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Introduction

The term "structural topology optimization” was first introduced in [1], where an algorithm for the
distribution of artificial composite material with the use of finite element method relations was presented. In
this case, topology optimization is carried out in the absence of previous assumptions or information about
the distribution of design quantities, and involves the optimization of both the shape of a structural element
and inclusions in the form of cavities.

At the present stage, the emergence of new production technologies, including additives, as well as
the requirements to reduce weight and cost give impetus to the development of new design technologies.
This allows us to make structures lighter and stronger at the same time, which is reflected in design tech-
nologies, say, for aircraft structures, space and rocket hardware, and mechanical engineering [2].

When designing topologically optimal structures, there are two tasks, one of which is the task of reducing
the elastic compliance of a structural element at a given volume of material, and the second one is aimed at mini-
mizing the volume of material of this structural element while limiting the resulting mechanical stresses.
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To solve the first task, the SIMP (Solid Isotropic Material with Penalization) method, which is called
the penalty method, is used quite successfully. The effectiveness of the method has been confirmed by nu-
merous publications, in particular [3—6]. The SIMP method is based on the partitioning of a design domain
by finite elements (FE) with the introduction of a variable relative density p; of their material (0<p<1: p=0

simulates the absence of an FE, p= 1 means a completely "solid” FE). In turn, the Young modulus of a FE is
considered to be dependent on the power function of the relative density. A so called penalty is imposed on
an FE with the current relative density p;>1 or p;=0, which allows us, in the process of optimization, to ob-

tain a relative density close to one or zero (ie. leave the FE, or "remove” it).

The solution of topological optimization problems with account taken of stress constraints was pre-
sented in [7, 8], where the so-called evolutionary structural optimization (ESO) method is considered. Accord-
ing to this method, on the basis of finite element analysis (FEA), the stress distribution in a structure is deter-
mined, and a conclusion is made regarding the appropriateness of involving FEs with the use of the "removal
criterion”. This criterion uses the values of von Mises equivalent stresses both for the whole structure and for an
individual FE. The FEs underloaded by a certain percentage are removed from the structure. The FEA cycle
and the cycle of FE removal is repeated at one value of the "removal criterion” until a stable result is achieved.
Then the value of the "removal criterion” increases, and the iteration procedure is repeated. The process is con-
sidered completed when all the FEs with the equivalent von Mises stress, which is a given percentage of the
maximum, are removed. A disadvantage of this method is that the material removed in previous iterations,
which could be used in the future, is not renewed. The Bi-Directional Evolutionary Structural Optimization
(BESO) method does not have such a disadvantage [9]. In the BESO method, as a result of FEA, the displace-
ments of the removed FEs are extrapolated, and their number (index of sensitivity) is determined as the change
in the FE yield due to the removal or addition of FEs. After ranking all the FEs by sensitivity numbers, the FE
structures "filled" with the material with the smallest sensitivity number are removed, and the "empty" ones
with the maximum sensitivity number are returned to the structure.

As noted in [10], the analysis of mechanical stresses in topological optimization problems is closer
to the engineering design approach. The problem of determining optimal topology is the problem of produc-
ing structures based on the application of the method of equal-strength structures.

Topology optimization, while limiting the value of the resulting mechanical stresses, is complicated
by such problems as the nonlinearity of the corresponding problem and the phenomenon of singularity [3].
The latter is due to the fact that stress becomes uncertain in areas where the density is close to zero. This
phenomenon of singularity is described in [11] in the topology optimization of truss structures with account
taken of stress level constraints. This feature is caused by the emergence of sections where the cross-
sectional area is close to zero.

One of the ways to apply stress constraints in the problem of structural topology optimization is the ap-
proach of local constraints on mechanical stresses at certain points [12]. Another approach is to transform these
constraints into a single global constraint with the use of some aggregation function, such as the p-norm or the
Kreisselmeier-Steinhauser function [13, 14].

Purpose of the Paper

This paper proposes an alternative criterion for forming the design of a structural element with the
use of the integral parameter of the non-uniformity of stress state distribution, showing its effectiveness on
specific examples. The developed algorithm is based on the method of proportional topological optimization
with stress constraints, which is presented in [15].

