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Abstract – The research task is to find a solution to the problem of reducing the risk of collisions while managing a set of auxiliary robots. This task can be solved in two ways. The first approach is the development of algorithms for choosing the motion trajectory of robots. The second one is to reduce the number of auxiliary robots to the minimum required in a certain amount of time. The study focuses on the second approach. Rigidly programmed systems, although they do the job, are not always flexible and adaptive. Systems that can independently analyze the state of certain data, find patterns, and predict, are more efficient and necessary for the further development of the industry. The study proposes a solution based on the use of a neural network in the management system of auxiliary work. An analytical unit was added to the control system to predict the optimal number of robots needed on the line by the number of applications. This gives the system a high level of flexibility in the overall loading and shipping process. Control systems with and without the analytical unit in two different scenarios are studied, both in the constant and randomized increment of applications. In both cases, the use of the analytical block in the control system allowed reducing the number of auxiliary robots in production. The experimental results show that the proposed solution gives the same amount of applications to be completed by fewer auxiliary robots in less time, and it results in reduction of the number of collisions during the movement of robots. The emergence of this structure improves navigation efficiency and allows reducing production maintenance costs. In addition, the results showed scalability for production. A well-established system for managing robotic devices can guarantee the efficiency of the production process.
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I. Introduction

The robotization of production processes has begun to play an important role at the present time. Over the past decade, the development of robotics has been proceeding at a high speed, and the field of application of robots is becoming wider with the introduction of their new skills and capabilities, which make it possible to minimize the routine and hard work for humans [1]. In the developed countries of Europe, more interest is shown in industrial robotics in production, since automation and robotization of the process are profitable and qualitative and occupy more than 80% of the industrial market [2]. For example, robotic tower cranes [3], 3D printers [4], mechanized arms [5], and so on. However, despite the advances, there are still some obstacles that prevent the creation of autonomous and reliable robots. Enterprises and production are trying to automate their processes to increase efficiency and reduce costs. Industrial robots widely used as vehicles are usually considered moving objects. They do the hard work of moving tools and materials from active modules to the warehouse and vice versa, as well as manipulate blanks and finished products [6,7]. 

The high speed and power of industrial robots during production line operations often require physical barriers to protect the operator. Over the past decade, safer collaborative robots have been introduced into production that require partial physical barriers or without them [8]. Their distinguishing feature is the fixed location of the operator's workstation for the moving robot.

The complete or partial absence of physical barriers depends on aspects such as geometric shapes, control systems, and safety devices, the functionality of which affects the level of safety for the operator and the robot [9]. Each mechanism uses its own motion trajectory, which is either rigidly defined or formed by an algorithm tuned to perform a specific function. As the number of objects to perform can be large, algorithms can cause conflicts, and the robots themselves may not work smoothly in case of an unusual situation [10,11].

Many robotic tools are in warehouses and operate in production. Robots that produce or process parts are often stationary, while warehouse robots are mobile, allowing products to be transported from one module to another without the use of human force. Such work requires smooth coordination of movement and processing of requests for operation execution, as the work of the entire production may depend on this. WMS (warehouse management system), which is intended for automatic control of vehicles and warehouse devices (Fig. 1), is becoming increasingly widespread [12,13].
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Fig. 1. WMS structure
An overview of existing WMS has shown that it comes with a wide range of different subsystems [14-16]. The main tasks of WMS are cataloging, turnover, document management; however, this automation tends only to the issues related to human activity and bypasses the regulation of implemented or existing robotic devices. The control system for robotic devices is usually either absent or implemented as an additional unit [17]. The lack of a control system or the inability to debug a built-in program in a robotic device leads to additional production problems in organizing the entire production process [18]. From this it can be concluded that the development of a subsystem management of robotic tools in the warehouse is relevant. There is an urgent need to develop computational methods that can make decisions based on training samples and feedback. This can contribute to the creation and improvement of intelligent robotic systems [19,20]. The main requirements to consider when designing the system are the following:

· ease of implementation and configuration changes;

· adaptability in production;

· intelligence.

The purpose of this study was to develop an approach for automating a control system with a minimum number of auxiliary robots required for the production process within a certain period of time. The methodology of this approach is based on the use of a neural network in the auxiliary work control system. An analytical block has been added to the control system to predict the optimal number of robots needed per line based on the number of applications; the block gives the system a high level of flexibility in the overall loading and unloading process. Control systems are studied with and without an analytical block in two different scenarios, both in constant and in random application increments.

Since robots assistants and warehouse robots are often mobile and require process coordination, the proposed control system is aimed specifically at these devices. In future, the system can be expanded and applied in other areas, new functionality can be added.

