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Abstract. We investigate a general nonhomogeneous initial-boundary value prob-

lem for a two-dimensional parabolic equation in some anisotropic Hörmander inner
product spaces. We prove that the operators corresponding to this problem are
isomorphisms between appropriate Hörmander spaces.

1. Introduction

The modern theory of general parabolic initial-boundary problems has been developed
for the classical scales of Hölder–Zygmund and Sobolev function spaces [1, 5, 6, 8, 11, 15,
17, 26, 46]. The central result of this theory states that these problems are well posed
in the sence of Hadamard in appropriate pairs of the function spaces belonging to these
scales.

In 1963 Hörmander [9] proposed a broad generalization of the Sobolev spaces in the
framework of Hilbert spaces. He introduced the spaces

B2,µ :=
{
w ∈ S ′(Rk) : µ(ξ)ŵ(ξ) ∈ L2(Rk, dξ)

}
,

for which a general Borel measurable weight function µ : Rk → (0,∞) serves as an index
of regularity of a distribution w. These spaces and their versions within the category
of normed spaces have found various applications to analysis and partial differential
equations [7, 12,18,33,34,36,37,44,45].

Recently Mikhailets and Murach [27–29, 31, 35] have built a theory of solvability of
general elliptic systems and elliptic boundary-value problems on Hilbert scales of spaces
Hs;φ := B2,µ for which the index of regularity is of the form

µ(ξ) := (1 + |ξ|2)s/2φ((1 + |ξ|2)1/2).
Here, s is a real number, and φ is a function varying slowly at infinity in the sense of
Karamata [13]. This theory is based on the method of interpolation with a function
parameter between Hilbert spaces, specifically between Sobolev spaces.

Generally, the method of interpolation between normed spaces proved to be very useful
in the theory of elliptic [2, 16, 43] and parabolic [17, 26] partial differential equations.
Using method of interpolation with a function parameter between Hilbert spaces, Los,
Mikhailets, and Murach proved theorems on solvability of parabolic problems in 2b-
anisotropic Hörmander spaces Hs,s/(2b);φ, where 2b is a parabolic weight and where the
parameters s and φ are the same as those in the above mentioned elliptic theory. They
considered general parabolic problems with homogeneous initial conditions (Cauchy data)
[23, 24] and parabolic problems of second order with nonhomogeneous initial conditions
[19,21,22,25].
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In this paper we consider a general nonhomogeneous initial-boundary value problem
for a two-dimensional parabolic equation. The purpose of the paper is to prove that the
operator corresponding to this problem sets isomorphisms between appropriate above-
mentioned 2b-anisotropic Hörmander spaces.

2. Statement of the problem

Let Ω := (0, l)×(0, τ), where positive numbers l and τ are chosen arbitrarily. Consider
the following linear parabolic initial–boundary value problem in the open rectangle Ω:

A(x, t,Dx, ∂t)u(x, t)

≡
∑

α+2bβ≤2m

aα,β(x, t)Dα
x∂

β
t u(x, t) = f(x, t) in Ω,(2.1)

Bj,0(t,Dx, ∂t)u(x, t)
∣∣
x=0

≡
∑

α+2bβ≤mj

bα,βj,0 (t)Dα
x∂

β
t u(x, t)

∣∣
x=0

= gj,0(t) and(2.2)

Bj,1(t,Dx, ∂t)u(x, t)
∣∣
x=l

≡
∑

α+2bβ≤mj

bα,βj,1 (t)Dα
x∂

β
t u(x, t)

∣∣
x=l

= gj,1(t)(2.3)

for 0 < t < τ and j = 1, . . . ,m,

∂kt u(x, t)
∣∣
t=0

= hk(x) for 0 < x < l and k = 0, . . . ,κ − 1.(2.4)

Here b, m, and allmj are arbitrarily fixed integers such thatm ≥ b ≥ 1, κ := m/b ∈ Z,
andmj ≥ 0. All coefficients of the partial differential expressions A := A(x, t,Dx, ∂t) and
Bj,k := Bj,k(t,Dx, ∂t), with j ∈ {1, . . . ,m} and k ∈ {0, 1}, are supposed to be complex-

valued and infinitely smooth functions; namely, aα,β ∈ C∞(Ω) and bα,βj,k ∈ C∞[0, τ ],

where Ω := [0, l]× [0, τ ] as usual. We use the notation Dx := i ∂/∂x and ∂t := ∂/∂t for
partial derivatives and take summation over the integer-valued indexes α, β ≥ 0 satisfying
the conditions indicated.

