X
A
A
]

/\ X
= 0 t t T + —
7 E—a 3 2 1 1 2 3 TT——S & 7

.‘|--
Figure 7.
Corollary:
tan x . arcsinx . arctan x
lim——=1; Ilim =1: lim =1;
x—=>0 X x—0 X x—0 X
) X ) X ) ) X
Iim——=1; lim——=1; I|lim ——=1: lim =1.
x—0Sin X x—0 tan X x—0 arcsin X x—0 arctan x
1.6 Number €

Theorem 1.12.

n
The sequence {(M l) ,ne N} Is monotone increasing bounded sequence and has
n

a finite limit between the numbers 2 and 3 as n — oo.
Proof.
1. Let prove the sequence is monotone increasing.

By Newton’s binomial formula we have



n 2 3
(14_1) :l+2%+M(£j +n(n_1)(n_2).(1\J +

n 1.2 n 1.2-3 n
+n(n—1)(n—2)...(n—(n—1))(1)"
1-2-3-...-n n)

Making simple transformation we obtain

an=(l+1jn:1+1+ nin-1) 1 n(n-NH(n-2) 1

n n? 1.2 nd 1.2-3
N n(n-H(n-2)...(n-(n-1)) 1
n" 1.2-3-...-n

R e S

Substituting (n+1) for nwe get the expression for the next term a,_:

n-+!
an+1:(1+—1 j :1+1+£-(1——1 )+£-(1——1 j-(l——z }+
n+1 2! n+l1) 3 n+1 n+1
...+1-(1-Lj-(1—i)....[1_”_‘1]+
n! n+1 n+1 n+1
) b )
(n+1)! n+1 n+1 n+1 n+1

Comparing expressions for a, and a, ., we can conclude that

- each element of the sequence is positive;

- each term of a,,, is greater than the corresponding term of the sum for a,:

) (Yo

- another term for a, ., is added.
1 n

Thus, the sequence {(1+ —) nNe N} IS monotone increasing.
n

2. Let prove the sequence is bounded.

n
From the expression for a, it follows that (1+ Ej >2.
n

Noting that (1—%) <1, (1—%) : (1—%) <1, etc., we obtain

18



19

n
a, = 1+1 <1+1+1+£+...+1.
n 21 3 n!
Further noting that L<i2; —<i3; : < 11,
1.2-3 2 1.2-3-4 2 1-2-3-...-n 2™

we can write the inequality

n
a, =(1+l] <1+
n

( 1 1
I+ 5+5+...
2° 2

2n—1 -

nth sum of geometric progression 2

Consequently, Yne N

2<(

n
1+£j <3.
n

This proves that the sequence is bounded.

The sequence {(Hlj ,neN} IS increasing and bounded, and according to
n

theorem 1.7, it has a limit. This limit is denoted by the letter €.

Thus

Theorem 1.13.

lim

n—oo

1 n
“ﬁj =¢ (13)

e=2.7182818284...

Figure 8.

The function y = (1+ 1) approaches
X

the limit € as x tends to .

Iim(1+ ljx e (1.4)

X—>00 X

The graph of the function is shown in
Figure 8.
Proof. (See detailed proof in [1])
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Theorem 1.14.

1
The function y = (1+ x)x approaches the limit € as x tends to 0.

lim(1+ x)% =e. (1.5)

x—0

Proof.

t
If in the limit Iim(1+}j =e we make a substitution x =%, then as t — cowe have

tow

1
x — 0 and we get lim(1+x)x =e.

x—0

1.7 Calculating the Limit at the Point

1. If f(x) is defined at the point X,, then lim f(x)= f(X,).
X—>Xp

The limit of an expression involving addition, multiplication or division of functions
can often be calculated by taking the limits of these functions separately (using theorem
1.11). However sometimes, usage of this method is impossible because common limit can
not be determined from the limits of these functions. Such case is called an indeterminate
form.,

For example

. x*-9  f(x)=x*-9-5>0,x—>3 _f(x) 0
lim = =0 X3
x—>3 X—3 g(x)=x-3—->0, x—>3 g(x) O

expression % Is not meaningful (an indeterminate form) and evaluating the limit requires

a definite special method

lim x? -9 _m: fim (X = 3)(x+3)
X—3 X—3

=lim(x+3) =6.
x—3 X—3 x—3
There are several types of indeterminate forms:

O © ., 0eo, 17, 07, o0,
0 o

Every indeterminate form has its own special method for computing. Most of
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these methods are based on transformation of mathematical expressions and the most

important limits:
arcsinx _

. sinX . tanx )
lim——=1 lim——=1 lim 1
x—=>0 X x—=>0 X x—0 X

arctan x 1\ 1
lim =1 Iim(1+—j =€ lim(1+ x)* =¢;
x—0 X X—>00 X Xx—0
. ef-1 . In(+ x . 1+x)" -1
lim =1 lim ( )=1; IlmL:m
x>0 X x—0 X x—0 X

2. The main idea of application equivalent infinitesimals to finding limits is

replacing an infinitesimal by an equivalent one. It could simplify the expression.

The table of equivalent functions

Z(X) >0, X— X,

sin z(x) ~z(x) arcsin z(x) ~ z(x) e?™ _1~z(x)
tan z(x)~z(X) arctan z(X) ~ z(x) a’™ —1~ z(x)Ina
In(L+2(x)) ~ 2(x) log, (1+ (X)) ~% (L+z2(x)" —1~mz(x)
Example.

Calculate the limit

0

. sin2x —arctan?3x +e* -1 [0}
lim 5 — =
x-05tan x? —3arcsin? /X + In(L—5x)
sin2x ~ 2x, arctan3x ~ 3x, e¥—1~x

tanx® ~ x?, arcsinv/x ~~/x, In(l—5x) ~ -5x

2 2
2X — (3%)" + X _[O}_I.m—9x +3X _ iy CX+3)x 3

=lim === = :
x>05x2 —3(vx)2=5x | 0] x>0 5x2—8x x>0 (5x—8)x 8
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1.8 Continuity of Functions

I. One-Sided Limits

The one-sided limit considers the values of function f(x) when x approaches to x,

from either the right or the left side.

The right side limit of the function f(x) as x 4y
tends to x, from the right side (Fig. 9) is ae R .:;r-74|/]jm,}(x)= a
A, T =a OV
0 !x+;l;;j+ .
if I I X
Ve>038>0 VX=X, Xe (X, % +8): [f(X)—a|<e. Figure 9.
The left side limit of the function f(x) as x tends Ay
to x, from the left side (Fig. 10), is ae R ) /
: Ff(x)=a
lim f(x)=a A= Ay ®
X—>Xg — f(x:/ E
if X0 .
: a0 % X
Ve>038>0 VX=X, Xxe(X—8,%): |f(x)—a<e.
Figure 10.

I1. Continuity of Functions

Let y = f(x) be some function and x, € D(f).
Definition. The function f (x) is called continuous at the point x, if

lim (x) = f(x,).

X—>Xq
In other words the function f(x) is called 1y
continuous at the point x, (Fig. 11) if and only if : Sl |
lim f(x)= lim f(x)=f(x)= lim f(x). FGx)
e o s %
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Properties of Continuous at the Point Functions

Theorem 1.15.

If f(x) and g(x) are continuous at the point x, functions, then f(x)+ g(x),

f(X)

f(x)-g(x), m (if g(x,) = 0) are continuous at the point x, functions.

Proof.

The proof follows from the definition of the continuity of the function at the point

and the theorem 1.11 on the properties of the limit of the function.

Theorem 1.16.

If g(x) is continuous at x, and if f(x) at b=g(x,), then
1) lim £(g(x) = f(lim g0)) = (b) = F(9 (%)

2) the composite function f (g(x)) is continuous at the point x, .

Theorem 1.17.
All elementary functions x", a*, log, x, sinx, cosx, tanx, arcsinx, arccos kX,

arctan x are continuous at each point at which it is defined.

In order to calculate the limit of a continuous function as x — X, it is sufficient to
substitute into expression of the function the value of the argument (x,) and evaluate the
value of y.

Definitions. The function f(x) is called continuous on the right at the point x, if

lim f(x) = f(%).

X—>Xg +

The function f (x) is called continuous on the left at the point x, if
lim f(x)=f(xp).
X—>Xg—

The function f(x) is called continuous over the interval [a,b] if it is continuous at

every point of this interval and if, in addition, lim f(x)= f(a) and Iirp f(x)=f(b).
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Definition. If at some point x = x,, at least one of the conditions of continuity is

not fulfilled for the function y=f(x) (lim f(x)=+c or it does not exist) then the

function f(x) is called discontinuous at the point x,. Such points are called the points of

discontinuity.

I1. Classification of the Points of Discontinuity

1. If f(x,) does not exist and Ilim f(x)=aek, 4y

X—>Xg +

lim f(x)=beR and a=b then point x, is the point of

X—>Xg—

al i

. o : o e |
ordinary discontinuity or the points of discontinuity of the e ; .
first kind (jump) (Fig. 12). o w o

Figure 12.

2. If f(x,) does not exist and Xlirxnf(x): Ay

= lim f(x)=aeR, then point x, is the point of @t-- o

discontinuity of the first kind (removable) (Fig. 13). J (x)/
o x x

Figure 13.

3. If at least one of the limits lim f(x) and Ay

X—>Xg + .

lim f(x) is oo or does not exist, then point x, is the

X—>Xg— |

point of nonremovable discontinuity or the points of f(xl___‘ :
discontinuity of the second kind (Fig. 14). 0 Xo X

Figure 14.
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1.9 Certain Properties of Continuous Functions

Theorem 1.18.

