MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

NATIONAL TECHNICAL UNIVERSITY OF UKRAINE
“IGOR SIKORSKY KYIV POLYTECHNIC INSTITUTE”

Oleshchenko L.M.

FUNDAMENTALS
OF WEB PROGRAMMING

Practical Tutorial

PexomengoBano Metonuunoro pagoro KIII im. Irops Cikopcbkoro
SIK HaBYaJIbHUN MTOCIOHUK JIJIsI CTYACHTIB, SIKI HABUAIOThCS
3a crietianbHIcTIO 121 «IHXKeHepist mporpaMHOro 3a0e3neyeHHs»
(ocBiTHA niporpama «IHxkeHepis nporpaMHoro 3a06e3ne4YeHHs MYJIbTUMEIIMHUX Ta
1H(QOPMAIIITHO-TTOITYKOBUX CUCTEM))

Kyiv
Igor Sikorsky Kyiv Polytechnic Institute
2021

Peuenszentu: Bimroxk Iletpo IBaHOBMY, O-p TeXH. HAYK, TPOQ.

[Tonropak Bagum IletpoBuu, kaHa. TeXH. HayK, Ipod.

Biamnosinansamit
penaxkTop Jlereza Bikrop IlerpoBuy, A-p TeXH. HayK, Mpod.

I'pud mamano Metoauunoro pagoro KIII im. Iropst Cikopcbkoro
(mporokon Ne 8 Big 24.06.2021 p.)
3a nogaHHsAM BueHoi paau ¢pakynbTeTy NPUKIaJHOT MATEMATHKH
(mportokon Ne 12 Bix 31.05.2021 p.)

Electronic online educational publication

Oleshchenko Liubov Mykhailivna, PhD, Associate Professor

FUNDAMENTALS OF WEB PROGRAMMING

PRACTICAL TUTORIAL

Fundamentals of Web Programming: Practical Tutorial [Enextponnuii pecypc] : tutorial is aimed
at students of the speciality 121 “Software Engineering” (educational program «Software
Engineering of Multimedia and Information Retrieval Systemsy) / Igor Sikorsky Kyiv Polytechnic
Institute; Liubov M. Oleshchenko. — Electronic text data (1 file: 4,78 Megabyte). — Kyiv: Igor
Sikorsky Kyiv Polytechnic Institute, 2021. — 138 p.

This tutorial is developed for familiarizing students with basic theoretical matter and practical
methods of web programming and requirements for laboratory work. The tutorial includes the
introduction and 6 sections devoted to a certain laboratory task. There are a work objective, a
description of the task, theoretical information, and methodological instructions for every laboratory
task; questions for self-assessment and a list of recommended literature. The tutorial is aimed at
students of the speciality 121 “Software Engineering”, educational program “Software Engineering
of Multimedia and Information Retrieval Systems” of the Faculty of Applied Mathematics of Igor
Sikorsky Kyiv Polytechnic Institute.

© L.M. Oleshchenko, 2021
© Igor Sikorsky Kyiv Polytechnic Institute, 2021

CONTENTS

INTRODUCTION ..ottt ittt sttt besbeereenaeneeseenees 5
LABORATORY WORK 1. CREATING AWEB SITE USING HTML, CSS............. 6
Theory and methodological INStrUCLIONS...........ccvovieiiiiieiiee e 6
Tasks for 1aboratory WOrK 1ccociiiiieiieesee e 19
Report requirements for laboratory Work...........ccccoeveiieiiiiiienn e 25
Questions for SEIf-aSSESSMENTcoiiiiiie e 25
RETEIBNCES ...ttt nre e 26
LABORATORY WORK 2. JAVASCRIPT EVENTS HANDLING........cccccoevveenee. 27
Theory and methodological INStrUCtIONS...........c.cccviiiiiieiie e, 27
Tasks for 1aboratory WOrK 2ccooeieiiiesie e 29
Report requirements for laboratory Work...........ccccoeveiieiiiii e 33
Questions fOr SEIf-aSSESSMENTcivieiiie e 33
RETEIENCES ...ttt enee s 34
LABORATORY WORK 3. JQUERY LIBRARY. CREATE A WEBSITE USING
BOOTSTRAP FRAMEWORK ...ttt e 35
Theory and methodological INStrUCLIONS..........ccovvviiveiie e 35
Tasks for 1aboratory WOrk 3c.oooiviiiiiie e 52
Report requirements for laboratory Work............ccooeveiieiiiiii e 56
Questions for SEIf-aSSESSMENTciviiiiie e 56
RETEIENCES ...ttt nre e 57
LABORATORY WORK 4. NODE.JS. INSTALLATION OF MODULES. NODE.JS
AS AFILE SERVERooiiii ettt 58
Theory and methodological INStrUCIONS..........ccoviiieiiiiiiee e 58
Tasks for 1aboratory WOrki 4 ... 84
Report requirements for laboratory Work..........ccccovvviiiiiiiciie e, 84
Questions for Self-aSSESSMENTcoviiiiie e 84
RETEIENCES ...ttt 85

LABORATORY WORK 5. CREATING API WITH NODE.JS AND EXPRESS.

GEOLOCATION API. USING LEAFLET LIBRARY ..o 86
Theory and methodological INStrUCtIONS...........ccovvviiieiie e, 86
Tasks for 1aboratory WOrk'Scovvevieiieiece s 110
Report requirements for laboratory Work............cccccvevveiieiiciie e, 113
Questions for Self-aSSESSMENTcoviiiiie e 113
RETEIENCES ...ttt sree e 114

LABORATORY WORK 6. NODE.JS AND MONGODB..........c.ccccoviivniiniiiiiein, 115
Theory methodological INStrUCLIONS.........ccueivviiieiie e 115
Tasks for 1aboratory WOrK 6ccoocveiieiieiici e 137
Report requirements for laboratory Work............cccccovevveviciiie e, 138
Questions for Self-aSSESSMENTcocee i 138
RETEIENCES ... 138

INTRODUCTION

The discipline "Fundamentals of Web Programming" is part the of professionally-
oriented disciplines cycle for bachelors of the speciality 121 “Software Engineering”.

This tutorial is developed for familiarizing students with basic theory and practical
methods of of web programming and requirements for laboratory tasks.

The purpose of the tutorial is to gain skills in developing software for web
applications using HTML, CSS, JavaScript, Bootstrap framework, jQuery and Leaflet
library. Students also gain skills in server-side programming using Node.JS, an open
source platform for high-performance networking applications written in JavaScript.

The tutorial includes the introduction and 6 sections devoted to a certain laboratory
task. There are a work objective, a description of the task, theoretical information and
methodological instructions for every laboratory tasks; questions for self-assessment
and a list of recommended literature.

The tutorial is aimed at students of the speciality 121 “Software Engineering”,
educational program “Software Engineering of Multimedia and Information Retrieval
Systems” of the Faculty of Applied Mathematics of Igor Sikorsky Kyiv Polytechnic

Institute.

LABORATORY WORK 1.
CREATING A WEB SITE USING HTML, CSS

Purpose: to master the skills of creating web sites in accordance with generally

accepted standards, to learn how to design and create a simple web page using HTML
and CSS.

Theory and methodological instructions

The process of creating a website (web-project) can be divided into 3 stages:

« planning;
« design;
« development.

Planning
This stage can be divided into several sub-steps:

« idea creation;
« project structure development;
. development of the project layout.

Idea creation

At this stage, we need to chose the subject of the project (site, service). Further, in
accordance with the chosen topic, it is necessary to collect the relevant materials: text,
graphic.

Project structure development

When we chose the topic of the project, we select the necessary material, the next
step will be the development of the project structure. The structure of the project
implies sections of the site, in accordance with which the navigation menu will be
formed and the design of the project will be built. At this stage, we can classify the

material into topics and sections.

https://habr.com/ru/post/273795/#planning
https://habr.com/ru/post/273795/#design
https://habr.com/ru/post/273795/#coding

Development of the project layout

After we have decided on the structure of the project, we can draw up a project
layout (schematically). To draw a sketch, we can use paper and pen, Photoshop, any
other graphics editor. It is important to note that this stage is not a drawing of the
finished design layout, but just a sketch made to understand how the main information

blocks, graphics and other design elements will be located on the site.

N —

|
‘I

Page 1 | Page 2 | Paged | Page 4 | Pago & |

This the headline for the homepage
Lorem ipsum doior it amet, consectetur adipiscing @il In viverra cursus.
lsoreet. Curabitur imperdiet luctus tellus, ac lacroet nisl convallis a. Morbi
placerat, enim ac tristique lacinia, ost ercs semper augue, in hendrerit eros
dui ou lacus. Cras ou sapien tortor. Sed aliguam sem vel 0ros consoctetur
pol‘u mumummwmm

Ut lacinka massa ut nisi elo a

ligula ornare locom, sed convallis neque lectus i lectus.

In
LNToP.gn Ruad Moeg>
-

Eooter Lok Page 4 CocterlrkPace oot Lot Page 3 EnsterLick Page 4 Eogter ok Pace d

i
i

Oy
Phere (1234507001

Fig.1.1. Website Prototype [1]
Key Page Elements
Often the main elements of a page are:containing a block (wrapper,
container), logo, navigation, content, footer, free space (essentially free space is not a
design element, but a concept that is kept in mind when designing a page layout, our

project will not look like a heap of blocks).

Containing block (container)
The role of the container on the page can be performed directly by the body element

or div. The width of the containing block may be rubber (fluid), and may be fixed.

Logo

Text or graphic component of the project and distinguishing it from others. The logo
Is most often located in the upper left corner of the page or in the middle (depending
on the idea, layout).

Navigation

The main navigation bar contains links to the main sections of the site. The
navigation bar is often located at the top of the page (regardless of whether the
navigation elements are vertically or horizontally).

Content

Content is the main component of a web page. It occupies a dominant role in the
design of the page, so it takes up more space, supported by, in addition to text,
graphics.

Footer

This element is located at the bottom of the page and usually contains information
about the copyright holder, contact and legal information, links to the main sections of
the site (often duplicates the main navigation), links to social networks, feedback form,
etc.

Rubber and fixed layout

. FIXED WIDTH

. FLUID WIDTH

64.6%

Fig.1.2. Fixed and "rubber" layouts [2]

Fixed layout

A fixed layout implies that regardless of the user's screen resolution, our site will
always be the same width.

" Rubber' layout

The "rubber" layout implies that the page of the site will try to occupy all the space

available to it on the user's screen, adjusting to the resolution.

In this context, concepts such as responsive web design and adaptive web design
are worth understanding. The first concept fits into the concept of “rubber” and means
that when we change the screen size, our site adapts to it, the second concept implies
that during development we determine the basic permissions (screen sizes) that our
content will adapt. In both cases, we should develop not one, but several layouts that
will correspond to different screen resolutions. Often 3 layouts are created for the
permissions of iPhone (Android Phone), iPad (Android Tablet) and Desktop.

When developing the layout of the mobile version of the site, developers try to bring
the main content to the forefront, therefore the navigation menu is often hidden, large
banners and decorative elements are hidden, the content blocks are usually placed
under each other. On a pre-compiled layout, we can just decide which elements we
leave on the mobile and which we hide.

Development

The page layout design process smoothly flows into the process of “revitalization”
made in the previous stages. Before we start writing HTML, CSS, and JS right away,
we should talk a bit about code editors and the project structure.

Code Editors
The most popular code editors are:

« Sublime Text (http://www.sublimetext.com/3);
« Atom (https://atom.io/);

« Brackets (http://brackets.io/).

B SATOM @

Fig.1.3. Popular code editors (Sublime Text, Atom, Brackets)

In part, all these editors are similar in principle to work, when during installation
we get an editor into which we can then “deliver” the necessary modules and plugins,
so to speak, “editors on steroids”. The difference is only in the technologies that were
used when writing the editors, if Sublime Text was written using C ++ and Python,

9

http://www.sublimetext.com/3
https://atom.io/
http://brackets.io/

then the other 2 use JavaScript, HTML, CSS. Due to this difference, Sublime Text can
work a little faster than its colleagues.

Project structure

Under the structure of the project refers to the storage of project files in its
directory. When all the files are “piled” together, the file names are given in numbers
or, for example, Ukrainian letters, etc., firstly, this is a disrespect for who will work
with our project further, and secondly, the more your project will be, the more files
will become and, in the end, you’ll just be confused about what is relevant and what is
needed and what is not. It is best to put individual categories of files in their folders:
pictures in theimages orimg, css in the cssfolder, JavaScript code in
the js folder. Only index.html will be at the rootand pages of the site, or just index.html,
and pages in a separate folder pages (Fig. 1.4). By following these rules we will never

get confused in a project.

MySitePortfolio » images v O Mouck: images 0@

MySitePortfolio

e SR

books.png Facebook.png favicon.ico flower.png GitHub.png kpi.png
. -: %
video "

. ¥ amm I GEEE ’ : :
index.html lion.png logol.png logo2.png nota.png profile.png sea.png
MyHobbies.html
MyMusic. html :{‘h
3 YouTube

MyStudy.html o=

table.png YouTube.png

Fig.1.4. Project structure example

It is also worth mentioning the naming of project files. Most often, the following
names are used: the main page is index.html, the styles of the project styles.css,
scripts scripts.js or app.js, the minimized versions of the files have the prefix.min, the
pictures are not long names in Russian or a set of numbers, but reflect what is depicted

on them, for example, button.png, download-icon.png, logo.png, etc.

10

Project work

So, having decided on the code editor, structure, we can start development. Page
layout is done in stages: first, an HTML structure (HTML code) is written, then styles
are added, and then, if necessary, scripts (JS) are written, necessary plugins and
libraries are added. Given the above, we can conditionally divide the work on the
project into the following stages:

« Writing HTML,

« writing CSS;
o writing JS.
Writing HTML

When writing HTML code, we can use the tags and markup elements that appeared
with the HTMLS5 standard. At the time of site layout, a priori, a block approach is
used, no tables, iframes, etc. Tables fulfill only their direct role — representing
information in the form of a table. In layout tables are used only when working with
emails.

At the stage of writing HTML, we, as it were, create the skeleton of the page, its
abstract model using tags (HTML markup language). The structure may be easier to
write if we have a prototype drawn up at the first stage, or if we ourselves, looking at
the design layout, on a paper schematically painted all the blocks of the page.
When writing markup, we can also immediately assign classes and identifiers to

elements.

<!DOCTYPE html>
<html>

— <head>
Put things like your

title and info for search
engines.

<title>My Story</title>
4 </head>

<body>

The Body of my story goes

Body . here with words, charts,
videos and images.

</body>

</html>

Fig. 1.5. Head and body of HTML document [3]
11

https://habr.com/ru/post/273795/#html
https://habr.com/ru/post/273795/#css
https://habr.com/ru/post/273795/#js

@ ————— <!DOCTYPE html>

<html>

<head>

<meta charset="utf-8"> ————0
8 <title>Title here</title>—— @
</head>
<body>
G— Page content goes here.
L </body>
</html>

Fig. 1.6. The minimal structure of an HTML document [4]

Fig. 1.6 shows components of the HTML skeleton:

1. a document type declaration (also called DOCTYPE declaration) that identifies
this document as an HTML5 document;

2. the entire document is contained within an html element wich is called the root
element because it contains all the elements in the document, and it may not be
contained within any other element;

3. the head element contains descriptive information about the document itself,
such as its title, the style sheet(s) it uses, scripts, and other types of “meta”
information:

Example 1 - Define keywords for search engines:
<meta name="keywords" content="HTML, C55, XML, XHTML, JavaScript">
Example 2 - Define a description of your web page:
<meta name="description” content="Free Web tutorials on HTML and C55">
Example 3 - Define the author of a page:
<meta name="author"” content="John Doe">
Example 4 - Refresh document every 30 seconds:
<meta http-eguiv="refresh” content="38">
Example 5 - Setting the viewport to make your website look good on all devices:

<meta name="viewport" content="width=device-width, initial-scale=1.8"»

Fig. 1.7. Examples of using <meta> tag [5]
12

<!DOCTYPE html>»
<html>
<head>
<meta charset="UTF-8">
<meta name="description” content="Free Web tutorials":>
<meta name="keywords" content="HTML,CS5,XML,JavaScript">
<meta name="author" content="John Doe">
<meta name="viewport"” content="width=device-width, initial-scale=1.8">
</head>
<body >

<p»All meta information goes in the head section...</p»

</body>
< /html>

Fig. 1.8. Example of using <meta> tag in HTML document [5]

4. for specify the character encoding (the standardized collection of letters,

numbers, and symbols) for the HTML document we use:

<head>

<IDOCTYPE html>

et T T
~NT L. = &€n -

<head>

<title*Liubov Oleshchenko Profile<;

<Link ="shortcut icon" i favicon.ico">

Visual result:
W Liubov Qleshchenko Frofile x -+

& C (@ 127.0.0.1:54369/index.htm!

6. the body element contains everything that we want to show up in the browser
window.

Figure 1.9 shows HTML4 and HTMLJ5 structures.

13

HTMLA4: Lots of Classes/IDs HTML5: Semantic Tags/Sections

<div id="content”"> <main>
<div
id="sideb <nav>
ar’>
“footer”>
Fig. 1.9. HTML4 vs HTMLS5 [6]
High Level Blog Index Inside a Specific Post
<article>
<header> R
<main> <time datetime="..." pubdate>
<div> (NOT main)
I <h2>
<nav> <p>
<article>
I <h2>
<p>
<article> :
I <h2> I
<p>
<footer>

Fig. 1.10. Structure HTMLY5 sectioning element [6]

14

Table 1.1. Basic HTML tags

Tag

Description

<html>...</html>

Declares the Web page to be written in HTML

<head>...</head>

Descriptive information about the document

<title>...</ title>

Defines the title (not displayed on the pages)

<body>...</body>

Delimits the page’s body

<h n>...</h n>

Delimits a level n headind

...

Set ... in boldface

<i>...</i>

Set ... in italics

<center>...</

center>

Center ... on the page horizontally

...

Brackets an unordered list

...

Brackets a numbered list

... Brackets an item in an unordered or numbered list

 Forces a line break here
<p> Starts a paragraph
<hr> Inserts a horizontal rule

Displays an image here

.. <a>

Defines a hyperlink

Example

For example, we have HTML code for web page index.html:

0%B5%DR%B2" *Weather< /11>

15

Example using CSS for this HTML code:

Pabouwe daiink styles.css

index. html

styles.css

= alpl:la[ji:.'-:"'._= 5

MySitePortfolio

audio

styles.css
images
s
video
index.html
MyHobbies.html
MyMusic.html
MySchedule.html

Fig. 1.11. Example CSS styling of web page (file styles.css)

Class Naming Rules

Everything should be in order in the project: from the project structure to class
names, markup and code writing. If markup is important to monitor the type of
information and its placement in the appropriate blocks (heading, list, link, line item,
paragraph, etc.), then it is important to use common sense when naming classes and
identifiers. Classes should give an abstract concept of the block to which they belong,
so that the code is easier to read, and then write styles. In principle, there should be
nothing complicated here, if we mark up the menu, then it is logical to give the
containing block the class .nav or .navigation, if it is a block with text, then we can

give it the class .block-text, etc.
16

All sizes and indents are taken directly from the design layout. To obtain these
values, we need to use the “ruler” tool and guides (we are talking about Adobe
Photoshop tools), and then transfer the obtained values to the code. If we work with a
fixed layout, then the values are transferred in pixels as is, if we have “rubber”, then
the values need to be converted to percentages. The basic formula is the width of the
element divided by the width of the context (width of the containing block). For
example, if a block containing text and a picture has a width of 400px on the layout,
and a block with text in it should have a width of 340px, then in percentage terms it
will be (340/400) * 100%, i.e. 85% will occupy a block with text.

target / context = result

< opxmp
E——— 960D EE—
300px / 960px = 31.25%

Fig.1.12. Converting size from pixels to percentages

Do not overload our styles with excessive specificity, for example, if we want the
link inside the list to be red, then it is not necessary to write down the entire line of
classes and tags: .main —nav ul li a, just specify .main-nav a. Too “specific" rules make
the rules context-sensitive and force you to write redundant code, and also affect the
speed of rendering the page, because when parsing CSS rules, the parser reads them
from right to left and first, if you take the example described above, you need to take
all the links (a), then drop all links that are not in li, etc. until he gets to the containing
class. The specificity of the code also means excessive binding to the base tags.