Recall [1, § 9, Subsec. 1] that the initial–boundary value problem (2.1)–(2.4) is said
to be parabolic in Ω if the following three conditions are fulfilled:

(i) Given any x ∈ [0, l], t ∈ [0, τ ], ξ ∈ R, and p ∈ C with Re p ≥ 0, we have

A(0)(x, t, ξ, p)

≡
∑

α+2bβ=2m

aα,β(x, t) ξαpβ ̸= 0 whenever |ξ|+ |p| ̸= 0.

(ii) Let x ∈ {0, l}, t ∈ [0, τ ], and p ∈ C \ {0} with Re p ≥ 0 be arbitrary. Then the
polynomial A(0)(x, t, ξ, p) in ξ ∈ C has m roots ξ+j (x, t, p), j = 1, . . . ,m, with
positive imaginary part and m roots with negative imaginary part provided that
each root is taken the number of times equal to its multiplicity.

(iii) Assume that x, t, and p are the same as ones considered in (ii). Let k := 0 if
x = 0, and let k := 1 if x = l. Then the polynomials

B
(0)
j,k (t, ξ, p) ≡

∑
α+2bβ=mj

bα,βj,k (t) ξ
αpβ , j = 1, . . . ,m,

in ξ are linearly independent modulo

m∏
j=1

(
ξ − ξ+j (x, t, p)

)
.
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We investigate parabolic problem (2.1)–(2.4) in appropriate Hörmander inner product
spaces considered in the next section.

Note, in the paper, all functions (and distributions) are supposed to be complex-
valued.

3. Hörmander spaces

Here, we will define the Hörmander inner product spaces being used in the paper.
The regularity properties of the distributions belonging to these spaces are characterized
by two number parameters and a function parameter. The latter runs over a certain
function class M, which is defined as follows.

The class M consists of all functions φ : [1,∞) → (0,∞) such that

a) φ is Borel measurable on [1,∞);
b) both the functions φ and 1/φ are bounded on each compact interval [1, d], with

1 < d <∞;
c) φ is a slowly varying function at infinity in the sense of J. Karamata; i.e.,

(3.1) lim
r→∞

φ(λr)

φ(r)
= 1 for every λ > 0.

Remark 3.1. The theory of slowly varying functions is set forth in the monographs [4,40].
We give an important and standard example of functions satisfying (3.1) if we put

(3.2) φ(r) := (log r)θ1 (log log r)θ2 . . . ( log . . . log︸ ︷︷ ︸
k times

r )θk for r ≫ 1,

where the parameters k ∈ N and θ1, θ2, . . . , θk ∈ R are chosen arbitrarily. The functions
(3.2) form the logarithmic multiscale, which has a number of applications in the theory of
function spaces. Some other examples of slowly varying functions can be found in [4, Sec.
1.3.3] and [33, Sec. 1.2.1].

Let s ∈ R, φ ∈ M, and γ := 1/(2b). By definition, the linear space Hs,sγ;φ(R2)
consists of all tempered distributions w ∈ S ′(R2) such that their Fourier transform w̃ (in
two variables) is locally Lebesgue integrable over R2 and satisfies the condition

(3.3)

∞∫
−∞

∞∫
−∞

r2sγ (ξ, η)φ2(rγ(ξ, η)) |w̃(ξ, η)|2 dξdη <∞.

Here and below we use the notation

rγ(ξ, η) :=
(
1 + |ξ|2 + |η|2γ

)1/2
for each ξ, η ∈ R.