If y= f(x) is continuous over the interval [a,b], a<x<b, there exists at least

one point x* such that Vxe[a,b]: f(x")> f(x) and there exists at least one point X,

such that Vx e[a,b]: f(x,)< f(x).

We call the value f(x*) the greatest value of the function y = f (x) on the interval

[a,b] (r[na}?]( f(x)= f(x*)), and the value f(x,) the smallest value of the function
a,

y= f(x) on the interval [a,b] (r[nibr} f(x)= f(x*)). The meaning of this theorem is
a,

illustrated in Fig. 15.

'
max f(x) f-—----mg-m————-——m——m--- - .
[z 8] |
=0
L ey L x
I O
Figure 15.

Theorem 1.109.

If y=f(x) is continuous over the interval [a,b], a<x<b and one of the
following inequalities is fulfilled f(a)<0< f(b) or f(b) <0< f(a), then there exists at
least one point x, such that f(x,)=0.

The geometrical meaning of this theorem is
shown in Fig. 16. The graph of a continuous function
y = f(x) joining the points (a, f(a)) and (b, f (b)),

where f(a)<0 and f(b)>0, cuts the x-axis at one

point.

Figure 16.
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Theorem 1.20.

If y= f(x) is continuous over the interval [a,b], a<x<b and f(a)= f(b), then
no matter what the number C between numbers f(a) and f(b), there exists a point
X=c, a<c<b suchthat f(c)=C.

The meaning of this theorem is illustrated in Fig. 17. 1
Sl

Corollary of Theorem 1.20. C-

If y=1f(x) is continuous over the interval

[a,b], a<x<b and takes on a greatest value and a

smallest value, then in this interval it takes on, at least once,

Figure 17.

any value lying between the greatest and smallest values.

Theorem 1.21.

If a monotone function y= f(x) is continuous on the interval [a,b], where
f(a)=c, f(b)=d, then the inverse function x=g(y) is defined and is continuous on
the interval [c,d].

If the functions y = f(x) and x=g(y) are reciprocal, their graphs are represented

by the single curve. But if we denote the argument of the inverse function by x and the

function by vy, then, constructing them in the single coordinate system, we get two

different graphs. The graphs are symmetric about the bisector of the first quadrant’s angle.

y p
Example. 1 y=e
=y
Given the function y=e*. This , ’
function is increasing on (—oo,+00). It has an 1 ¢ y=lnz
inverse function x=Iny. The domain of / /.5
3 2 B 1 2 3

inverse function is (0,+00). (Fig.18)

Figure 18.
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2. Differential Calculus of a Function of one variable.

2.1 Definition of Derivative.

Consider the function y= f(x) determined in some interval. If argument x
increases by Ax, then the function f(x) has the growth Ay = f(x+Ax)— f(x) on the
interval [x, x+ Ax] (Fig. 19).

The average rate of change of the function Ay
y = f(x) over the interval [x,x+ Ax] is f(p&x)ﬂ.ﬁ;v-":
ﬂ:f(x+Ax)—f(x) f(x)'--: i
> > .
It is also known as the difference quotient. f (x)/ g_:

[]l X x+Mx )’C

The average rate of change does not tell us about
the function’s behavior between points x and X+ AX, Figure 19.
however, if we make Ax small enough, the average rate will be more precise.

If Ax— 0, then x+ Ax — x and the rate of change becomes instantaneous.

The instantaneous rate of change of the function y= f(x) is called derivative of

f (x) with respect to x and denoted by

£x) = lim Y = jim TG0 =109

A0 AX  AX—0 AX (2.1)
Another notation: ﬁ a f (x), Df (x).
dx dx
The derivative at x = X, can be expressed in such way:
f ,(Xo) = lim f (XO + AX) —f (XO) = lim f (X) —f (XO) . (22)

Ax—0 AX X—>Xg X=Xy

In fact, the derivative is a number (the value of limit) for the given point. For some
points, the limit (2.1) does not exist. In this case, the derivative does not exist too.

If the limit (2.1) exists, then function f(x) is differentiable at the point x. If the
function f(x) is differentiable at every point of interval [a, b], then f'(x) exists in every
point of interval [a,b] and f'(x) is defined as the function on the interval [a, b].

The operation of finding the derivative of a function f (x) is called differentiation
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of function.

The designation f'(x) (f primeof x) is not the only one used for a derivative.

Alternative symbols are % y', vy., Dy.

Theorem 2.1

If a function f (x) is differentiable at point x = x,, then it is continuous at this point.

Proof.

Flim 2 = £/(x) then Y = f/(x)+a(x) where a(x) is an infinitesimal as
Ax—0 AX AX

AX—0.
Hence Ay = f'(xX)Ax+a(X)Ax and it follows that Ay —0 as Ax— 0. This means that

f (x) is continuous function at the point x = x,.

In other words, a function cannot have a derivative at points of discontinuity. The

converse is not true.

I1. Geometric Interpretation of Derivative

Consider  the  graph  of  the 4y

functiony = f (x).
: . f(xo*m)

The straight line that goes thought two
points M and My on the graph is called the secant Jlxo)
line (Fig. 20). The position of the secant line is //¢
determined by tan¢ — slope of the line: 0

tan(p:ﬂz f(X+AX)—f(X)’ q)e(—z,ﬂ)- Figure 20.
AX AX 2 2

Assume that the point My moves along the curve to the point M. The limit position
of the secant line MMy as the distance between the two points goes to zero and is called

the tangent line and the slope of the tangent line is

tano= lim &Y= fim TXHA0=T0) _
M—->Mg AX  Ax—0 AX
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The equation of the tangent line for the function y = f (x) at the point x, is:

y = F(%)(x=%) + T(x). (2.3)
A straight line passing through the point My
perpendicularly to the tangent line is called the
normal line to the curve (Fig. 21). The equation of

the normal line is

1
y=— F(x0) (X=X%o)+ F (%), (2.4)
Figure 21. (%) #0.

The segments AT, AN are called the subtangent and subnormal, respectively. The
lengths of the indicated segments can be calculated by formulas

f (%)
(%)

AT = ;AN =| (o) /(X))

I11. Physical Interpretation of Derivative

According to definition of derivative, if the function f(x) describes a definite

physical process, then the derivative shows the rate of changes in this process. This makes
it very useful for solving physics problems.

For example, if s(t) describes the position of a moving particle at the timet

(motion), then % is the velocity of the particle at the time t.

If g is the amount of electric charge, the derivative % Is the change in that charge

over time, or the electric current.



2.2 Derivatives of Basic Elementary Functions

C'=0 VCeR; (x)' =1
1 1 1
X" r:nxn—l; (_j - \/; — :
) X X2 ( ) 2-/x
(e*) =e”; (@) =a"Ina;
(Inx) =2 (log, x)' = ——;
X xIna
(sin x)" =cos x; (cosx)' =—sin x;
(tanx)' = ———; (cotx) = ————;
COS” X sin” x
(arcsinx)' = ! ; (arccosx)' =— ;
1-x2 1-x2
1
arctan x)' = ; arccotx)' = — ;
( ) 1+ x? ( ) 1+ x?
(sinh x)" = cosh x; (cosh x)" =sinh x;
1 1
tanh x)' = ; cothx)' =— ;
( ) cosh?® x ( ) sinh? x

Let prove some formulas:

(X +Ax)" —(x)"

1. (x") = lim = lim =nX
AX—0 AX AX—0 AX AX—0 AX
X
. eX+AX_eX ) eX eAX _1 ) exAX
2. €)' =Ilim-—"=lim Q: lim =e,
AXx—0 AX AXx—0 AX Ax—0 AX
. AX AX
_ _ 23mcos£x+j gcosx
N e SIN(XHAX) —sinx . 2 3
3. (sinx)" = lim = lim = lim -4~——=CosX.

AX—0 AX AX—0 AX Ax—0  AX

2
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2.3 Basic Rules of Differentiation.

To compute derivatives using the definition means to compute the limits. For
elementary functions it is not complicated but for more complex functions using the
definition of the derivative would be an almost impossible task.

However we have a lot of formulas and properties that we can use to simplify the
operation of differentiation.

Theorem 2.2.

Let the functions f(x) and g(x) be differentiable (3 f', g’) at the point x,.
1.VCeR (C-f)=C-f"

2. (f+9)=1"+4d"

3.(f-g)=1"-g+f-g}

!

4. if g(x)#0, (iJ _te-t-g
g g

Proof:

If the functions f(x) and g(x) are differentiable at the point x,, then

f,(XO): lim f(X)— f(XO) and g'(xo): lim g(x)_g(XO).
X=X X—Xg X=X X=X,
1L (CH)(x) = lim ST =CT0) _ iy CAOO= TGN _ gy
X—>Xg X — Xg X—>Xg X — Xg
2 (f +g) (XO)_ Ilm (f +g)(X) (f +g)(XO) || (f(X)+g(X)) (f(X0)+g(XO))
X — Xg ) X — Xg
~im FXO=T00) iy 90 =000) _ oy g4 g7i ).
X—>Xp X—XO X—>Xg X — XO

. f- —(f- o (x)- _§ .
3 (f,g),(xo)lewo( g)(xi_io g)(XO):X'LTO (x) g(X)><—x§XO) 9(%) _

i £09-900 = F06)- 900+ (%) 90— (%) 9(%;) _

X—>Xg X=X

= f(xi_;%) 99+ fim (0 992906 _ 164y g0) + £ 05 0'0x).
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4. Let g(x,) #0.

g(x)  g(xp) ) xox X=X g(x)-9(xo)
1 1(x)-9(%)— (%) 9(X) = F (%) - 9(x)+ f(%)-9(X) _
X% X=X 9(x)-9(Xo)

im 1 (fwy—u%xgww_fww,mm—guaj:

o g(x) g(x) L X=X X— X
_ F'(%0) -9 (%) = £(%0) - 9'(%) .
gz(xo)

(ij’(xo):"m 1 (f(x)_f(XO)J lim 1 ,f(x)‘g(xo)—f(xo)-g(x):

X—>Xp X — XO

Examples.

