
ПРИКЛАДНА МАТЕМАТИКА  

ISSN 2709-2984. Проблеми машинобудування. 2021. Т. 24. № 1 65 

DOI: https://doi.org/10.15407/pmach2021.01.065 

UDC 629.01 

INTEGRAL CRITERION  

OF THE NON-UNIFORMITY  

OF STRESS DISTRIBUTION  

FOR THE TOPOLOGY 

OPTIMIZATION  

OF 2D-MODELS     

Ihor V. Yanchevskyi  
i.yanchevskyi@kpi.ua 
ORCID: 0000-0002-7113-2276 

Volodymyr F. Kryshtal  
v.kryshtal@kpi.ua 
ORCID: 0000-0002-5597-2435 

National Technical University  

of Ukraine "Igor Sikorsky  

Kyiv Polytechnic Institute",  
37, Peremohy Ave., Kyiv,  
03056, Ukraine  

The emergence of new technologies for the production of structural ele-

ments gives impetus to the development of new technologies for their de-

sign, in particular with the involvement of a topology optimization method. 

The most common algorithm for designing topologically optimal structures 

is focused on reducing their elastic flexibility at a given volume of material. 

However, a closer to the engineering design approach is the minimization 

of the volume of a structural element while limiting the resulting mechani-

cal stresses. In contrast to the classical algorithms of this approach, which 

limit the values of stresses at certain points, this paper develops an alterna-

tive criterion: the formation of the image of a structural element is based 

on minimizing the integral parameter of stress distribution non-uniformity. 

The developed algorithm is based on the method of proportional topology 

optimization, and when mechanical stresses are calculated, the classical 

relations of the finite element method are used. The above parameter can 

be interpreted as the ratio of the deviation of the values, ordered in ascend-

ing order, of equivalent von Mises stresses in the finite elements of a calcu-

lation model from their linear approximation to the corresponding mean 

value. The search for the optimal result is carried out for the full range of 

possible values of the averaged "density" of the calculation area, which is 

associated with a decrease in the amount of input data. The proposed inte-

grated strength criterion provides better uniformity of the optimized topol-

ogy, allows us to smooth the effect of the local peak values of mechanical 

stresses, determining a single optimization result that is resistant to calcu-

lation errors. The algorithm is implemented in the MatLab software envi-

ronment for two-dimensional models. The efficiency of the approach is 

tested on the optimization of a classical beam (mbb-beam), a cantilever 

beam, and an L-shaped beam. A comparative analysis of the obtained re-

sults with those available in the literature is given. It is shown that in the 

absence of constraint on the average value of the density of a finite element 

model, the proposed criterion gives a ″less dense″ optimization result com-

pared to the classical one (approximately 40%), while the values of "con-

trast index" are quite close. 

Keywords: topology optimization; two-dimensional problem; strength con-

dition; integral criterion; algorithm; finite element method; equivalent von 

Mises stresses. 

Introduction 
The term ″structural topology optimization″ was first introduced in [1], where an algorithm for the 

distribution of artificial composite material with the use of finite element method relations was presented. In 

this case, topology optimization is carried out in the absence of previous assumptions or information about 

the distribution of design quantities, and involves the optimization of both the shape of a structural element 

and inclusions in the form of cavities. 

At the present stage, the emergence of new production technologies, including additives, as well as 

the requirements to reduce weight and cost give impetus to the development of new design technologies. 

This allows us to make structures lighter and stronger at the same time, which is reflected in design tech-

nologies, say, for aircraft structures, space and rocket hardware, and mechanical engineering [2]. 

When designing topologically optimal structures, there are two tasks, one of which is the task of reducing 

the elastic compliance of a structural element at a given volume of material, and the second one is aimed at mini-

mizing the volume of material of this structural element while limiting the resulting mechanical stresses. 
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To solve the first task, the SIMP (Solid Isotropic Material with Penalization) method, which is called 

the penalty method, is used quite successfully. The effectiveness of the method has been confirmed by nu-

merous publications, in particular [3–6]. The SIMP method is based on the partitioning of a design domain 

by finite elements (FE) with the introduction of a variable relative density iρ  
of their material (0≤ρi≤1: ρi=0 

simulates the absence of an FE, ρi= 1 means a completely ″solid″ FE). In turn, the Young modulus of a FE is 

considered to be dependent on the power function of the relative density. A so called penalty is imposed on 

an FE with the current relative density iρ′ >1 or iρ′ ≈0, which allows us, in the process of optimization, to ob-

tain a relative density close to one or zero (ie. leave the FE, or ″remove″ it). 