II. Materials, Calculations and Methods

II.1. Management system architecture

Microservice architecture is the most suitable for a warehouse automation system [21]. Microservice architecture refers to an architectural style in which the program is presented as small services that are not closely related. As each service is provided with a separate process, it is usually more productive than using a monolithic program. This architecture has long been used by Amazon, E-Bay, SoundCloud, Netflix, thus, this architecture is relevant and justified.

The proposed management system includes the following:

· application management service;

· system management service;

· analytical forecasting unit.

Each microservice corresponds to one specific process. Although microservices are independent, they can work together to perform actions, operations, and methods if necessary. Communication of microservices goes via API.

The task of reducing the risk of collisions when managing a set of support robots can be solved in two ways. The first is the development of algorithms for choosing the trajectory of robot movement (service management of robots in the system). The second is to reduce the number of auxiliary robots to the minimum required in a certain period of time (the analytical unit is responsible for this). The study focuses on the second direction, since it is almost not used in existing systems.

II.2. Application management service

The service is represented by the HelpDesk architecture [22], which is designed to automate the processing of requests made by the system or received from users.

The main functions of the service of the lock management are the following:

· creating an application;

· application status;

· request for application status;

· reviewing the application queue;

· submission of the application;

· change of application status;

· deleting an application.

II.3. Robot control service

The mobile device control system controls active and passive production robots.

The system is coordinated using a central server. As the robots move, they exchange brief messages about the status, position relative to the objects, thus giving the central server all the information to control them. The server analyzes the data received from the robots and gives them commands for further action [23].

The main functions of the robot control system are the following:

· registration of the device in the system;

· assignment of a job status;

· assignment of a request to a moving device;

· processing the application by a moving device;

· reviewing the status of the robot;

· removal of work from the system.

II.4. Analytical forecasting unit

One approach to forecasting and management is neural networks, which are widely used in various fields and are gradually replacing hard-programmed blocks. The neural network can effectively act as a tool for forecasting the performance of robotic manufacturing and robotic devices in particular. The advantage is that it can learn from previous data, so it can respond to situations in real time or adjust to changes.

The proposed system has a neural network analytical unit that predicts whether to add or remove active robots from the production line.

Optimization criteria are the following:

· time of unloading and loading operations;

· transportation time between enforcement processes;

· waiting time for the application to be completed (waiting time for the application to be queued);

· downtime of auxiliary equipment (assistant robots and carriers);

· number of auxiliary equipment (assistants and carriers).

STATISTICA was used to determine the best neural network architecture. This package allows creating a large number of neural networks with different configuration and architecture.

The input parameters for the network construction are selected applications in the queue for execution and the increase in the number of inactive robots. Both parameters are measured after the same time period. The robot execution time of the application is a known value. One robot can only execute one application and then move to another.

The training sample is formed on the basis of a randomized value, so that there are "extreme" situations in the system that the networks need to tune to.

To train the forecasting system, a training sample of 1000 different tracks that covered different sizes of production was used:

· small production – up to 15 movable objects, up to 50 racks, length of the route up to 3 km;

· medium production – up to 40 moving objects, up to 120 racks, length of the route up to 8 km;

· large production – up to 100 moving objects, up to 200 racks, length of the route up to 25 km.

Thousands of neural networks with architectures were generated:

· single-layer perceptron (SP);

· multilayer perceptron (MP);

· radial basis functions (RBF).

The 8 best neural networks obtained are presented in Table 1.
TABLE I

Top neural networks by learning outcomes
	#
	Architecture
	Training time, s
	Testing time, s
	Validation MSE
	Testing MSE

	1
	MP 2:20-16-1:1
	0.231126
	0.270568
	0.327128
	0.082303

	2
	MP 2:20-2-1:1
	0.323598
	0.340073
	0.041620
	0.003542

	3
	MP 2:20-10-1:1
	0.311351
	0.337140
	0.040050
	0.660365

	4
	RBF 2:20-18-1:1
	0.156097
	0.281670
	0.009048
	0.075016

	5
	RBF 2:20-14-1:1
	0.193419
	0.218406
	0.002488
	0.002634

	6
	RBF 2:20-4-1:1
	0.203810
	0.253800
	0.054061
	0.099805

	7
	RBF 2:20-3-1:1
	0.315955
	0.249358
	0.083822
	0.101360

	8
	MP 2:20-2-1:1
	0.443478
	0.221179
	0.005928
	0.105905


As a result of the training, a neural network with radial basis function architecture with a layer ratio of 2:20-14-1:1 was selected, with a validation MSE of 0.002488.

III. Results and Discussion

To test the system, the process of automated warehouse operation was simulated. Here, applications mean movement of the robots from a certain point to the end point. Loading and unloading time are considered to be 1.5 min. The system output is a log file with the number of robots in idle mode and the number of applications in a queue within 1 minute. The neural network receives information about the increase in number of inactive robots and the number of applications in the queue. Neighboring values are subtracted from the log file, incremented every 2 minutes.

