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Abstract— A novel speed-flux tracking controller for 

induction motors has been developed and experimentally 
verified. Direct rotor flux field oriented controller is de-
signed for current-fed induction motor model on the base 
of full order hybrid continuous time-sliding mode flux 
observer. Controller guarantees local asymptotic speed-
flux tracking and asymptotic direct field-orientation un-
der condition of unknown constant load torque. The flux 
subsystem is invariant with respect to limited rotor re-
sistance variations due to special structure of the flux 
observer. The efficiency of the proposed solution is con-
firmed by the results of experimental studies, which 
demonstrate the improved robustness properties  in all 
motor operating conditions including nearby zero speeds. 

Keywords—induction motor, field-oriented control, sliding 
mode flux observer. 

I. INTRODUCTION 

Vector controlled Induction Motor (IM) drives are widely 
used electromechanical systems suitable for medium and high 
performance applications including general industrial and 
electric traction fields. Vector Field Oriented Control (FOC) 
[1] of IM established a de-facto industrial standard for such 
applications. Different modifications of indirect and direct 
field oriented controllers (IFOC, DFOC) have been developed 
during last few decades to improve dynamic performance and 
efficiency of the drive systems. The efficiency improvement 
techniques typically reported in publications adjust the flux 
level as a function of the electromagnetic torque using various 
optimization procedures [2]. The accurate flux regulation is 
required to achieve both control objectives. 

     In all solutions, based on FOC concept, the flux control 
subsystem is sensitive to IM parameters variation, especially 
the rotor resistance (see [3] and references included). As a 
consequence of rotor resistance perturbations the field orienta-
tion is missed, leading to errors in rotor flux vector control 
(modulus and angle). The wrong field orientation causes deg-
radation of torque and speed transient performance and re-
duced efficiency of the electromechanical energy conversion. 

    The parameter sensitivity problem of a standard IM vec-
tor control algorithms [1] is well stated and variety of solutions 
have been considered to improve the flux vector control accu-
racy. Regarding to flux estimation for DFOC schemes, it is 
proposed to use different modifications of the full order flux 
observers [4]. Designed as the closed loop systems, the full 
order flux observers potentially may deliver improved robust-
ness properties with respect to rotor parameters variations as 
compared with open loop flux estimators. However, as it is 
shown in [4], the majority of DFOC controllers for IM do not 
provide accurate flux control at near zero speed, since robusti-

fication is achieved by the action of speed dependent correc-
tion terms [5]. Being observerless solutions, the IFOC control-
lers have less degrees of freedom in control design in order to 
improve robustness. An improved IFOC controller  is designed 
and experimentally evaluated in [6], [7], where, in contrast to 
existing solutions, the flux control subsystem has closed loop 
properties, providing robustness  with respect of rotor re-
sistance variation if IM speed is not zero.   

  Starting from the pioneering works of V.Utkin [8], [9] the 
variable structure system theory established a new direction to 
solve the IM control problems. Compared to the ordinary 
control methods, the variable structure control, operating in 
sliding mode, has attractive advantages of robustness to exter-
nal disturbances and low sensitivity to the system parameter 
variations [9]. Based on the general theoretical result, given in 
[10], a variety of the sliding mode flux observers has been 
proposed for IM control. In [11] a general class of manifolds 
on which sliding mode flux observation and control are 
achieved is considered. System performance evaluation and 
robustness properties are studied by simulation. The dynamics 
of the sliding mode observer, designed in [12], is independent 
from the rotor resistance, however observer requires zero 
initial conditions for flux vector and therefore is not asymptot-
ic. From the analysis of available solutions for sliding mode 
observers it follows that their robustness properties, similarly 
to full order flux observers, are mainly based on action of the 
speed dependent correction terms. As result, the development 
of robust DFOC of IM in full speed range, including nearby 
zero speed, is still an open research problem. 