The solution of topological optimization problems with account taken of stress constraints was pre-

sented in [7, 8], where the so-called evolutionary structural optimization (ESO) method is considered. Accord-

ing to this method, on the basis of finite element analysis (FEA), the stress distribution in a structure is deter-

mined, and a conclusion is made regarding the appropriateness of involving FEs with the use of the ″removal 

criterion″. This criterion uses the values of von Mises equivalent stresses both for the whole structure and for an 

individual FE. The FEs underloaded by a certain percentage are removed from the structure. The FEA cycle 

and the cycle of FE removal is repeated at one value of the ″removal criterion″ until a stable result is achieved. 

Then the value of the ″removal criterion″ increases, and the iteration procedure is repeated. The process is con-

sidered completed when all the FEs with the equivalent von Mises stress, which is a given percentage of the 

maximum, are removed. A disadvantage of this method is that the material removed in previous iterations, 

which could be used in the future, is not renewed. The Bi-Directional Evolutionary Structural Optimization 

(BESO) method does not have such a disadvantage [9]. In the BESO method, as a result of FEA, the displace-

ments of the removed FEs are extrapolated, and their number (index of sensitivity) is determined as the change 

in the FE yield due to the removal or addition of FEs. After ranking all the FEs by sensitivity numbers, the FE 

structures "filled" with the material with the smallest sensitivity number are removed, and the "empty" ones 

with the maximum sensitivity number are returned to the structure. 

As noted in [10], the analysis of mechanical stresses in topological optimization problems is closer 

to the engineering design approach. The problem of determining optimal topology is the problem of produc-

ing structures based on the application of the method of equal-strength structures. 

Topology optimization, while limiting the value of the resulting mechanical stresses, is complicated 

by such problems as the nonlinearity of the corresponding problem and the phenomenon of singularity [3]. 

The latter is due to the fact that stress becomes uncertain in areas where the density is close to zero. This 

phenomenon of singularity is described in [11] in the topology optimization of truss structures with account 

taken of stress level constraints. This feature is caused by the emergence of sections where the cross-

sectional area is close to zero. 

One of the ways to apply stress constraints in the problem of structural topology optimization is the ap-

proach of local constraints on mechanical stresses at certain points [12]. Another approach is to transform these 

constraints into a single global constraint with the use of some aggregation function, such as the p-norm or the 

Kreisselmeier-Steinhauser function [13, 14]. 

Purpose of the Paper 

This paper proposes an alternative criterion for forming the design of a structural element with the 

use of the integral parameter of the non-uniformity of stress state distribution, showing its effectiveness on 

specific examples. The developed algorithm is based on the method of proportional topological optimization 

with stress constraints, which is presented in [15]. 

Classical Formulation of the Topology Optimization Problem 

The problem of topology optimization of a structural element with constraints on the level of its 

stress state is to minimize the conditional mass of the computational geometric domain of the element with 

account taken of strength condition fulfillment – the maximum mechanical stress values should not exceed a 

certain allowable value [σ]. This problem is usually solved in an automated mode, which involves the finite 

element method (FEM) to calculate the field of mechanical stress. And if the computational domain of the 

structural element is divided into N of FEs and mechanical stress, the "relative" density and volume (area in 

the case of 2D computational models) of the i-th FE of this domain is denoted by iσ~ , ρi and Vi, accordingly, 
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the optimization problem can be written as 
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The calculated variable in this problem is the ″relative″ density ρ of each element of the FE model 

(0≤ρmin≤ρi≤1; i  is the FE ordinal number; ρmin is the minimum value of density), which is associated with the 

mass of this FE (mi=ρiVi) and also determines its ″relative″ elastic modulus E (Young’s modulus). According 

to the modified SIMP method [3], the value of E depends on FE density 

 ( )min0min)( EEEE
p −ρ+=ρ ,  

where Emin is the minimum Young's modulus value, which characterizes ″empty″ FEs with 0≤ρ≤ρmin; E0=1; p is 

the ″penalty″ coefficient. Usually Emin=10
-9

 and p=3. 