The space Hs,sγ;φ(R2) is endowed with the inner product

(w1, w2)Hs,sγ;φ(R2) :=

∞∫
−∞

∞∫
−∞

r2sγ (ξ, η)φ2(rγ(ξ, η)) w̃1(ξ, η) w̃2(ξ, η) dξdη,

where w1, w2 ∈ Hs,sγ;φ(R2). It induces the norm

∥w∥Hs,sγ;φ(R2) := (w,w)
1/2
Hs,sγ;φ(R2),

which is equal to the square root of the left-hand side of inequality (3.3).
Note that Hs,sγ;φ(R2) is the inner product Hörmander space B2,µ(R2) which corre-

sponds to the function parameter

µ(ξ, η) := rsγ(ξ, η)φ(rγ(ξ, η)) for ξ, η ∈ R.
We refer the reader to the monographs by L. Hörmander [9, Sec. 2.2], [10, Sec. 10.1], and
to the paper by L. R. Volevich and B. P. Paneah [45], where such spaces are investigated
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systematically. It follows from properties of Hörmander spaces that the spaceHs,sγ;φ(R2)
is Hilbert and separable, is embedded continuously in S ′(R2), and the set C∞

0 (R2) is dense
in Hs,sγ;φ(R2).

If φ(r) ≡ 1, then Hs,sγ;φ(R2) becomes the anisotropic Sobolev space of order (s, sγ);
we denote this space by Hs,sγ(R2).

Every space Hs,sγ;φ(R2), with s ∈ R and φ ∈ M, is closely connected to anisotropic
Sobolev spaces. Specifically, we have the continuous and dense embeddings

(3.4) Hs1,s1γ(R2) ↪→ Hs,sγ;φ(R2) ↪→ Hs0,s0γ(R2) whenever s0 < s < s1.

They follow from the next property of φ ∈ M: for each ε > 0 there exist a number
c = c(ε) ≥ 1 such that c−1r−ε ≤ φ(r) ≤ c rε for all r ≥ 1 (see [40, Sec. 1.5, Subsec. 1]).

Consider the class of Hilbert function spaces

(3.5)
{
Hs,sγ;φ(R2) : s ∈ R, φ ∈ M

}
.

Owing to the embeddings (3.4) we may assert that in (3.5) the function parameter
φ defines a supplementary (subpower) smoothness with respect to the basic (power)
anisotropic (s, sγ)-smoothness. Specifically, if φ(r) → ∞ [φ(r) → 0] as r → ∞, then
φ defines a positive [negative] supplementary smoothness. In other words, φ refines the
power smoothness (s, sγ).

Using this scale, let us introduce some function spaces related to the parabolic problem
under consideration. As before, s ∈ R and φ ∈ M. We define the normed linear space

Hs,sγ;φ(Ω) :=
{
w � Ω : w ∈ Hs,sγ;φ(R2)

}
,

∥u∥Hs,sγ;φ(Ω) := inf
{
∥w∥Hs,sγ;φ(R2) : w ∈ Hs,sγ;φ(R2), w = u in Ω

}
,(3.6)

with u ∈ Hs,sγ;φ(Ω). In other words, Hs,sγ;φ(Ω) is the factor space of the space
Hs,sγ;φ(R2) by its subspace

(3.7) Hs,sγ;φ
Q (R2) :=

{
w ∈ Hs,sγ;φ(R2) : suppw ⊆ Q := R2 \ Ω

}
.

Thus, Hs,sγ;φ(Ω) is a separable Hilbert space. The norm (3.6) is induced by the inner
product

(u1, u2)Hs,sγ;φ(Ω) := (w1 −Υw1, w2 −Υw2)Hs,sγ;φ(R2),

where wj ∈ Hs,sγ;φ(R2), wj = uj in Ω for each j ∈ {1, 2}, and Υ is the orthogonal
projector of the space Hs,sγ;φ(R2) onto its subspace (3.7).