The aim of this paper is to design a new speed-flux track-
ing controller for IM based on rotor resistance invariant hybrid 
continuous time-sliding mode rotor flux observer. 

II. PROBLEM STATEMENT 

The equivalent two-phase model of the symmetrical IM, un-
der assumptions of linear magnetic circuits and balanced 
operating conditions, is expressed in an arbitrary rotating 
reference frame (d-q) as 
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where T
d q(i ,  i ) , T

d q( ,  )  , T
d q(u ,  u )  denote stator current, 

rotor flux, and stator voltage vectors, LT  – is the load torque, 

  – is the rotor speed, 2 0     – sleep frequency, 0  – 

angular position of the reference frame (d-q) with respect to 
stationary reference frame (a-b). Positive constants related to 
electrical and mechanical parameters of the IM are defined as 

 2n 2 2 2 nR L R L 0;        m 2L L ; 
1

n 1 n mR L ;     2
1 m 2 m 2L L L ; 3L 2L J ,     

where mL  – is the magnetizing inductance, 1 1R ,  L  – stator 

resistance and inductance, 2L  – rotor inductance, 2n 2R , R  – 

rated value and variation of the rotor resistance, so that 

2 2n 2R R R 0    is an actual value of rotor resistance, J  – 

is the total rotor inertia. One pole pair is assumed without loss 
of generality. 

Transformed variables in (1), (2) are given  
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J , (y z)x  – denote 2-D vectors of voltages, 

currents and fluxes. 

In DFOC systems the angular position 0  of reference 
frame (d-q) in transformation (3) is given by the flux observer.  

Considering speed-flux control task let define: vector of 

controlled variables    
T T2 2

d q, ,     y  ;  refer-

ence vector  T* * *,y   , where *  and 0    – are speed 

and flux reference trajectories; vector of tracking errors 

 T* ,  y y y    . 

Consider the IM model (2) and assume that: speed and flux 
reference trajectories * , 0    are smooth functions with 
known and bounded first and second time derivatives; stator 
currents d q(i ,  i )  and angular speed   are available for meas-

urements; load torque LT  is unknown, bounded, and constant; 
motor parameters are exactly known and constant; variation 

2R  is bounded and unknown. 

Under these assumptions, it is required to design a control-
ler which guarantees: 

О.1. Asymptotic speed and rotor flux tracking and 
asymptotic field orientation, i.e. 

t
lim 0,



t
lim 0,


 q
t
lim 0


 , with all signals bounded. 

О.2. Asymptotic flux estimation, i.e. d
t
lim 0


 , 

qt
lim 0


 , where d d q q
ˆ , ,         are the estima-

tion errors, ̂  – estimate of rotor flux magnitude.  

О.3. Invariance with respect to limited rotor resistance var-
iations 2R . 

III. CONTROLLER DESIGN  

A. Flux observer 

Let us first consider the following flux observer: 
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where d d d q q q
ˆ ˆe i i , e i i     – current estimation errors, 

d q
ˆ ˆ(i ,  i )  – estimates of d q(i ,  i ) ; 1 1 ed1 n(R k ) 0     , 

ed1(k , ) 0  . 

From (1), (2) and (4) the estimation error dynamics is giv-
en by 
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where ed n ed1k k 0   . 

According to variable system theory [9] if 

 n q d q m qmax | ( L i ) |            then in sec-

ond equation of (4) the conditions for sling mode are satisfied 
on the manifold q qe de dt 0  with equivalent control, 

equal to  

 q n q d q m qeq
sign(e ) ( L i ).                 (6) 

“Fast” movement of variable qe (t)  on the surface qe 0  

reduces the order of system (5) and provides equivalent con-
trol (6), which contains the information about flux estimation 
errors and disturbance, caused by the variations of  .  