For example, if we want the element inside .block to be blue and use the span
element when marking (we wrote .block span {background-color: blue} in the rules),
then when replacing it with a div, for example, we will need to write a new the rule is
already for div inside .block. Thus, our code will be surrounded by unnecessary rules,

which essentially duplicate each other. It is much simpler to define just one class

17

(element class), which, when assigned to internal elements, will lead us to the desired
result. Another example of contextual code dependency is the use of tag names with
class names, for example, div.block {display: block}. If we want to apply the same
class to span, then we have to write span.block {display: block} or span.block,
div.block {display: block} again, which in any case will lead to an increase in the code
by an extra line. Why is it important? Firstly, we do not do unnecessary work,
secondly, we do not need to search for the necessary rule among the 10,000 lines, and
finally, the more lines of code, the larger the file size, and large files are slower to
transfer over the network, which in turn, it can cause a long load, and excessive
specificity can cause a long rendering of our page.

Code check

After writing html, css and js for our page, we need to check whether everything is
done correctly. To do this, we can use online tools:

« To check the html: https://validator.w3.org /
« For CSS validation: http://jigsaw.w3.org/css-validator/
« To check JS: http://www.jslint.com/

Thanks to these services, we can check whether we forgot to close the tag
somewhere, whether we use the parameters and attributes correctly, whether
everything is in order with our styles and rules in them, and also check our code for the
correct writing of functions, methods, etc.

Web Page Layouts

Among the variety of layout of the web page, there are four most common:

X e | |

dilee e Adn Sk
Ao <l

|

Fig.1.13. Left column navigation

18

https://validator.w3.org/
http://jigsaw.w3.org/css-validator/
http://www.jslint.com/

Fig. 1.14. Right column navigation

Fig. 1.15. Three-column navigation

At this stage, sites with this type of navigation make up the majority. The
convenience of this approach is easily explained by the fact that in this case we have

more space left for the content that makes up our site.

s Gol' B

Fig. 1.16. Horizontal navigation

Tasks for laboratory work 1

1. Install the code editor and create the MySite folder in it. In this folder create a file
for layout of the index.html page, a file for styling the elements of the styles.css page
and a folder for storing images.

2. In a graphical editor (Paint, Photoshop, etc.) draw a web page layout about
yourself with the layout structure according to the option taking into account the color
scheme of the page (this file must also be demonstrated to the teacher).

3. Using free online services for creating logo (for example,

https://www.logaster.com.ua/ or others) create a picture of the logo of your name
19

https://www.logaster.com.ua/

taking into account the color scheme of the page and save it in the project folder

Images with the name logo. When page layout, place the logo in the upper corner of

the page.

OLESHCHENKO

NGUWLEDGE 1S POWER

e

Fig. 1.17. Example of long logo

4. The page should have the following information in the page blocks:

- The Header section should contain the student’s logo;

- the Menu section (horizontal) should contain three hypertext links to three pages
inside the “My Study” project (Page 1), where a numbered list of subjects and a link
with a picture to the schedule will be located, on this page you must manually create a
table with the schedule and a screenshot of the original;

“My hobbies” (Page 2), where you can vertically place an unordered list of your
hobbies, place relevant photos (pictures) next to them;

“My Music” (Page 3), where the list of musical compositions from three audio and
video tracks will be located (the tracks should be placed in the project’s audio and
video folder), the names of the performers should be made as hyperlinks to web pages
with information about these performers, the pages will open in a new window.

- the Menu section (vertical) should contain a news feed, four hypertext external
links (to four pages according to the option, the last two should be with a picture of the
site for each position).

- the Content section contains a photo and a biography of the student, his main
achievements and goals, at least three paragraphs (the text should contain words in
bold and words in italics, underlined words, paragraphs are separated by a horizontal
line);

- The Footer section contains the student’s university address, e-mail, phone, a link

to a page on the social network and the date the site was created.

20

Menu

LIUBOV
NIFSHCHENKN

My sy | My hatoes | Wy musc

My biography

Contrary & mk el Lorems Ipvam o sot ueply raedos S X h
=) Lteraccre fn:l 8¢, matmg # b

»:l:lhnpé‘.’a ;.p
crde, o

23 YouTube

Y,

GitHub

Fauwe Bosovees ot Maloous® (T1

Cacerd, wetten m 45 BC This bock = »

pafdxé:t.’lb’mu
v

Wemtsne 06 The Deory of eQharn. Lery gopelar Gurng Do Fasaiance
My contact

[0 Faceock sape
Addeess. 03036, Ko, Solcmmmnky devtce, Victsey Ave 37 ¥
Tl : =390071405590
Eel lmboecleibcborks S gmad com

Fig. 1.18. Example with a vertical menu on the left side of the page

€ 2000 Laven Otesbcdenis

(dominant colors of the page are violet, green, white)

It is forbidden to use tables for marking, only basic tags <div>, . Create site
menus using lists (,) with appropriate CSS formatting.
Check compliance with code standards at http://validator.w3.org.

Text and graphic fragments of pages are required.

The title of the page should be in the form of an image or text name. From each
page, a transition to the main page should be available.

The maximum number of colors and fonts on the site is 4.
Create CSS styles in a separate file that connects to all pages of the site.

The student should be able to change the stylization (background, color), structure,

placement of elements and replace elements of the web page with others.

It is forbidden to use any frameworks like Bootrstrap in this lab!

21

http://validator.w3.org/

Table 1.1. Individual tasks (by number in the group list)

Location
of the
vertical menu

External hypertext links
for the vertical menu

Dominant colors
of the Web site
(or their shades)

left

Your country's weather website
Your country news site
https://www.netacad.com/
https://www.python.org/

green, blue,
white

right

Your country's weather website
Your country news site
https://qgithub.com/
https://www.w3schools.com/

blue, white

left

Your country's weather website
Your country news site
https://www.netacad.com/
https://www.youtube.com/

purple, white

right

Your country's weather website
Your country news site
https://www.java.com/

https://www.w3schools.com/

red, white

left

Your country's weather website
Your country news site
https://github.com/
https://www.python.org/

green, white

right

Your country's weather website
Your country news site
https://www.netacad.com/
https://www.java.com/

pink, white

left

Your country's weather website
Your country news site
https://www.python.org/
https://www.youtube.com/

purple, white

right

Your country's weather website
Your country news site
https://qgithub.com/
https://getbootstrap.com/

green, blue,
white

22

https://www.netacad.com/
https://www.python.org/
https://github.com/
https://www.w3schools.com/
https://www.netacad.com/
https://www.youtube.com/
https://www.java.com/
https://www.w3schools.com/
https://github.com/
https://www.python.org/
https://www.netacad.com/
https://www.java.com/
https://www.python.org/
https://www.youtube.com/
https://github.com/
https://getbootstrap.com/

left

Your country's weather website
Your country news site
https://www.netacad.com/
https://nodejs.org/

gray, green,
white

10

right

Your country's weather website
Your country news site
https://www.java.com/

https://www.youtube.com/

red, white

11

left

Your country's weather website
Your country news site
https://qgithub.com/
https://www.apple.com/

blue, white

12

right

Your country's weather website
Your country news site
https://www.netacad.com/
https://www.w3schools.com/

purple, white

13

left

Your country's weather website
Your country news site
https://www.java.com/

https://getbootstrap.com/

green, blue,
white

14

right

Your country's weather website
Your country news site
https://github.com/
https://www.java.com/

pink, white

15

left

Your country's weather website
Your country news site
https://www.netacad.com/
https://getbootstrap.com/

blue, white

16

right

Your country's weather website
Your country news site
https://www.python.org/
https://www.youtube.com/

green, blue,
white

17

left

Your country's weather website
Your country news site
https://github.com/
https://www.apple.com/

purple, white

23

https://www.netacad.com/
https://nodejs.org/
https://www.java.com/
https://www.youtube.com/
https://github.com/
https://www.apple.com/
https://www.netacad.com/
https://www.w3schools.com/
https://www.java.com/
https://getbootstrap.com/
https://github.com/
https://www.java.com/
https://www.netacad.com/
https://getbootstrap.com/
https://www.python.org/
https://www.youtube.com/
https://github.com/
https://www.apple.com/

18

right

Your country's weather website
Your country news site
https://www.netacad.com/
https://nodejs.org/

blue, white

19

left

Your country's weather website
Your country news site
https://www.python.org/
https://getbootstrap.com/

gray, green,
white

20

right

Your country's weather website
Your country news site
https://qgithub.com/
https://nodejs.org/

blue, white

21

left

Your country's weather website
Your country news site
https://www.netacad.com/
https://www.apple.com/

red, white

22

right

Your country's weather website
Your country news site
https://www.python.org/
https://www.w3schools.com/

purple, white

23

left

Your country's weather website
Your country news site
https://github.com/
https://www.youtube.com/

blue, white

24

right

Your country's weather website
Your country news site
https://www.netacad.com/
https://github.com/

pink, white

25

left

Your country's weather website
Your country news site
https://www.java.com/

https://www.w3schools.com/

green, white

26

right

Your country's weather website
Your country news site
https://getbootstrap.com/
https://www.apple.com/

pink, white

24

https://www.netacad.com/
https://nodejs.org/
https://www.python.org/
https://getbootstrap.com/
https://github.com/
https://nodejs.org/
https://www.netacad.com/
https://www.apple.com/
https://www.python.org/
https://www.w3schools.com/
https://github.com/
https://www.youtube.com/
https://www.netacad.com/
https://github.com/
https://www.java.com/
https://www.w3schools.com/
https://getbootstrap.com/
https://www.apple.com/

27 left Your country's weather website green, blue,
Your country news site white

https://www.netacad.com/
https://nodejs.org/

28 right Your country's weather website red, white
Your country news site
https://www.python.org/
https://www.w3schools.com/
29 left Your country's weather website blue, white
Your country news site
https://www.java.com/
https://getbootstrap.com/
30 right Your country's weather website red, white
Your country news site
https://www.netacad.com/
https://www.w3schools.com/

Report requirements for laboratory work
The report should include:
1. Title page.
2. Tasks for laboratory work.
3. Description of development steps. This section consists of a sequential
description of the steps performed according to the instructions for laboratory work.

4. Conclusions.

Questions for self-assessment
1. What stages of website creation do you know?
2. What are HTML, CSS, JS used for?
3. What should be the structure of the web project?
4. What is the structure of the HTML code?
5. How to connect CSS to HTML?
6. How to connect external / internal links to the page?
7. What are the main elements of a web page?

25

https://www.netacad.com/
https://nodejs.org/
https://www.python.org/
https://www.w3schools.com/
https://www.java.com/
https://getbootstrap.com/
https://www.netacad.com/
https://www.w3schools.com/

8. What is the difference between a fixed and a "rubber" layout of a web page?
9. What class naming rules do you know?

10. Why we use <head> and <meta> tags in HTML document?

11. Which basic HTML tags do you know?

12. Which tag is used to add a picture to a web page?

13. Which tag is used to add a hyperlink to a web page?

14. Why we use record <meta charset="UTF-8> in HTML document?

15. What is the difference in HTML4 and HTML5 document structure?

16. Which common web page layouts do you know?

References
1. The Importance of Building a Website Prototype https://www.rattleback.com/

insights/articles/why building a prototype is so important/

2. Resizing: Fixed, Fluid, or Responsive Layouts

https://www.sitepoint.com/resizing-fixed-fluid-or-responsive-layouts/

3. Basic structure of an HTML document
http://www.scriptingmaster.com/html/basic-structure-HTML-document.asp
4. Learning Web Design, 4th Edition by Jennifer Robbins

https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04 .html

5. HTMLS5 Semantic Tags https://www.vikingcodeschool.com/html5-and-

css3/html5-semantic-tags

6. Web technologies for developers https://developer.mozilla.org/en/docs/Web

7. HTML Tutorial https://www.w3schools.com/html/default.asp

8. CSS Tutorial https://www.w3schools.com/css/default.asp

9. Markup Validation Service https://validator.w3.org/

10. CSS Validation Service https://jigsaw.w3.org/css-validator/

26

https://www.rattleback.com/%20insights/articles/why_building_a_prototype_is_so_important/
https://www.rattleback.com/%20insights/articles/why_building_a_prototype_is_so_important/
https://www.sitepoint.com/resizing-fixed-fluid-or-responsive-layouts/
http://www.scriptingmaster.com/html/basic-structure-HTML-document.asp
https://www.oreilly.com/library/view/learning-web-design/9781449337513/ch04.html
https://www.vikingcodeschool.com/html5-and-css3/html5-semantic-tags
https://www.vikingcodeschool.com/html5-and-css3/html5-semantic-tags
https://developer.mozilla.org/en/docs/Web
https://www.w3schools.com/html/default.asp
https://www.w3schools.com/css/default.asp
https://validator.w3.org/
https://jigsaw.w3.org/css-validator/

LABORATORY WORK 2.
JAVASCRIPT EVENTS HANDLING

Purpose: to consolidate knowledge of client script programming and to get practical

JavaScript event handling skills.

Theory and methodological instructions

JavaScript or JS is a programming language that conforms to the ECMAScript
specification. JavaScript is high-level, often just-in-time compiled, and multi-
paradigm. It has dynamic typing, prototype-based object-orientation, and first-class
functions. Alongside HTML and CSS, JavaScript is one of the core technologies of the
World Wide Web. JavaScript enables interactive web pages and is an essential part of
web applications. The vast majority of websites use it for client-side page behavior,
and all major web browsers have a dedicated JavaScript engine to execute it [1-2].

As a multi-paradigm language, JavaScript supports event-driven, functional, and
imperative programming styles. It has application programming interfaces (APIs) for
working with text, dates, regular expressions, standard data structures, and the
Document Object Model (DOM). JavaScript engines were originally used only in web
browsers, but they are now embedded in some servers, usually via Node.js.

HTML events are "things" that happen to HTML elements (the change in the state
of an object). When JavaScript is used in HTML pages, JavaScript can "react” on these
events. This process of reacting over the events is called Event Handling. Thus, JS
handles the HTML events via Event Handlers. An HTML event can be something the
browser does, or something a user does.

Here are some examples of HTML events:

e an HTML web page has finished loading;

e an HTML input field was changed;

e an HTML button was clicked.

Often, when events happen, we may want to do something. JavaScript lets execute
code when events are detected. HTML allows event handler attributes, with JavaScript
code, to be added to HTML elements.

For example, when a user clicks over the browser, add JS code, which will execute

the task to be performed on the event.
Common HTML Events

Table 2.1 shows a list of some common HTML events.

Table 2.1. Some common HTML events [3]

Event Description
onchange An HTML element has been changed
onclick The user clicks an HTML element
onmouseover The user moves the mouse over an HTML element
onmouseout The user moves the mouse away from an HTML element
onkeydown The user pushes a keyboard key
onload The browser has finished loading the page

JavaScript's interaction with HTML is handled through events that occur when the

user or the browser manipulates a page. When the page loads, it is called an event.

When the user clicks a button, that click too is an event. Other examples include events

like pressing any key, closing a window, resizing a window, etc.

Developers can use these events to execute JavaScript coded responses, which cause

buttons to close windows, messages to be displayed to users, data to be validated, and

virtually any other type of response imaginable.

Events are a part of the DOM Level 3 and every HTML element contains a set of

events which can trigger JavaScript code.

Event handlers can be used to handle, and verify, user input, user actions and

browser actions:

e things that should be done every time a page loads;

e things that should be done when the page is closed;

e action that should be performed when a user clicks a button;

e content that should be verified when a user inputs data.

Many different methods can be used to let JavaScript work with events:

e HTML event attributes can execute JavaScript code directly;

e HTML event attributes can call JavaScript functions;

28

e we can assign own event handler functions to HTML elements;

e We can prevent events from being sent or being handled.

Example

onclick Event is the most frequently used event type which occurs when a user

clicks the left button of his mouse.

<html>
<head>»

<script type =

function sayHello() {
alert()
}

<fscript>
</head>

<body>
<p>Click the following button and see result</p>

<form>
<input type = onclick =
</form>

</body>
</html»

Output:

An embedded page at tools.tutorialspoint.com says
Click the following button and see result

Say Hello | n

Tasks for laboratory work 2
In the MySite folder, add the taskjs.html file. Make a button called "Task JS" on
the page My Study to go to the page taskjs.html. Set the background image to the

theme of the task, set the transparency of the background image to 45%.

29

Table 2.1. Individual tasks (by number in the group list)

Individual tasks (by number in the group list)

Create a page that contains a map of the city and attractions (zoo, theater,
museum). When you hover over the landmark mark, an animated picture of
the institution is displayed and a message about the schedule of the
institution is displayed in a separate window.

Create a page containing test tasks on the subject "Fundamentals of
Programming" (5 questions with 3 possible answers). One correct answer
must be chosen. After each question is answered in a separate window, the
user is given a message correctly or incorrectly, user answered and an
animated picture with a hint.

Create a page containing a field for calculating the area of the rectangle
according to the values of its sides entered in the dialog boxes. Enter an
error message when entering a negative number. The output is displayed in a
separate window.

Horoscope. Pressing one of the 12 buttons with the names of the zodiac
signs shows a picture of the corresponding zodiac sign and a brief
description of this sign in a separate window. Make a dialogue to enter the
date of birth and find out the user's zodiac sign.

When you select a name from the group drop-down list, a student’s image
Is displayed in a separate window. When you hover over the image, the
student’s date of birth is displayed.

Create an application that displays the current time by pressing the
buttons "Current time", "Current day", "Current month" and "Current year".
The result is displayed in a separate window. Create a dialog to enter the day
of the week date for that date.

Create a calculator that finds the remainder of dividing two positive
numbers. The output is displayed in a separate window. Enter an error
message when entering a negative number. When dividing numbers, a
picture with an emoticon is displayed.

When you select the name of a programming language (5 names) from a
drop-down list, a text message about this language is displayed in a separate
window. When hovering over the text, display the logo of the corresponding
programming language.

30

Recipe of dish. When you press one of the 12 buttons on which the dish is
marked, a recipe for this dish and animation (at least three pictures) of the
cooking stages are displayed in a separate window.

10

When you select the name of the animal (10 names) from the drop-down
list, animated images of this animal and its description are displayed in a
separate window.