It follows directly from the definition of Hs,sγ;φ(Ω) and properties of Hs,sγ;φ(R2) that
the space Hs,sγ;φ(Ω) is continuously embedded in the linear topological space D′(Ω) of
all distributions on Ω and that the set

C∞(Ω) :=
{
w �Ω : w ∈ C∞

0 (R2)
}

is dense in Hs,sγ;φ(Ω).
It remains to introduce the function spaces in which the right-hand sides of the

boundary-value and initial-value conditions (2.2), (2.3) and (2.4) are considered. Let
s ∈ R and φ ∈ M. By definition, the linear space Hs;φ(R) consists of all tempered dis-

tributions h ∈ S ′(R) such that their Fourier transform ĥ is locally Lebesgue integrable
over R and satisfies the condition

∞∫
−∞

⟨ξ⟩2s φ2(⟨ξ⟩) |ĥ(ξ)|2 dξ <∞.
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Here, as usual, ⟨ξ⟩ := (1 + |ξ|2)1/2 is the smooth modulus of ξ ∈ R. The space Hs;φ(R)
is endowed with the inner product

(h1, h2)Hs;φ(R) :=

∞∫
−∞

⟨ξ⟩2s φ2(⟨ξ⟩) ĥ1(ξ) ĥ2(ξ) dξ,

where h1, h2 ∈ Hs;φ(R). It induces the norm

∥h∥Hs;φ(R) := (h, h)
1/2
Hs;φ(R).

Notice that Hs;φ(R) is the inner product Hörmander space B2,µ(R) corresponding to
the function parameter µ(ξ) := ⟨ξ⟩sφ(⟨ξ⟩) of ξ ∈ R (see the references [9,10,45] mentioned
above). Therefore Hs;φ(R) is a separable Hilbert space embedded continuously in S ′(R),
and the set C∞

0 (R) is dense in Hs;φ(R).
If φ(r) ≡ 1, then Hs;φ(R) becomes the Sobolev space Hs(R) of order s. Analogously

to (3.4), we have the continuous and dense embedding

(3.8) Hs1(R) ↪→ Hs;φ(R) ↪→ Hs0(R) whenever s0 < s < s1, φ ∈ M.

The class of Hilbert function spaces

(3.9)
{
Hs;φ(R) : s ∈ R, φ ∈ M

}
is called the refined Sobolev scale over R (see [32, Sec. 3.2] and [33, Sec.1.3.3]).

Using this scale, introduce one-dimensional analogs of the spaces considered above.
Let real d > 0. We define the normed linear space

Hs;φ(0, d) :=
{
h� (0, d) : h ∈ Hs;φ(R)

}
,

∥v∥Hs;φ(0,d) := inf
{
∥h∥Hs;φ(R) : h ∈ Hs;φ(R), h = v in (0, d)

}
,

with v ∈ Hs;φ(0, d). This space is separabel Hilbert as it is the factor space of Hs;φ(R)
by

(3.10)
{
h ∈ Hs;φ(R) : supph ⊆ (−∞, 0] ∪ [d,∞)

}
.

It follows directly from the definition of Hs;φ(0, d) and properties of Hs;φ(R) that the
set

C∞[0, d] :=
{
h� [0, d] : h ∈ C∞

0 (R)
}

is dense in Hs;φ(0, d).
Note that the classes of isotropic inner product spaces{

Hs;φ(R) : s ∈ R, φ ∈ M
}

and
{
Hs;φ(0, d) : s ∈ R, φ ∈ M

}
were selected, investigated, and systematically applied to elliptic differential operators
and elliptic boundary-value problems by Mikhailets and Murach [32,33].

If φ ≡ 1, then the considered spaces Hs,sγ;φ(Ω) and Hs;φ(0, d) become the Sobolev
spaces Hs,sγ(Ω) and Hs(0, d) respectively. It follows directly from (3.4) that

(3.11) Hs1,s1γ(Ω) ↪→ Hs,sγ;φ(Ω) ↪→ Hs0,s0γ(Ω) whenever s0 < s < s1.

Analogously,

(3.12) Hs1(0, d) ↪→ Hs;φ(0, d) ↪→ Hs0(0, d) whenever s0 < s < s1;

see [33, Theorems 2.3(iii) and 3.3(iii)]. These embeddings are continuous and dense. Of
course, if s = 0, then Hs,sγ(Ω) and Hs(0, d) are the Hilbert spaces L2(Ω) and L2(0, d)
of all square integrable functions given on the corresponding measurable sets.