Classical Formulation of the Topology Optimization Problem

The problem of topology optimization of a structural element with constraints on the level of its
stress state is to minimize the conditional mass of the computational geometric domain of the element with
account taken of strength condition fulfillment — the maximum mechanical stress values should not exceed a
certain allowable value [c]. This problem is usually solved in an automated mode, which involves the finite
element method (FEM) to calculate the field of mechanical stress. And if the computational domain of the
structural element is divided into N of FEs and mechanical stress, the "relative” density and volume (area in
the case of 2D computational models) of the i-th FE of this domain is denoted by G;, p; and V;, accordingly,
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the optimization problem can be written as
D p,V; > min (i=1,N);
i ey
8, <[o].
The calculated variable in this problem is the "relative” density p of each element of the FE model
(0<pumin<p<1; i is the FE ordinal number; p,,, is the minimum value of density), which is associated with the

mass of this FE (m;=p;V;) and also determines its "relative” elastic modulus E (Young’s modulus). According
to the modified SIMP method [3], the value of E depends on FE density

E(P)=E, +p"(Ey—E,; ).
where E;, is the minimum Young's modulus value, which characterizes "empty” FEs with 0<p<p,; Eo=1; p is
the "penalty” coefficient. Usually E...=10° and p=3.
The mechanical stress &, in the i-th FE in expression (1) is usually the equivalent stress calculated in
its geometric center in accordance with the energy theory of strength. In the case of a 2D calculation scheme,
the specified stress is expressed in terms of the components of the mechanical stress tensor 6 ={6, 6, G, '

for the corresponding FE

& 2 2 2
G= \/ 6,+0,-0,6,+30, . )

The components ¢ depend on the vector u that contains the nodal displacements of FEs, and, accord-
ing to the basics of solving FEM problems, is calculated by the formula

c=DBu. 3)
Here, D is the matrix of elastic constants (D=D(E, v); v is Poisson's ratio of the FE material); B is the

matrix with derivatives of basis functions. For the plane stress state and bilinear functions of the form of a
square FE of immeasurable unit length, both these matrices and the vector are defined as follows [15]:

sty o0 J-1 0o 1 0 10-10
D=——v 1 0 |sB={0 -1 0 -1 01 0 1
=Vl 0 (-v)/)2 21 -1 -1 1 11 1 -1

. T
u4{”2x Upy Ugy Ugqy U3y U3y Uy uly} .

In this case, the matrix B and vector u correspond to the coordinate system and numbering of FE
nodes, which are shown in Fig. 1. It should be noted that this sequence of node numbers is quite common in

the works that are devoted to the problems of topology optimization [4, 15].
The components of the vector u, in turn, are part of the global dis- Uy U
placement vector U for the entire FE model, and are determined from a | 1 3 1_‘3‘1_{3*
system of algebraic equations Uy My

y g q t_lizxi_li@

KU=F, (4) 2 4
where K is the global stiffness matrix, which, similarly to the vector U, is 9 y O y
obtained as a result of combining elemental matrices; F is the vector of Fig. 1 Numbering of plane

nodal efforts. FE nodes

Based on the results FEA (3) and (4) of the stress-strain state of the structural element, the previous
value of the "relative” density of each FE p’ of the model is calculated as a linear combination of the density

prev

P;

the following relations are used in the literature:

opt

at the previous iteration and the "optimal” p;* depending on the stress state of this FE. In particular,

a4l
D=0 PP +(1—a) p®; PP =Rl
i i i ; zclq

i

6))
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Here, a is a "coefficient of history” [15]: (0=0.5 means that the FE density p; in the current iteration

opt

prev
i i

l

will be the arithmetic mean of p

model); g is the exponent.

It should be noted that the coefficients and o and g are the main parameters [15] that determine the
efficiency / convergence of the solution of topological optimization problem (1). However, the results of
numerous calculations available in the literature indicate that the values a=0 and g=2 are appropriate. The
first equation obviously does not take into account the element density from the previous iteration, and, ac-

cordingly, indicates no dependence on "history”. The second one indicates the appropriateness of involving a
o
portional to the square of element stresses.