11

Create a page containing a map of the zoo and 6 animals marked on it.
When you hover over the animals, an animated photo of the animal and its
description are displayed.

12

Calculator for rounding a positive number. The result of the execution is
displayed in a separate window. If you enter a negative number, display an
error message.

13

Test tasks for the subject "Organization of computer networks" (3
guestions with 5 answer options). You need to select some correct answers.
After answering the question, a window is displayed where it is indicated
correctly or incorrectly the answer is given.

14

When you select the name of the phone model (10 names) from the drop-
down list, animated images of this phone and its technical characteristics are
displayed in a separate window.

15

When you mouse over one of the 8 photos of the student, his name and
phone number are displayed.

16

Application, asks the user for the current day of the week. After the
answer, indicate its correctness in the form of an animated picture. If the
answer is incorrect, report it and indicate the correct answer.

17

When you select the name of an outstanding scientist (10 names) from the
drop-down list, an animated photo and a text message about his contribution
to science are displayed in a separate window.

18

Test tasks on the subject of “Databases” (3 questions with 4 possible
answers). You must select one correct answer. After answering each
question in a separate window, the answer is indicated correctly or
incorrectly.

19

Create a page on which, when you hover over one of the 6 images of
birds, its name and audio accompaniment - a description of the bird - are
displayed.

31

20

When you select the name from the drop-down list of the group, a text
message is displayed in a separate window, where the student’s date of birth
and his phone number are indicated.

21

Create a page containing a map of the territory of the university and mark
buildings on it. When you move the cursor to the mark of the building, an
animated photo of the building and the name of the faculty are displayed.

22

Car showroom. When you hover over each of the 6 images of cars, a
message is displayed about its cost and technical characteristics.

23

Musical instruments. When you hover over one of 6 musical instrument,
musical accompaniment in the performance of this instrument is displayed.

24

When you click on one of the 6 photos of students in a separate window,
his name and group number are displayed.

25

Create a page containing a map and historical places marked on it. When
you move the cursor to the label, audio accompaniment-message about this
place is launched.

26

When choosing a plant name (10 names), an animated image of this plant
and its description are displayed in a separate window.

27

When you select a name from the drop-down list of singers, a picture of
the singer is displayed in a separate window. When you hover over the
Image, the date of birth of the singer and a short biography are displayed.

28

If you select the name of the medicine (10 names) from the drop-down
list, the animated image of this medicine and its description are displayed in
a separate window.

29

Cocktail recipe. Pressing one of the 12 buttons on which the cocktail is
marked displays the recipe for this cocktail and the animation (at least three
images) of the cooking steps in a separate window.

30

Test tasks on the subject "Object-Oriented Programming" (3 questions for
4 answer options). One correct answer must be chosen. After each question
Is answered in a separate field, the answer is right or wrong.

32

Report requirements for laboratory work
The report should include:
1. Title page.
2. Tasks for laboratory work.
3. Description of development steps. This section consists of a sequential
description of the steps performed according to the instructions for laboratory work.

4. Conclusions.

Questions for self-assessment

1. Describe ways to connect a JS code to a web page.

2. Describe JavaScript language syntax.

3. Describe data types in JavaScript.

4. Data input / output. What are the three methods for displaying dialog boxes you
know? How are alert, confirm, prompt methods different?

5. What is the use of the parselnt function?

6. Describe the document object and its document.write method.

7. Describe JavaScript Events. Types of events.

8. Assigning event handlers to items/

9. Load event and its onLoad handler.

10. Describe Click event.

11. Describe Math object methods.

12. How to call a method in JavaScript? Give an example.

13. Describe Date object.

14. Describe Date object methods.

15. Describe Array object.

16. How is the naming of document objects in JavaScript?

17. How is a document object referenced in JavaScript?

18. How do | access object properties in JavaScript?

19. The Window object and its methods.

33

20.
21.
22.
23.
24,
25.
26.
217.
28.
29.

1.

How are window parameters set in JavaScript?

Methods open () and close () of document object.

Appeal to form elements - checkboxes, radio buttons, lists.
The checked object's input property.

Properties of the option object.

Image object and its properties.

Events and their handlers when interacting with the mouse.
Style object and its properties.

Properties of the display object.

Describe setTimeout (expression, msec) method.

References

Javascript https://runestone.academy/runestone/books/published/

webfundamentals/Javascript/toctree.html

2.
3.
4.
S.

JavaScript https://www.w3schools.com/js/default.asp

JavaScript Events https://www.w3schools.com/js/|s_events.asp

JavaScript Events https://www.javatpoint.com/javascript-events

Introduction to browser events https://javascript.info/introduction-browser-

gvents

34

https://runestone.academy/runestone/books/published/%20webfundamentals/Javascript/toctree.html
https://runestone.academy/runestone/books/published/%20webfundamentals/Javascript/toctree.html
https://www.w3schools.com/js/default.asp
https://www.w3schools.com/js/js_events.asp
https://www.javatpoint.com/javascript-events
https://javascript.info/introduction-browser-events
https://javascript.info/introduction-browser-events

LABORATORY WORK 3.

JQUERY LIBRARY.CREATE A WEBSITE USING BOOTSTRAP

FRAMEWORK

Purpose: to get practical skills working with the jQuery library, using the

Bootstrap framework to create a website.

Theory and methodological instructions

jQuery
JQuery is a lightweight, "write less, do more", JavaScript library. The purpose of

JQuery is to make it much easier to use JavaScript on a website. jQuery takes a lot of

common tasks that require many lines of JavaScript code to accomplish, and wraps

them into methods that we can call with a single line of code. jQuery also simplifies a
lot of the complicated things from JavaScript, like AJAX calls and DOM

manipulation.

The jQuery library contains the following features:

HTML/DOM manipulation;
CSS manipulation;

HTML event methods;
Effects and animations;
AJAX;

Utilities.

There are two versions of jQuery available for downloading:

production version — for live website because it has been minified and

compressed;

development version — for testing and development (uncompressed and

readable code);

35

Both versions can be downloaded from jQuery.com. The jQuery library is a single
JavaScript file, and you reference it with the HTML <script> tag (the <script> tag
should be inside the <head> section):

<head>

<script src="jquery-3.4.1.min.js"></script>

</head>

Instead downloading and host jQuery we can include it from a CDN (Content
Delivery Network). Both Google and Microsoft host jQuery. To use jQuery from
Google or Microsoft, use one of the following:

Google CDN:

<head>

<script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js"></script>

</head>

Microsoft CDN:

<head>

<script src="https://ajax.aspnetcdn.com/ajax/jQuery/jquery-3.4.1.min.js"> </script>

</head>

The jQuery syntax is tailor-made for selecting HTML elements and performing
some action on the element(s).

Basic syntax is: $(selector).action().

A $ sign to define/access jQuery. A (selector) to "query (or find)" HTML elements.
A jQuery action() to be performed on the element(s). Examples:

$(this).hide() — hides the current element.

$("p").hide() — hides all <p> elements.

$(".test™).hide() — hides all elements with class="test".

$("#test™).hide() — hides the element with id="test".

All jQuery methods in our examples, are inside a document ready event:

$(document).ready(function(){

/Il]Query methods go here... });
36

This is to prevent any jQuery code from running before the document is finished
loading (is ready). It is good practice to wait for the document to be fully loaded and
ready before working with it. This also allows to have JavaScript code before the body
of document, in the head section. Here are some examples of actions that can fail if
methods are run before the document is fully loaded:

e trying to hide an element that is not created yet;

e trying to get the size of an image that is not loaded yet [1].

jQuery Event Methods

The jQuery team has also created an even shorter method for the document ready
event:

$(function(){

Il jQuery methods go here...

b

JQuery selectors are used to "find" (or select) HTML elements based on their name,
id, classes, types, attributes, values of attributes and much more. It's based on the
existing CSS Selectors, and in addition, it has some own custom selectors.

An event represents the precise moment when something happens:

e moving a mouse over an element;

e selecting a radio button;

e clicking on an element.

The term "fires/fired" is often used with events. Example: "The keypress event is
fired, the moment you press a key".

Table. 3.1. Some common DOM events [2]

Mouse Keyboard Form Document/Window
Events Events Events Events
click keypress submit load
dblclick keydown change resize
mouseenter keyup focus scroll
mouseleave blur unload

37

In jQuery, most DOM events have an equivalent jQuery method. To assign a click
event to all paragraphs on a page, you can do this:
$("p").click();
The next step is to define what should happen when the event fires. We must pass a
function to the event:
$("p").click(function(){
/l action goes here!!
b
The $(document).ready() method allows to execute a function when the document is
fully loaded.
The click() method attaches an event handler function to an HTML element.
The function is executed when the user clicks on the HTML element.
For example, when a click event fires on a <p> element; hide the current <p>
element:
$("p").click(function(){
$(this).hide(); });
The dblclick() method attaches an event handler function to an HTML element.
The function is executed when the user double-clicks on the HTML element:
$("p™).dblclick(function(){
$(this).hide(); });
The mouseenter() method attaches an event handler function to an HTML element.
The function is executed when the mouse pointer enters the HTML element:
$("#pl1").mouseenter(function(){
alert("You entered p1!"); });
The mouseleave() method attaches an event handler function to an HTML element.
The function is executed when the mouse pointer leaves the HTML element:
$("#pl™).mouseleave(function(){

alert("Bye! You now leave p1!");

i

38

The mousedown() method attaches an event handler function to an HTML element.
The function is executed, when the left, middle or right mouse button is pressed down,
while the mouse is over the HTML element:

$("#pl1").mousedown(function(){

alert("Mouse down over p1!");

b

The mouseup() method attaches an event handler function to an HTML element.

The function is executed, when the left, middle or right mouse button is released,
while the mouse is over the HTML element:

$("#pl1").mouseup(function(){

alert("Mouse up over p1!);

b

The focus() method attaches an event handler function to an HTML form field.

The function is executed when the form field gets focus:

$("input™).focus(function(){

$(this).css("background-color", "#ccceec™);

b

The blur() method attaches an event handler function to an HTML form field.

The function is executed when the form field loses focus:

$("input™).blur(function(){

$(this).css("background-color", "#ffffff");

b

The on() method attaches one or more event handlers for the selected elements [2].

Bootstrap is a free front-end framework for faster and easier web development.
Bootstrap includes HTML and CSS based design templates for typography, forms,
buttons, tables, navigation, modals, image carousels and many other, as well as
optional JavaScript plugins.

Bootstrap, Foundation, Material Design Lite frameworks offer ready-made
design elements (buttons, input forms, etc.), their modular grid, CSS snippets (part of

the code, markup, which can be used repeatedly) to insert elements into the page (the
39

same buttons, form elements, etc.) and markup classes, as well as JS scripts for the
corresponding interactive elements. Using these libraries can significantly save time
when developing a project (design, layout), though at the same time it can make site
look like the others if we use the framework design elements as is. On the basis of
each framework, we can find a huge number of paid and free themes and pages, as
well as develop your own. One can not fail to mention some emerging trends of recent
times as a layout and page design. It is worth mentioning the so-called landing pages,
which mean a long page, divided into appropriate sections and familiarizing the user
with the main content of the site.

Modular grid

Before scheduling a project, it is also necessary to understand the concept of a
modular grid. The modular grid means dividing the page into separate columns
vertically and arranging the content, while developing the layout design, precisely
along this grid. The most popular system is the modular grid 960 Grid System, which
divides the page as much as possible into 12, 16 and 24 columns. The maximum width
of the grid is 960 pixels. This solution is based on the fact that most modern monitors,
at the time of the grid creation, had a resolution of at least 1024 by 768
pixels. Creating a layout based on this grid, in the future, will help speed up the

development process.

Drupal Search Ol o

Corme 10 D sOfears, My 1o TW COMMUIRY

40

Fig.3.1. Layout grid [3]

When developing a “rubber” page layout, there is a concept of maximum
width. This statement is based on the convenience of perception of information. If we
assume that our site does not have a maximum width, then on large monitors the
information will be very stretched and inconvenient to read. Most often limited to a
width of 1280 pixels.

The 960GS modular grid meets the concept of a “fixed” design, for a “rubber”
designn you can pay attention to adapting the same grid
at http://www.designinfluences.com/fluid960gs/ or use the grid that the Bootstrap
framework offers (http: // getbootstrap.com/css/#grid).

Thanks to the modular grid, content blocks and elements will be located at a certain
distance from each other, will have a digestible width, which in the future will be
visually pleasing to the user and will not cause any inconvenience in the perception of
the site. The modular grid, in fact, is a kind of visual abstraction, the visual division of

the page into equally wide columns with equal indents between them. This model can

41

http://www.designinfluences.com/fluid960gs/
http://getbootstrap.com/css/#grid

be visualized using guides or a separate layer on which these columns will be
displayed.

Mobile first

Given the trends of recent years, this approach is tightly occupying its niche in the
development and design of sites. The trend is that more than 60% of Internet users use
mobile devices to access the network, so the development of not only the desktop
version of the site, but also the mobile version becomes the rule of good taste. Using
this approach, the development of the site’s layout, design and layout begins with the
mobile version, and then the layouts for other permissions are already worked out:
blocks, banners, additional design elements, etc. are added.

After creating a project layout, you can go directly to creating a design layout. At
this stage, it’s worth starting with determining the color scheme of the project. One
way to determine the primary color in a project is to create a mood board. To do this,
we need to write all the synonyms associated with the topic of the project, and then
type each synonym in the search for Google pictures. Based on the images found,
write the colors that are most often found on them (which colors are more). The colors
found will make up the visual perception of our project and evoke the corresponding
feelings in the user.

Call to Action Elements

The concept of a call to action refers to the interactive elements of a site: buttons,
banners, etc. These elements are designed in such a way that the user should definitely
want to click on them. For example, it can be a button with a call to action (Click, Buy,
Save), a bright banner with a tempting offer, a bright picture, etc.

Page layout

Quite often there is a Z-scheme for viewing the page. In accordance with this, page
elements are usually positioned as follows: logo at the top left, menu at the top right,
information blocks, pictures at the bottom left, a call to action button at the bottom
right.

42

SOME INFORMATION SOME INFORMATION

SIGN UP NOW!

- 4

Fig. 3.2. Z-Pattern [4]
Landing
Landing is often the only page on which it is immediately possible to show all the
necessary information without forcing the user to navigate through the pages. Landing
is usually accompanied by a good design, accurate and thoughtful presentation of

information, call-to-action elements, interactivity (counters, animation, etc.).

NO NAVIGATION > SOCIAL ICONS

HEADLINE Logo] V|DEU
Sico Mesdine and Lorem Ipsum Cosning irekler o¢ tee
: i Dolor Sit Amet =
S > =
CTA Bution

o0l o

SLBERNSHOLS

-) Lorem Ipsum -) Lorem Ipsum

TESTIMONIALS

;: X

e CONTACT
__7 Sign Up for Email Updates. Sutacrie Nowt | Dyt s
<_J

SEASCHIETION

Fig. 3.3. An example of a landing page [5]
There are two ways to start using Bootstrap 4 on your own web site:
e include Bootstrap 4 from a CDN;
e download Bootstrap 4 from getbootstrap.com.
If you don't want to download and host Bootstrap 4 yourself, you can include it from
a CDN (Content Delivery Network). MaxCDN provides CDN support for Bootstrap's
CSS and JavaScript. We also include jQuery [6]:

43

<!-- Latest compiled and minified CSS -->
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.4.1/css
/ bootstrap.min.css">
<!-- jQuery library -->
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js">
</script>
<!-- Popper 1S -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.16.0/umd/popper.
min.js"></script>
<!-- Latest compiled JavaScript -->
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/4.4.1/js/bootstrap.min.js
"></script>

Many users already have downloaded Bootstrap 4 from MaxCDN when visiting
another site. As a result, it will be loaded from cache when they visit your site, which
leads to faster loading time. Also, most CDN's will make sure that once a user requests
a file from it, it will be served from the server closest to them, which also leads to
faster loading time. Bootstrap 4 use jQuery and Popper.js for JavaScript components
(like modals, tooltips, popovers etc). For downloading and hosting Bootstrap 4, go to

https://getbootstrap.com/, and follow the instructions there.

Bootstrap 4 is designed to be responsive to mobile devices. Mobile-first styles are
part of the core framework. To ensure proper rendering and touch zooming, add the

following <meta> tag inside the <head> element:
<meta name="viewport" content="width=device-width, initial-scale=1">

The width=device-width part sets the width of the page to follow the screen-width
of the device (which will vary depending on the device). The initial-scale=1 part sets
the initial zoom level when the page is first loaded by the browser.

Bootstrap 4 also requires a containing element to wrap site contents. There are two
container classes to choose from:

e the .container class provides a responsive fixed width container;

e the .container-fluid class provides a full width container, spanning the entire
width of the viewport [6].

.container .container-fluid

44

https://getbootstrap.com/

By default, containers have 15px left and right padding, with no top or bottom
padding. Therefore, we often use spacing utilities, such as extra padding and margins

to make them look even better. For example, .pt-3 means "add a top padding of 16px"":
<div class="container pt-3"></div>

Other utilities, such as borders and colors, are also often used together with

containers [6]:

My First Bootstrap Page

ner has a border and some extra padding and margin:

My First Bootstrap Page

This container has a dark background color and a white text, and some extra padding an

My First Bootstrap Page

This container has a blue background color and a white text, and some extra padding and margins.

<div class="container p-3 my-3 border"></div>
<div class="container p-3 my-3 bg-dark text-white"></div>
<div class="container p-3 my-3 bg-primary text-white"></div>

Bootstrap's grid system is built with flexbox and allows up to 12 columns across the
page. If we do not want to use all 12 columns individually, we can group the columns

together to create wider columns:

spanl spanl spanl spanl spanl spanl spanl spanl spanl spanl span 1 span 1
span 4 span 4 span 4
span 4 span 8
span G span 6

span 12

The grid system is responsive, and the columns will re-arrange automatically
depending on the screen size. Make sure that the sum adds up to 12 or fewer (it is not
required that you use all 12 available columns).

The Bootstrap 4 grid system has five classes:

.col- (extra small devices - screen width less than 576px)

.col-sm- (small devices - screen width equal to or greater than 576px)

.col-md- (medium devices - screen width equal to or greater than 768px)

.col-lg- (large devices - screen width equal to or greater than 992px)

.col-xl- (xlarge devices - screen width equal to or greater than 1200px).
45

The classes above can be combined to create more dynamic and flexible layouts.
Each class scales up, so if you wish to set the same widths for sm and md, you only

need to specify sm.
The following is a basic structure of a Bootstrap 4 grid:

<!-- Control the column width, and how they should appear on different devices -->

<div class="row">
<div class="col-*-*"></div>
<div class="col-*-*"></div>
</div>
<div class="row">
<div class="col-*-*"></div>
<div class="col-*-*"></div>
<div class="col-*-*"></div>
</div>
<!-- Or let Bootstrap automatically handle the layout -->
<div class="row">
<div class="col"></div>
<div class="col"></div>
<div class="col"></div>
</div>

Example 1. Create a row (<div class="row">). Then, add the desired number of
columns (tags with appropriate .col-*-* classes). The first star (*) represents the
responsiveness: sm, md, Ig or xl, while the second star represents a number, which
should add up to 12 for each row.