’
' 7

! , z 7
1. (X5+W_£5) :(Xs) +[X4j —Z(X_S) =5X5‘1+£x4 1—2-(—5)X‘5‘1 _
X

3
7 _ 7 10
=5x*+ - x4 +10x° =5x" + V%% + =;
4 4 X
!
2. (ex coS x) = (e*)'cos x +e”*(cos x)' =e” cos x —e* sin x = e*(cos x —sin X);

!

sin xj _ (sinx)’cosx—sinx(cosx)’ _cos’x+sin®x 1
COS X cos? X cos? X cos? X

3. (tanx)' = (

, .
: : —sinx—Inxcosx _.
4 (Inxj _(Inx)’sinx—Inx(sinx)" _ XS c0s _sinx—xInxcosx

"\ sinx sin? x sin? x xsin®x

Theorem 2.3.
Let the functions y = f (x) be differentiable at the point x, (3 f'(x,)) and there

exists inverse function x=g(y) such that it is continuous at the point y,, y, = f(x,).

Then there exists

1

: 2.5
(%) @9

9'(Yo) =
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Example.

Given the function y=arcsin x, ye[—g,ﬂ, X e[-11]. Let prove the table

formula (arcsinx)’' =

using theorem 2.3.

1
V1-x?
The inverse function is x=siny. Then x{ =(siny)| =cosy. By the rule for

differentiating an inverse function,

11

Y=
X, cosy

Since cosy =+/1-sin?y =+/1—x? , we have

, 1
Yx I

The sign in front of the radical is plus because the function y =arcsin x takes on

values in the interval [—gﬂ , and, consequently, cosy >0.

V1. Derivative of a Composite Function

Given a composite function y=y(x), that is, such that it may be represented in the
following form:
y=1(u), u=g(x) or y=f(g(x)).

In the expression y = f(u), u is called the intermediate argument.

Theorem 2.4 (Chain Rule).
Let the functions f(x) and g(x) be differentiable at the point x.

Y = (F(9(x))) x = f5(9(x))- 95 (x). (2.6)
Proof.
For the increased value of argument x + AX,

U+Au=g(x+Ax), Yy+Ay=y(u+Au).
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Thus, to the increment Ax there corresponds an increment Au, to which

corresponds an increment Ay, whereby Au—0and Ay — 0 as Ax — 0. It is given that

yo () = lim &Y.

Ax—0 AU

From this relation we get % =Yy, +a (for Au=0), where oo > 0as Au—0. Then
u

Ay = y,Au+ 0 AU.

This equality also holds true when Au=0 for any arbitrary o, since it turns into
identity, 0=0. For Au=0 we shall assume o.=0. Divide all terms by Ax:

Ay , Au Au
—=Yy,—+toa—.
AX AX AX

It is given that

. Au i
u, (x) = lim —, lim o =0.
Ax—0 AX Ax—0

Passing to the limit as Ax —0, we get y, = y,u; = f;(g(x))- g5 (%)

Examples:

1. (sin(x3 + x)), = cos(x® + x) - (x® + x)" = cos(x* + X) - (3x* +1);

U
X

X
2.( X+e ):#-(x+ex)’: lve

24/ X +e* 2\/x+ex’
sin X

!/
1
3. (In4 cosx) =4In*cosx-(Incosx)’ = 4In°cosx-——-(cosX)' =4In®cos x - —— =
COS X COS X

= 4tan xIn®cosx.

2.4 The Derivative of an Implicit Function

Let the values of two variables x and y be related by equation
F(x,y)=0.
Then the function y(x) is called an implicit function defined by this equation.
Sometimes this equation can be solved for y. It means that y can be explicitly
expressed in terms of x: y= f(x). For example, for y+2x—-4=0 we can rewrite the

equation in explicit formas y =4-2x.



35
But some equations do not explicitly define y as a function of x and are not

solvable for y. For example, for ¥ +2xy® —4x—1=0 it is impossible to isolate y or x

on one side of the equation.

The solutions of the equation F(x,y)=0 form a set of points (X,y). So it is

possible to plot the graph of an implicit function.

For example, the equation

x> +y?-a’=0

defines implicitly the following elementary functions /\a X
L2
_ a2 2 —d 0
y=+va“—x“, K A o
y=— [a2 _ 42 —d
Figure 22.

and the graph is a circle of radius a (Fig. 22).

The technique of implicit differentiation allows us to find the derivative of y with
respect to x without transforming F(x,y) =0 it into an explicit one. The chain rule must

be used whenever the function y is being differentiated because of our assumption
that y is a function of x. Then we solve the obtained equation di F(x,y) =0 with respect
X

to vy, .
Example.
Consider the function
x> +y?>—a?=0.
Differentiate both sides of this identity with respect to x:
() +(y?) - a0
Regarding y as a function of x and using the rule of differentiating a composite

function, we get

2x+2yy, =0,

whence

X
Yy =——-
y



36

Notice that the derivative is a function of both y and x. But if we need to find

derivative at some point (X, Yo): VY, = X (Yo #0).
0

2.5 The Logarithmic Differentiation

Consider the function

y=(f ().
Such function in which both the base and the exponent are functions of xis called a

tan x x%+2

, Yy =(sinx)

The process of finding the derivative of a composite exponential function is quite

composite exponential function. For example, y = x*, y = x

complicated because we can not use the ordinary rules of differentiation. Taking the
derivatives of such functions is called logarithmic differentiation. It is based on the
properties of logarithms.

Begin with

y =(f ().
First we apply natural logarithms of the left and right side of the equation
Iny =In(f(x)*™ =g(x)In f(x).
Next we differentiate both sides of resultant equation with respect to x. The left

side requires the chain rule since vy is a function of x.

(Iny)x =(g0In f (x))

yy= (900)x I £ (x)+ g1 £ () x = g'(X) I F(x) + )2

f(x)
whence
' ' f'(x
V=Y G001 () + 900V |,
f(x)
Substitute the original function instead of y in the right side of equation and obtain:

(100 ¢ (%)
y' =(f(x))° [g (X)In f(x)+g(x) f(x)j'
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Example.

Let we differentiate the function y = x*,

Taking logarithms of the both sides of equation
Iny =Inx* =xInx.

Differentiate both sides of the equation

(Iny) =(xInx)

and obtain
Xz(x)' Inx+x(lnx)' = Inx+x%= Inx+1.
Finally we get
y'=y(nx+1)
and
y' =x*(Inx+1).

Logarithmic differentiation is used not only for differentiating composite

exponential functions but also for simplifying calculations during finding derivatives.

Example.

Find the derivative of the function

_(x=0°x%°

y .
N2+ X2

Taking logarithms and using the properties of logarithms we obtain

V243
In(x 1)°x

V2 + X2

Differentiate the equality

Iny = =In(x-1D? +Inx®—InV2+ x? :2In(x—1)+3|nx—%ln(2+x2).

!

(In y)’ =(2In(x—1) +3In x_%m(ZJr xz)j
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l’23 X

+2 - .
y x-1 x (2+x%)

Hence

y,_(x—l)zx3 2 3 X
Joex® Ix=1 x @2+x3) )

2.6 The Derivative of a Function Represented Parametrically

Consider a function y of x represented by the parametric equation
{X =o(t),
y=w(t),

Let us suppose that functions ¢(t) and wy(t) have derivatives with respect to t and

te[T;, T,]. (2.7)

that the function x = o(t) has an inverse t = ®(x), which has derivative with respect to x.
Then the function t = ®(x) defined by the parametric equation may be considered as a

composite function

y =y(t) = y(P(x)).
Using the chain rule we get

Y = Wi (t)- DL(X). (2.8)
By the theorem 2.3 about the differentiating the inverse function we obtain
1
DL (X)=—~.
()
Finally, putting this expression into (2.8), we get
, _wi(t)
Yx =7y
¢ (1)
or
y, =2t (2.9)
Xt

Formula (2.9) permits finding the derivative of y with respect to x without having to

find the expression of y as a function of x.
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Example.
Find the derivative of the function

{x:acost,

t€[0, «j.
y =bsint, €l0 =]

Since y; =bcost and x{ =-asint, according to (2.9) we have

Yy :szbc—o_St:—Ecott.
X, —asint a

Notice that the derivative is a function of t and not of x. But it is not a problem if we
need to find derivative at some point. For example,

= Leot] —-Pegrmo_P
% a | a

14
Yy,

T
4

2.7 The Differential

Let the function y = f (x) be differentiable on the interval [a,b]. The derivative of

this function at the point x €[a,b] is determined by following limit

. Ay o,
A p = 100,

where Ax is increment of the independent variable and Ay is the increment of the
function corresponding to the change of the independent variable.

As Ax—0, the ratio Ay tends to a definite number f’(x) and, according to

AX

properties of limits and infinitesimals, this ratio could be represented as

%: F/(%) + (),

where o(x) >0, Ax—0.
Hence, the increment Ay can be represented as a sum:
Ay = T'(X)AX + a.(X)Ax
where the first term is called the principal part of the increment and it is linear relative to

AX, and the second term has a higher order of smallness with respect to Ax.
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The expression f'(x)Ax is called the differential of function and is denoted
by dy or df (x).
Since x'=1, the differential of the independent variable dx coincides with its

increment AX.