A mandatory and final step in each iteration, in determining the density distribution over a FE model, is
the filtration of the previous value of the density p;. The said filtration allows avoiding jagged edges, narrow
FEs, sharp boundaries, the so-called "chessboard” phenomena, etc. This filtration is, in essence, the local aver-
aging of densities in the vicinity of a particular FE, with maintaining the value of the averaged density of the

entire calculation area z p.V. / Z\g . The filtering algorithm itself is based on the following formula:

pi = Zwijp} / Z Wi 5 0=pmin<p=l. ©)
7 j

Here, p; is the filtered density of the i-th FE; w;; is the weight function, which is inversely propor-
tional to the distance between the i-th FE and adjacent FEs with numbers j

_{(ro—rlj)/r0 npu 1, < 1y;

and p;¥" ); R is the residual amount of material (average density of the

quadratic proportion between p;* and &,, ie the amount of material should be distributed among FEs pro-

wy = 0 S
TIpH 1;; 2 1y,

r;; is the distance between the i-th and j-th FEs; ry is the filter radius.

Topology Optimization Algorithm

Most of topology optimization algorithms focused on checking the strength condition fulfillment, are
based on the following procedures. At the first stage, the vectors U, F and matrices D, B, K are formed to im-
plement FEA. Then the algorithm enters the main cycle, each iteration of which begins with the definition of
the field of deformations (4) and mechanical stresses (3). Next, the equivalent stresses G; (2) of FE model ele-
ments (i =1,_N) are calculated, and the stop criterion (1) is checked to make certain that the maximum value
G; is close to the allowable stress limit [c6] (max (&, )=[c]). If the condition is met, the iterative process ends.

Otherwise, the algorithm continues to optimize the topology, and goes into the internal loop. The first step in
this cycle is to refine the target amount of material (average density) R, which will be the new amount of

model Zp V. / ZVi material for the next iteration. If the maximum value of mechanical stress in the ele-
i i

ments of the calculation system exceeds the allowable limit (max( &, )>[c]), ie the strength condition is not met,

the current amount of material increases by a certain, pre-set factor A — R :z prevV. / ZVi +A (here,
i i

4

ZpPreVVi / ZVI is the current amount of material). Otherwise, the amount of material decreases with the
i i

same factor — R = z prevV. / ZVi —A . In the next step, the algorithm uses the iterative procedure (5) and (6)

to distribute R among the main FEs.

The algorithm itself is shown in Fig. 2.

This sequence is implemented, in particular, in publication [15], where the authors proposed an algo-
rithm for the proportional optimization whose effectiveness has been tested on a number of specific numeri-
cal examples.
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¢ Adjustment of matrices and vectors for FEA and filtering
¢ Start of the main cycle of topology optimization
¢ Performance of FEA
¢ Check-up of stop criteria (interruption of the cycle, if they are fulfilled)
e Launch of the algorithm for determining the "conditional” density of FEs
* Determination of the target amount of material R
« If the strength condition is not met R:Zp}?fe"vi /Zvl. +A
i i
« If the strength condition is met R:ZplprevVi /ZVZ. _A
* Reset of density data (p;=0)
e Until R‘ZPiVi /Zvi is small enough
i i
opt

— Identification of p;

P and distribution of p’

— Application of a filter to calculate the density p;
— Update of the field of distribution of the density p;

Fig. 2. Topology optimization algorithm

The main disadvantage of this approach is the necessity that the input data have an uncertain value of
the allowable stress [c], which is coordinated with the field of mechanical stress of the design structure dur-
ing the action of a single force load. This disadvantage is due to the fact that for different calculation
schemes, the values of [c] can differ in a fairly wide range. Therefore, it is difficult to predict in advance the
optimal [c] with which the optimization problem will have a stable solution. Obviously, in this case, the de-
termination and adjustment of [6] must be done manually.

Another, more significant disadvantage of |5 G
this class of algorithms, is the use of the maximum max(G)
value of mechanical stress max(G,). Obviously, | ] i

for most applied strength calculation problems,
max(G;) is a reflection of the stress state in the

vicinity of a particular stress concentrator, and,
accordingly, does not determine the stress state of

the design component as a whole, because it is 0 ! d
quite local in nature. Thus, Fig. 3 shows the classi- a b

cal distribution of the mechanical stress &; of the |  Fig. 3. Non-uniform distribution of mechanical stresses:
elements of a FE model with nonzero density a—for 6,>0; b - for §; ~max(G)

(p>Pmin)> Which are arranged in ascending order.