Example 2. Instead of adding a number to each col, let bootstrap handle the layout,
to create equal width columns: two "col" elements = 50% width to each col. three cols
= 33.33% width to each col. four cols = 25% width, etc. We can also use .col-
sm|md|lg|xI to make the columns responsive [6].

The following example shows how to create three equal-width columns, on all

devices and screen widths:

.col .col .col

<div class="row">

<div class="col">.col</div>

<div class="col">.col</div>

<div class="col">.col</div>
</div>

The following example shows how to create four equal-width columns starting at

tablets and scaling to extra large desktops.

46

On mobile phones or screens that are less than 576px wide, the columns will

automatically stack on top of each other:

.col-sm-3

<div

class="row">

.col-sm-3

<div class="col-sm-3">.col-sm-3</div>
<div class="col-sm-3">.col-sm-3</div>
<div class="col-sm-3">.col-sm-3</div>
<div class="col-sm-3">.col-sm-3</div>

.col-sm-3

</div>
Bootstrap 4 Default Settings

Bootstrap 4 uses a default font-size of 16px, and its line-height is 1.5. The default
font-family is "Helvetica Neue", Helvetica, Arial, sans-serif. In addition, all <p>
elements have margin-top: 0 and margin-bottom: 1rem (16px by default) [6].

Text Colors
Bootstrap 4 has some contextual classes that can be used to provide "meaning

through colors:

This text 1s muted

This text is important

«p class="text-muted">This text is muted.</p» Thic tant remrocmmte comme mFommation
<p class="text-primary”:This text is important.</p> S
<p class="text-success"»>This text indicates success.</p»

<p class="text-info"»>This text represents some information.</p»

<p class="text-warning”>This text represents a warning.</p> This text represents danger

<p class="text-danger">This text represents danger.</p>

<p class="text-secondary":>secondary text.</p>

<p class="text-dark":This text is dark grey.</p>

<p class="text-body"»Default body color (often black).</p»

<p class="text-light"»>This text is light grey {(on white background).</p>
<p class="text-white"»This text is white (on white background).</p>

Secondary text.
This text is dark grey

Default body coler (often black)

The classes for background colors are: .bg-primary, .bg-success, .bg-info, .bg-
warning, .bg-danger, .bg-secondary, .bg-dark and .bg-light. Background colors do
not set the text color, so in some cases you'll want to use them together with a .text-*

class [6].

47

his text is important.
is text indicates success.
is text represents some information.

<p class="bg-primary text-white">This text is important.«</p»
<p class="bg-success text-white">This text indicates success.</p»
<p class="bg-info text-white®»This text represents some information.</p>» = AERRE CUIET

<p class="bg-warning text-white®:>This text represents a warning.</p» Secondary background color.

<p class="bg-danger text-white"»This text represents danger.«</p>

<p class="hg-secondary text-white"»secondary background color.</p»
<p class="bg-dark text-white":Dark grey background color.</p>

<p class="bg-light text-dark"»Light greyv background coclor.</p> Light grey background calar.

Bootstrap 4 Basic Table

A basic Bootstrap 4 table has a light padding and horizontal dividers. The .table

class adds basic styling to a table:

<table class="table">»
<thead>
<trs
<th>Firstname«</th>
<thxLastnames/ tThx
<th=Email</th>
<ftr>
</thead:
<thody>
<trs
<td=Johne/td>
<td»Doe</td>
<td>johngexample.come</tdx
<ftrs
ctr»
<td=Mary</td>
ctdaMoes/td > Firstname Lastname Email
<td»mary@example.comes/tdx

:_;TT John Doe john@example.com

ctdxJuly< S td>

ctd»Dooley«/td» Mary Moe mary@example.com
<td>july@example.come/tdx
oftr» .
< fthodys July Dooley July@example.com

</tablex

For example, the .table-striped class adds zebra-stripes to a table. The .table-
bordered class adds borders on all sides of the table and cells. The .table-hover class
adds a hover effect (grey background color) on table rows. The .table-dark class adds
a black background to the table [7].

Bootstrap 4 Images

The .rounded class adds rounded corners to an image [8]:

The .rounded-circle class shapes the image to a circle:

The .img-thumbnail class shapes the image to a thumbnail (bordered):

Rounded Corners:

Circle: Thumbnail:

Float an image to the right with the .float-right class or to the left with .float-left:

Center an image by adding the utility classes .mx-auto (margin:auto) and
.d-block (display:block) to the image [8]:

A jumbotron indicates a big grey box for calling extra attention to some special

content or information:

<div class="jumbotron">

<hl>Bootstrap Tutorial</hl>
<p>Bootstrap is the most popular HTML, CSS...</p>

</div>

Button Styles

Bootstrap Tutorial

Bootstrap is the most popular HTML, CSS, and JS framework for developing respensive, mobile-first projects on the web.

Bootstrap 4 provides different styles of buttons [9]:

<button type="button" class="btn">Basic</button>

<button
<button
<button
<button
<button
<button
<button
<button
<button

type="button"
type="button"
type="button"
type="button"
type="button"
type="button"
type="button"
type="button"
type="button"

class="btn
class="btn
class="btn
class="btn
class="btn
class="btn
class="btn
class="btn
class="btn

btn-primary">Primary</button>
btn-secondary">Secondary</button>
btn-success">Success</button>
btn-info">Info</button>
btn-warning">Warning</button>
btn-danger">Danger</button>
btn-dark">Dark</button>
btn-light">Light</button>
btn-1link">Link</button>

49

Bootstrap 4 Cards
T . A card in Bootstrap 4 is a bordered box with some padding

€ - © @mwronisE ground its content. It includes options for headers, footers,

content, colors, etc. Use .card-title to add card titles to any
heading element. The .card-text class is used to remove bottom
margins for a <p> element if it is the last child (or the only one)
inside .card-body. The .card-link class adds a blue color to any
link, and a hover effect. Add .card-img-top or .card-img-
F‘j‘f"’“"‘“‘““““" bottom to an to place the image at the top or at the

e bottom inside the card.

We have added the image outside of the .card-body to span the entire width [10].

le>Bootstrap Card Example</title

profile.png ="Card image"

Liubov Oleshchenko</h4>
/p>

For creating a simple horizontal menu, add the .nav class to a element,

followed by .nav-item for each and add the .nav-link class to their links [11]:
Link Link Link Disabled

<ul class="nav">
<1li class="nav-item">
Link </1i>
<li class="nav-item">
Link </1i>
<1li class="nav-item">
Link </1i>
<1li class="nav-item"> Disabled
</1li>

50

Bootstrap 4 Navigation Bar

A navigation bar is a navigation header that is placed at the top of the page:

Logo Link Link

With Bootstrap, a navigation bar can extend or collapse, depending on the screen
size [12].
The Tooltip component is small pop-up box that appears when the user moves the

mouse pointer over an element:

Hover over me Hover over me
Hiooiray!

To create a tooltip, add the data-toggle=""tooltip" attribute to an element. Use the
title attribute to specify the text that should be displayed inside the tooltip:

Hover over me

Tooltips must be initialized with jQuery: select the specified element and call the
tooltip() method. The following code will enable all tooltips in the document:

<script>
$(document).ready(function(){
$('[data-toggle="tooltip"]").tooltip();

})s

</script>

The Popover component is similar to tooltips; it is a pop-up box that appears when
the user clicks on an element. The difference is that the popover can contain much

more content.

Popover Fr~=e= L5

Popover Header

Arre cortart ircida fra aoncver

To create a popover, add the data-toggle=""popover' attribute to an element. Use
the title attribute to specify the header text of the popover, and use the data-content
attribute to specify the text that should be displayed inside the popover's body:

<a href="#" data-toggle="popover" title="Popover Header" data-

content="Some content inside the popover">Toggle popover

51

Popovers must be initialized with jQuery: select the specified element and call the

popover() method. The following code will enable all popovers in the document:

<script>
$(document) .ready(function(){
$('[data-toggle="popover"]").popover();
1)

</script>

Bootstrap 4 Media Objects

Bootstrap provides an easy way to align media objects (like images or videos)
together with content. Media objects are often used to display blog comments, tweets
and so on [13]:

Ve Tom Cruise Posted on February 10, 2020
o 5

S Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua.

<h4>Tom Cruise <small><i>Posted on February 19, 2828</i></small:

<p*Lorem -ipsum delor sit amet, consectetur adipiscing elit, sed
de eijusmod tempor ineididunt ut labere et delore magna aliqua.

Tasks for laboratory work 3

Imagine you are a business owner and you need to create a site for your business.
The site should be responsive to different types of devices. Create
MyCompanyBootstrap folder with Web page index.html using Bootstrap
framework. Add photos and short information about the founder / owner of the
business.

The page should have a vertical and horizontal navigation menu.

In the vertical navigation menu add 5 external links to company sites that conduct

activities similar to your business. Analyze the code of the Web pages of these sites.

52

Add your business information and display a small blog comment from a well-
known company service user (celebrity). The page should also have a footer.

Using jQuery library build an Image Slider Widget using 5 pictures (according to
the subject of activity of the company) on the page using SetInterval function. When to
click of mouse over Image Slider Widget, the photo animation must stop.

= =]
@ Bootstrap 4 Website Bxample x +

& C © oaan | CyUsers/Admin/Desktop/MyCompany/index.html ® a « 6

Employees

Owner ABOUT THE COMPANY

Image Widget Slider

Some text about me in culpa qui officia deserunt

moig 3nim

partners mollit anem o est laborum consectetur adepiscing elit, sed do
ewusmod te Odidunt ut labore et dolore magna abgua, Ut enim &3 minim versam, quis nostrud

Sunt in culpa qui officia deserunt molit anim id

e5t borum consectetur adipsscing elit, sed do

eusmod tempor InCididunt ut labore et dolore sunt in culps qui offics deserunt mallit anem id est laborum conzectetur adipizcing ¢iit sed do
magna abqua. Ut enim ad minim venam, quis ewsmad tempor incididunt ut Labore et dolore magna aligua. Ut enim ad minim veniam, quis nostrud
nostrud exercitation Lilsnko exercitaton viamco

Sunt in culps qui offica deserunt mollit anim 3 est laborum consectetur adipiscing elit sed do
eusnad tempor naidkdunt ut labore et dolore magna aliqua. Ut enim ad minim versam, quis nostrud

exerCitaton ullameo

Tom Cruise Posted on February 10, 2020
Y

(e~
a >
— Lorem 1psuam GOlor it amet, consectetur adipise ng eiit sed do elusmod tempor
’s incididunt wt labore et dolore magna aiqua

In the horizontal menu, create a link to the employee information page (using
Bootstrap 4 Card), which, using the "See profile” button, opens detailed information

about each of the best16 employees in a separate window.

Create one such window with details for one employee and create a slideshow for

this employee with picture certificates (awards) using Bootstrap 4 Carousel.

&« (e} @ aiin | C:/Users/Admin/Desktop/MyCompany/card.html & Q e

EMPLOYEES

— — — — — —
'O OI IO OI lO Ol
7 s 7 \ / by '
— ~—
 — | Ere—

Employee 1 Employee 2 Employee 3 Employee 4

[
[

ccccccc Accountant Lawy

Ady %
See Profile See Profile See Profile See Profile

er
— — — — — — —
> QO o] e o e 9O
\ 4 4 4 \ 4
N — N— B
- - -

Guardian

—
)

s s

S—

-

Table 3.1. Individual task (by number in the group list)

Ne Location of The topic of marketing activities

the vertical of the company
menu

1 right appliances

2 left tourism in your city

3 right network equipment

4 left perfumes

5 right tea

6 left medicine

7 right clothes

8 left sweets

54

9 right travel agency
10 left cars

11 right phones

12 left bicycles

13 right coffee makers
14 left stereo systems
15 right ovens

16 left kitchen combiners
17 right electric kettles
18 left refrigerators
19 right computer equipment
20 left sports equipment
21 right motorcycles
22 left server hardware
23 right books

24 left laptops

25 right Kitchens

26 left Men's clothes
27 right bags

28 left shoes

29 right air conditioners
30 left vacuum cleaners

55

Report requirements for laboratory work
The report should include:
1. Title page.
2. Tasks for laboratory work.
3. Description of development steps. This section consists of a sequential
description of the steps performed according to the instructions for laboratory work.

4. Conclusions.

Questions for self-assessment
Why do we use jQuery library?
Which jQuery library features do you know?
How to add jQuery library for a project?
What is basic jQuery syntax?
Which jQuery Event Methods do you know?
What is the modular grid used for?
What is the feature of landing pages?

Which ways to start using Bootstrap 4 on a web site do you know?

© © N o o0 &~ w D E

What mean classes:

.col-

.col-sm-

.col-md-

.col-lg-

.col-xI-?

10. What are Bootstrap 4 Default Settings?

11. Which colors mean classes .bg-primary, .bg-success, .bg-info, .bg-warning, .bg-
danger, .bg-secondary, .bg-dark and .bg-light?

12. What is Bootstrap 4 jumbotron?

13. How to create a card in Bootstrap 4?

14. How to create a popover or tooltip components in Bootstrap 4?

15. How to create a media object in Bootstrap 4?

Ju

References

1. jQuery Tutorial https://www.w3schools.com/jquery/default.asp

2. JQuery Event Methods https://www.w3schools.com/jquery/jquery events.asp

3. Effective Web Design Principles — Visual Hierarchy

https://2stallions.com/blog/effective-web-design-principles-visual-
hierarchy/#:~:text=Visual%?20hierarchy%2C%200ne%200f%20the eye%20perceives
%20what%20it%20sees.

4. Responsive layout grid https://material.io/design/layout/responsive-layout-

grid.html#columns-qutters-margins

5. What Are Landing Pages? https://www.thebuzzstand.com/what-are-landing-

pages/
6. Bootstrap 4 Tutorial https://www.w3schools.com/bootstrap4/default.asp

7. Bootstrap 4 Tables https://www.w3schools.com/bootstrap4 /bootstrap tables.asp

8. Bootstrap 4 Images https://www.w3schools.com/bootstrap4/

bootstrap images.asp

9. Bootstrap 4 Buttons https://www.w3schools.com/bootstrap4/

bootstrap buttons.asp

10. Bootstrap 4 Cards https://www.w3schools.com/bootstrap4/ bootstrap cards.asp

11. Bootstrap 4 Navs https://www.w3schools.com/bootstrap4/bootstrap _navs.asp

12. Bootstrap 4 Navigation Bar https://www.w3schools.com/bootstrap4/

bootstrap navbar.asp

13. Bootstrap 4 Media Objects https://www.w3schools.com/bootstrap4/

bootstrap_media_objects.asp
14. 30 Best Bootstrap 4 Footer Templates in 2020

https://www.mockplus.com/blog/post/bootstrap-4-footer-template

15. Bootstrap 4 Carousel https://www.w3schools.com/bootstrap4/

bootstrap carousel.asp

https://www.w3schools.com/jquery/default.asp
https://www.w3schools.com/jquery/jquery_events.asp
https://2stallions.com/blog/effective-web-design-principles-visual-hierarchy/#:~:text=Visual%20hierarchy%2C%20one%20of%20the,eye%20perceives%20what%20it%20sees
https://2stallions.com/blog/effective-web-design-principles-visual-hierarchy/#:~:text=Visual%20hierarchy%2C%20one%20of%20the,eye%20perceives%20what%20it%20sees
https://2stallions.com/blog/effective-web-design-principles-visual-hierarchy/#:~:text=Visual%20hierarchy%2C%20one%20of%20the,eye%20perceives%20what%20it%20sees
https://material.io/design/layout/responsive-layout-grid.html#columns-gutters-margins
https://material.io/design/layout/responsive-layout-grid.html#columns-gutters-margins
https://www.thebuzzstand.com/what-are-landing-pages/
https://www.thebuzzstand.com/what-are-landing-pages/
https://www.w3schools.com/bootstrap4/default.asp
https://www.w3schools.com/bootstrap4%20/bootstrap_tables.asp
https://www.w3schools.com/bootstrap4/%20bootstrap_images.asp
https://www.w3schools.com/bootstrap4/%20bootstrap_images.asp
https://www.w3schools.com/bootstrap4/%20bootstrap_buttons.asp
https://www.w3schools.com/bootstrap4/%20bootstrap_buttons.asp
https://www.w3schools.com/bootstrap4/%20bootstrap_cards.asp
https://www.w3schools.com/bootstrap4/bootstrap_navs.asp
https://www.w3schools.com/bootstrap4/%20bootstrap_navbar.asp
https://www.w3schools.com/bootstrap4/%20bootstrap_navbar.asp
https://www.w3schools.com/bootstrap4/%20bootstrap_media_objects.asp
https://www.w3schools.com/bootstrap4/%20bootstrap_media_objects.asp
https://www.mockplus.com/blog/post/bootstrap-4-footer-template
https://www.w3schools.com/bootstrap4/%20bootstrap_carousel.asp
https://www.w3schools.com/bootstrap4/%20bootstrap_carousel.asp

LABORATORY WORK 4.
NODE.JS. INSTALLATION OF MODULES. NODE.JS AS A FILE
SERVER

Purpose: to get practical skills of creating a file web server, installation and use
basic Node.js modules.
Theory and methodological instructions

Node.js is an open-source, cross-platform, back-end JavaScript runtime
environment that runs on the V8 engine and executes JavaScript code outside a web

browser. Node.js runs on various platforms (Windows, Linux, Unix, Mac OS X, etc.).

A common task for a web server can be to open a file on the server and return the

content to the client [1].

PHP or ASP handling a file reguest:

1. Sends the task to the computer's file system.
2. Waits while the file system opens and reads the file.
3. Returns the content to the client.

4. Ready to handle the next request.

Node.js handling a file request:

1. Sends the task to the computer's file system.
2. Ready to handle the next request.

3. When the file system has opened and read the file, the server returns the content

to the client.

Node.js eliminates the waiting, and simply continues with the next request.
58

Node.js runs single-threaded, non-blocking, asynchronously programming, which is

very memory efficient [1].

Node.js Features

e generating dynamic page content;

e Node.js can create, open, read, write, delete, and close files on the server;
e collecting form data;

e Node.js can add, delete, modify data in database.

Node.js File

Node.js files contain tasks that will be executed on certain events. A typical event is
someone trying to access a port on the server. Node.js files must be initiated on the

server before having any effect. Node.js files have extension ".js".
Download Node.js

The official Node.js website has installation instructions for Node.js [2]:

nede

HOME ABOUT DOWNLOADS DoOCs GET INVOLVED SECURITY NEWS

Node.js® is a JavaScript runtime built on Chrome's V8 JavaScript engine.

Security releases may be necessary for all release lines

Download for Windows (x64)

12.16.2 LTS 14.0.0 Current
Recommended For Most Users Latest Features

Other Downloads | Changelog | API Docs Other Downloads | Changelog | APIDocs

Or have a look at the Long Term Support (LTS) schedule.

Sign up for Node.js Everywhere, the official Node.js Monthly Newsletter.

Fig. 4.1. The official Node.js website
59

After a successful installation, we can enter the node -v command on the command

line / terminal and the current version of Node.js will be displayed:

emd| b

BN crd.exe

BN ChWindows\systemn32hcmd.exe

soft Windows [Version 16.8.14
[T (Microso Corporation), 2816. Bce npaBa alWMWLeHhl.

Versions of node.js for other operating systems along with the source code can be
found at [3].