Then we can write the formula for differential of the function f(x):

dy = f'(x)dx. (2.10)

Properties of the Differentials

Let f(x) and g(x) be functions of the variable x. Then
1. vCeR, d(Cf)=Cdf.

2. d(f £g)=df £dg.

3. d(f-g)=gdf + fdg.

oo ]-ser=en
g g
5. Let y= f(u) and u=g(x), then the differential of a composite function is
dy = f'(u)du = f,(u)g; (x)dx.
The fifth property of differential is called invariance of the form of the differential.
6. Since Ay ~dy, thatis f(x+Ax)— f(x)= f'(x)Ax, we get a formula for

approximate calculations
f(x+Ax)= f(x)+ f'(X)AX. (2.11)

2.8 Derivatives of Higher Orders

I. Higher Order Derivatives

Let the function y= f(x) has a derivative on some interval. Since the values of
derivative y'= f'(x) depend on x, the first derivative is also the function of x. If this
function f'(x) is differentiable, then we can take the derivative of f'(x). This new

function is called the second derivative (the derivative of second order) of f(x) and is



41

2
denoted as f"(x) (i—! D2f(x)J. This process of differentiation can be continued
X

to find the third, fourth and successive derivatives of f(x) called higher order
derivatives of the function f(x).

y' = f'(x) — the first derivative;

y" = f"(x) — the second derivative;

y'"" = f""(x) — the third derivative;

y"V = y® = £ @ (x) —the fourth derivative;

yV =y® = £O(x) —the fifth derivative;
y™ = f ™ (x) —the higher order derivative;

Example.

Provide the successive differentiation of functiony = x° + 2x*> — x? +5x + 3 till y©®.
y = (X% +2x% = x? +5x+3)' =6X° + 6X”* —2X+5;

y'" = (6X° +6Xx* —2x+5) =30x" +12x—2;

y'" = (30x* +12x—2)' =120x% +12;

y® = (120x3 +12)"' = 360x°;

y® = (360x%)" = 720x.

I1. Rules of Finding Higher Order Derivatives
The rules given for finding first order derivatives are generalized to the case of any

order. In this case we get
(Cf (x))™ =cf M(x): (2.12)
(FEI+ g™ = F ()9 (x). (2.13)
To obtain a formula for nth derivative of the product of functions let us find several

derivatives and deduce the general rule.
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y:f.g;
yf
y”:(f,'g—i—f'g,),:f”'g—+—2f"g,+f'g";

=f"-g+f-g';

y"=f".g+3f"-g'+3f"-g"+ f-g";
yV=1fV.g+4f".g'+6f".g"+4f"-g"+f-g".

The formulas obtained are similar to the formulas for the expansion (f +g)" by the

binomial theorem. If in the expansion the exponents of the powers of f and g are

replaced by the orders of derivatives we obtain the rule for nth derivative of the product of
two functions.

(f-g)™=f"M.g4nf m‘”-g’+%f<”-2>-g"+...+ f.g™. (2.14)

This is the Leibniz rule.
The rigorous proof of this rule is performed by the method of mathematical

induction.

Example. Find the nth derivative of function y = xe?*.

g =e?", f=x2,
g'=2e”, f=2x,
gﬂ:22e2X’ frr:2’
g(l’l)zzheZX7 f’”:.,_:f(n)zo,

n(n-1)

y"M = (xzezx)(n) =2"e?*x? +n2" e 2x + 2" 222 =2"e* (X% +nx+27%).

I11. Higher Order Derivatives of Implicit Function

Let us illustrate the process of finding second order derivative of implicit function
by example.

Consider an implicit function y of x defined by formula
y*—2x*+2=0.

Differentiate the equality with respect to x
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3y’y' —4x=0
and find first derivative
4x
=, 2.15
y 3y? (2.15)

Again differentiate this equality with respect to x
v (4X)(By*)—(3y*)'(4x) _12y® —24xyy’ _4y-8xy’
(3y*)? 9y 3y

Substituting, in the place of the derivative y', its expression from (2.15), we obtain

4y—8x-4X2
yre 3y
3y*
Then, after simplifying,
y - 12y* —32x?
9y

It is possible to continue the differentiating in the same manner if we need the

derivatives of higher orders.

IV. Higher Order Derivatives of Functions Represented Parametrically
Let the function y of x be represented by the parametric equation

{X = ¢(t),

y =wy(t),

Let us suppose that functions ¢(t) and y(t) have derivatives with respect to t and

te[T, T,].

that the function x = (t) has an inverse t = ®(x), which has derivative with respect to x.
It was proved (see formula 2.9 from part 2.6.) that

'

r_yt

yx__,'
Xt

To find the second derivative, differentiate this expression with respect to x, bearing
in the mind that t is a function of x:

Vo= (), J(i"j —9(“]-1 (2.16)

P NG r?
dx\ x; ) dtix ) X
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or

"o_ yt,;Xt, — Xt,{ yt' 217
Yx (Xt,)g . ( . )

In similar fashion we can find the derivatives

d®y _d(d’y) 1
dx®  dtl dx® ) x

dly _dfd’) 1
dx* dtl dx® ) X
and so forth.
Example.
Find the derivative of the function
X = acost,
{ _ t [0, =].
y =bsint,
Since y; =bcost and x{ =—asint, according to (2.9) we have

Y. :Lf:bc—@z—gcott.
Xy —asint a

Then
y _g(_gcottj. 1 b 1 b
* o dt\ a —asint asin’t —asint  aZsin®t
d3y_i(_ b j 1 _3bcost 1 3pcost
dx® dtl a?sin®t) —asint a’sin*t —asint  a’sin®t

2.9 Basic Theorems of the Differential Calculus

Theorem 2.5.

Let f(x) be defined on (a,b) and
f (%)= max f(x)or f(x,)= min f(x).
(%) = max £ (x) or (%)= min f(x)
If the function is differentiable at the point x, € (a,b), then f'(x,)=0.
Proof.

Let f(Xy,)= m(a>k<)) f(x). Then for x = x, we get f(x)— f(x, ) <0 (Fig. 3).
Xe(a,
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Since, according to definition of derivative,
flo)-FO)

F(%,) = f/(X,) = lim

Xy X=X,
and
- F(%,) = (%)
[ — f — < + '
/(%) = £ (X,) X_'J)EII+ X~ %, <0, 0 Xo, L
we obtain f'(x, ) =0. Figure 23.

Note: The tangent line of the function f(x) at this point x, is a horizontal line. Hence, its

slope is equal to zero, that is, the derivative f'(x,) =0 (Fig. 23).

Theorem 2.6 (Rolle's Theorem).

Let f(x) be continuous on a closed interval [a,b] and differentiable on the open
interval (a,b). If f (a) = f (b), then there is at least one point c in (a,b) where f'(c)=0.
Proof.

Since function f(x) is continuous over the interval [a,b], there exists at least one

. * kY . A .
point x* such that f(x )—Xrer}%) f (x) and there exists at P
least one point x, such that f(x,)= min f(x) (Theorem i
K@) Fl@=r) f ______ :\_. _ ,
1.18). Let ¢ = x* (Fig. 24). 0 a ¢ X

According to theorem 2.5 f'(c) =0. Figure 24.

Theorem 2.7 (The Mean Value Theorem, Lagrange’s Theorem).

Let f(x) be continuous on a closed interval [a,b] and differentiable on the open

interval (a,b). Then, there is at least one point ¢ in (a,b) at which

fb)-1(a) = f'(c). (2.18)
b-a
Proof.

Let us consider the auxiliary function


http://www.cut-the-knot.org/do_you_know/few_words.shtml#continuity
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http://www.cut-the-knot.org/do_you_know/few_words.shtml#ointerval
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F(x)=f(x)-f(@a)—(x— a)M.

This function satisfies the conditions of the Rolle’s Theorem. By this theorem, there exists
within the interval a point x =c such that F'(c)=0.
But

Puydxm—ﬂ%igﬂ.
And

f(b) fa) _

F'(c)=1'(c)-

Whence

fO)-f@)
b_

Note: the Mean Value Theorem tells us: if

fric)= 2~ 1Y

it all points of arc MMy there is a tangent line, Ay fle)
then there will be, on this arc, a point between

M and My at which the tangent is parallel to the f(b;
secant MMy. The slope of secant and the slope of fa)t

the tangent line must be equal (Fig. 25). 0

The geometric significance of the auxiliary

Figure 25.

function: it is an equation of secant MMq.

Theorem 2.8 (Cauchy’s Theorem).

Let functions f(x) and g(x) be continuous on the interval [a,b] and differentiable

within it. Ifg’'(x) 0, xe(a,b), then, there exists a point c in (a,b) at which

fo)-f(a) _f'(c) (2.19)
g(b)-g(a) g'(c)

Proof.
Note that g(b) —g(a) =0, since otherwise g(b) =g(a), and then, by the Rolle’s Theorem,

g'(c) =0 for some c € (a,b)), that contradicts to the statement of the theorem.
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Let us consider the auxiliary function

f(b)-f(a)
gb)-g(a)

This function satisfies the conditions of the Rolle’s Theorem. We conclude that there

F(x)=1(x)-f(a)-(9(x)-g(a))

exists a point x=c, c (a,b) such that F'(c)=0.

But
, : iy T(0)—f(a)
F = f — _—t
(xX)=1'(x)—g'(x) a(0) g (@)
And
, , i F(0)—f(a)
F'(c)=f'(c)- —_— =
©=10-9C =
Whence

f(b)-f(a) _ f'(c)
g(b)-g(a) g'(c)

2.10 The L’Hospital’s Rule

Previously, we have learned the concept of the limit of an indeterminate form

(g or fj. This is an expression involving two functions that have their limits impossible
(0.0]

to find from the limits of the particular functions. Now we proceed to the one of the most

powerful methods for finding limits concerned with application of the derivatives.