It is obvious that max(G; ) exceeds many times over the averaged value of the stress, which corre-
sponds to the stresses in the central area of the figure (solid curve). When designing real components to
avoid peak values of the field of mechanical stresses, and, accordingly, a significant reduction in their maxi-
mum values, a variety of design solutions and techniques are involved. Therefore, when implementing topo-
logical optimization, the focus on the criterion max( &, )=[c] is not appropriate.

In this paper, we propose an alternative strength condition for system (1), which is focused on mini-
mizing the non-uniformity of stress state distribution among FEs with the nonzero relative density (p;>pmin)-
In particular, instead of the criterion max(&, )=[c], the problem of finding the minimum of the function,

4

Z|6[ —65| / Z|6[| — min, is set, and the optimization problem (1) will be written as
i
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Zpi‘é/Z‘é — min;
Z|6;_6;|/Z|6;|—>min-

Here, G, is a linear approximation of ordered values ;. The approximation coefficients are deter-

)

mined by the method of least squares.
It is obvious that the first condition of system (7) is related to the minimization of the average value
of the density R (volume fraction) of the calculated region of the FE model of a component

(R= Zini / ZVi i :l,_N ). The second condition, from a geometric point of view, means minimizing the

ratio of the area ||(~5—6||1 of the region between the equivalent von Mises stresses &, and their linear ap-
proximation G; to the area of the trapezoid ||6|| , under the line G;. Here, || f || , 1s the norm of the vector fin

the metric L' (|| f ||1 = Z| fi| ). The fragment of the area ||6—6||1 is displayed in solid color in Fig. 3, b, which

is essentially an enlarged image of the dotted zone in the right part of Fig. 3, a. The area of the trapezoid ||6|| .

is equal to the product of the average value of the vector-column of stresses G and its height.
If we enter the parameter X = ||(~5i —Ei" X / ||6i||1, problem (7) can be written in a more compact form:

{R — min;

X — min.

®)

Numerical Results

Specific calculations were performed for 2D calculation schemes, which were considered in [15]. In
particular, for the models of a classical beam (so-called mbb-beam), a cantilever beam, and an L-beam (see
column 1 in Fig. 4), which are under single force loads (P=1). The dimensions of these models are deter-
mined by a dimensionless parameter s=40 (FEs are squares with a unit length of sides, V;=1).

The results of topological optimization based on criterion (1), which are depicted in column 2
(Fig. 4), were obtained by the authors of [15]. It should be noted that the limit for the maximum value of
stress [o] for the first beam in this work is taken equal to 1.08; for the second beam, 0.57, and for the third
beam, 1.05. Also during FEA, the external load was distributed on several adjacent FEs to improve the con-
vergence of the computational process.

The results of the topology optimization of the data of calculation schemes using criterion (8) are
shown in column 3 (Fig. 4).

From the comparison of the optimization results, it can be concluded that in the absence of constraint
on the average value of the density R of a FE model, criterion (8) in comparison with conditions (1) gives a
"less dense” result (approximately 40%). Quantitative indicators for both criteria are summarized in the ta-
ble, which also shows the values of the so-called "contrast index” [15], which characterizes the proportion of
FEs with the boundary values of relative density (p<pmin 1 P=max)

N,
C=1-—",
N

where N, is the number of FEs with the density puin<p<l—pmin (Pmin=0.01).

It is obvious that in contrast to R the contrast indices C for both optimization criteria differ insig-
nificantly.