REPL

After installing Node.js, a tool like REPL (Read Eval Print Loop) becomes
available to us. REPL provides the ability to run JavaScript expressions on the
command line or terminal. Run the command line (on Windows) or the terminal (on
OS X or Linux) and enter the node command. After entering this command, we can

execute various JavaScript expressions:

C:\Users\aAdmin>node

Welcome to Mode.js wl2.14.8.

ype ".help” for more information.
. 10415

We can define your functions and then call them, for example, squaring a number:

» function square(x){return x*x;}

60

File execution

Instead of entering all the code directly into the console, it is more convenient to put
it into an external file. For example, create a new directory on hard drive

C:\nodestart\helloapp, into which we will place a new app.js file with the following

code:

{ lapp-js

console.log("Hello world"};

At the command prompt, use the cd command (change directory) to navigate to the

»node app

helloapp directory, and then run the command:

This command will execute the code from the app.js file:

nodestart » helloapp
* Mwma

LY app.js

C:\Users\Admin>cd Desktop
C:\Users\Admin\Desktop>cd nodestart

C:\UsersiAdmin\Desktop\nodestart>cd helloapp

esktopi\nodestarti\helloapp»node app

C:\Users\Admin\D
Hello world

We will write the first simplest application. Almost all standard JavaScript language
constructs can be used to create applications. An exception is working with the DOM,
since the application will run on the server, and not in the browser, so the DOM and

objects such as window or document will not be available to us in this case.

61

To do this, first create a directory for the application on the hard drive. For example,
we created the directory C:\node\helloapp. In this directory, we create the file

myfirst.js to display "Hello World" in a Web browser with following code:

myfirst.js

const http = require("http");
http.createServer(function(request

..__.‘l = PO SE
response.end("Hello World");

.listen(, "127.08.8.1",function(){
console.log("Server started listening requests on port 3800");

On the first line we get the http module, which is necessary to create a Web server.

This is a built-in module, and we need to use the require () function to load it:

const http = require("http");

Next, using the createServer () method, a new server is created to listen for
incoming connections and process requests. This method takes a function that has two
parameters. The first request parameter stores all the information about the request,
and the second response parameter is used to send a response. In this case, the answer
is a simple string "Hello World!" and is sent using the response.end () method. But
the http.createServer () method only creates the server. In order for the server to start

listening for incoming connections, it must call the listen method:

}) . listen(; "127.0.

console.log("Server s

1;

This method takes three parameters. The first parameter indicates the local port on
which the server starts. The second parameter indicates the local address. That is, in

this case, the server will start at the address 127.0.0.1 or localhost on port 3000.

62

The third parameter represents a function that starts when listening to connections

starts. Here, this function simply displays a diagnostic message to the console.

“Localhost” refers to the computer that a certain program is running on. For
example, if we’re running a program on own computer (like a web browser or local

web development environment), then this computer is the “localhost”.

In the most simple terms, we can essentially think of localhost as meaning “this
computer”. Just remember that “this computer” applies to the program, not necessarily
to the computer that you’re physically using. On a more technical level, localhost
typically resolves to the IP address 127.0.0.1, which is known as the loopback address.
Because of its importance, the term “localhost” is a reserved domain name. That
means that, in order to avoid confusion, it’s impossible to register a domain name that

contains “localhost” in the top-level or second-level domain name.

Now run the server. To do this, open a terminal (in OS X or Linux) or a command
line (in Windows). Using the cd command, we will go to the application directory and

using node myfirst command we run server:

~t\helloapp>node myfirst

art
ests on port 3680

Next, open the browser and enter the address http://localhost:3000/ and we will see

the message that was sent in the response.end () method.

< C (@ localhost:3000

Apps aose MNetworking Acade...

Hello World

63

http://localhost:3000/

Modules

Node.js uses a modular system. This means that the built-in functionality is divided
into separate packages or modules. A module is a block of code that can be reused in
other modules. If necessary, we can connect the modules we need. We can find out
what built-in modules in node.js are and what functionality they provide from the
documentation [4]. To load modules, the require () function is used, into which the
module name is passed. For example, to receive and process a request, the http

module was needed:

p = rEQU'iFE(“i't, '._;;:");

After receiving the module, we will be able to use all the functionality defined in it,
which again can be found in the documentation [5]. Similarly, we can load and use
other built-in modules. For example, we use the os module, which provides

information about the environment and the operating system (OS):

vs = require("os");

rName = os.userInfo().username;

console.log(userName);

We are not limited to built-in modules and, if necessary, we can create our own. We
created a project which consisted of the myfirst.js file, in which a server was

processed that processed requests. Add a new greeting.js file to the same directory

» nodestart » helloapp

L

ran
Y app.js

ﬂ greeting.js
@ ryfirst.s

and define the following code in it:
64

In contrast to the built-in modules, we connect our modules, we must pass the
relative path with the file name to the require function. Launch the application. The
line that is defined in the greeting.js file is displayed on the console:

o
in

\Admin\Desktop\nodestart\helloapp>»node myfirst
module
tarted listening requests on port 3660

(W =y |

currentDate;

g eSS SaEe function{name) {
et r te.getHours();
if(hour >

return "Good evening, " + name;
else if{hour

' + name;

" + name;

The currentDate variable is defined here. However, from outside it is not available.
It is available only within this module. For any variables or module functions to be
available, we must define them in the module.exports object. The module.exports
object is what the require () function returns when the module is received. In general,
the module object represents a link to the current module, and its exports property
defines all the properties and methods of the module that can be exported and used in

other modules. For more details on determining module loading and all its functions,

65

see https://github.com/nodejs/node/blob/master/lib/module.js. In particular, the date

property and the getMessage method, which takes some parameter, are defined here.

Next, modify the myfirst.js file:

const os = require("os");
const greeting = require("./greeting

console.log(Request Date: ${greeting.date}’);
console.l greet1ﬂg.:et|&5:3::{u5FrHamFJ}

All exported methods and module properties are available by name: greeting.date

and greeting.getMessage (). Restart the application:

lDapp}ﬂDdE myFiPEZ
;54 GMT+8380 (GMT+03:80)

Defining constructors and objects in a module

In addition to defining simple functions or properties in a module, complex objects
or constructor functions can be defined, which are then used to create objects. So, add

a new user.js file to the project folder:

greeting.js myfirst.js app.-js { Juser.js

function User(name, work]

function() {

console g ello, my name is ${this.name}

b

module.exports

https://github.com/nodejs/node/blob/master/lib/module.js

The standard constructor function User is defined here, which takes two

parameters (name, work). Moreover, the entire module now points to this constructor
function:

module.export

Connect and use this module in the myfirst.js file:

greeting.js

héf currentDate = new Date();
module. expc i

g, " + name;
' + name;

, " + name;

{ Imyfirst.js

= require("os");

eting = require("./gr

rName = os.userInfo().usernam

[greeting.date}’);
ce(userName)) ;

67

tion User(name, work]

name ;

function() {

Lo, my name is S{this.

\Admin\Desktop\nodestart\helloapp>node myfirst
Fri Apr 24 2626 17:53:88 GMT+8388 (GMT+83:00)
vening, Admin

Hello, my name is Liubov. I work at KPI

Global object and global variables

Node.js provides a special global object that provides access to global variables,
which are accessible from each application module, and functions. An example analog

of this object in browser JavaScript is the window object. All available global objects
can be found in [6].

For example, create the following greeting.js module:
let currentDate = new Date();

global.date currentDate;

if(hour >

return "Good evening, global.name,
else if(hour

return

' + name;

Eurn name ;

68

Firstly, the global variable date is set: global.date = currentDate;

Secondly, in the module we get the global variable name, which will be set from
outside. At the same time, we can access the global variable name through the global:
global.name object, or simply through the name name, since the variable is global.

Define the following myfirst.js application file:

const greeting = require(" eting");

global.name = "Liubow";

console.log(date);
console.log(greeting.getMessage());

We set the global variable name, which we get in the greeting.js module and also
print the global variable date to the console. Moreover, all global functions and
objects, for example, console, are also available inside global, so we can write

global.console.log () and just console.log ().

Run the myfirst.js. file:

C:\Users\Admin\Desktop\nodestart\helloapp»node myfirst

Good evening, Liubowv

Passing parameters to the application

When starting the application from the terminal / command line, we can pass
parameters to it. To obtain parameters in the application code, the process.argv array
is used. This is similar to how in C/ C ++ / C #/ Java, a set of arguments is passed to

the main function as a string array.

The first element of this array always points to the path to the node.exe file that the
application calls. The second element of the array always points to the path to the

application file that is running. For example, define the following appparam.js file:

69

appparam.js

let nodePa
let :

let ne

let age = process.argv[3];

console.log("nodePath: " + nodePath);
console. appPath: " + appPath);
console. ;

console.

conscle.log("age:

In this case, we expect two parameters to be passed to the application: name and

age. Now run the application using the following command:

node appparam Tom 23

In this case, “Tom” and ‘“23” are those values that are placed respectively in

process.argv [2] and process.argv [3]:

tartih ; 23

NPM

In addition to the built-in and custom Node.js modules, there is a huge layer of
various libraries and frameworks, various utilities that are created by third-party
manufacturers and which can also be used in the project, for example, express, grunt,
gulp. And they are also available to us as part of Node.js. To make it more convenient
to work with all third-party solutions, they are distributed in the form of packages. A

package essentially represents a set of functionalities.

To automate the installation and updating of packages, as a rule, a package
management system or managers are used. Directly in Node.js, the NPM (Node

Package Manager) is used for this purpose. NPM is installed by default with Node.js,

70

so nothing needs to be installed. But we can update the installed version to the latest.

To do this, run the following command in the command line / terminal:

npm install npm@latest -g

To find out the current version of npm, enter the following command at the

command line / terminal:

The npm manager is important in that it is easy to manage packages with it. For
example, create a new modulesapp folder on hard drive (the folder will be located on

the path C:\nodestart\modulesapp).
Package.json file. Installation of modules

For more convenient configuration and application package management, npm uses
the package.json configuration file. So, add the new package.json file to the

modulesapp project folder:

{
"name": "modulesapp",
"version": "1.0.0"

}

Only two sections are defined here: the project name is modulesapp and its version
is 1.0.0. This is the minimum required definition for the package.json file. This file
may include many more sections. See the documentation for more details. Next, install
Express in the project.

Express is a lightweight web framework to simplify working with Node.js. To
install Express functionality in a project, we first go to the project folder using the cd

command. Then enter the command:

npm install express

71

C:\Windows\? em32>cd C:\Users < art\modulesapp

crea
modulesa .
module .8 No r

.8 No license field.

After installing express, a subfolder node_modules will appear in the modulesapp

project folder, in which all installed external modules will be stored.

» nodestart » modulesapp

s

Kran

node_modules
----- package.json

package-lockjson

In particular, in the subdirectory node_modules/express the files of the Express
framework will be located. After executing the command, if we open the package.json

file, we will see information about the package:

{

"name”: "modulesapp”,

"version": "1.8.8",

"dependencies”: {
"express”: "~4.17.1"

¥
h

Information about all the added packages that are used when the application is
running is added to the dependencies section. We use the added express package and
for this we define the file of the simplest server. To do this, add the new app.js file to
the root folder of the modulesapp project:

72

ess = require("express");

» nodestart > modulesapp 0
expressl);

A

Wma

node_modules

(1] app s

| package,json

| package-lock.json

-listen();

The first line receives the installed express module, and the second creates the
application object. In Express we can associate request processing with specific routes.

For example, **/** represents the main page or root route.

To process the request, the app.get () function is called. The first parameter of the
function is the route, and the second is the function that will process the request along
this route. And for the server to start listening for connections, we need to call the

app.listen () method, to which the port number is transmitted.

Start the server with the node app.js command:

C:\UsershAdmin\Desktop\nodestart\modulesapp>node app

@ localhe X [M Node! x a

<« C @ localhost:3000

|
Apps a4ds MNetworking Acade...

Hello from Express!

If in the future we no longer need express, then we can delete it with the following

command:

npm uninstall express

73

Adding Multiple Packages

The package.json file plays a big role and can make it easier to work with packages
In various situations. For example, we plan to use many packages. But entering the
appropriate command to install each package in the console is not very convenient. In
this case, we can determine all the packages in the package.json file and then install

them with one command.

For example, we modify the package.json file as follows:

"name": "modulesapp",

"version": "1.0.0",

"dependencies": {
"express": "74.17.1",
"react": "*16.9.0",

"react-dom": "*16.9.0"

}

Here are the definitions of two packages that represent the React library. Then, to

download all the packages, run the command

npm install

This command will take the definition of all packages from the dependencies
sections and load them into the project. If the package with the desired version already

has a project, as in this case express, then it will not be loaded on the new one.
devDependencies

In addition to the packages that are used in the application when it is running and is
in working condition, for example, express, that is, in the "production” state, there are
also packages that are used to develop the application and test it. Such packages are
usually added to another devDependencies section. For example, load the jasmine-

node package into the project, which is used to test the application:

74

npm install jasmine-node --save-dev

The --save-dev flag indicates that information about the package should be stored in
the devDependencies section of the package.json file:

{
"name": "modulesapp",
"version": "1.0.0",
"dependencies": {
"express": "~4.17.1",
"react": "*16.9.0",
"react-dom": ""*16.9.0"
b
"devDependencies": {
"jasmine-node": "~3.0.0"
}
}

Nodemon

During the development process, you may need to make changes to an already

running project. Suppose we have the following code defined in the app.js file:

console.log(message) ;
response.end(message) ;

27.0.0.1",()=>{

r started listening for requests");

We start the server using the node app.js command, and when the user contacts
http://localhost:3000/, the user's browser displays the string "Hello World!". At the
same time, the line is displayed on the console. If we refresh the page three times in

the browser, the line will be displayed three times in the console.

75

& C (@ localhost:3000

15 Apps s Networking Acade..

Hello World!

ers\Admin\Desktop\nodestart\modulesapprnode app

ted listening for requests

d!
Hello World!
Hello World!

At the same time, the server continues to be running. And if we change the message
variable in the app.js file, then this will not affect the server in any way, and it will

continue to return the string "Hello World!" to the client.

In this case, we must restart the server. However, this is not very convenient,
especially when it is often necessary to make various changes, to test the execution.

And in this case, a special nodemon tool can help us.

Install nodemon into the project using the following command:

npm install nodemon -g

The -g flag represents an abbreviation for global and allows to set the nodemon

dependency globally for all projects on a given local machine.

After installation, run the app.js file using the following command:

nodemon app.js

C:\Users\Admin\Desktop\nodestart\helloapp>nodemon app

76

And if suddenly after starting the server we change its code, for example, change the
message variable with "Hello World!" to "Hello!" then “Hello Liubov!” (ctrl+S) in

our code, then refresh the page, the server will automatically be restarted:

< C (@ localhost:3000

sms Apps asw Networking Acade...

Hello

require("http")

sage "Hello Liubov'":

http.createServer(function(requ

console. log(message) ;
response.end(message) ;

isten(, "127.0.0.]
console. log("Serve:

< C (@ localhost:3000

. A A R “ A - <
- ApPpPSs asco INETWOrKing Acace...

e started listening for red
Liubov

77

Node.js File System Module
Node.js as a File Server

The Node.js file system module allows to work with the file system on your

computer. To include the File System module, use the require() method:
var fs = require(’fs’);

Common use for the File System module [8]:

e Read files

e Create files
e Update files
e Delete files
e Rename files
e Read Files.

The fs.readFile() method is used to read files on your computer.
Assume we have the following HTML file (located in the same folder as Node.js):

demofilel.html

<html>
- |: O ::| _.' A
<hl1>My Header</hl:

<p>*My paragraph.</p
. ::: O :| *

</html>

Create a demo_readfile.js file that reads the HTML file, and return the content:

b = require('http');
require('fs');
Server (function (req, res

:LGZEH{ i=

78

Initiate demo_readfile.js:

BN Bribpate AgumuHnctpartop: Ofpabotunk komang Windows - node demo_readfile

ﬁnrpnﬂa:inﬂ}J 2816. Bce npaea ZaWMILESHH.

BIC : \Windows\system32>cd C:\Users\Admin\Desktop\nodestartifs

C:\Usersi\Admin\Desktop\nodestart\fs»>node demo readfile

If you have followed the same steps on your computer, you will see the same result

as the example: http://localhost:8080

< C @ localhost:8080

P Apps i Networking Acade...

My Header

My paragraph.

Node.js Upload Files

The Formidable Module

There is a very good module for working with file uploads, called "Formidable".
The Formidable module can be downloaded and installed using NPM:

>npm install formidable

Microsoft Windows [Version 10.0.14393]
(c) Kopnopauua Mamnkpocodt (Microsoft Corporation), 2016. Bce npaBa 3aWuweHsbi.

C:\Windows\system32>npm install formidable -g

o

+ formidable@1.2.2
added 1 package in 4.354s

After you have downloaded the Formidable module, you can include the module in

any application:

var formidable = require(‘formidable’);

79

» nodestart * upload

sl

ram

files
node_modules

(3 appjs

Mj package-lock.json

» nodestart * upload * node_modules »

o

[ran

formidable

Upload Files

» nodestart » upload » node_modules » formidable

~

Wma

lib
i benchmark-2020-01-29_xeon-x3440.png
| | LICENSE

Mj package.json
[T README.md

,.':l,ﬂTE H3IMEHEHWA

3.2

> B
SOo ha

985 11:15
985 11:15

non 2.29

Uaiae

ol 4L oo
2| B a2 o«

. P
[= BT = R - - Y
= c
o | P | G2 B2 Pa

| P | o

iy
«
= | R

935 11:15

Now you are ready to make a web page in Node.js that lets the user upload files to

your computer [9]:

Step 1: Create an Upload Form
Create a Node.js file that writes an HTML form, with an upload field:

This code will produce an HTML form:

var http = require('http');
http.createServer(function (req, res) {
res.writeHead (200, {'Content-Type':

"text/html'});

res.write('<form action="fileupload" method="post"

enctype="multipart/form-data">");

res.write('<input type="file" name="filetoupload">
"');

res.write('<input type="submit">");
res.write('</form>");

return res.end();
}).listen(8089);

80

Step 2: Parse the Uploaded File

Include the Formidable module to be able to parse the uploaded file once it reaches
the server. When the file is uploaded and parsed, it gets placed on a temporary folder

on your computer. The file will be uploaded, and placed on a temporary folder:

var http = require('http');
var formidable = require('formidable’);
http.createServer(function (req, res) {
if (req.url == '/fileupload') {
var form = new formidable.IncomingForm();
form.parse(req, function (err, fields, files) {
res.write('File uploaded');
res.end();
1
} else {
res.writeHead(200, {'Content-Type': "text/html'});
res.write('<form action="fileupload"” method="post" enctype="multipart/form-
data">");
res.write('<input type="file" name="filetoupload">
");
res.write('<input type="submit">");
res.write('</form>");
return res.end();

}
}).1listen(8080);

Step 3: Save the File
When a file is successfully uploaded to the server, it is placed on a temporary folder.

The path to this directory can be found in the "files" object, passed as the third

argument in the parse() method's callback function.