The mechanical stress iσ~  in the i-th FE in expression (1) is usually the equivalent stress calculated in 

its geometric center in accordance with the energy theory of strength. In the case of a 2D calculation scheme, 

the specified stress is expressed in terms of the components of the mechanical stress tensor 
T

}{ xyyx σσσ=σ  

for the corresponding FE 

 222 3~
xyyxyx σ+σσ−σ+σ=σ . (2) 

The components σ depend on the vector u that contains the nodal displacements of FEs, and, accord-

ing to the basics of solving FEM problems, is calculated by the formula 

 BuDσ = . (3) 

Here, D is the matrix of elastic constants (D=D(E, ν); ν is Poisson's ratio of the FE material); B is the 

matrix with derivatives of basis functions. For the plane stress state and bilinear functions of the form of a 

square FE of immeasurable unit length, both these matrices and the vector are defined as follows [15]: 
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In this case, the matrix B and vector u correspond to the coordinate system and numbering of FE 

nodes, which are shown in Fig. 1. It should be noted that this sequence of node numbers is quite common in 

the works that are devoted to the problems of topology optimization [4, 15]. 

The components of the vector u, in turn, are part of the global dis-

placement vector U for the entire FE model, and are determined from a 

system of algebraic equations 

KU=F,                                                 (4) 

where K is the global stiffness matrix, which, similarly to the vector U, is 

obtained as a result of combining elemental matrices; F is the vector of 

nodal efforts. 
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Fig. 1 Numbering of plane  

FE nodes 

Based on the results FEA (3) and (4) of the stress-strain state of the structural element, the previous 

value of the ″relative″ density of each FE iρ′  of the model is calculated as a linear combination of the density 

prev
iρ  at the previous iteration and the ″optimal″ opt

iρ  depending on the stress state of this FE. In particular, 

the following relations are used in the literature: 
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Here, α is a ″coefficient of history″ [15]: (α=0.5 means that the FE density iρ′  in the current iteration 

will be the arithmetic mean of prev
iρ  and opt

iρ ); R is the residual amount of material (average density of the 

model); q is the exponent. 

It should be noted that the coefficients and α and q are the main parameters [15] that determine the 

efficiency / convergence of the solution of topological optimization problem (1). However, the results of 

numerous calculations available in the literature indicate that the values α=0 and q=2 are appropriate. The 

first equation obviously does not take into account the element density from the previous iteration, and, ac-

cordingly, indicates no dependence on ″history″. The second one indicates the appropriateness of involving a 

quadratic proportion between opt
iρ  and iσ~ , ie the amount of material should be distributed among FEs pro-

portional to the square of element stresses. 

A mandatory and final step in each iteration, in determining the density distribution over a FE model, is 

the filtration of the previous value of the density iρ′ . The said filtration allows avoiding jagged edges, narrow 

FEs, sharp boundaries, the so-called ″chessboard″ phenomena, etc. This filtration is, in essence, the local aver-

aging of densities in the vicinity of a particular FE, with maintaining the value of the averaged density of the 

entire calculation area ∑∑ρ
i

ii

i

i VV . The filtering algorithm itself is based on the following formula: 

 ∑∑ ρ′=ρ
j

ij

j

jiji ww ;  0≤ρmin<ρi≤1. (6) 

Here, ρi is the filtered density of the i-th FE; wij is the weight function, which is inversely propor-

tional to the distance between the i-th FE and adjacent FEs with numbers j  
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rij is the distance between the i-th and j-th FEs; r0 is the filter radius. 

Topology Optimization Algorithm 

Most of topology optimization algorithms focused on checking the strength condition fulfillment, are 

based on the following procedures. At the first stage, the vectors U, F and matrices D, B, K are formed to im-

plement FEA. Then the algorithm enters the main cycle, each iteration of which begins with the definition of 

the field of deformations (4) and mechanical stresses (3). Next, the equivalent stresses iσ~  (2) of FE model ele-

ments ),1( Ni =  are calculated, and the stop criterion (1) is checked to make certain that the maximum value 

iσ~  is close to the allowable stress limit [σ] (max( iσ~ )=[σ]). If the condition is met, the iterative process ends. 