In the Sobolev case of φ ≡ 1, we will omit the index φ in designations of function
spaces that will be introduced on the base of the Hörmander spaces Hs,sγ;φ(Ω) and
Hs;φ(0, d).
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4. Main result

Here, we formulate an isomorphism theorem for the parabolic problem (2.1)–(2.4) in
Hörmander spaces introduced above.

First note, in order that a regular enough solution u of the problem (2.1)–(2.4) exist,
the right-hand sides it’s problem should satisfy certain compatibility conditions (see,
e.g., [1, Section 11] or [15, Chapter 4, Section 5]). These conditions consist in that the
partial derivatives ∂kt u(x, t)

∣∣
t=0

, which could be found from the parabolic equation (2.1)
and initial conditions (2.4), should satisfy the boundary conditions (2.3), (2.4) and some
relations that are obtained by means of the differentiation of the boundary conditions
with respect to t. To write these compatibility conditions we use Sobolev inner product
spaces.

Let

σ0 := max{2m,m1 + 1, . . . ,mm + 1}.
Note, if mj ≤ 2m− 1 for each j ∈ {1, . . . ,m}, then σ0 = 2m.

We associate the linear mapping

u 7→ Λu :=
(
Au,B1,0u,B1,1u, . . . , Bm,0u,Bm,1u,

u�[0,l], . . . , (∂κ−1
t u)�[0,l]

)
, u ∈ C∞(Ω).

(4.1)

with the problem (2.1)–(2.4).
Let real s ≥ σ0; the mapping (4.1) extends uniquely (by continuity) to a bounded

linear operator

(4.2)

Λ : Hs,s/(2b)(Ω) → Hs−2m,(s−2m)/(2b) := Hs−2m,(s−2m)/(2b)(Ω)⊕

⊕
m⊕
j=1

(
H(s−mj−1/2)/(2b)(0, τ)

)2 ⊕ κ−1⊕
k=0

Hs−2bk−b(0, l).

This follows directly from [41, Chapter I, Lemma 4, and Chapter II, Theorems 3 and 7].
Choosing any function u(x, t) from the space Hs,s/(2b)(Ω), we define the right-hand sides

(4.3)
f ∈ Hs−2m,(s−2m)/(2b)(Ω), gj,λ ∈ H(s−mj−1/2)/(2b)(0, τ), hk ∈ Hs−2bk−b(0, l)

for all λ ∈ {0, 1}, j ∈ {1, . . . ,m} and k ∈ {0, . . . ,κ − 1}

of the problem by the formula

(f, g1,0, g1,1, ..., gm,0, gm,1, h0, ..., hκ−1) := Λu

with the help of this bounded operator.
Compatibility conditions for functions f , gj,λ and hk naturally arise in such a way.

According to [41, Chapter II, Theorem 7], the traces ∂ kt u(·, 0) ∈ Hs−2bk−b(0, l) are well
defined by closure for all k ∈ Z such that 0 ≤ k < s/(2b) − 1/2 (and only for these k).
These traces should be expressed from the equation (2.1) and the initial data (2.4) by
functions f and hk as follows.

The parabolicity condition (i) in the case of ξ = 0 and p = 1 means that the coefficient
a0,κ(x, t) ̸= 0 for all x ∈ [0, l] and t ∈ [0, τ ]. Therefore we can resolve the parabolic
equation (2.1) with respect to ∂κt u(x, t); namely, we can write

(4.4) ∂κt u(x, t) =
∑

α+2bβ≤2m,
β≤κ−1

aα,β0 (x, t)Dα
x∂

β
t u(x, t) + (a0,κ(x, t))−1f(x, t)

for some functions aα,β0 ∈ C∞(Ω). Using initial data (2.4), equality (4.4) and, in the case
k > κ the equalities obtained from (4.4) by differentiating it (k − κ) times with respect
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to t, we obtain the recurrent formula for traces ∂ kt u(x, 0):

∂ kt u(x, 0) = hk(x) if k ∈ {0, . . . ,κ − 1},

∂ kt u(x, 0) =
∑

α+2bβ≤2m,
β≤κ−1

k−κ∑
q=0

(
k − κ
q

)
∂ k−κ−q
t aα,β0 (x, 0)Dα

x∂
β+q
t u(x, 0)+

+ ∂ k−κ
t

(
(a0,κ(x, 0))−1f(x, 0)

)
if k ≥ κ

(4.5)

for each k ∈ Z such that 0 ≤ k < s/(2b) − 1/2. These equalities holding for almost all
x ∈ (0, l).