The L’Hopital Rule for an indeterminate form %

Let functions f(x) and g(x) be defined and differentiable on the interval (a,b), so
that:

1. g'(x) #0 on the interval (a,b);

2. lim f(x)=0 and I|m g(x)=0;

3. Iim ()exists.
=% g'(x)
Then lim —~ f() [9}: lim f,(x).
X—>Xg g(x) 0 x=Xo () (X)
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Proof.
Applying the formula (2.19) (Cauchy’s theorem) we have

F(x)—f(x) _ f'(c)
g(x)-9g(x) g'(c)

for some x € (a,b), x= x,,and ¢ between x and X, .
But in view of assumption 2) we put f(x,)=0 and g(x,)=0. Then
f(x) _ f'(c)
g(x) g'(c)
Taking the limit of this equality as x — X, . If x — X, then ¢ — X, also, since c lies

between x and Xx,.

Whence
jim 1) _ i £©) _ i £
X—>Xg g(x) C—Xg g'(C) x—>xog(X)

: : f'(x) . . : .
Note that if an expression ,( ) Is again an indeterminate form % then we can

apply the L’Hopital Rule repeatedly.
The L’Hopital Rule is also applicable if lim f(x)=0 and lim g(x) =0:
X—>0 X—>00

lim 1) _ H—li L)
e g(x) 0] xe g'(0)
Examples.
L lim smx_[g}: im(smx) _ im 08X _y.
x>0 X x—0 (X)' x—0 1
5 “mx—s;nx:[g}zlim(x—s;nx) :“ml—cozsx:[g}:“m(l—cc;sx) _
x—0 X 0 x—0 ()( )' x—0 3Xx 0 x—0 (3)( )'
lim sin X 1
_x—>0 6X 6’
) o)
sin — Sin — COS— iy 5
3. lim X_[ }_Ilm X) _lim— X X /_2
3 3
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The L’Hopital Rule for an indeterminate form iy
o0

Let functions f(x) and g(x) be defined and differentiable on the interval (a,b), so

1. lim f(x)=o0 and lim g(x) =,

X—>Xo X—>Xq
2. lim LG exists.
=% g'(X)

Then lim ——= ) [f}: lim f,’(x).

=% g(x) Leo] x=% g'(x)
Proof.

1
Let we reduce an indeterminate form 3 to the form 0 as follows: fz:) = g(lx) :
7w

Then

Y R 1) '
) (f(x)) Wj"fz(x)

= lim gz,(x) = lim —fz(x)g’(x)
X—=Xg f (X) X—>Xg gz(X)f'(X)

/ﬁ

o 1Oy 50
x=>% g(X) ) x=>x f'(X)

f2(x)
Let lim ) =A
X—>Xq g(X
Hence
A= lim 1) _ @iwalm ) _ pz jim S
=6 g(x) e g(x)) o £100 o F1(X)
lim 90 _ 1
X—>Xg f '(X) A .
Finally
A= lim )

X—>Xg g'(x)



50

Example.

1
~Inx [eo] .. (Inx) .. « . —sin?x . sinx .
lim——=| = =I|m( ):Ilm X __ _lim = —lim>Zsinx =0.
x>0 COtX [oo| x-0(cotx) x—0 1 x—>0 X x—0 X

sin? x

This rule can also be applied for limits at infinity:

Example.

2 YA i Y
lim X ;‘{f}: lim 3XX) — lim szl{f}: Iim(2X31) —lim -2 =0
x—o @ 00 X—>00 (e )’ x—w 3p°% 00 X—>00 (3e X)' x—0 Q@X

The other indeterminate forms can be reduced to one of the forms: e or %
o0

1. [0-o0].
Let lim f(x)=0 and lim g(x) =o0. Itis required to find

lim (£ (99(x))=[0-]

If the expression is rewritten as follows

lim ((x)g(x)) = lim #
9(x)
or
lim ((x)g(x)) = lim % ,
(x)

then as x tends to x, we obtain the indeterminate form % or 2 respectively.
o0

Example.

1
' - 3
lim(x? Inx)=[0-oc] = lim] "% :[E}:nm UnX)"_im X~ _jim*_ —o.
x—0 x—0 i 0 x—0 ( 1 j x—0 _3 x—0 2X
w2

2 3
X X X
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2. [oo—o0].

The indeterminate form [oo—o0] should be reduced to the form v by algebraic

transformation.

Example.
. 1 . sinX 1 . (sinx-1 0
lim| tgx———— |=[0—o0] = lim| —— ——— |=lim == |=
s COS X (™ cosSx cosx/) .7 cosX 0
2 2
(smx 1) _ lim 08X

=0.

TE

x—>§ (COSX) X—> ;‘—SII’]X

3. [1°], [0°], [«°].
These indeterminate form can be reduced to the form [0- o] by transformation

f ()% =exp(g(x)In f(x)).
Examples.

L. limx* =[0°] = limexp(xInx) = [0-0]= expli Ollxz[f}:exp"m(mx) _

o0 x—0 (1j
X X

1
< Y
_expllirg) 1_expllirg)7:e =1.
XZ
SIin X
2. Iim(lj :[ooo]:Iimexp(sinxlnl):[O-oo]:explim_lnx:[f}:
x—0\ X x—0 X x—0 1 o0
sin X
1
' - 2
_expllm( Inx) —explim—X_ —explim > X

p —e’ =1,
x—0 1 x—0 COS X x—0 X COS X
— )

(Sian SIn™ X
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2.11 Taylor’s and Maclaurin’s Formulas

Taylor’s formula is one of the methods for approximating a given function by
polynomials.

Let f(x) be a function such that f(x) and its first n derivatives are determined and

are continuous on [a,b]. Furthermore, let f " (x) exist for all xe(a,b). Then V x, < (a,b)

F(X) = (%) + f'(li‘o) (X—%,)+ fng‘o) (X=%,)? +...+%(x— X,)" + R (X, X,), (2.20)

P, (X,%,)

where P,(x,%,) — the n-th degree Taylor’s polynomial of the function f(x) in the region
near the point x,, R,(x,X,) — remainder term associated with P,(X,X,) using for

evaluation of error of approximation (Fig. 26).

There are several forms for remainder A
R, (X, X,), but the most common one is the F(x);
P;:f(xrxﬂ)-
Lagrange form:
(n+1) . f( Io)'
Rn (X, XO) — f (XO + g(X XO)) (X— Xo)n+1’ ey
(n+1)! 0

where £ <(0,1).

Figure 26.

If X, =0, then Taylor’s formula simplifies to

_ f'©) . "0 - F00) o, F"PE)
f(x)=f(0)+ 1 X+ i X“+...+ " X"+ ()] X", Ee€(0)), (2.21)

which is called the Maclaurin’s formula.

The remainder in the Maclaurin’s formula has the form

_ f(n+l) (&X) n+1
R”(X)_—(n+1)! X, £e(0)).

Examples.
1. Expansion of the function f(x) =¢*.

The function f(x)=¢e” has a derivative of any order

f™W(x)=e*.
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Therefore, the Maclaurin’s formula is applicable to this function. Let us compute
the values of the function and its first n derivatives at the point x=0, and the value of
n+1th derivative at the point &x, & (0,1):

f(0)=f'(0)=f"(0)=...= T™M(0)=e’ =1,
f (D (ex) =™, £e(0)).
Whence

2 X3 Xn
e =1+X+—+—+...+—+R (X),
2 3 n!
where
e

(n+1)!

R, (X) = X" Ee(0]).

EX
Here lim R (x) = lim x"** =0 for all values of X.
n—w n—wo (N +1)!

2. Expansion of the function f(x)=sinx.

Let us find the successive derivatives of f(x)=sinx.

f(x)=sinx, f(0)=0;

f’(x):cosx:sin(x+g), f'(0)=1;
f”(x):-sinx:sin[ng), f"(0)=0;

f"(x)=-cosx = sin(x +3g) , f"(0)=-1;
f'V(x)zsinx=sin(x+4gj, fV(0)=0;

() (v} — i n M (Q) = sinn .~ -

f (x)_sm(x+n2j, ¥ (0) smn2,

f D (x) = sin(x +(n+1) gj f " (0) = sin(éx +(n+1) g) £c(0));

Substituting the values into (2.21) we get an expansion:
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X3 X5 2n+1
sinXx=X——+—+...+(-1" + R, (%),
3 o 2n+1)!
where
sin(§x+ (n+1) Tzcj
R X) = Xn+l, 0,1 .
2 (X) (1) £e(01)
Since sin(§x+ (n +1)gj <1, we have lim R, (x) =0 for all values of x.
Nn—oo
Figure 27 shows the graph of the function f(x)=sinx and the first three
o X3 XX X
approximations: S;(X) =X, S,(X)=x- 3 S;(X)=x- 2 + o
1
F
2 -

T x
1 3—x—ﬁ+§
:siilx

Figure 27.
3. Expansion of the function f(x)=cosx.

Finding the values of the successive derivatives for x=0 of the function
f (X) =cos x and substituting them into (2.21), we obtain the expansion

2 4 2n
cosx:l—x—+x—+...+(—1)n X
oA 4 (2n)!

+ R, (%),
where

cos(gx +(n+1) Tzcj

Ra () = (n+1)!

X" Ee(0]).

Since

cos(ix +(n+1) gj

<1, we have lim R (x) =0, VXx.
n—oo
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4. Another examples of expansions:

2 3 n
N+ %)= X— 4 g+ ()" 4R ()
2 3 n

3 x° 2N+
arctan x=x——+-—+...+(-1)" +R.(X);
3 5 2n+1
AL+x)™ =1+ mx+_m(r2|_1) x2+,,_+m(m_1)“'l(m_n+1) X"+ R (X).
- n!