Taking into consideration the equivalent control (6), sys-
tem  (5) is  reduced to 
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In order to provide further analysis, let consider a disturb-
ance d m d( L i )  in (7) under conditions of direct field orien-

tation. Standard structure of DFOC uses the PI flux controller 
in order to provide asymptotic regulation of the estimated 
flux. In this case ̂  asymptotically converges to * , and 

therefore: 



  * *
d m d d m d d m d dˆL i L i L i ,                (8) 

i.e. after motor excitation * *
m dL i  , when * const .  

Under condition (8) a reduced order dynamics (7) is inde-
pendent from the perturbation  and given by 
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In order to prove the stability of system (9) let introduce a 
linear coordinate transformation  

 d d dz e   , q qz   . (10) 

Dynamics (9) in new coordinates (10) becomes 
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Let consider for system (11) with 0   the following 
Lyapunov’s function: 

 2 2 2 1
d d q 1V 0.5 e (z z ) 0       . (12) 

Time derivative of (12) along the trajectories of (11) with 
0   can be derived as follows: 

 2
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From (12), (13) it can be concluded that signals 

d d q(e ,z ,z )  are bounded for all t 0 . Due to  

 ed nV(t) V(0) (k )    

the signal de  is a square-integrable. Applying the Barbalat’s 

Lemma [13], we have dt
lime 0


 . From the other hand, sys-

tem (11) with 0  , has standard form for adaptive sys-
tems 
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If for system in the standard form (14) the persistency of 
excitation conditions are satisfied [13] then an equilibrium  

T
d a b(e , z , z ) 0  is globally exponentially stable. From (10) it 

follows that T
d d qx

lim(e , , ) 0 


   as well. 

Remark 1. In [14] the persistency of excitation conditions 
are investigated for similar to (11) structure. It is shown that  
persistency of excitation conditions are satisfied for all opera-
tion modes, excluding direct current excitation mode, when 

0 0  . From the exponential stability of (11) with 0  it 

follows that original perturbed system (11) is locally asymp-
totically stable for  bounded rotor resistance variations, when 

0  . 

B. Flux controller.  

Let us define the estimated flux tracking error as 
*ˆ    , and rewrite the third equation in (4) in the form  
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For system (15) the following proportional-integral flux 
controller is designed: 
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where ik , k 0    – proportional and integral gains of flux 

controller.  

From (15) and (16), the flux tracking error dynamic can be 
derived as 
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So far as  exponentially stable subsystems (17) and (11) 
are connected in series, the composite system (11), (17) is  
exponentially stable as well for any k 0   and ik 0  , i.e. 

variables , x  converge to zero. 

From stability properties of the equilibrium 
T
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asymptotic tracking of the flux reference trajectories, because 
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C. Speed controller  

According to [6], nonlinear speed controller is given by 
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where LT̂  – integral estimation of constant LT J , which is 

proportional to load torque; ik , k 0    are speed controller 

proportional and integral gains. 

From (1) and (19) the speed tracking error dynamics  be-
comes 
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where L L L
ˆT T J T   – load estimation error. 

If T
d q( , , ) 0      , then system (19) is  linear and as-

ymptotically exponentially stable for any k 0   and 

ik 0  , i.e. variables L, T   converges to zero, correspond-

ingly control objective О.1 is satisfied. 
The complete equations of the proposed controller  

incklude:  flux observer (4); flux controller (16); speed con-



troller (18); and 
d-axis PI current controller 
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q-axis PI current controller  

 
 * *

q n q 0 d i q q

q ii q

u i i k i x ,

x k i ,

       






 (21) 

where * *
d d d q q qi i i , i i i      are current tracking errors, 

* *
d q(i ,  i )  – current references generated by flux controller (16) 

and speed controller (18) correspondingly; i iik , k 0  are the 

current controller’s proportional and integral gains. The block 
diagram of the speed-flux control system is shown in Fig.1. 
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Fig. 1. Controller’s block-diagram. 