Otherwise, the algorithm continues to optimize the topology, and goes into the internal loop. The first step in 

this cycle is to refine the target amount of material (average density) R , which will be the new amount of 

model ∑∑ρ
i

ii

i

i VV  material for the next iteration. If the maximum value of mechanical stress in the ele-

ments of the calculation system exceeds the allowable limit (max( iσ~ )>[σ]), ie the strength condition is not met, 

the current amount of material increases by a certain, pre-set factor ∆ – ∑∑ ∆+ρ=
i

i

i

ii VV
prevR  (here, 

∑∑ρ
i

i

i

ii VV
prev  is the current amount of material). Otherwise, the amount of material decreases with the 

same factor – ∑∑ ∆−ρ=
i

i

i

ii VV
prevR . In the next step, the algorithm uses the iterative procedure (5) and (6) 

to distribute R among the main FEs. 

The algorithm itself is shown in Fig. 2. 

This sequence is implemented, in particular, in publication [15], where the authors proposed an algo-

rithm for the proportional optimization whose effectiveness has been tested on a number of specific numeri-

cal examples. 
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♦ Adjustment of matrices and vectors for FEA and filtering  

♦ Start of the main cycle of topology optimization  

• Performance of FEA 

• Сheck-up of stop criteria (interruption of the cycle, if they are fulfilled) 

• Launch of the algorithm for determining the ″conditional″ density of FEs      

• Determination of the target amount of material R 

• If the strength condition is not met prev
R i ii

i i

V V= ρ +∆∑ ∑   

• If the strength condition is met prev
R i ii

i i

V V= ρ −∆∑ ∑
 

• Reset of density data (ρi=0) 

• Until R i i i

i i

V V− ρ∑ ∑  is small enough  

– Identification of 
opt
iρ  and distribution of iρ′  

– Application of a filter to calculate the density ρi  

– Update of the field of distribution of the density ρi  

Fig. 2. Topology optimization algorithm 

The main disadvantage of this approach is the necessity that the input data have an uncertain value of 

the allowable stress [σ], which is coordinated with the field of mechanical stress of the design structure dur-

ing the action of a single force load. This disadvantage is due to the fact that for different calculation 

schemes, the values of [σ] can differ in a fairly wide range. Therefore, it is difficult to predict in advance the 

optimal [σ] with which the optimization problem will have a stable solution. Obviously, in this case, the de-

termination and adjustment of [σ] must be done manually. 

Another, more significant disadvantage of 

this class of algorithms, is the use of the maximum 

value of mechanical stress max( iσ~ ). Obviously, 

for most applied strength calculation problems, 

max( iσ~ ) is a reflection of the stress state in the 

vicinity of a particular stress concentrator, and, 

accordingly, does not determine the stress state of 

the design component as a whole, because it is 

quite local in nature. Thus, Fig. 3 shows the classi-

cal distribution of the mechanical stress iσɶ  of the 

elements of a FE model with nonzero density 

(ρi>ρmin), which are arranged in ascending order. 

    
а                                                      b 

Fig. 3. Non-uniform distribution of mechanical stresses: 

а – for iσ~ >0; b – for iσ~ ~max( σ~ ) 

It is obvious that max( iσ~ ) exceeds many times over the averaged value of the stress, which corre-

sponds to the stresses in the central area of the figure (solid curve). When designing real components to 

avoid peak values of the field of mechanical stresses, and, accordingly, a significant reduction in their maxi-

mum values, a variety of design solutions and techniques are involved. Therefore, when implementing topo-

logical optimization, the focus on the criterion max( iσ~ )=[σ] is not appropriate. 

In this paper, we propose an alternative strength condition for system (1), which is focused on mini-

mizing the non-uniformity of stress state distribution among FEs with the nonzero relative density (ρi>ρmin). 

In particular, instead of the criterion max( iσ~ )=[σ], the problem of finding the minimum of the function,

 min~ →σσ−σ ∑∑
i

i

i

ii , is set, and the optimization problem (1) will be written as 
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Here, iσ  is a linear approximation of ordered values iσ~ . The approximation coefficients are deter-

mined by the method of least squares. 