The neural network recommends whether the number of robots on the line should be increased. With a forecast of more than 55%, 1 robot that appears at the beginning of the warehouse is added to the line.

Applications are generated using a randomizer and determine the endpoint. The endpoints can be: the beginning of the warehouse, shelving, the end of the warehouse.

The following experiments were performed:

· comparison of system performance with constant increment of applications in the queue;

· comparison of system performance with randomized incremental applications.

These experiments were performed with and without the use of a neural network. In case where the neural network is absent, when all robots are loaded and the period of application failover exceeds 10 min per line, one robot is added to the line. Such an organization is based on the presumption that all the robots can be active, but they cope with the task, so additional units of objects movement are not needed.

The test tracks are generated automatically with the following parameters: tilt angle from 30° to 130°; number of racks up to 100 units. An example of the route is shown in Fig. 2, the results of the research – in Figs. 3-7.
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Fig. 2. Example of test track

All studies were conducted on three types of tracks to simulate work in small, medium and large productions (Table 2). For each experiment 150 applications were submitted.
TABLE I

Characteristics of test situations

	#
	Production size
	The initial number of robots on the line
	The total number of robots
	The initial number of applications in the queue
	Increase in applications

	1
	small
	2
	8
	5
	2 every 2 minutes

	2
	medium
	10
	45
	20
	8 every 2 minutes

	3
	large
	25
	72
	43
	15 every 2 minutes
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Fig. 3. Dependence between application execution time and production size and type of control system with constant increment of applications
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Fig. 4. Dependence between downtime and production size and type of control system with constant increment of applications
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Fig. 5. Dependence between application execution time and production size and type of control system with randomized increment of applications
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Fig. 6. Dependence between downtime and production size and type of control system with randomized increment of applications
Results review shows that all the works were involved in the control system without the analytical block, and the downtime was ~ 18% of the total working time.
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Fig. 7. Dependence between the number of active robots and production size and type of control system with randomized increment of applications
Although the situation data are simulated, they reflect real situations in automated warehouses. When comparing the results, it can be seen that the system with the analytical prediction unit in both tests coped with the task faster, which indicates feasibility of using this system. Another important factor is that not all robots have been used in the modeling of medium and large enterprises, that is, the system with the analytical unit has improved performance with fewer units involved. This means that maintenance and electricity costs are lower, so the system is also economically viable.

Improving the control system of industrial robots using artificial intelligence has been carried out in a number of other works. In [24], the authors pursued the goal of improving warehouse security by optimizing RFID and real-time location technologies. In their approach, the main task was to optimize the path maps of neighboring robots and the error correction method using fuzzy logic techniques. In another work [25], the optimization of the trajectory of mobile robots was carried out using a developed path planning algorithm using a QR code sticker on the floor. Using Djikstra's approach to optimize the motion control and path planning algorithm has also shown good results for the prevention of possible collisions of robots [26]. As can be seen, the above results of the work indicate that in order to optimize the control system in warehouses, it is necessary to improve the trajectory of robots, but they did not take into account the optimization of time and energy consumption during the operation of collecting goods, as was shown in the present work. This indicates that the use of neural network techniques allows one not only to optimize the path, but also to reduce the time for performing operations, which leads to a decrease in energy consumption and the use of additional robots.

A similar approach was used in [27], where the technique of constructing a fuzzy architecture for autonomous robot navigation was used to improve the control system. The basis of this approach is the development of an odometric system for determining the position and orientation of the robot in real time, which, as the results show, allows saving energy consumption and maintaining the accuracy of performing tasks for robots. The effectiveness of methods for planning the optimal trajectory of robots in real time using artificial intelligence methods was shown in the works [28-30]. These results are in good agreement with the results of the current work, which indicates the correctness of the chosen strategies and methods for improving control systems for robots in warehouses. The results obtained in this work give a new scientific contribution to the field of intelligent control systems and can be used in other areas of practical application. 

IV. Conclusions

This paper proposes a new approach to automating the control system with minimizing energy consumption and robot trajectories in real time using the neural network method. It is shown that the addition of an analytical block to the system architecture for predicting the optimal number of robots required on the line gives the system a high level of flexibility in the overall loading and unloading process. Comparative analysis of systems with and without an analytical block showed that the proposed system with an analytical block allows the use of assistive robots in production of various sizes – both large and small. The use of microservice architecture makes it possible to scale and edit each microservice separately, which greatly simplifies the task of improving and adapting the system. The proposed technique can be used for control systems in other areas of industry and in studies of new possibilities and improvement of existing systems of a new generation of robots in warehouse production.
V. Abbreviations and Acronyms
WMS – warehouse management system

API – Application Programming Interface

SP – single-layer perceptron

MP – multilayer perceptron 

RBF – radial basis functions 

MSE – mean squared error

HelpDesk – an automated system created to control the processing and execution of client requests.
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