2.12 The Monotonicity of a Function

If the function y = f(x) is such that
V {x, X} E(f), x, <X,
f(x) < f(xy),
then the function y = f(x) is called increasing (Fig. 28).

If the function y = f (x) is such that
V {x, X} E(f), X <X:
FOq) = f(x),
then the function y = f(x) is called decreasing (Fig. 29).

It is possible to apply the concept of derivative to Figure 29.

investigate the increase and decrease of a function.

Theorem 2.9.

Let the function f(x) be defined and differentiable on the interval (a,b).

If f'(x)>0 V xe(a,b),then f(x) monotone increasing function on (a,b).
If f'(x)<0 Vxe(a,b),then f(x) monotone decreasing function on (a,b).
Proof.

Let {x,x,}e(ab), x, <x, (x,—x >0). By the Mean Value Theorem for

Ce (X, Xy):
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f(X )_f(xl)_ '
(;2 — %) = e

Then for increasing function ( f (x,)— f (x;) >0) we obtain

f '(C) — f (XZ) — f (Xl) > 0.
(X, =)

Similarly, for decreasing function ( f (x,)— f(x;) <0):

f!(c): f(XZ)_ 1:(Xl) <0.

(X = %)
Note. This theorem has the following geometric meaning (Fig. 30 and 31).
' &
Y\ oo
i 1 a b x
Figure 30. Figure 31.
For increasing function, the slope of For decreasing function, the slope of
tangent is not negative (f'(x) >0). tangent is not positive f'(x)<0.
The angle o is acute or 0°. The angle o is obtuse or 0°.

This theorem permits judging the nature of the monotonicity of a function by the
sign of its derivative.

Example.
Find the intervals on which function y = (x —1)?(x+2) is increasing or decreasing

(intervals of monotonicity).

Find the derivative
y =2(x-1)(x+2) + (x—-1)* = (x—=1)(3x + 3).
Find the critical points solving the equation
y'=(x-1)(3x+3)=0;
(3x+3)=0, (x-1)=0;
X, =-1, X, =1. (critical points)

Investigate the sign of derivative on the intervals between the critical points.
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Fixyn B <o B e

f (xX) monotone increases on (—oo,—1] and [1,+x);

f (x) monotone decreases on [-1,1].

2.13 Local Extrema of a Function

Consider the functiony = f (x), xe(a,b).
The function f(x) has a local maximum (Fig. 32)
at the point x, if
36>0 Vxe(Xg—0,% +9): f(X)< f(xp),

f (Xo) =locmax f (x).
xe(a,b)

The function f(x) has a local minimum (Fig. 33) at
the point x, if
36>0 VXe(Xg—08,%X +9): f(x)> f(xp),

f(X) = Ioc(mti])n f (x).

S7

FICS) — .
Mﬂr}

Wm
Flrmt-Sr

Figure 33.

The extreme point (extremum) is the point where the function attains either its local

maximum or local minimum.

Theorem 2.10 (A necessary condition for the existence of an extremum).

Let the function y=f(x) be continuous and
differentiable in a definite region ((x, — 6, X, +9), 6>0) of
the pointx,. If x, is the extreme point of the function
y = f(x) (Fig. 34), then
or f'(x,) =0 (x, — stationary point);
or f'(x,) does not exist (x, — singular point).

Proof. Analogically to the proof of Theorem 2.5.

4

Ly

Mﬁ x)

ey

Ko X Xt X

Figure 34.

Points where f'(x,)=0 or f'(x,) do not exist are called critical.
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Theorem 2.11 (Sufficient conditions for the existence of an extremum).

Let the function y = f (x) be continuous on some interval (x, —J, X, +9), 6>0, and
differentiable at all points of the region (X, — 9, X,) W (Xq, X, + ), 8> 0, where the pointx,
is critical point for the function y = f (x). If in moving from left to right through this point
the sign of f'(x)changes from “— to “+” at x,, then f(x) has a local minimum at x,, if
it changes from “+” to “~”, then f(x) has a local maximum at x,.

Proof.

Let us consider the case when the derivative changes the sign from “- to “+” at X,,

that is

f'(x) >0, when x <X,
f'(x) <0, when x> X,.

Applying the Lagrange theorem to f(x)— f(x,) we have
f(X)— f(x5)=T'(C)(X—Xp)-
where c is a point between x and X, .
Let X< X,,then c<x,, f'(c)>0, f'(c)(x—x,)<0= f(x)—f(x,)<0,
and
f(x) < (%) (2.22)
Let x> Xy, then c>x,, f'(c)<0, f'(C)(X—Xy,)<0= f(x)— f(X,) <0,
and
f(x) < f(Xg) (2.23)
The inequalities (2.22) and (2.23) show that for .
all values of x sufficiently close to the point x,
f(x) < f(Xp)

Hence, the function y=1f(x) has a local

)

maximum at point x, (Fig. 35).

Figure 35.

The sufficient condition for a local minimum is

proved in similar fashion.
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There is another method to solve the problem of finding extrema, which is based
on the investigation the sign of second derivative at critical points.

If f"(x,) <0 then the critical point X, is a point of a local maximum.

If £"(x,) >0 then the critical point x, is a point of a local minimum.
If f"(x,)=0then the second derivative test does not give any answer.

Example.
Find local extrema for the functiony = (x —1)*(x + 2).
Find the derivative and the critical points solving the equation
y=(Xx-)Bx+3)=0= x =-1 X, =1,
Investigate the sign of derivative on the intervals between the critical points and state

the type of critical points.

SN

FEe A= pdo B psn

Local maximum at x, =-1:

f(x)=f(-1)=(-1-1)*(-1+2) =4.

Local minimum at x, =1:

L

3 /b a0 1 2
f(x,)=f@)=01-1)*@1+2)=0. 11
The graph of function is sketched in Figure 36. Figure 36.

2.14 Concavity of a Curve. Points of Inflection

Let y= f(x) be differentiable on some interval [a,b].

The function f(x) concaves downward on 4y concave up
the interval [a,b], if all points of the curve lie Y=£(x)
above any tangent line to it on this interval. poing/of inflection

The function f(x) concaves upward on the
concave down

interval [a,b], if all points of the curve lie below

any tangent line to it on this interval. (Fig. 37). Figure 37.



60

The point of inflection of a function f(x) is defined to be the point at which the

concavity changes from upward to downward or vice-versa.

Theorem 2.12.

If at all points of an interval (a,b) the second derivative of the function f(x) is
negative (f"(x) <0), the curve y = f(x) on this interval concaves upward.

If at all points of an interval (a,b) the second derivative of the function f(x) is
positive (f"(x)>0), the curve y= f(x) on this interval concaves downward.

Proof.
Let us prove the first statement.

Let take a point x, € (a,b) and draw the tangent line to the curve at the point
(X, T (X)) The equation of the tangent line is
V=1(X)+ F'(X)(X—Xp)-
Let us show that the ordinate of any point of the curve y= f(x) is less than the
ordinate y of the tangent line for one and the same value of x.
The difference of the ordinates of the curve and of the tangent for the same value of
X is
Y=y =F(x) (%)~ (X)X~ %).
Applying the Mean Value Theorem to the difference f(x)— f(x,) we get for c that
lies between x and x,
Y= = F(e)(X—X0) — F/(%)(X—X5) = (£(€) — F (%)) (X~ X,) -
Let us apply the Mean Value Theorem to the difference f'(c)— f'(x,) for c, that
lies between ¢ and x,
Y- =£7(e)(c— X)X~ %)
For the case x, <c<¢, <X, since
f"(c;))<0, (c—%y)>0, (x—x%,)>0,
we have

y—-y<0.
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For the case x <c <c, <X,, since
f"(c;)) <0, (c—xy)<0, (x—x,)<0,
we have
y—y<0.
We have thus proved that every point of the curve lies below the tangent line to the
curve, no matter what values x and x, have on the interval (a,b). Hence, the curve is

concave up.

The second statement is proved in similar fashion.

Theorem 2.13.

Let y= f(x) be twice differentiable on some interval [a,b]. If f"(x,) or f"(x,)
does not exist and if the second derivative f”"(x) changes sign when passing through

X = X,, then the point of the curve with abscissa x = X, is the point of inflection (Fig. 38).

Y f(x)=0 P ra)=0
T YT Y0
- Fx)>0 Fx)>0! Fx)<0
o % X 0 W X
Figure 38.
Example.

Find the points of inflection and determine the intervals of concavity up and down
of the curve y = (x—1)%(x+2).
Find the second derivative
y" = ((x-D(3x+3))" = 6x
and solve the equation
y"=0=6x=0=x=0.
Investigate the sign of second derivative to the right and left of the point x=0.

Fix)<o Fx)>0

x=0

*
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The function concaves downward on the interval (0,+x);
the function concaves upward on the interval (—,0);
the point of inflection x=0= f(0)=(0-1)?(0+2) =2.
The graph of function is sketched in Figure 36.

2.15 Asymptotes

The asymptote of a graph is the straight line such that the distance between the

graph and the line approaches zero as they tend to infinity (a curve comes closer and closer
to a line without actually crossing it).