Besides, according to (4.3) and Sobolev embedding theorem, for each j ∈ {1, . . . ,m}
and λ ∈ {0, 1} the traces ∂ kt gj,λ(0) ∈ C are well defined for all k ∈ Z such that 0 ≤ k <
(s−mj − 1/2− b)/(2b) (and only for these k). We can express these traces in terms of
the function u(x, t) and its time derivatives; namely,

(4.6)

∂kt gj,λ(0) =
(
∂kt Bj,λu(x, t)

)
|t=0

=
∑

α+2bβ≤mj

k∑
q=0

(
k

q

)
∂ k−qt bα,βj,λ (0)D

α
x∂

β+q
t u(x, 0),

where x = 0 if λ = 0 and x = l if λ = 1. Here, all the functions u(x, 0), ∂tu(x, 0),...,

∂
[mj/(2b)]+k
t u(x, 0) of x ∈ (0, l) are expressed in terms of the functions f(x, t) and
h0(x),...,hκ−1(x) by the recurrent formula (4.5). Here and below [mj/(2b)] denotes the
integer part of mj/(2b).

Substituting (4.5) in the right-hand side of formula (4.6), we obtain the compatibility
conditions

(4.7)

∂ kt gj,0|t=0 = Bj,0,(k)[v0, . . . , v[mj/(2b)]+k],

∂ kt gj,1|t=0 = Bj,1,(k)[v0, . . . , v[mj/(2b)]+k],

with k ∈ Z and 0 ≤ k <
s−mj − 1/2− b

2b
and j ∈ {1, . . . ,m}.

Here, for all above-mentioned j and k the functions v0, ..., v[mj/(2b)]+k are defined on
(0, l) by the recurrent formula

vµ(x) := hµ(x) if µ ∈ {0, . . . ,κ − 1},

vµ(x) :=
∑

α+2bβ≤2m,
β≤κ−1

µ−κ∑
q=0

(
µ− κ
q

)
∂ µ−κ−q
t aα,β0 (x, 0)Dα

xvβ+q(x)+

+ ∂ µ−κ
t

(
(a0,κ(x, 0))−1f(x, 0)

)
if µ ≥ κ;

(4.8)

and we put

Bj,λ,(k)[v0, . . . , v[mj/(2b)]+k] =
∑

α+2bβ≤mj

k∑
q=0

(
k

q

)
∂ k−qt bα,βj,λ (0)

(
Dα
xvβ+q(x)

)∣∣
x=d

,

where d = 0 if λ = 0 and d = l if λ = 1. Note, that

(4.9) vµ ∈ Hs−b−2bµ(0, l) for each µ ∈ Z ∩ [0, s/(2b)− 1/2)

due to (4.3). The right-hand sides of the equalities (4.7) is well defined because the
function Dα

xvβ+q(x) belongs to

Hs−α−b−2b(β+q)(0, l) ⊆ Hs−mj−2bk−b(0, l)



8 VALERII LOS

due to (4.9) and therefore the trace
(
Dα
xvβ+q(x)

)∣∣
x=d

is defined whenever s−mj−2bk−
b − 1/2 > 0. Note that if s ≤ min{mj} + b + 1/2, then there are no compatibility
conditions.

We put E := {σ0 + r − 1/2 : 1 ≤ r ∈ Z}. Note that E is the set of all possible
discontinuities of the function that assigns the number of compatibility conditions (4.7)
to s ≥ σ0.