The average density of optimized structural elements and their contrast index C

70

Scheme Density R Index C
Criteria (1) | Criteria (8) | Criteria (1) | Criteria (8)
mbb-beam 0.31 0.20 0.83 0.812
cantilever beam 0.34 0.16 0.88 0.856
L-beam 0.33 0.21 0.85 0.848
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Scheme Criteria (1) Criteria (8)
P
\ 4
S m b/\
3s !
a
= o
= 1
4
= P
) 3s
b
S
F
|
25s
C

Fig. 4. Topological optimization of 2D-models:
a — mbb-beam; b — cantilever beam; ¢ — L-beam

X X ;
0.15] /—\ rf< /
cant mbb 0.04 P4 \M ,.:

0101 el g @ mbb \~/

0.02 cant
0.051 L
L™
0.00 . . — 0 ! !
1.0 0.8 0.6 0.4 0.2 R 024 022 020 0.18 0.16 R
a b

Fig. 5. Graph of the non-uniformity of the distribution of the stress state:
a—for R=1...0.1; b — for R=0.24...0.14

It should be noted that the optimization results in column 3 (Fig. 4) correspond, in essence, to the
minimum of the function X=X(R), because the numerical calculations showed that in the whole range of pos-
sible values of R (volfrac<R<1) the function X=X(R) has a single minimum. The graphs of these functions
for the three calculation schemes considered above are shown with the curves of the same name in Fig. 5.
Fig. 5, b is an enlarged rectangular fragment, which is limited in Fig. 5, a with a dashed border.

In Fig. 5, b, the circles show the minima of the graphs corresponding to the solutions of topological
optimization problem (8), shown in column 3 (Fig. 4). It should be noted that the graphs in Fig. 5, a are con-
structed in the mode of linear reduction of R from 1 to volfrac [15], however, the choice of the initial value
Ry is not fundamental (volfrac<R(<0.5 is usually taken to speed up calculations).
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A disadvantage of the criterion (8) presented in this paper is the need to solve the problem of finding
the optimal geometry over the entire range of possible values of the averaged density R, which slightly in-
creases the time of solving topological optimization problem (8) compared to the classical formulation (1).
However, scanning occurs with a minimum amount of input data, and in the absence of the need for pre-
determination [c], which indicates the advantages of this criterion. The criterion X(R)—min is also an inte-
gral criterion, so it allows us to obtain a solution that is more resistant to errors in the input data and inaccu-
racies in calculations.

Conclusions

The paper presents a new criterion for the topological optimization of structural elements, which is
focused on minimizing the non-uniform distribution of their stress state. In contrast to existing topological
optimization algorithms based on the classical strength condition, the proposed algorithm uses an integrated
stress assessment, which reduces the influence of local peak stress values, and provides better uniformity of
the design component. This integral criterion can be interpreted as the ratio of the deviation of the ordered
values of equivalent von Mises stresses from their linear approximation to the mean value. The disadvan-
tages of this method include the need to find the optimal result over the entire range of possible values of the
average density of the calculation domain. However, the main advantages of this method include a reduced
amount of input data, ensuring greater uniformity of the optimized topology, the presence of a single optimi-
zation result, insensitivity to calculation errors. The effectiveness of the criterion is confirmed by numerical
examples with traditional calculation schemes. The developed approach can be developed to solve the prob-
lems of topological optimization in a three-dimensional formulation, and generalized in the case of optimiza-
tion of a structural element by the criterion of its fatigue strength.
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InTerpanbHuii KpuTepid HEPIBHOMIPHOCTI PO3MOAIY HANIPY’KEHOT0 CTAHY NPH TOMOJIOTTYHIN
ontumizauii 2D-moneei

I. B. SInueBcbkumii, B. ®. Kpumrannb

Hamionansauit TeXHIYHUH YHIBEPCUTET YKpaiHu
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03056, Ykpaina, m. Kuis-56, np. Ilepemoru, 37