IV. EXPERIMENTAL RESULTS 

The experiments were performed in order to compare dy-
namic performances and efficiency of the two algorithms: 
proposed direct field oriented control with rotor resistance 
invariant observer (4) (I-DFOC) and robust indirect field ori-
ented control [6] (R-IFOC). 

The experimental tests were carried out using a Rapid Pro-
totyping Station (RPS), whose block diagram is shown in Fig. 
2. The RPS includes: a personal computer acting as the opera-
tor interface for programming, debugging, virtual oscilloscope 
function; a custom floating-point Digital Signal Processor 
board (TMS320F28335); 20A/380V three-phase inverter, 
fPWM =10 kHz during experiments; two 2.2 kW induction mo-
tors, whose rated data are listed in the Appendix. The motor 
speed is measured by means of a 1024 ppr incremental encod-
er. The sampling time is set to 200 s. 
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Fig. 2. Experimental set-up of electromechanical system. 

The controller's parameters were set at: k 100  , 

ik 5000  ; k 100  , ik 2500  ; ik 700 , iik 245000 ; 

tuning parameters of the flux observer (4) are 700  , 

ed1k 0 , ˆ (0) 0.02   Wb. 

The operating sequence, reported in Fig. 3, is following:  
the machine is excited during the initial time interval 0÷0.25 s 
using a flux reference trajectory starting at 0.02 Wb and reach-
ing the motor rated value of 0.96 Wb; the unloaded motor is 
required to track the speed reference trajectory, starting at 
t = 0.6 s from zero initial value and reaching the value of 50 
rad/s (33.8 % of rated speed); at time t = 1.2 s a constant load 
torque, equal the motor rated value, is applied; at time t = 2 s 
load torque is set to zero. 

During tests with rotor resistance variations the rated load 
torque is applied at time t = 1.2 s and remains constant to the 
end of test time interval. Rotor resistance variations were in-
troduced in control algorithm, while physical value of R2 re-
mains unchanged.  
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Fig. 3. Speed, flux references and load torque profile. 

A first set of experiments, reported in Fig. 4 for R-IFOC 
and Fig. 5 for I-DFOC, was performed to compare the dynam-
ic performances of the two algorithms when motor operates in 

medium speed range ( * 50 rad s ). In figures, 2R̂  denotes 
a value of rotor resistance used in control algorithm. As it 
follows from Fig. 4 and Fig. 5, during operation at medium 
speed both controllers provides high performance speed trajec-
tory tracking with known R2 as well as under rotor variation 
conditions.  

Note, that robust properties of R-IFOC are provided by the 

speed depended correction term 2 di   in flux subsystem, 

where 2   is a tuning gain [6]. At low speeds the equivalent 

gain 2   is significantly reduced and robustness properties 
of R-IFOC are strongly  reduced as well. This effect has been 
investigated at the next stage of experiments, when motor 
operates at low speed * 5rad s (3.3% of rated). Transients 
for this case are depicted in Fig. 6 and Fig. 7 for R-IFOC and 
I-DFOC correspondingly. 

From Fig. 6.b we can conclude that in case 2 2R̂ R 0.5  
no significant difference is present in speed dynamics as com-

pared with rated transients for 2 2R̂ R 1 . However higher 
torque current (up to 40 %) is required to produce the same 
motor torque. As it is shown in Fig. 6.c the significant degra-
dation of the transient performance occurs for variation 

2 2R̂ R 1.7 . The steady state value of current qi  is almost 

45% bigger than in nominal regime.  
The results of the same tests for I-DFOC control are re-

ported in Fig. 7. Comparison of the transients, reported in 
Fig. 7.a, 7.b and 7.c, shows that I-DFOC controller 
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Fig. 4. Transients for R-IFOC at * 50 rad s . 
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Fig. 5. Transients for I-DFOC at * 50 rad s . 
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Fig. 6. Transients for R-IFOC at * 5 rad s . 
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Fig. 7. Transients for I-DFOC at * 5 rad s . 

demonstrates invariant properties with respect of rotor re-
sistance variations at low speed as well. No significant differ-
ence can be noted in transients for nominal (Fig. 7a) and per-
turbed (Fig. 7.b and Fig. 7.c) conditions. Behavior of I-DFOC 
at low speed practically the same as reported in Fig. 5 for medi-
um speed. 