Our main result on the parabolic problem (2.1)–(2.4) consists in that the linear map-
ping (4.1) extends uniquely to an isomorphism between appropriate pairs of Hörmander
spaces introduced in the previous section. Let us indicate these spaces. We arbitrarily
choose a real number s > σ0 and function parameter φ ∈ M. We take Hs,s/(2b);φ(Ω)
as the source space of this isomorphism; otherwise speaking, Hs,s/(2b);φ(Ω) serves as a
space of solutions u to the problem. To introduce the target space of the isomorphism,
consider the Hilbert space

Hs−2m,(s−2m)/(2b);φ :=

Hs−2m,(s−2m)/(2b);φ(Ω)⊕
m⊕
j=1

(
H(s−mj−1/2)/(2b);φ(0, τ)

)2 ⊕ κ−1⊕
k=0

Hs−2bk−b;φ(0, l).

In the Sobolev case of φ ≡ 1 this space coincides with the target space of the bounded
operator (4.2). The target space of the isomorphism is imbedded in Hs−2m,(s−2m)/(2b);φ

and is denoted by Qs−2m,(s−2m)/(2b);φ. We separately define this space in the s /∈ E case
and s ∈ E case.

Suppose first that s /∈ E. By definition, the linear space Qs−2m,(s−2m)/(2b);φ consists
of all vectors

F =
(
f, g1,0, g1,1, ..., gm,0, gm,1, h0, ..., hκ−1

)
∈ Hs−2m,(s−2m)/(2b);φ,

that satisfy the compatibility conditions (4.7). As we have noted, these conditions are
well defined for every F ∈ Hs−2m−ε,(s−2m−ε)/(2b) for sufficiently small ε > 0. Hence, they
are also well defined for every F ∈ Hs−2m,(s−2m)/(2b);φ due to the continuous embedding

(4.10) Hs−2m,(s−2m)/(2b);φ ↪→ Hs−2m−ε,(s−2m−ε)/(2b).

The latter follows directly from (3.11) and (3.12). Thus, our definition is reasonable.
We endow the linear space Qs−2m,(s−2m)/(2b);φ with the inner product and norm in

the Hilbert space Hs−2m,(s−2m)/(2b);φ. The space Qs−2m,(s−2m)/(2b);φ is complete, i.e. a
Hilbert one. Indeed, if the number ε > 0 is sufficiently small, then

Qs−2m,(s−2m)/(2b);φ = Hs−2m,(s−2m)/(2b);φ ∩Qs−2m−ε,(s−2m−ε)/(2b).

Here, the space Qs−2m−ε,(s−2m−ε)/(2b) is complete because the differential operators and
traces operators used in the compatibility conditions are bounded on the correspond-
ing pairs of Sobolev spaces. Therefore the right-hand side of this equality is complete
with respect to the sum of the norms in the components of the intersection, this sum
being equivalent to the norm in Hs−2m,(s−2m)/(2b);φ due to (4.10). Thus, the space
Qs−2m,(s−2m)/(2b);φ is complete (with respect to the latter norm).

If s ∈ E, then we define the Hilbert space Qs−2m,(s−2m)/(2b);φ by means of the inter-
polation between its analogs just introduced. Namely, we put

(4.11) Qs−2m,(s−2m)/(2b);φ :=
[
Qs−2m−ε,(s−2m−ε)/(2b);φ,Qs−2m+ε,(s−2m+ε)/(2b);φ

]
1/2
.

Here, the number ε ∈ (0, 1/2) is arbitrarily chosen, and the right-hand side of the equality
is the result of the interpolation of the written pair of Hilbert spaces with the param-
eter 1/2. We will recall the definition of the interpolation between Hilbert spaces in
Section 5. The Hilbert space Qs−2m,(s−2m)/(2b);φ defined by formula (4.11) does not
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depend on the choice of ε up to equivalence of norms and is continuously embedded in
Hs−2m,(s−2m)/(2b);φ. This will be shown in Remark 6.1 at the end of Section 6.

Now, we may formulate the result of the paper.

Theorem 4.1. For arbitrary s > σ0 and φ ∈ M the mapping (4.1) extends uniquely (by
continuity) to an isomorphism

(4.12) Λ : Hs,s/(2b);φ(Ω) ↔ Qs−2m,(s−2m)/(2b);φ.