Tossa HOBUX MEXHONO2IT BUPOOHUYMBA KOHCMPYKIMUBHUX eNIEMEHMIE 0aE NOUIMOBX 00 PO3BUNIKY HOBUX MEXHOJO0-
2l IX KOHCMPYIOBAHHs, 30KPeMa, 13 3aIYYeHHAM Memody monoao2iunoi onmumizayii. Haubinew poznogcroddicenuil aneo-
PUMM NPOEKMYBAHHS MONOAOIUHO ONIMUMATLHUX KOHCHPYKYIU OPIEHMOBAHUI HA 3MEHWEHHSL IX NPYICHOT NOOamaAUBOCmi
npu 3a0anomy 00'emi mamepiany. Pazom 3 mum 6inbuu 61U36K010 00 THIHCEHEPHO2O NIOXO0Y Y NPOSKMYSAHHI € MIHIMI3ayis
00'eMy KOHCIMPYKIMUBHO20 eleMeHma NpU 0OHOYACHOMY OOMENCEHHT GUHUKAIOUUX MeXaHiunux Hanpysicens. Ha 6iominy 6i0
KAACUYHUX AN2OPUMMIE MAKO20 NIOX00Y, W0 0OMeNCYIOMb 3HAYCHHSL HANPYIHCEHb 8 NEGHUX MOYKAX, 6 OaHill pobomi po36u-
HYMO abMepHAMUSHULl Kpumepii — oopmyeants oopaszy KOHCIMPYKMUBHO20 eleMeHma 30iUCHIOEMbCS HA OCHOBT MIHIMI3A-
yii' inmegpanbHo20 napamempa HepiGHOMIPHOCHI pO3NOOLTY HANPYJICceH020 cmaHy. B ocnogy po3pobaenozo ancopummy
NOKIAOEHO MemOoO NPOROPYIIHOL MONOI02IYHOT onmuMizayii, a npu 0OYUCIeHHI MEXAHIYHUX HANPYXHCEHb 3ACMOCO8AHI Kld-
CUYHI CNIBGIOHOUEHHS MEMOOY CKIHYEHHUX efleMeHmie. 3asHauenuil suuje napamemp modce 6ymu iHmepnpemosanutl sx
BIOHOWLEHHSL BIOXUTIEHHS BNOPAOKOBAHUX ) NOPSAOKY 3POCMAHHSA 3HAUEHb eKeisanenmHux 3a Mizecom nanpyoicens y CKiHueH-
HUX eleMeHmax po3paxyHkogoi moodeni i0 JIHIHOL iX anpoxkcumayii 00 6I0N0BIOH020 cepeOnbo2o 3HayenHs. Tlpu yvomy
HOWYK ONMUMATLHOZ0 Pe3yibmamy 30IUCHIOEMbCS Ol YCb020 OIANA30HY MOICIUBUX ZHAYEHb 0CEPEOHEHOT «2YCIMUHU» PO3-
PAaxyHKosol obnacmi, wo noe's3ano 3i 3MEHUEHHAM KIIbKOCMI 6XIOHUX OaHUX. 3anponoHO8aHUll THMeSPAIbHULL KpUmepitl
MIYHOCMI 3a6e3neuye Kpauyy pi6HOMIYHICMb ONMUMI308AHOT MONOL02IL, 00360JI€ 321A0HCYEAMU BNIIUG TOKAbHUX NIKOGUX
3HAYEHb MEXAHIUHUX HANPYICEHb | BUSHAUAE EOUHULL Pe3ybIMam Onmumizayii, AKutl € Cmitdkum 00 nOXUGOK npu ooHUCIeH-
HAX. Aneopumm peanizo8ano y npoepamuomy cepedosuwyi MatLab ons 0sogumiprux mooeneil. Egexmugnicms nioxody an-
pobosana Ha onmumizayii kiacuyHoi 6anxku (mbb-6anku), KonconvHol 6anku i L-6anxku. Hasedeno nopisnanvruil ananiz
OMPUMAHUX pe3VIbmamis 3 HasaeHumu y simepamypi. Ilokasano, wo 3a 8i0cymnocmi 06MedHceHHs Ha 0cepeOHeHe 3HAYEeHHs
2YCMUHU CKIHUEeHHO-eNIeMeHmMHOL MOOeli 3anponoHOSAHUIL Kpumepill 0ac «Oltbul 1e2Kuil» pe3yibmam onmumizayii' y nopie-
HAHHI 3 KacuyHum (npubauszno Ha 40%), 600HOUAC 3HAUEHHS! «IHOEKCY KOHMPACMHOCMI» € 00CUMb OIUZLKUMUL.

Kniouosi cnosa: mononoziuna onmumizayis; 0806UMIPHA 3a0ayd; YMO8A MIYHOCMI; IHMEeSPALbHUL Kpumepiil; ai-
20puUmMm; Memoo CKIHUEHHUX eJleMeHmig; exgisaneHmHi 3a Mizecom HanpysicerHs..
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