It is obvious that the first condition of system (7) is related to the minimization of the average value 

of the density R  (volume fraction) of the calculated region of the FE model of a component 

( ∑∑ρ=
i

i

i

ii VVR ; Ni ,1= ). The second condition, from a geometric point of view, means minimizing the 

ratio of the area 
1

~ σ−σ  of the region between the equivalent von Mises stresses iσ~  and their linear ap-

proximation iσ  to the area of the trapezoid 
1

σ  under the line iσ . Here, 
1

f  is the norm of the vector f in 

the metric L
1
 ( ∑=

i

iff
1

). The fragment of the area 
1

~ σ−σ  is displayed in solid color in Fig. 3, b, which 

is essentially an enlarged image of the dotted zone in the right part of Fig. 3, a. The area of the trapezoid 
1

σ  

is equal to the product of the average value of the vector-column of stresses σ  and its height. 

If we enter the parameter 
11

~
iiiX σσ−σ= , problem (7) can be written in a more compact form: 
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Numerical Results 

Specific calculations were performed for 2D calculation schemes, which were considered in [15]. In 

particular, for the models of a classical beam (so-called mbb-beam), a cantilever beam, and an L-beam (see 

column 1 in Fig. 4), which are under single force loads (P=1). The dimensions of these models are deter-

mined by a dimensionless parameter s=40 (FEs are squares with a unit length of sides, Vi=1). 

The results of topological optimization based on criterion (1), which are depicted in column 2 

(Fig. 4), were obtained by the authors of [15]. It should be noted that the limit for the maximum value of 

stress [σ] for the first beam in this work is taken equal to 1.08; for the second beam, 0.57, and for the third 

beam, 1.05. Also during FEA, the external load was distributed on several adjacent FEs to improve the con-

vergence of the computational process.  

The results of the topology optimization of the data of calculation schemes using criterion (8) are 

shown in column 3 (Fig. 4). 

From the comparison of the optimization results, it can be concluded that in the absence of constraint 

on the average value of the density R of a FE model, criterion (8) in comparison with conditions (1) gives a 

″less dense″ result (approximately 40%). Quantitative indicators for both criteria are summarized in the ta-

ble, which also shows the values of the so-called ″contrast index″ [15], which characterizes the proportion of  

FEs with the boundary values of relative density (ρ<ρmin і ρ≥max)  

 
N

N
C

ρ
−=1 ,  

where Nρ is the number of FEs with the density ρmin<ρ<1–ρmin (ρmin=0.01). 

It is obvious that in contrast to R  the contrast indices C for both optimization criteria differ insig-

nificantly. 

The average density of optimized structural elements and their contrast index C 

Density R Index C 
Scheme 

Criteria (1) Criteria (8) Criteria (1) Criteria (8) 

mbb-beam 0.31 0.20 0.83 0.812 

cantilever beam 0.34 0.16 0.88 0.856 

L-beam 0.33 0.21 0.85 0.848 
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Scheme Criteria (1) Criteria (8) 

 

  

 a  

 

  

 b  

 
  

 c  

Fig. 4. Topological optimization of 2D-models:  
a – mbb-beam; b – cantilever beam; c – L-beam 

    

a                                                             b 

Fig. 5. Graph of the non-uniformity of the distribution of the stress state: 
a – for R=1...0.1; b – for R=0.24...0.14 

It should be noted that the optimization results in column 3 (Fig. 4) correspond, in essence, to the 

minimum of the function X=X(R), because the numerical calculations showed that in the whole range of pos-

sible values of R (volfrac≤R≤1) the function X=X(R) has a single minimum. The graphs of these functions 

for the three calculation schemes considered above are shown with the curves of the same name in Fig. 5. 

Fig. 5, b is an enlarged rectangular fragment, which is limited in Fig. 5, a with a dashed border. 

In Fig. 5, b, the circles show the minima of the graphs corresponding to the solutions of topological 

optimization problem (8), shown in column 3 (Fig. 4). It should be noted that the graphs in Fig. 5, a are con-

structed in the mode of linear reduction of R from 1 to volfrac [15], however, the choice of the initial value 

R0 is not fundamental (volfrac≤R0≤0.5 is usually taken to speed up calculations). 
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A disadvantage of the criterion (8) presented in this paper is the need to solve the problem of finding 

the optimal geometry over the entire range of possible values of the averaged density R, which slightly in-

creases the time of solving topological optimization problem (8) compared to the classical formulation (1). 