To move the file to the folder of your choice, use the File System module, and

rename the file. Include the fs module, and move the file to the current folder:

var http = require('http');
var formidable = require('formidable');
var fs = require('fs');
http.createServer(function (req, res) {
if (req.url == '/fileupload') {
var form = new formidable.IncomingForm();
form.parse(req, function (err, fields, files) {
var oldpath = files.filetoupload.path;
var newpath = 'C:/Users/Your Name/' + files.filetoupload.name;
fs.rename(oldpath, newpath, function (err) {

81

if (err) throw err;
res.write('File uploaded and moved!');
res.end();

1}
1)

} else {

res.writeHead(200, {'Content-Type': "text/html'});

res.write('<form action="fileupload" method="post" enctype="multipart/form-
data">"');

res.write('<input type="file" name="filetoupload">
");

res.write('<input type="submit">");

res.write('</form>");

return res.end();

}
}).1listen(8080);

require('http');
e require(' formidable');
require('fs');

start/upload/files/' + files.filetoupload.name;

ype="multipart/form-data">"');

'f};

return res.end();
3

1. listen(s070);

In this example, we use, for example, a 8070 port for a localhost. So we will use the
address http://localhost:8070/

<« C @ localhost:8070

Apps asw MNetworking Acade...

Choose File | Mo file chosen
Submit

Press the Choose File button and select File:

82

http://localhost:8070/

Labs WEB | javascript — spnsic
nodestart O Lab 4 WEB.docx
ave @]Lab2 WEB.docx
apy« PTTHI 2012-2019
INC ana et

< C (@ localhost:8070

[T] . . .
== Apps sl Networking Acade...

21_(2018-19)-4 kursads
ustemu_T.doc

nppv19.02.10.xe
¥ setup-lightshot.exe

£) Telegram

B Viber

09 Choose File | rejtungovi_sustemu_1.doc

o] [AnFies e 1
Submit

Press the Submit button and we have the address http://localhost:8070/fileupload

& C @ localhost:8070/fileupload

Apps aswe Metworking Acade... JokymeHT Npo B

File uploaded and mowved!

because we set the path with this name for URL.:

Open the folder of our project:

» nodestart » upload

o

ram

files

node_maodules

[T app.js

M:l package-lock.json

Now the file we selected is located in the files folder:

» nodestart * upload » files

e

g

M| rejtungovi_sustemu_1.doc

83

http://localhost:8070/fileupload

Tasks for laboratory work 4
1. Install Node.js and all the necessary components that are described in the tutorial.
2. Create a simple server and a Node.js file named "myfirst.js" to display "Hello
[your name]!" in a web browser.
3. Create a Node.js server and a readfile.js file that reads the HTML file (“My
hobbies” Web page from Lab 1), and return the content to user.
4. Make a web page in Node.js that lets the user upload files to your computer.

Show the process of downloading files to a teacher.

Report requirements for laboratory work
The report should include:
1. Title page.
2. Tasks for laboratory work.
3. Description of development steps. This section consists of a sequential
description of the steps performed according to the instructions for laboratory work.

4. Conclusions.

Questions for self-assessment
. What is Node.js?
. What is the difference between Node.js request processing and PHP or ASP?
. What is REPL?
. What is the module for Node.js?
. What is NPM?
. What is Express?
. What is package.json file used for?

. What is Nodemon used for?

© 0O N OO O B W N P

. What is a localhost and what is it used for?
10. What Node.js modules for the file system do you know?
11. How to read a file from the server and display the contents to the user?

12. What module is used to upload files to the server by the user?

84

11.
12.
13.
14,
15.
16.
17.
18.

References

Node.js Introduction https://www.w3schools.com/nodejs/nodejs_intro.asp

Node.js https://nodejs.org

Downloads https://nodejs.org/en/download/

Node.js Documentation https://nodejs.org/api/

Node.js Documentation. HTTP https://nodejs.org/api/http.html

Global Objects https://nodejs.org/api/globals.html

Creating a package.json file https://docs.npmjs.com/creating-a-package-json-file

Node.js File System Module

https://www.w3schools.com/nodejs/nodejs filesystem.asp

19.

Node.js Upload Files

https://www.w3schools.com/nodejs/nodejs uploadfiles.asp

20.

Nodemon https://metanit.com/web/nodejs/2.6.php

85

https://nodejs.org/api/
https://nodejs.org/api/http.html
https://nodejs.org/api/globals.html
https://docs.npmjs.com/creating-a-package-json-file
https://www.w3schools.com/nodejs/nodejs_filesystem.asp
https://www.w3schools.com/nodejs/nodejs_uploadfiles.asp
https://metanit.com/web/nodejs/2.6.php

LABORATORY WORK 5.
CREATING API WITH NODE.JS AND EXPRESS.
GEOLOCATION API. USING LEAFLET LIBRARY

Purpose: to get practical skills in working with the Node.js Express web application

framework, creating own API.
Theory and methodological instructions

API (application programming interface, API) is a description of the methods (a set
of classes, procedures, functions, structures or constants) that one computer program
can interact with another program. It is usually included in the description of the
Internet protocol, software framework (framework), or the standard for calling
operating system functions. It is often implemented by a separate software library or

operating system service. Used by programmers to write all kinds of applications.

Using Express and Node.js, we can implement a full REST-style APl for user
interaction. The REST architecture involves the use of the following methods or types

of HTTP requests to interact with the server:
» GET - getting a resource (for example, a web page);

* POST - creating a resource (for example, filling out a web form and sending data

to the server);
* PUT - resource update;
« DELETE - delete a resource.

Often, the REST style is especially convenient when creating all sorts of Single
Page Application (SPA), which often use special JavaScript frameworks such as

Angular or React.

Consider how to create your own API. For a new project, create a new folder, which

will be called webapp.

86

Immediately define the package.json file in the project (or we can use command

npm install express):

{
"name": "webapp",
"wersion™: "1.8.8",
"dependencies™: {
“body-parser: "*1.16.8",
"express": ""4.14.8°
¥
L

We also added nodemon globally to our project.

"name": "webapp",

"version": "1.0.0",

"dependencies": {
"body-parser": "~1.16.0",
"express": ""4.17.1",
"nodemon": "~1.19.2"

}

In this case, we will create an experimental project that will store data in a json file

and which is designed to simply show the creation of the API in Node.js in the REST

style. In the meantime, add a new users.json file to the project folder with the

following contents:

[{
"id":1,
"name" :"Tom",
"age":24

}I

{
"id":2,
"name" :"Bob",
"age":27

}I

{
"id":3,
"name" :"Alice",
"age":"23"

}]

87

For reading and writing to this file, we will use the built-in fs module. To process

requests, we define the following app.js file in the project:

var express = require("'express");
var bodyParser = require("body-parser");
var fs = require("'fs");
var app = express();
var jsonParser = bodyParser.json();
app.use(express.static(__dirname + "/public™));
/I getting a list of data
app.get("/api/users", function(req, res){
var content = fs.readFileSync("users.json", "utf8");

var users = JSON.parse(content);

res.send(users);
b
/[getting one user by id
app.get("/api/users/:id", function(req, res){

var id = reg.params.id; // get id

var content = fs.readFileSync("users.json", "utf8");

var users = JSON.parse(content);

var user = null;

I/l we find in the user array by id

for(var i=0; i<users.length; i++){

if(users[i].id==id){
user = usersJi];
break;

¥

/I send user

88

if(user){
res.send(user);

}

else{

res.status(404).send();

}
bk

/I receiving sent data
app.post(“/api/users”, jsonParser, function (req, res) {
if('req.body) return res.sendStatus(400);
var userName = reg.body.name;
var userAge = req.body.age;
var user = {name: userName, age: userAge};
var data = fs.readFileSync(*'users.json", "utf8");
var users = JSON.parse(data);
I/ we find the maximum id
var id = Math.max.apply(Math,users.map(function(o){return o.id;}))
/I increase it by one
user.id = id+1,;
/l add the user to the array
users.push(user);
var data = JSSON.stringify(users);
Il overwrite the file with the new data
fs.writeFileSync("users.json™, data);
res.send(user);
b;
/I delete user by id

app.delete("/api/users/:id", function(req, res){

89

var id = reg.params.id;
var data = fs.readFileSync(*users.json", "utf8");
var users = JSON.parse(data);
var index = -1;
/I find the user index in the array
for(var i=0; i<users.length; i++){
if(users[i].id==id){
index=i;
break;

}

if(index > -1){
/I delete the user from the array by index
var user = users.splice(index, 1)[0];
var data = JSSON.stringify(users);
fs.writeFileSync("users.json", data);
// send remote user
res.send(user);

¥

else{

res.status(404).send();

}
b
I/ user change
app.put(“/api/users", jsonParser, function(req, res){
if('req.body) return res.sendStatus(400);
var userld = req.body.id;

var userName = req.body.name;

90

var userAge = req.body.age;
var data = fs.readFileSync(*users.json", "utf8");
var users = JSON.parse(data);
var user;
for(var i=0; i<users.length; i++){
if(users[i].id==userld){
user = usersJi];
break;

¥

/l change user data
if(user){
user.age = userAge;
user.name = userName;
var data = JSSON.stringify(users);
fs.writeFileSync("users.json", data);
res.send(user);
}
else{
res.status(404).send(user); }
b
app.listen(3000, function(){
console.log("The server is waiting for a connection ...");
b;
Five methods are defined for processing requests for each type of request:
app.get() / app.post() / app.delete() / app.put().
When the application receives a request of type GET at the address "api / users", the

following method works:

91

app.get("/api/users”, function(req, res){
var content = fs.readFileSync("users.json", "utf8");
var users = JSON.parse(content);
res.send(users);

b;

As a result of processing, we must send an array of users that we read from the file.
To simplify the application code within the framework of this project, the synchronous
methods fs.readFileSync() / fs.writeFileSync() are used to read / write the file. But in
reality, as a rule, work with data will go through the database, and then we will

consider all this with the example of MongoDB (laboratory work 6).

To get data from a file using the fs.readFileSync() method, we read the data into a
string, which we parse into an array of objects using the JSON.parse() function. And

at the end, we send the received data to the client using the res.send() method.

Another app.get() method works similarly, which fires when the user id is specified

in the address:

app.get("/api/users/:id", function(req, res){
var id = reg.params.id; // we get id
var content = fs.readFileSync("users.json", "utf8");
var users = JSON.parse(content);
var user = null;
I/l we find in the user array by id
for(var i=0; i<users.length; i++){
if(users[i].id==id){
user = usersJi];
break;

¥

/I send user

if(user){
92

res.send(user);

¥

else{
res.status(404).send();

b

In this case, we need to find the desired user by id in the array, and if user was not

found, return the status code 404: res.status(404).send().

When receiving a request using the POST method, we need to use the jsonParser

parser to extract data from the request:

/Il receive sent data

app.post(“/api/users", jsonParser, function (req, res) {
if('reg.body) return res.sendStatus(400);
var userName = req.body.name;
var userAge = req.body.age;
var user = {name: userName, age: userAge};
var data = fs.readFileSync("users.json™, "utf8");
var users = JSON.parse(data);
I/ we find the maximum id
var id = Math.max.apply(Math,users.map(function(o){return o.id;}))
/] increase it by one
user.id = id+1;
// add the user to the array
users.push(user);
var data = JSON.stringify(users);
/I overwrite the file with the new data
fs.writeFileSync("users.json", data);

res.send(user);

H

93

After receiving the data, we need to create a new object and add it to the array of
objects. To do this, read the data from the file, add a new object to the array and

overwrite the file with the updated data.

When deleting, we perform similar actions, only now we extract the object to be

deleted from the array and again overwrite the file:

app.delete("/api/users/:id"”, function(req, res){
var id = reg.params.id;
var data = fs.readFileSync(*'users.json", "utf8");
var users = JSON.parse(data);
var index = -1,
/I find the user index in the array
for(var i=0; i<users.length; i++){
if(users[i].id==id){
index=i;
break;

¥

if(index > -1){
I delete the user from the array by index
var user = users.splice(index, 1)[0];
var data = JSON.stringify(users);
fs.writeFileSync("users.json", data);
I/ send remote user
res.send(user);

by

else{

res.status(404).send();
b

94

If the object is not found, return the status code 404.

If the application receives a PUT request, then it is processed by the app.put()

method, in which using jsonParser we get the changed data:

app.put(“/api/users”, jsonParser, function(req, res){
if('reg.body) return res.sendStatus(400);
var userld = reg.body.id;
var userName = req.body.name;
var userAge = reg.body.age;
var data = fs.readFileSync(*'users.json", "utf8");
var users = JSON.parse(data);
var user;
for(var i=0; i<users.length; i++){
if(users[i].id==userld){
user = usersJi];

break:

¥

if(user){
user.age = userAge;
user.name = userName;
var data = JSON.stringify(users);
fs.writeFileSync("users.json", data);
res.send(user);

¥

else{

res.status(404).send(user);

i

95

Here, also to search for a mutable object, we read the data from the file, find the

mutable user by id, change his properties and save the updated data to a file.

Thus, we have defined the simplest APIl. Now add the client code. So, as it is set in

the code, Express uses the public folder to store static files, so we will create a similar

folder in the project. In this folder, define a new index.html file that will act as a

client. As a result, the entire project will look like this:

Next, define the following code in the index.html file:

<IDOCTYPE html>

<html>

<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width" />
<title> A list of users </title>

<link
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css
rel="stylesheet" />

<script src="https://code.jquery.com/jquery-2.2.4.min.js"></script>
</head>
<body>

<h2> A list of users </h2>

<form name="userForm">

<input type="hidden" name="id" value="0" />

96

<div class="form-group">

<label for="name">Name:</label>

<input class="form-control" name="name" />

</div>
<div class="form-group">

<label for="age"> Age:</label>

<input class="form-control" name="age" />

</div>

<div class="panel-body">

<button type="submit" class="btn btn-sm btn-primary"> Save </button>

 Reset

</div>

</form>

<table class="table table-condensed table-striped table-bordered">

<thead><tr><th>ld</th><th>Name</th><th>Age</th><th></th></tr></thead>

<tbody>
</tbody>
</table>
<script>
Il Getting all users
function GetUsers() {
$.ajax({
url: “/api/users"”,

type: "GET",

contentType: "application/json",

success: function (users) {

var rows = """

$.each(users, function (index, user) {

97

// add the received elements to the table
rows += row(user);
})
$("table tbody").append(rows);
by
b;
}

I/l Getting one user
function GetUser(id) {
$.ajax({
url: “/api/users/"+id,
type: "GET",
contentType: "application/json”,
success: function (user) {
var form = document.forms["userForm"];
form.elements["id"].value = user.id;
form.elements["name"].value = user.name;

form.elements["age"].value = user.age;

}
h;

}
/I Add User

function CreateUser(userName, userAge) {
$.ajax({
url: "api/users",
contentType: "application/json",
method: "POST",
data: JSON.stringify({

98

name: userName,
age: userAge

b

success: function (user) {
reset();

$("table tbody").append(row(user));

¥
)
k

/I ' User change
function EditUser(userld, userName, userAge) {
$.ajax({
url: "api/users",
contentType: "application/json",
method: "PUT",
data: JSON.stringify({
id: userld,
name: userName,
age: userAge
b,
success: function (user) {
reset();

$("tr[data-rowid="" + user.id + ""]").replaceWith(row(user));
¥

)
¥

/l form reset

function reset() {

99

var form = document.forms["userForm"];
form.reset();
form.elements["id"].value = 0;
}
I Delete user
function DeleteUser(id) {
$.ajax({
url: "api/users/"+id,
contentType: "application/json”,
method: "DELETE",
success: function (user) {
console.log(user);

$("tr[data-rowid="" + user.id + ""]"").remove();

k
)
k

/I creating a row for a table
var row = function (user) {
return "<tr data-rowid="" + user.id + "><td>" + user.id + "</td>" +
"<td>" + user.name + "</td> <td>" + user.age + "</td>" +
"<td> Edit | " +
" Delete
</td>
</tr>";
b
/I reset form values
$("#reset").click(function (e) {

e.preventDefault();

100

reset();
by
// form submission
$("form™).submit(function (e) {
e.preventDefault();
var id = this.elements["id"].value;
var name = this.elements["name"].value;
var age = this.elements["age"].value;
if (id ==0)
CreateUser(name, age);
else
EditUser(id, name, age);
b;
/I click on the link Edit
$("body™).on("click™, ".editLink", function () {
var id = $(this).data("id");
GetUser(id);
})
/I click on the Delete link
$("body").on("click™, ".removeLink", function () {
var id = $(this).data("id");
DeleteUser(id);
by
/1 user upload
GetUsers();
</script>
</body>

</html>

101

The main logic here is JavaScript. To simplify interaction with the server, the

jgQery library is used here. When loading the page in the browser, we get all the

objects from the database using the GetUsers function:

function GetUsers() {
$.ajax({
url: “/api/users"”,
type: "GET",
contentType: "application/json™,
success: function (users) {
var rows ="";
$.each(users, function (index, user) {
// add the received elements to the table
rows += row(user);
by
$("table tbody").append(rows);
¥
b;
}

To add rows to a table, use the row() function, which returns a row. This line will

define the links for changing and deleting the user.

The link for changing the user using the GetUser() function receives from the

dedicated user server:

function GetUser(id) {
$.ajax({
url: “/api/users/"+id,
type: "GET",
contentType: "application/json”,

success: function (user) {

102

var form = document.forms["userForm"];
form.elements["id"].value = user.id;
form.elements['name"].value = user.name;

form.elements["age"].value = user.age;

b
b;
}
And the highlighted user is added to the form above the table. The same form is
used to add an object. Using the hidden field that stores the user id, we can find out

what action is performed - adding or editing.

If id is O, then the CreateUser function is executed, which sends data in the POST

request:

function CreateUser(userName, userAge) {
$.ajax({

url: "api/users",

contentType: "application/json”,

method: "POST",

data: JSON.stringify({
name: userName,
age: userAge

b,

success: function (user) {
reset();

$("table tbody").append(row(user));

)

103

If previously the user was uploaded to the form and his id was stored in a hidden

field, the EditUser function is executed, which sends a PUT request:

function EditUser(userld, userName, userAge) {
$.ajax({
url: "api/users",
contentType: "application/json”,
method: "PUT",
data: JSON.stringify({
id: userld,
name: userName,
age: userAge
b
success: function (user) {
reset();

$("tr[data-rowid="" + user.id + "]").replaceWith(row(user));
}

)
¥

Run the application, go to the browser at http://localhost:3000 and we can manage

the users stored in the json file:

o C @ localhost:3000/api/users Yr O iv O Q
! Apps @ Networking Acade... [lokymeHTH Npo su..
[{"id":1,"name":"Tom","age":"24"},{"id":2, "name": "Inna", "age":27},
{"id":3,"name":"Alice", "age":"23"},{"name" : "Ivan", "age": "18","id":4},
{"name":"Taras","age": "18","id":5}]

— C (@ localhost:3000/apifusers/4

PofApps &k Networking Acade... JosymeHTti

{"name":"Ivan","age":"18","id":4}

104

http://localhost:3000/

<« C @ localhost:3000

I Apps dl Networking Acade... fokymeHTn npo Bu Mk localhost £ 127.0.0..
List of users
Name:
Age:
Cooe [
Id Name Age
1 Tom 24 Change | Delete
2 Inna 27 Change | Delete
3 Alice 23 Change | Delete
4 Ivan 18 Change | Delete
5 Taras 18 Change | Delete
Geolocation API

This feature is available only in secure contexts (HTTPS), in some or all supporting

browsers

The Geolocation API allows the user to provide their location to web applications if
they so desire. For privacy reasons, the user is asked for permission to report location
information. WebExtensions that wish to use the Geolocation object must add the
"geolocation™ permission to their manifest. The user's operating system will prompt

the user to allow location access the first time it is requested [4,5].