Asymptotes can be vertical, horizontal and inclined.
I. Vertical asymptote ry

The straight line x =a is the vertical asymptote of

the function y=f(x), if x=a is a point of fEEl
discontinuity of the second kind (at least one of the 0 o %
wertical asyimpto te
limits lim f(x) and lim f(x) is +o0) (Fig. 38). ) &
X—>a+ X—a- Figure 38.
I1. Inclined asymptote
The straight line y=kx+b (Fig. 7), where A
g y (Fig. 7) ~ 7 )
k=Ilim——= and b= lim(f(x)—kx). e Y=kx+d
X—o X X—>0 _-=" Inclined asymptote
Here k =0 and b are real numbers. 0 >
(x >+ and x—>-—o should be considered _
Figure 39.
separately)
I11. Horizontal asymptote
The straight line y =b is the horizontal asymptote ry 76

(Fig. 40) of the function y= f(x) if b= Iirp f(x).

" ¥ =5 horizontal

(x—>+400 and x—-oo should be considered sy ptote

separately) _
Figure 40.



63

2.16 The General Plan for Investigating Functions

1. Domain of the function.
2. Investigate whether the function is even or odd, periodic.
3. Intersections with the x-axis and y-axis.

The intervals where the function holds the sign.

4. Points of discontinuities. Asymptotes.
5. Monotonicity.
6. Local maxima and local minima.
7. Concavity down and up. Inflection points.
8. Plot the graph.
Example.
Graph the function
= X er 4
X

1. Domain of the function  D(y) = (—0,0) U (0,+0).
2. Investigate whether the function is even or odd, periodic.

o (X°+4 - +4
y( X)_ (-X)Z - XZ

neither odd nor even

= y(=x)=y(x) and y(-x)=-y(x)=function is

3. Intersections with the y-axis
Since x =0 is not the point of domain there is no points of intersection with y-axis.

. . . X3 +4 x#0, X # 0,
Intersections with the x-axis y=0= =0= A =

X2 x3 =4 X =-3/4 ~16:

¥ ye0 yeo
=gy 0 X

y >0 for x e (-3/4,0) U (0,4+0) ;
y <0 for x e (—,-3/4).


http://www.vitutor.com/calculus/functions/domain_function.html
http://www.vitutor.com/calculus/functions/intercepts.html
http://www.vitutor.com/calculus/functions/asymptotes.html
http://www.vitutor.com/calculus/graphs/maxima_minima.html
http://www.vitutor.com/calculus/graphs/concave_convex.html
http://www.vitutor.com/calculus/graphs/Inflection_point.html

4. Asymptotes
Since x =0 is a point of discontinuity and

x*+4 (0+0)°+4 4

lim

= = :+w’
x>0+ x? (0+0)*> +0
x*+4 (0-0°%+4 4
I 2 = 2 = :+OO1
x—>0- X (0-0) +0
then x =0 is vertical asymptote.
Let find inclined asymptote y =kx+Db:
X3 +4
2 3
k=1lim — X" —jim X4 g
X—>+o0 X X—>to0 X
3 3 3
b= Iim(x j4xj: lim XA _im 2 o,
X—>Zo0 X X—>Fo0 X X—>1oo X

The straight line y = x the inclined asymptote for x — +.
5. Monotonicity.
Find the derivative

Find the critical points

, x3-8
y = N =0; /v \ /’
v
3_q. >
X #0, X* =8; Fxasn U Ao 20 A
X #0, X=2.

f (xX) monotone increase on (—0,0) and (2,+x);
f (x) monotone decrease on (0,2).

6. Maxima and minima

Local minimumat x=2, f(2)=3.

7. Concavity down and up. Inflection points
Find the second derivative

64



Find the solution of equation

24
”:—:0;
y 2

x # 0.
f (x) concave down on (—,0) U (0,+x).

8. Graph
The graph of function is sketched in Figure 36.

Va

ol |

S 0 200 g

Figure 41.
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Appendix 1. The Concept of Sets. Binary Operations with Sets

The set is a collection of distinct objects, considered as an object in its own right.
For example the set of digits {0,1,2,3,4,5,6,7,8,9}, set of colors of Ukrainian flag

{blue, yellow}.

The empty set & is a set that contains no elements.

Let A and B are two sets.

Operations with Sets

E

)

A is a subset of B
AcB

e« AcCA
o @CA

. A=Bifandonly
ifAcBandBcA

The union of A and B
AUB

Properties of unions:

« AUB=BUA

.« AUBUCQO)=
=(Au B)UC

« Ac(AuB)

« AUA=A

e« AUY =A

o AcBifandonlyif
AuB=B

The intersection of A and B

ANB

Properties of intersections:

ANB=BnNA
ANnBNC)=(AnB)NC
ANBcA

ANA=A

AN =0
AcBifandonlyifAnB=A

66
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Appendix 2. The Concept of Function.
Basic Elementary Functions and Their Graphs

Let are sets AR and B eR. Function is a rule of relationship of each element x of

the set A with exactly one element y of the set B. It is denoted by y = f (X).

vV xe A3dlyeB, y=f(x).

Domain, Range and Codomain
The set of x is called domain (D(f )). The number x belonging to the domain of the
function is called the independent variable or argument.

The set containing y = f(x) is called codomain (E(f )). The set of elements, that are

the actual values produced by the function, is called range and the number y — the
dependent variable.

The set of ordered pairs (x, y) =(x, f(x)) is called graph.

Input Output
X, t, 9, 0... Relationship | f(x), g(x), h(x), y(x) ...
domain elements fg hy... dependent variable
independent variable R value of function
argument range elements

DOMAIN D(f) RANGE E(f)
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Zeros of a Function. Intervals of Positive and Negative Values of Function

Zeros of function ( f(x)=0) is points ¥
where the graph crosses the x-axis. £(x)
Function is positive f(x)>0 on /\ /
intervals (on the x-axis), where the graph x\/xg ;

line lies above the x-axis.
f(x) >0 for xe(—wo,x%) and X € (X,,+x);

f(x) <0 for xe (X, X,);
f(x)=0 for x=x and x=X,.

Function is negative f(x)<0 on

intervals (on the x-axis), where the graph

line lies below the x-axis.

Increasing and Decreasing Functions.

Increasing function Decreasing function
Vv {x,, X, } € E(f), Vs vV {x, X, }e E(T),
X <X RACSY , X, <X,
FO)<f0R) reapl . f(x)> f(x,)
-

Symmetry of Function

Symmetry about y-axis Diagonal (origin) symmetry
(Even Function). (Odd Function).
f(=x) = f(x) f(=x)=—f(x)

In fact most functions are neither odd nor even.
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Linear Function

y=kx+Db
Slanted line Slanted line Horizontal line
for k>0, forany b for k<0, forany b for k=0, forany b
y y yu
b b B
ack I
X X X

Inverse Proportionality.
Direct proportionality is when one value increases and another value increases at the

same rate (y = kx, k — constant of proportionality).

Inverse proportionality is when one value decreases at the same rate that the other

increases. That relationship can be written asy = K and called reciprocal function.
X

e Its graph is called Hyperbola; ¥
o D(f)=(~0,0)U(0,+); :
2 Y=5
o E(f)=(—0,0)U(0,+x); 432"
. . . o 12 34 ;
e Line y =0 is called horizontal asymptote; j :;
e Line x=0 is called vertical asymptote. 3

Quadratic Function
y=ax’+bx+c, a0 (The graph is Parabola. )
o D(f)=(-04);
e a>0= E(f):(_%’+ooj;

. a<0= E(f):(—oo,—%j;

. b D
e |t has vertex at point ——,——j, where D =h? —4ac;
2a 4a

b
e The curve has symmetry about the axis that passes through X = “oa




Power Function

The function of form Y = X" n- integer, is called Power Function.

70

y= X" with even values of n behave the same:

e always above (or equal to) zero;
e always go through (0,0), (+1,1);
e itiseven function;

e lager values of N flatten out near 0 and
rise more sharply.

o b s T

210

y= X" with odd values of n behave the same:

e always go from negative x and y to
positive x and y;

e always go through (0,0), (1,1) and
(_11_1);

e itisodd function;

e lager values of N flatten out near 0 and
rise more sharply.

Cubic Parabola

Inverse Power Functions

y= W with even values of n behave the same:

e domain X €[0,40);

e always above (or equal to) zero;
e always go through (0,0), ( 1,1).

y= W with odd values of n behave the same:

e always go from negative x and y to positive x
and y;

e always go through (0,0), (1,1) and (-1,-1);

e itisodd function.




Trigonometric Functions
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y =sinXx

e D(y)=(-o0, +0); E(y)=[-11];

e sin(x+2mn)=sinx, neZ, T =2n — period;
e sin(—x) =—sin x, y =sinx — odd function;

e SinX=0= X=mn, ne’Z;

¢ ymax:]" Xmax:g—i'znn; Y min =-1, Xmin =—g+2nn, ne’Z;

e sinXx>0= xe(2nn,t+2nn), ne’Z;
o SiNX<0=xe(n+2nn,2n+2mn), neZ,;

e y=sinx is increasing for x e —E+2nn,E+2nn , he’Z;
2 2

e y=sinx is decreasing for x e E+27cn,3—n+27cn , heZ,
2 2

y = COS X

D(y) = (-0, +0); E(y) =[-11];
cos(X+2mn)=cosx, neZ, T =2nn— period;
cos(—x) =cosx, y=cosx — even function;

7T
cosx:0:>x:§+nn, ne’Z:

ymax :11 Xmax = 27Cn ; ymin = _1, Xmin =T+ 271:[‘] , Ne Z,

cosx>0:>xE(—g+2nn,g+2nnj, ne?/Z:

cosx<0:>XGG+2nn,37n+2nnj, ne/:

e y=CosX is increasing for x € (m+2nn,2n+27n), ne Z;
e y=CO0SX is decreasing for x € (2nn, t+2nn), ne Z;

Y
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y = tan x

° D(y):x¢g+nn, neZ; E(y)=(-o0, +);

e tan(x+mn)=tanx, ne”Z, T =n — period;
e tan(—x) =—tanx, y=tanx — odd function;
e tanx=0=x=mn, ne”Z,

o X= g +7mn, neZ,— vertical asymptotes;
7T I
° tanx>0:>Xe(nn,E+nn), tanx<0:>Xe(—E+nn,nnj, ne?”Z;

. . T T
e y=tanx isincreasing for xe| ——+nn,—-+nn |, neZ;
2 2

&

|

[\Jl;:]___
L 4

| =
e

y = cot X

e D(y):x=#mn, neZ; E(y)=(-o0, +x);
e cot(x+mn)=cotx, neZ, T =xn — period;
e cot(—x) =—cotx, y=cotx — odd function;

ocotx:0:>x:g+nn, ne/;
e x=mn, neZ,— vertical asymptotes;
0C0tX>0:>X€(TEn,g+TEn];COtX<0:>XE(g+TCn,TC+TEnj, ne?”Z;

e y =cotx is decreasing for x € (nn,m+mn), neZ;

oL

________I\:Iﬁ________
e
________L;l________
__________"_______




Inverse Trigonometric Functions
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Inverse Sine.

y = arcsin x

the
“what
sine

It answers
question

angle has
equal to x?”