However, scanning occurs with a minimum amount of input data, and in the absence of the need for pre-

determination [σ], which indicates the advantages of this criterion. The criterion X(R)→min is also an inte-

gral criterion, so it allows us to obtain a solution that is more resistant to errors in the input data and inaccu-

racies in calculations. 

Conclusions 

The paper presents a new criterion for the topological optimization of structural elements, which is 

focused on minimizing the non-uniform distribution of their stress state. In contrast to existing topological 

optimization algorithms based on the classical strength condition, the proposed algorithm uses an integrated 

stress assessment, which reduces the influence of local peak stress values, and provides better uniformity of 

the design component. This integral criterion can be interpreted as the ratio of the deviation of the ordered 

values of equivalent von Mises stresses from their linear approximation to the mean value. The disadvan-

tages of this method include the need to find the optimal result over the entire range of possible values of the 

average density of the calculation domain. However, the main advantages of this method include a reduced 

amount of input data, ensuring greater uniformity of the optimized topology, the presence of a single optimi-

zation result, insensitivity to calculation errors. The effectiveness of the criterion is confirmed by numerical 

examples with traditional calculation schemes. The developed approach can be developed to solve the prob-

lems of topological optimization in a three-dimensional formulation, and generalized in the case of optimiza-

tion of a structural element by the criterion of its fatigue strength. 
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Інтегральний критерій нерівномірності розподілу напруженого стану при топологічній 

оптимізації 2D-моделей  

І. В. Янчевський, В. Ф. Кришталь 

Національний технічний університет України  

«Київський політехнічний інститут імені Ігоря Сікорського» 
03056, Україна, м. Київ-56, пр. Перемоги, 37 

Поява нових технологій виробництва конструктивних елементів дає поштовх до розвитку нових техноло-

гій їх конструювання, зокрема, із залученням методу топологічної оптимізації. Найбільш розповсюджений алго-

ритм проєктування топологічно оптимальних конструкцій орієнтований на зменшення їх пружної податливості 

при заданому об'ємі матеріалу. Разом з тим більш близькою до інженерного підходу у проектуванні є мінімізація 

об'єму конструктивного елемента при одночасному обмеженні виникаючих механічних напружень. На відміну від 

класичних алгоритмів такого підходу, що обмежують значення напружень в певних точках, в даній роботі розви-

нуто альтернативний критерій – формування образу конструктивного елемента здійснюється на основі мініміза-

ції інтегрального параметра нерівномірності розподілу напруженого стану. В основу розробленого алгоритму 

покладено метод пропорційної топологічної оптимізації, а при обчисленні механічних напружень застосовані кла-

сичні співвідношення методу скінченних елементів. Зазначений вище параметр може бути інтерпретований як 

відношення відхилення впорядкованих у порядку зростання значень еквівалентних за Мізесом напружень у скінчен-

них елементах розрахункової моделі від лінійної їх апроксимації до відповідного середнього значення. При цьому 

пошук оптимального результату здійснюється для усього діапазону можливих значень осередненої «густини» роз-

рахункової області, що пов'язано зі зменшенням кількості вхідних даних. Запропонований інтегральний критерій 

міцності забезпечує кращу рівноміцність оптимізованої топології, дозволяє згладжувати вплив локальних пікових 

значень механічних напружень і визначає єдиний результат оптимізації, який є стійким до похибок при обчислен-

нях. Алгоритм реалізовано у програмному середовищі MatLab для двовимірних моделей. Ефективність підходу ап-

робована на оптимізації класичної балки (mbb-балки), консольної балки і L-балки. Наведено порівняльний аналіз 

отриманих результатів з наявними у літературі. Показано, що за відсутності обмеження на осереднене значення 

густини скінченно-елементної моделі запропонований критерій дає «більш легкий» результат оптимізації у порів-

нянні з класичним (приблизно на 40%), водночас значення «індексу контрастності» є досить близькими. 

Ключові слова: топологічна оптимізація; двовимірна задача; умова міцності; інтегральний критерій; ал-

горитм; метод скінченних елементів; еквівалентні за Мізесом напруження. 
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