A third set of experiments was carried out to compare the 
system efficiency under steady-state condition of operation. 
During investigation of steady state performance, a fixed 
reference speed of 5 rad/s is imposed. During the experi-
ments the id (flux current) is set to rated value for R-IFOC, in 



order to get the nominal rotor flux. The steady-state regulation 
errors   and di

  are negligible for both algorithms. 

The experimental test, whose results are reported in Fig. 8, 
is executed in the following way. The values of constant load 
torque have been set at:rated torque TN, 0.75TN, 0.5TN, fixing 
the output mechanical power on the level of 75, 56 and 38 W 

correspondingly. Different values of parameter 2R̂  are used in 

both control algorithms. For each value of 2R̂  the steady state 

qi  current and output inverter active power have been recorded. 

The experimental results, reported in Fig. 8.a, show that the I-
DFOC controller is able to keep almost a constant torque cur-

rent even with large 2R̂ - parameter error. The qi  current im-

posed by the R-IFOC controller considerably increases when a 

wrong 2R̂  is used. This means that, as compared to the R-IFOC 
controller, the I-DFOC controller provides the rotor resistance 
invariant stabilization of the rotor flux vector (both angular 
position and amplitude). Therefore, in most of the operating 
conditions, a reduced qi  current is required to compensate for a 

given load torque, thus considerably increasing the system 
overall energy efficiency. As it is reported in Fig. 8.b the effi-
ciency of the electromechanical energy conversion process 
considerably degrades for R-IFOC system: power losses in-

crease up to 45% when 2 2R̂ R 0.5  and increase up to 80% 

when 2 2R̂ R 1.7 . In the same cases I-DFOC system guaran-
tees the robust stabilization of the efficiency approximately on 
the rated level. 
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Fig. 8. Results of efficiency investigation.  

Nevertheless, from Fig. 8 it follows, that at light loads, rotor 
resistance variations in R-IFOC tend to improve system effi-
ciency when 2 2R̂ R . Such behaviour of the R-IFOC system 
can be explained in terms of maximum torque per Ampere 
(MTPA) optimization. It is known that, in order to achieve 
MTPA optimization at light loads, the flux level should be 
reduced. Since condition  2 2R̂ R  leads to rotor flux reduc-
tion [7], the MTPA optimization effect occurs at light loads. 
However for I-DFOC the energy efficient control strategies can 
be applied more effectively with robustly controlled flux vector. 

V. CONCLUSIONS 

A novel speed-flux tracking controller for induction motors 
has been developed and experimentally verified. Direct rotor 
flux field oriented controller is based on full order hybrid con-
tinuous time-sliding mode flux observer. Controller guarantees 

local asymptotic speed-flux tracking and asymptotic direct 
field-orientation under condition of unknown constant load 
torque. The flux subsystem is invariant with respect to lim-
ited rotor resistance variations due to special structure of the 
flux observer. The high performance speed tracking and 
efficiency of the proposed solution are confirmed by the 
results of experimental studies. It is shown by experiment, 
that in contrast to existing robust controllers, developed one 
provides an improved robustness properties with respect to 
rotor resistance variations in all motor operating conditions 
including nearby zero speeds. 

APPENDIX 
IM parameters: rated power 2.2 kW; rated speed 1410 rpm; rated 
torque 15 Nm; number of poles 2p = 4; rated current 5 ARMS; rated 
voltage 380 VRMS; R1 = 4.1 R2 = 1.975 Lm = 0.2515 H; 
L1 = 0.264 H; L2 = 0.264 H; J = 0.016 kgm2. 
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