In order to check whether geolocation is available on our computer, create a

geolocation.html file and run it in the browser console [6]:

105

<!DOCTYPE html>
<html ="en">
<head>

<meta ="UTF-8">

<title>Geolocation</title:

sscript>
if ('geolocation' in navigator) {
console.log('geolocation available');
l=e {
L2 1
console.log('geolocation not available'};

= O X
@ Geolocation x 4+
“ C @ oaiin | CfUsers/Admin/Desktop/nodestart/api/public/geclocation.htmi B e
[ﬂ Elements Console Sources Metwork Performance Memory % :X
M ® | top Y @ | Filter Default levels ¥
geolocation available geolocation.himl:1@

>

To obtain the user's current location, you can call the getCurrentPosition() method.
This initiates an asynchronous request to detect the user's position, and queries the
positioning hardware to get up-to-date information. When the position is determined,
the defined callback function is executed. We can optionally provide a second callback
function to be executed if an error occurs. A third, optional, parameter is an options
object where we can set the maximum age of the position returned, the time to wait for

a request, and if we want high accuracy for the position.

By default, getCurrentPosition() tries to answer as fast as possible with a low
accuracy result. It is useful if you need a quick answer regardless of the accuracy.
Devices with a GPS, for example, can take a minute or more to get a GPS fix, so less

accurate data (IP location or wifi) may be returned to getCurrentPosition().

navigator.geolocation.getCurrentPosition((position) => {

doSomething(position.coords.latitude, position.coords.longitude);

H

106

The above example will cause the doSomething() function to execute when the

location is obtained.

Leaflet

an open-source Javascript library
for mobile-friendly interactive maps

Tutorials Docs Download Plugins Blog

Leaflet is the leading open-source JavaScript library for mobile-friendly interactive
maps. Weighing just about 38 KB of JS, it has all the mapping features most
developers ever need. Leaflet is designed with simplicity, performance and usability in
mind. It works efficiently across all major desktop and mobile platforms, can be
extended with lots of plugins, has a beautiful, easy to use and well-documented API

and a simple, readable source code that is a joy to contribute to [7].

Before writing any code for the map, we need to do the following preparation steps

on our page [8]:

e Include Leaflet CSS file in the head section of your document:
<link rel="stylesheet" href="https://unpkg.com/leaflet@l.6.0/dist/leaflet.css"

integrity="sha512-
XWE/Az9zrjBIphAcBb3F6IVgxf46+CDLwfLMH1oNu6KEQCAWi6HcDUbeOfBIptF7tcCzusKFjFw2yuvE
pDLO9wQ==""

crossorigin=""/>

e Include Leaflet JavaScript file after Leaflet’s CSS:

<script src="https://unpkg.com/leaflet@l.6.0/dist/leaflet.]js"

integrity="sha512-
gZwIG9Xx3wUXg2hdXF6+rVKLF/0OVioU8D2Ntg4Ga5I5BZpVkVx1IWbSQtXPSiUTtCOTjtGOmxalAJPuVe
CPthew=="

crossorigin=""></script>

e Putadiv element with a certain id where you want your map to be:
<div id="mapid"></div>

107

e Make sure the map container has a defined height, for example by setting it in

CSS:
#tmapid {height: 180px; }

<!DOCTYPE html>

<html ="en">

JAWZ FAkuyeQUyt07+7N4QKrDh+drA

FrienyqSmVL4tmKB35/EnC3rRIcxCPavGloIcrVGSn

First we’ll initialize the map and set its view to our chosen geographical

coordinates and a zoom level [8]:
var mymap = L.map('mapid').setView([51.505, -0.09], 13);

By default (as we didn’t pass any options when creating the map instance), all
mouse and touch interactions on the map are enabled, and it has zoom and attribution

controls.

SetView call also returns the map object, most Leaflet methods act like this when
they don’t return an explicit value, which allows convenient jQuery-like method

chaining.

Next we’ll add a tile layer to add to our map, in this case it’s a Mapbox Streets tile
layer. Creating a tile layer usually involves setting the URL template for the tile
images, the attribution text and the maximum zoom level of the layer. In this example
we’ll use the mapbox/streets-v11 tiles from Mapbox’s Static Tiles API (in order to use

tiles from Mapbox, we must also request an access token). Because this API returns

108

512x512 tiles by default (instead of 256x256), we will also have to explicitly specify

this and offset our zoom by a value of -1.

L.tileLayer('https://api.mapbox.com/styles/v1/{id}/tiles/{z}/{x}/{y}?access_to
ken={accessToken}", {
attribution: 'Map data © 0penStreetMap contributors, CC-BY-SA, Imagery ©
Mapbox",
maxZoom: 18,
id: 'mapbox/streets-vil',
tileSize: 512,
zoomOffset: -1,
accessToken: 'your.mapbox.access.token'
}).addTo(mymap);

Adding a marker for a map [8]:
var marker = L.marker([51.5, -0.09]).addTo(mymap);
Let's change and run our code for this task, displaying the user's current location:

1>My current geolocation</h

latitude:
longitude:

navigator
lat = pcrs‘i t
lon = position.
console
document.
document.

109

ile JUsers min/Desktop/nodestart/ap/public/geclocation.htm
& @ Fil /U /Admin/Desktop/nod ‘api/public/gecl ion.htmil

BEoApps A D) X glhost / 127.00.... ¢ Ocnosu
file:/// wants to

Q@ Know your location

My cur
Allow Block
latitude: °
longitude: ©
= O >
& Geolocation * =+
< C @ aiin | CfUsers/Admin/Desktop/nodestart/api/public/geclocation... @ B ¥

My current geolocation

latitude: 48.379433°
longitude: 31 165587

+

Tasks for laboratory work 5

Task 1

Using Express and body-parser, create REST-style Node.js API that will store data
in a json file. Create an API for the server, add a json file with 5 entries to the project

folder according to the option in the table below.

To search for a mutable object, read data from a file, the user is searched by id, it
can change properties and save updated data to a file. To process requests, use the
GET, POST, PUT, DELETE methods for each type of request. To store static files, use
the public folder. In this folder, create an index.html file that will act as a client and
perform changes or deletions of data, as shown in the example above. If the desired

user was not found by id in the array, return the status code 404.

110

Table 5.1. Individual task (by number in the group list)

Example JSON Record

(create 5 different entries)

The objects

"id":1,
llname" : mwn ,
"price":

appliances

"id":1,
llname" : mwn ,
"price":

tourism in your city (types of

services)

"id":1,
llname" : mwn ,
"price":

network equipment

"id":1,
llname" : mwn ,
"price":

perfumes

"id":1,
llname" : mwn ,
"price":

tea

"id":1,
llname" : mwn ,
"price":

medicine

"id":1,
llname" : mn ,
"price":

clothes

"id":1,
llname" : mn ,
"price":

sweets

"id":1,
llname" : mn ,
"price":

travel agency

(types of services)

10

"id":1,
"name" : mwn ,
"price":

cars

11

"id":1,
"name" : mwn ,
"price":

phones

12

"id":1,
"name" : nmn ,
"price":

bicycles

13

"id":1,
"name" : mwn ,
"price":

coffee makers

111

14

"id":1,

"name" . mwn ,

"price":

stereo systems

15

"id":1,

"name" . mwn ,

"price":

ovens

16

"id":1,

"name" . mwn ,

"price":

kitchen combiners

17

"id":1,

"name" . mwn ,

"price":

electric kettles

18

"id":1,
"name" :
"price":

\AJ mwn
14

refrigerators

19

"id":1,
"name" :
"price":

\AJ mwn
14

computer equipment

20

"id":1,
"name" :
"price":

\AJ mwn
14

sports equipment

21

"id":1,
"name" :
"price":

\AJ mwn
14

motorcycles

22

"id":1,
"name" :
"price":

\AJ mwn
14

server hardware

23

"id":1,

"name" . mn ’

"price":

books

24

"id":1,

"name" . mn ’

"price":

laptops

25

"id":1,

"name" . mn ’

"price":

kitchens

26

"id":1,

"name" . mn ’

"price":

Men's clothes

27

"id":1,

"name" . mn ,

"price":

bags

28

"id":1,

"name" . mn ,

"price":

shoes

29

"id":1,

"name" . mwwn ,

"price":

air conditioners

112

30 "id":1, vacuum cleaners

"name" : nmn ,
"price":

Task 2

Create a geolocation.html file in the public folder, which will check the ability to
display the user's geolocation and, with the consent of the user, will display a map with

the coordinates of the user's current location.

Report requirements for laboratory work

The report should include:

1. Title page.

2. Tasks for laboratory work.

3. Description of development steps. This section consists of a sequential
description of the steps performed according to the instructions for laboratory work.

4. Conclusions.

Questions for self-assessment

1. What is API? What is the REST architecture?

2. Why are the methods app.get () / app.post () / app.delete () / app.put () used?

4. How to get data from a file using the fs.readFileSync () method?

5. What is the JSON.parse () method used for?

6. What opportunities does Geolocation API have?

7. What is Leaflet for JavaScript? How to use Leaflet to add the user's current

location on the map?

LlU

1
2.
3. Creating an API https://metanit.com/web/nodejs/4.11.php
4.

References
Express https://metanit.com/web/nodejs/4.1.php

Body-parser https://www.npmjs.com/package/body-parser

Geolocation API https://developer.mozilla.org/en-US/docs/Web/API/

Geolocation API

5.
6.

Navigator https://developer.mozilla.org/en-US/docs/Web/API/Navigator

Using the Geolocation API https://developer.mozilla.org/en-

US/docs/Web/API/Geolocation API/Using the Geolocation API

7. Leaflet https://leafletjs.com/
8. Leaflet Quick Start Guide https://leafletjs.com/examples/quick-start/

114

https://metanit.com/web/nodejs/4.1.php
https://www.npmjs.com/package/body-parser
https://metanit.com/web/nodejs/4.11.php
https://developer.mozilla.org/en-US/docs/Web/API/%20Geolocation_API
https://developer.mozilla.org/en-US/docs/Web/API/%20Geolocation_API
https://developer.mozilla.org/en-US/docs/Web/API/Navigator
https://developer.mozilla.org/en-US/docs/Web/API/Geolocation_API/Using_the_Geolocation_API
https://developer.mozilla.org/en-US/docs/Web/API/Geolocation_API/Using_the_Geolocation_API
https://leafletjs.com/
https://leafletjs.com/examples/quick-start/

LABORATORY WORK 6.
NODE.JS AND MONGODB

Purpose: to get practical skills using MongoDB with Node.js for connection the
database to the server, get practical skills getting database objects on the server, getting

the collection object in the database and interaction with the collection.
Theory methodological instructions

MongoDB is an open source document management database system that does not
require a description of the table schema. Classified as NoSQL, uses JSON-like
documents and database schema. It is written in C ++. It is used in web development,

in particular, as part of the JavaScript-oriented MEAN stack.

MongoDB implements a new approach to building databases where there are no
tables, schemas, SQL queries, foreign keys, and many other things that are inherent in

object-relational databases.

MongoDB implements a new approach to building databases where there are no
tables, schemas, SQL queries, foreign keys, and many other things that are inherent in

object-relational databases.

For storage, MongoDB uses a format called BSON, or short for binary JSON.
BSON allows to work with data faster: faster search and processing.

Although it should be noted that BSON, in contrast to storing data in JSON format,
has a small drawback: in general, data in JSON format takes up less space than in

BSON format, on the other hand, this drawback is more than paying for speed.

Installing MongoDB

To download the necessary functionality, we will select the necessary operating

system and the appropriate type of package:

115

{ } MongoDB.live, free & fully virtual

June 9th - 10th

. mongoDB Cloud Software Learn Solutions Docs
Cloud Server Tools
Select the server you would like to run
MongoDB Community Server
FEATURE RICH. DEVELOPER READY.
Version os
4.2 .6 (current release) v Windows x64

Package

ZIP

MongoDB Package Contents

If after installation we open the folder C:\mongodb\bin, then we can find

applications that play a certain role there:

mongodb > mongodb-win32-x86_64-2012plus-4.2.6 > bin

A

2 Nma

(5] bsondump.exe

|&¥ Install-Compass.ps1

% mongo.exe

&) mongo.pdb

- % mongod.exe
&) mongod.pdb
[#5] mongodump.exe
[#5] mongoexport.exe
[#5] mongofiles.exe
[#5] mongoimport.exe
[#5] mongorestore.exe
% mongos.exe
&) mongos.pdb
[mongostat.exe

e bsondump: reads the contents of BSON
files and converts them into a readable format,
for example, in JSON;

e mongo: introduces a console interface
for interacting with databases, a kind of
console client;

e mongod: MongoDB database server, it
processes requests, manages the data format
and performs various operations in the

background for database management;

116

e mongodump: database backup utility;

e mongoexport: utility for exporting data in JSON, TSV or CSV formats;

e mongofiles: a utility that allows to manage files on a GridFS system;

e mongoimport: utility importing JSON, TSV or CSV data into MongoDB
database;

e mongorestore: allows to write data from a dump created by mongodump to a
new or existing database;

e mongos: MongoDB routing service that helps process requests and locate data
in a MongoDB cluster;

e mongorestat: represents database operation counters;

e mongotop: provides a way to calculate the time spent on read / write operations
in the database.

After creating the directory for storing the database, you can start the MongoDB
server. The server represents the mongod application, which is located in the bin
folder. To do this, run the command line (on Windows) or the console on Linux and

enter the appropriate commands there. For Windows, it will look like this:

BN O6paboTumk komang Windows

"l"rD oft Windows [Version 1©.0.14393]
c) Kopnopauua Makxkpocodt (Microsoft Corporation), 2016. Bce npaBa 3awMueHsl.

C:\Windows\System32>cd C:\mongodb\mongodb-win32-x86_64-2012plus-4.2.6\bin

C:
2926 ew 117 67 1“.2q IJz 6 66 LOHTROL [ma1n] AutumatlLall‘ disabling TLS 1.0, to force-
sabledProtocols 'none’
2020-085-11762:19:29. 000 O OO W ASIO [main] No TransportLayer configured dUTlnp Networ
2020-85-117062:19:29. I CONTROL [initandlisten] MongoDB starting : pid=
it host=DESKTO
2020-85-11702:19 .692+0360 I CONTROL i en] target”anH Windows 7/Windows Se
2020-05-11T02: .692+03 I CONTROL initandli] db ver n v4.2.6
2820-05-11T62:169 .692+083 I CONTROL initandlisten] git ve on: 20364840b8f1laf16917e
2020-85-11T02:19 +03 I CONTROL initandlisten] allocato tcmalloc
2020-85-11T02:19 +03 I CONTROL initand] modules: none
2020-85-11T02:1¢ +03 I CONTROL initand] build environment:
2020-85-11T02:1¢ 3 I CONTROL initand] distmod: 2012plus
20-85-11T02:19 3 CONTROL ini d en] distarch: x
0-85-11T02:1¢ 3 CONTROL i en] 8
9-05-11T02:19 93+03 CONTROL e (}
0-85-11T82:1¢ 81+03 STORAGE ini d en] exce on in initAndListen: DBPat
the lock file: C a\db\mongod.lock (Mpouecc He MOoXeT MONYYMTb BJOCTYn K danny, Tak Kak 3
). Ensure the user executing mongod is the owner ﬁ+ thw lock file and has thu appropriat
another mongod instance is not already running on the C:\data\db\ directory, terminat
-85-117©2:19:29.78 3 NETWORK [initandlisten: shutdown: going to is
-95-11T02: 3 - [initandlisten] Stopping further Flow Luntrul tic
-95-11 : 3 CONTROL [initandlisten] now exiting
-95-11 :19:29 +0300 CONTROL [initandlisten] shutting down with code:10@

117

The command line will show us a series of service information, for example, that
the server starts on localhost on port 27017. And after the server starts successfully, we
can perform operations with the mongo shell. This shell represents the mongo.exe file,

which is located in the above installation folder. Run this file:

% C:\mongodb\mongodb-win32-x86_64-2012plus-4.2.6\bin\mongo.exe

MongoDB shell version v4.2.6
connecting to: mongodb://127.0.0.1:27017/?compressors=disabled&gssapiServiceName=mongodb
Implicit session: session { "id" : UUID("Scdeb4a4-20a0-4955-8f99-22¢3158beld3") }
MongoDB server version: 4.2.6
Welcome to the MongoDB shell.
For interactive help, type "help”.
For more comprehensive documentation, see
http://docs.mongodb.org/
Questions? Try the support group
http://groups.google.com/group/mongodb-user
erver has startup warnings:
-11702:17:28.431+0300 CONTROL [initandlisten]
-11702:17:28.431+0300 CONTROL [initandlisten] ** WARNING: Access control is not enabl
-11702:17:28.433+0300 I CONTROL [initandlisten] ** Read and write access to da

We will enter the following commands in mongo sequentially and after each

I
I

command press Enter:
use test
db.users.save({ hame: "Tom" })
db.users.find()

> use test
switched to db test
> db.users.save({name: "Tom"})

driteResult({ "nInserted"” : 1 })
> db.users.find()
_id" : ObjectId("593143a35728dd1c@9047b32"), "name"

The use test command sets the test database to be used. Even if there is no such
database, then it is created automatically. And then db will represent the current
database - that is, the test database. After db comes users - this is a collection into
which we then add a new object. If in SQL we need to create tables in advance, then
MongoDB creates collections ourselves if they are not available.

Using the db.users.save () method, the {name: ""Tom"} object is added to the users
collection of the test database. The description of the added object is defined in JSON
format.

In this case, the object has one key named "name", which is associated with the

value "Tom". That is, we add a user named Tom.

118

If the object was successfully added, then the console will output the result in the
form of an expression WriteResult ({"'nInserted": 1}).

The db.users.find () command displays all objects from the test database.

Database installation and administration
Starting to work with MongoDB, the first thing is to set the database we need as
the current one, so that we can use it later. To do this, use the use command, followed
by the name of the database. It doesn’t matter if such a database exists or not. If it is
not, then MongoDB will automatically create it when data is added to it. For example,

run mongo.exe and enter the following command there:

> use info
switched to db info

>
-

Now the info database will be installed as the current one.
If you are suddenly not sure if a database with that name already exists, then using
the show dbs command you can display the names of all available databases on the

console:

> use info
switched to db 1
> show dbs

admin

ocal
mobilestore
test

You can specify any name for the database, but there are some restrictions. For
example, the name should not contain the characters /,\,., ", *, <,>,:, |,?, $. In addition,
database names are limited to 64 bytes. There are also reserved names that cannot be
used: local, admin, config. Moreover, as you can see, the info database is not in this
list, since | have not added data to it yet. If we want to find out which database is
currently in use, then we can use the db command:

> db

info

119

Getting statistics

Using the db.stats () command, we can get statistics on the current database. For
example, we have the test database installed as the current one:

C\mongodb\bin\mongo.exe
> use test
switched to db test
> db.stats()

I
L

“storageSize" :
“numExtents" : O,

To work with the MongoDB platform, you first need to install the MongoDB server
itself. More details on how to do this are described here [1]. In addition to the Mongo
server itself, we need a driver [2] to interact with Node.js.