7T 7
D(y)=[-11]; E(y)=|-—=, =|;
o D(y)=[-11] (y)[zz}
e arcsin(—x) = —arcsin x,
y =arcsinx — odd function;

e arcsinx=0= x=0;

arcsinx<0= xe[-1,0);
e y=sinXx is increasing
for xe[-1,1];

1
e arcsinx>0= x<(0,1]; !

~ Y

Inverse Cosine.

Yy = arccos X

It answers the
question “what
angle has cosine
equal to x?”

e D(y)=[-11]; E(y)=[0,x];
e arccos(—x) = w—arccosXx;
e arccosx=0= x=1;

e Yy =arccosx is decreasing i
for xe[-1,1]; i

r
e arccosx>0= x e[-1,1); \

=¥

Inverse Tangent.

y =arctan x

It answers the
question “what
angle has tangent
equal to x?”

e arctan(—x) = —arctanx,
y =arctan x — odd function;

e tanx=0= x=0;

o y= ig — horizontal asymptotes;

[ ]
=2

arctanx >0= xe(0,+x); arctanx<0=>x € (0, 0);

y =arctan x is increasing for x e (— o, + oo);

Inverse Cotangent.

y =arccot x

It answers the
question “what
angle has

cotangent equal to
X?”

D(y) = (—e0, +0); E(y)=(0,m);
arccot(—x) = m—arccot x;
X =

arccotx > 0= X e (—0, + ) ;
e y=arccotx is decreasing

=0, .
o — horizontal asymptotes; \
X=T

wE

forx e (—oo, +);
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Exponential Functions

y=a" O<a<l

y=a" a>1

* D(y) = (-0, +0);

* E(y)=(0, +);

e it is neither odd nor even function;

e it is always greater then zero and never
intersects the x-axis;

e it intersects the y-axis at y=1;

e y=0 — horizontal asymptote;

e y=a" is decreasing for x e (—o, +0);

y=0,5"

|
i
i
|
i
i
|
|
i
i
|
i
i
|
|
i
i
|
i
|
-2

,___________
Fod|—

* D(y) = (-0, +);

e E(Y)=(0, +);

e it is neither odd nor even function;

e it is always greater then zero and never
intersects the x-axis;

e it intersects the y-axis at y=1;

e y=0 — horizontal asymptote;

e y=a” isincreasing for x € (o, +);
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Logarithmic Functions

yzlogax, a>1

y=log,Xx O<a<l

*D(y) =(0, +0);

e E(y) = (00, +0);

e it is neither odd nor even function;

e it intersects the x-axis at x=1;

e it is never intersects the y-axis;

e x=0 — vertical asymptote;

e y=1log, x is increasing for x € (0, + «);

y=log,x

*D(y)=(0, +);

e E(y) = (-0, +);

e it is neither odd nor even function;

e it intersects the x-axis at x=1;

e it is never intersects the y-axis;

e x=0 — vertical asymptote;

e y =1log, x is decreasing for x (0, +0);
il._}?

Natural Logarithm Y =InX

p .V

y=Inx




Hyperbolic Functions
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y =sinh X

y = cosh X

oD(y)Z(—OO, +oo);
¢ E(y) = (-0, +0);

X —X

osinhx:e :
2

° D(y) = (—OO, +oo);
¢ E(y)=(1 +o);

eX+e*
e COSh X = 5 :

X
t -
2
X
S a1 2"
BeR S
y = tanh x y = coth X
* D(y) = (-0, +0); * D(y) = (—0,0) (0, +0);
e E()=(-1 1); e E(y)=(-0,-D) (L, +0);
otanhx:CQShX:e —e: ; .Cothxzsmhx:e +e
sinhx e*+e™* coshx e*—e™*
e y =11 — horizontal asymptotes; e y =+1 — horizontal asymptotes;
e x=0 — vertical asymptote;

&y

X
52 40 1 2 3"
21 17
ﬁzn
cosh? x—sinh?x=1, 1-tanh®x= 12 ;  1-coth® x=— 12 ;
cosh” x sinh” x

cosh 2x = cosh? x +sinh? x;

cosh 2x —1=2sinh? x;

cosh(x = y) = cosh xcosh y +sinh xsinh'y;

sinh2x = 2cosh xsinh x;

cosh 2x +1=2cosh? x;

sinh(x £ y) =sinh xcosh y + cosh xsinh y;
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Appendix 3. Polar Coordinates

We determine the coordinate system as the way to define a point in the space. For
example, in the Cartesian coordinate system we specify each point by a pair of numbers

(x, y)and we use this to define the point by starting at the origin and then moving X units

horizontally followed by y units vertically.

But there is another way to define the position of a o v
point on a plane. We can use the distance from the origin y”""f;_"i
(pole) and the angle from the fixed direction (Fig. ). The g i
ray from the pole in reference direction is called the polar 0 Box
axis. Figure .

The distance from the pole is called the radius p and the angle — the polar angle ¢.

Coordinates in this form are called the polar coordinates.
Converting Between Polar and Cartesian Coordinates

The relationship between Cartesian and polar coordinates is represented by the

following formulas:

M (X, y) M (p, ¢) ﬁf _____ M
— [\,2 2 |
{X pC?S¢, N p=+/X"+Yy°, yfpsmm{ o i
y =pSIno;, _arct y i@ I _
p>0, q)e[—n,n) (p—arcan;. oA %
X=poosgp

Many curves can be described by a rather simple polar equation, whereas their
Cartesian form is much more difficult. The best known of these curves are the circle, polar
rose, Archimedean spiral, lemniscate and cardioid.

Examples.
1. Consider the unit circle x*+y?=1. Apply the formulas of converting Cartesian
and polar coordinates:
(pcos)? + (psin ¢)? = p?(cos® p+sin? @) =p? =1.

Hence p =1 is an equation of unit circle in polar coordinates.


https://en.wikipedia.org/wiki/Rose_(mathematics)
https://en.wikipedia.org/wiki/Rose_(mathematics)
https://en.wikipedia.org/wiki/Archimedean_spiral
https://en.wikipedia.org/wiki/Lemniscate_of_Bernoulli
https://en.wikipedia.org/wiki/Cardioid

2. Convert to the polar coordinates and plot the curve x* + y? = 2x.

/8

X2 +y? =2x = (pcose)? + (psin @) = 2pcosp = I %%
2
p® =2pcose=>p=2cose. Itis the circle (x—1)* + y* =1. % /—\%
ofofn[afnlaf2n]3n [5n [n[3u][on|n fr—~—b—s
6 | 4|32 3| 4 | 6 2 w T
Pl2(J3|V2|1]0|-1|-V2|-y3|-2|0]2 3n
2
-
Circle Circle Circle
x2 4+ v2 = g2 x2+y2=2ax
y = x? +y? = 2ay 9
_ p=2acosQ
>
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https://en.wikipedia.org/wiki/Cardioid
https://en.wikipedia.org/wiki/Lemniscate_of_Bernoulli
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Appendix 4. Parametric Representation of a Function

There are some curves that we can’t write down as a equation in terms of only X

and y or it is too complicated. So, to deal with these curves we use parametric equations.
Instead of defining y as a function of x (y=y(x)) or x as a function of y (x=x(y))

we define both x and y in terms of a third variable as follows

{X=¢ﬂ)
y=w(t),
where t assumes values that lie in the interval [T, T,].
X =o(t), :
The variable t is called a parameter and equations { (P((t)) are called parametric
y=v

equation of some curve.

To each value of t there will be corresponded a definite point
(X, y¥) =(op(t), w(t)) in the plane that we can plot. When t varies from T, to T, this point
will describe a certain curve and this curve is called the parametric curve.

If the function x =¢(t) has an inverse, t = ®(x), then y is a function in terms of x
y =y(P(x)).

= t f
x=o(t The
y=w(b).
explicit expression of the dependence y on x, is obtained by eliminating t the parameter
x=o(t),
y =wy(t).

Parametric equations are widely used in mechanics. If in the plane there is a certain

It is said that the function y = (®(x)) is represented parametrically as {

from equations {

material point in motion and if we know the laws of motion of the projections of this point
on the coordinate axes, then
x=o(t),
{Y=wﬂx
where the parameter t is the time. Then equations are parametric equations of the

trajectory of moving point.
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Graphs of certain functions in parametric form.
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. ot -
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& ¥ &Y
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/
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/
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_"te[0, 2n] { ., tel0,27]
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