When connecting and interacting with a database in MongoDB, the following steps
can be distinguished:

» Connection to the server;

* Getting the database object on the server;

* Getting the collection object in the database;

* Interaction with the collection (add, delete, receive, modify data).

So, create a new project. To do this, define a new directory, which will be called
mongoapp. Next, define a new package.json file in this directory:

{

"name": "mongoapp",

"version™: "1.0.0",

"dependencies": {
"express": "M 4.16.0",
"body-parser*: " 1.18.0"

120

"mongodb™; "~ 3.1.0"

k
¥

In this case, the last dependency "mongodb" represents the driver. All the necessary
help information specifically for this driver can be found at

https://mongodb.qithub.io/node-mongodb-native/

Next, we will go to this directory at the command line / terminal and to add all the
necessary packages, execute the command:
npm install

.I O6paborunk komang Windows

oft Windows [Version 10.0.14393]
prnopauua MawkpocodT (Microsoft Corporation), 2016. Bce npaBa 3awMwWeHsl.

ystem32>cd C:\Users\Admin\Desktop\nodestart\mongoapp

C:\Users\Admin\Desktop\nodestart\mongoapp>npm install

«file as package-lock.json. You should commit this file.
2 No descriptio
@ No repository field.
mongo .0.8 No license field.
added 66 packages from 45 contributors and audited 67 packages in 14.01s
found @ vulnerabilities

Database connection

The key class for working with MongoDB is the MongoClient class, and all
interactions with the data warehouse will go through it. Accordingly, we must first get
MongoClient:

const MongoClient = require ("mongodb™). MongoClient;

To connect to the mongodb server, the connect () method is used:

const MongoClient = require ("mongodb™). MongoClient;

I create a MongoClient object and pass it a connection string

const mongoClient = new MongoClient ("mongodb://localhost:27017/",
{useNewUrlParser: true});

mongoClient.connect (function (err, client) {

if (err) {

return console.log (err);

121

https://mongodb.github.io/node-mongodb-native/

¥

/l interaction with the database
client.close ();

ok

First, a MongoClient object is created. To do this, two parameters are passed to its
constructor. The first parameter is the server address. The address protocol is set to
"mongodb://". On the local machine, the address will be localhost, followed by the port
number. The default port number is 27017.

The second parameter is an optional configuration object. MongoDb is constantly
evolving. In this case, the configuration object that has the useNewUrlParser property
Is used: true — it indicates to the mongodb infrastructure that it is necessary to use the
new server address parcel.

Next, using the connect method, a connection is made to the server. As a parameter,
the method takes a callback function, which is triggered when a connection is
established. This function takes two parameters: err (the error that occurred while
establishing the connection) and client (link to the client connected to the server).

If errors occurred while connecting, then we can use the err value to get the error.

If there is no error, then we can interact with the server through the client object.

At the end of the work with the database, we need to close the connection using the
client.close () method.

Database, collections and documents

Having received the object of the connected client, we can access the database on
the server. To do this, use the method

client.db (*'DB_name");

The name of the database to which we want to connect is passed as a parameter to
the method.

The database in MongoDB has no tables. Instead, all data falls into collections. And
within the framework of node.js, to interact with the database (add, delete, read data),
we need to get a collection object. To do this, the db.collection (*'collection_name™")

method is used, to which the name of the collection is passed.
122

Unlike tables in relational systems, where all data is stored as rows, in collections in
MongoDB, data is stored as documents. For example, add one document to the
database. To do this, define the following app.js file in the project directory:

const MongoClient = require("'mongodb™).MongoClient;

const url = "mongodb://localhost:27017/";
const mongoClient = new MongoClient(url, { useNewUrlParser: true });
mongoClient.connect(function(err, client){
const db = client.db("usersdb™);
const collection = db.collection(*users");
let user = {name: "Tom", age: 23};
collection.insertOne(user, function(err, result){
if(ern){
return console.log(err);
¥
console.log(result.ops);

client.close();

b

b

The database used here is "usersdb". It doesn’t matter that by default there is no
such database on the MongoDB server. At the first access to it, the server will
automatically create it.

After connecting, we turn to the "users" collection:

const collection = db.collection ("users");

Again, it doesn’t matter that such a collection is not in the usersdb database by
default, it will also be created upon first access.

Having received the collection, we can use its methods. In this case, to add a single
document — the user object, the insertOne () method is used. This method has two
parameters — the added object itself and the callback function, which is executed after
the addition. Two parameters are used in this function: err (an error that may occur

during the operation) and result (the result of the operation is an added object).
123

In the callback function, the added object is inspected using the result.ops property.
Moreover, this is not just a user object, but an object that is retrieved back from the
database and which contains the identifier set when adding it.

Now, on the hard drive, go to the directory where mongodb is installed, and in this
directory, go to the bin folder:

™ « mongodb > mongodb-win32-x86_64-2012plus-4.2.6 > bin

A

N Nms

3 3vor komneroTep

< L
I®) Nokia_X2 1-| bsondump.exe
B Buaeo & Install-Compass.ps1
| OoxymenTsi # mongo.exe
& 3arpyzku &) mongo.pdb
&= WVzo6paxenus ¥ mongod.exe
:) mongod.pdb
D Myzbika ij FoCP
15| mongodump.exe
I Pa6ouwnii cton =
1:| mongoexport.exe
‘we JlOKaNbHBIN gUuck (C:) (& mongofiles.exe
Kd Noxansheiii guck (D:) [#5] mongoimport.exe
Bubnuorekn [#5] mongorestore.exe
& Cers % mongos.exe
5] NManens ynpasnenus & mongos.pdb
[#5] mongostat.exe
& Kopsuna =
5] mongotop.exe
Heroku

Run the mongodb server, which is located in this directory and which is the mongod

console program.

C:\mongodb\mongodb-win32-x86_64-2012plus-4.2.6\bin\mongod.exe v a

Then run our app.js file:

C:\Users\Admin\Desktop\nodestart\mongoapp>node app
(node:1732) DeprecationWarning: current Server Discovery and Monitoring engine is deprecated,
moved in a future version. To use the new Server Discover and Monitoring engine, pass option

ology: true } to the MongoClient constructor.
[{ name: , age: 23, _id: 5ec238d80ca®3e06c4f5db77 }]

As we see, in addition to the initial properties, the document here also has the

additional property _id - this is the unique identifier of the document that is assigned
by the server when it is added.

Adding and Retrieving Data in MongoDB

For adding we can use various methods. If you need to add a single object, the

insertOne () method is used. When adding a set of objects, you can use the
insertMany () method.

We use the insertMany () method. Add a set of objects and for this change the
application file app.js:

const MongoClient = require ("mongodb™). MongoClient;
const url ="mongodb://localhost:27017/";
const mongoClient = new MongoClient (url, {useNewUrlParser: true});

let users = [{name: "Bob", age: 34}, {name: "Alice", age: 21}, {name: "Tom", age:

453
mongoClient.connect (function (err, client) {
const db = client.db ("usersdb™);
const collection = db.collection ("users");
collection.insertMany (users, function (err, results) {

console.log (results);

clientclose); 3); D;

125

Like insertOne, the insertMany () method accepts the data to be added as the first
parameter — an array of objects, and as the second parameter — a callback function that
Is executed when the data is added. Upon successful addition, the second parameter of

the function — results will contain the added data. Launch the application:

\goapp>node app
(n 56) DeprecationWarning: current Server Discovery and Monitoring engine is
moved in a future version. To use the new Server Discover and Monitoring engine,

1

ology: true } to the MongoClient constructor.

3 cco3fef,
822c322fcce3f71

In addition to the data itself, the results parameter will contain some additional

information about the performed add operation.

Data retrieval
The find () method is used to get data from the collection:
const MongoClient = require ("mongodb™). MongoClient;

const url ="mongodb: // localhost: 27017 /*;
const mongoClient = new MongoClient (url, {useNewUrlParser: true});
mongoClient.connect (function (err, client) {

const db = client.db ("usersdb™);
const collection = db.collection ("users");
if (err) return console.log (err);

collection.find (). toArray (function (err, results) {

126

console.log (results);

client.close ();

bk
bk

The find method returns a special object Cursor, and the toArray () method is
called to get all the data from this object. A callback function with standard parameters
Is passed to this method: err (information about the error, if any) and result (the actual

result of the selection).
And if we run the application, we will see all the previously added data:

C:\Users\Admin\Desktop\nodestart\mongoapp>node app

(node:9896) DeprecationWarning: current Server Discovery and Monitoring engine i

moved in a future version. To use the new Server Discover and Monitoring engine,

ology: true } to the MongoClient constructor.

|
{ .3d:
T 1 -
{ _id:
£ did:
{ _id:
I
{ _id:

38d80cav3e®6c4f5db77, name:
23bdf2822c322fccO3f6f, name:

3bdf2822c322fcc03f70, name:
23bdf2822c322fcc03f71, name:
23de3c6e857258435aa4e, name:
23de3c6e857258435aa4f, name:
23de3c6e857258435aa50, name:

m M

e
e

m M
el aNalalal

5
5
5
5
5
5
5

e

Reading data in Node.js from a MongoDB database

Using the find () method, we can additionally filter the extracted documents. For

example, we need to find all users whose name is Tom:

const MongoClient = require("mongodb™).MongoClient;
const url = "mongodb://localhost:27017/";
const mongoClient = new MongoClient(url, { useNewUrlParser: true });
mongoClient.connect(function(err, client){
const db = client.db("usersdb™);
const collection = db.collection("users");

if(err) return console.log(err);

127

collection.find({name: "Tom"}).toArray(function(err, results){
console.log(results);

client.close();

D
hk
An object is passed to find as a parameter, which sets filtering parameters. In

particular, that the name property must be equal to "*"Tom".

C:\Users\Admin\Desktop\nodestart\mongoapp>node app

(node:5036) DeprecationWarning: current Server Discovery and Monitorin
moved in a future version. To use the new Server Discover and Monitori
ology: true } to the MongoClient constructor.

|

(_id: 5ec238d80caB3e086c4f5db77, name:
{ _id: Sec23bdf2822c¢322fcc03f71, name:
{ _id: Sec23de3c6e857258435aa50, name:

Filtering in MongoDB and Node.js
We can set additional filtering criteria, for example, add age filtering:

collection.find({name: "Tom", age: 23}).toArray(function(err, results){
console.log(results);
client.close();

H;

The findOne () method works similarly, only it allows to get one document:

const MongoClient = require(*"'mongodb*).MongoClient;
const url ="mongodb://localhost:27017/";
const mongoClient = new MongoClient(url, { useNewUrlParser: true });
mongoClient.connect(function(err, client){
if(err) return console.log(err);
const db = client.db("usersdb");
db.collection("users").findOne(function(err, doc){

console.log(doc);

128

client.close();

b
ok
And also in the findOne () method, we can apply filtering:

db.collection ("users™). findOne ({name: "Bob"}, function (err, doc) {
console.log (doc);
client.close ();
b
Deleting Documents in MongoDB

There are several ways to delete documents in MongoDB. The following collection

methods should be noted here:
« deleteMany (): deletes all documents that match a specific criterion
« deleteOne (): deletes one document that meets a specific criterion

« findOneAndDelete (): retrieves and deletes a single document that meets a

specific criterion
* drop (): deletes the entire collection
deleteMany
Remove all users with the name "Tom":
const MongoClient = require ("mongodb™). MongoClient;
const url = "mongodb: // localhost: 27017 /*;
const mongoClient = new MongoClient (url, {useNewUrlParser: true});
mongoClient.connect (function (err, client) {
if (err) return console.log (err);

const db = client.db (“usersdb™);
129

db.collection ("users"). deleteMany ({name: "Tom"}, function (err, result) {
console.log (result);
client.close ();
b
b

The first parameter in the method is a document filter, and the second is a callback
function in which we can get the result of deletion. In this case, the result of the

removal will be a complex object containing detailed information:

deleteOne

The deleteOne() method is similar to the deleteMany() method, except that it

deletes only one object:
const MongoClient = require ("mongodb"). MongoClient;
const url = "mongodb: // localhost: 27017 /*;
const mongoClient = new MongoClient (url, {useNewUrlParser: true});
mongoClient.connect (function (err, client) {
if (err) return console.log (err);

const db = client.db ("usersdb™);

130

db.collection ("users"). deleteOne ({name: "Bob"}, function (err, result) {
console.log (result);

client.close ();

bk
bk

findOneAndDelete

The findOneAndDelete() method deletes a single document by a specific criterion,

but compared to the deleteOne() method, it returns a deleted document:
const MongoClient = require ("mongodb™). MongoClient;
const url = "mongodb://localhost: 27017/";
const mongoClient = new MongoClient (url, {useNewUrlParser: true});
mongoClient.connect (function (err, client) {
if (err) return console.log (err);
const db = client.db ("usersdb™);
db.collection ("users"). findOneAndDelete ({age: 21}, function (err, result) {
console.log (result);
client.close ();
b

b
drop

The drop () method deletes the entire collection:
const MongoClient = require ("mongodb"). MongoClient;

const url = "mongodb: // localhost: 27017 /*;
131

const mongoClient = new MongoClient (url, {useNewUrlParser: true});
mongoClient.connect (function (err, client) {
if (err) return console.log (err);
const db = client.db ("usersdb");
db.collection ("users"). drop (function (err, result) {
console.log (result);

client.close ();

b
b
Updating documents in MongoDB
There are several methods for updating items in MongoDB:

« updateOne: updates one document that meets the filtering criteria and returns

information about the update operation

 updateMany: updates all documents that meet the filtering criteria and returns

information about the update operation

» findOneAndUpdate: updates one document that matches the filter criteria and

returns an updated document
findOneAndUpdate

The findOneAndUpdate() method updates a single item. It takes the following

parameters:
1. Filter criteria for the document to be updated
2. Update option
3. Additional upgrade options that are null by default

4. The callback function that is performed when updating
132

For example, update the first user in the database whose age is 21:
const MongoClient = require ("mongodb™). MongoClient;

const url ="mongodb: // localhost: 27017 /*;
const mongoClient = new MongoClient (url, {useNewUrlParser: true});

let users = [{name: "Bob", age: 34}, {name: "Alice", age: 21}, {name: "Tom", age:
453

mongoClient.connect (function (err, client) {
if (err) return console.log (err);
const db = client.db ("usersdb™);
const col = db.collection ("users™);
col.insertMany (users, function (err, results) {
col.findOneAndUpdate (
{age: 21}, // selection criteria
{$ set: {age: 25}}, // update option
function (err, result) {
console.log (result);

client.close ();

);
H
H

First, 3 users are added to the database here, and after the addition, an update is

taking place.

133

For updating, the object {$ set: {age: 25}} is used. The $ set parameter allows to

update values for a single field or group of fields. In this case, the age field changes.

The third parameter is the callback function, which displays the update result. By

default, this is the old state of the modified document:

But, let's say, after the update we want to get not the old, but the new state of the

changed document. To do this, we can set additional update options.
const MongoClient = require ("mongodb™). MongoClient;
const url = "mongodb: // localhost: 27017 /*;
const mongoClient = new MongoClient (url, {useNewUrlParser: true});
mongoClient.connect (function (err, client) {
if (err) return console.log (err);
const db = client.db ("usersdb");
const col = db.collection (“users™);
col.findOneAndUpdate (
{name: "Bob"}, // selection criteria
{$ set: {name: "Sam"}}, // update parameter
{/l add. update options

returnOriginal: false

2

134

function (err, result) {
console.log (result);

client.close ();

updateMany

The updateMany() method allows to update all documents from the collection that

meet the filtering criteria:
const MongoClient = require ("mongodb™). MongoClient;
const url ="mongodb: // localhost: 27017 /*;
const mongoClient = new MongoClient (url, {useNewUrlParser: true});
mongoClient.connect (function (err, client) {
if (err) return console.log (err);
const db = client.db ("usersdb™);
const col = db.collection ("users");
col.updateMany (
{name: "Sam"}, // filter criteria
{$ set: {name: "Bob"}}, // update parameter
function (err, result) {
console.log (result);

client.close (); }) B

135

updateOne

The updateOne() method is similar to the updateMany method, except that it
updates only one item. Unlike the findOneAndUpdate() method, it does not return the

modified document:
const MongoClient = require ("mongodb"). MongoClient;
const url = "mongodb: // localhost: 27017 /";
const mongoClient = new MongoClient (url, {useNewUrlParser: true});
mongoClient.connect (function (err, client) {
if (err) return console.log (err);
const db = client.db ("usersdb");
const col = db.collection (“users™);
col.updateOne (
{name: "Tom"},
{$ set: {name: "Tom Junior", age: 33}},
function (err, result) {
console.log (result);

client.close ();

) b

136

Tasks for laboratory work 6

1. Connect the database to the server.

2. Get database objects on the server.

3. Get the collection object in the database.

4. Interact with the collection (add, delete, receive, modify data).

Create a project app.js. To do this, define the directory, mongoapp. Define the
package.json file in this directory, add the dependencies "express™: " 4.16.0", "body-
parser”: "~ 1.18.0", "mongodb™; "~ 3.1.0".

Create a usersdb database and a "users" collection. Add to the collection of 10
different documents — user objects. You need to enter the following information about
users: name, age, hobby — an array from one, two or three languages (music, sports,
drawing) and foreign languages — an array from two or three languages (english,

french, german).
Run the following queries in the database:
1. Display the first five users in the database.

2. Get a selection of documents that have two languages simultaneously in the

languages array: "english” and "french".
3. Print all documents in which "english™ in the languages array is in first place.
4. Print all documents that contain the hobby "music".

5. Display all documents in which the age of users is more than 24 and less than 30.

137

Report requirements for laboratory work

The report should include:

1. Title page.

2. Tasks for laboratory work.

3.

Description of development steps. This section consists of a sequential

description of the steps performed according to the instructions for laboratory work.

4. Conclusions.

1.

o ok~ w D PE

Questions for self-assessment

What is MongoDB?

How we can get statistics on the current database?

Describe methods for adding a single object and a set of objects to MongoDB.
How we can read data in Node.js from a MongoDB database?

Describe several ways to delete documents in MongoDB.

Describe methods for updating items in MongoDB.

References
Installing and getting started with MongoDB on Windows

https://metanit.com/nosgl/mongodb/1.2.php

2.

3
4
5.
6
7

MongoDB Node.JS Driver https://www.npmjs.com/package/mongodb

Node.js and MongoDB https://metanit.com/web/nodejs/6.1.php

. Adding and receiving data in MongoDB https://metanit.com/web/nodejs/6.2.php

Deleting documents in MongoDB https://metanit.com/web/nodejs/6.3.php

. A selection from the database https://metanit.com/nosagl/mongodhb/2.4.php

Sampling operators https://metanit.com/nosql/mongodb/2.8.php

138

https://metanit.com/nosql/mongodb/1.2.php
https://www.npmjs.com/package/mongodb
https://metanit.com/web/nodejs/6.1.php
https://metanit.com/web/nodejs/6.2.php
https://metanit.com/web/nodejs/6.3.php
https://metanit.com/nosql/mongodb/2.4.php
https://metanit.com/nosql/mongodb/2.8.php