This Theorem is known in the Sobolev case where φ ≡ 1. Namely, it’s contained
in Agranovich and Vishik’s result [1, Theorem 12.1] in the case of s, s/(2b) ∈ Z and
is covered by Zhitarashu result [46, Theorem 9.1]. Note that these results include the
limiting case of s = σ0. In the general situation, we will deduce Theorem 4.1 from
the Sobolev case with the help of the interpolation with a function parameter between
Hilbert spaces.

Note that the necessity to define the target space Qs−2m,(s−2m)/(2b);φ separately in
the s ∈ E case is caused by the following: if we defined this space for s ∈ E in the way
used in the s /∈ E case, then the isomorphism (4.12) would not be hold at least for φ ≡ 1.
This follows from a result by Solonnikov [42, Section 6], see also [17, Remark 6.4].

5. Interpolation with a function parameter between Hilbert spaces

This method of interpolation is a natural generalization of the classical interpolation
method by S. Krein and J.-L. Lions to the case when a general enough function is used
instead of a number as an interpolation parameter; see, e.g., monographs [14, Chapter IV,
Section 1, Subsection 10] and [16, Chapter 1, Sections 2 and 5]. For our purposes, it is
sufficient to restrict the discussion of the interpolation with a function parameter to
the case of separable complex Hilbert spaces. We mainly follow the monograph [33,
Section 1.1], which systematically expounds this interpolation (see also [30, Section 2]).

Let X := [X0, X1] be an ordered pair of separable complex Hilbert spaces such that
X1 ⊆ X0 and this embedding is continuous and dense. This pair is said to be admissible.
For X, there is a positive-definite self-adjoint operator J on X0 with the domain X1 such
that ∥Jv∥X0 = ∥v∥X1 for every v ∈ X1. This operator is uniquely determined by the pair
X and is called a generating operator for X; see, e.g., [14, Chapter IV, Theorem 1.12].
The operator defines an isometric isomorphism J : X1 ↔ X0.

Let B denote the set of all Borel measurable functions ψ : (0,∞) → (0,∞) such that
ψ is bounded on each compact interval [a, b], with 0 < a < b < ∞, and that 1/ψ is
bounded on every semiaxis [a,∞), with a > 0.

Choosing a function ψ ∈ B arbitrarily, we consider the (generally, unbounded) op-
erator ψ(J) defined on X0 as the Borel function ψ of J . This operator is built with
the help of Spectral Theorem applied to the self-adjoint operator J . Let [X0, X1]ψ or,
simply, Xψ denote the domain of ψ(J) endowed with the inner product (v1, v2)Xψ :=
(ψ(J)v1, ψ(J)v2)X0

and the corresponding norm ∥v∥Xψ := ∥ψ(J)v∥X0
. The linear space

Xψ is Hilbert and separable with respect to this norm.
A function ψ ∈ B is called an interpolation parameter if the following condition is

satisfied for all admissible pairs X = [X0, X1] and Y = [Y0, Y1] of Hilbert spaces and for
an arbitrary linear mapping T given on X0: if the restriction of T to Xj is a bounded
operator T : Xj → Yj for each j ∈ {0, 1}, then the restriction of T to Xψ is also a
bounded operator T : Xψ → Yψ.

If ψ is an interpolation parameter, then we say that the Hilbert space Xψ is obtained
by the interpolation with the function parameter ψ of the pair X = [X0, X1] or, other-
wise speaking, between the spaces X0 and X1. In this case, the dense and continuous
embeddings X1 ↪→ Xψ ↪→ X0 hold.
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The class of all interpolation parameters (in the sense of the given definition) admits a
constructive description. Namely, a function ψ ∈ B is an interpolation parameter if and
only if ψ is pseudoconcave in a neighbourhood of infinity. The latter property means that
there exists a concave positive function ψ1(r) of r ≫ 1 that both the functions ψ/ψ1 and
ψ1/ψ are bounded in some neighbourhood of infinity. This criterion follows from Peetre’s
description of all interpolation functions for the weighted Lebesgue spaces [38, 39] (this
result of Peetre is set forth in the monograph [3, Theorem 5.4.4]). The proof of the
criterion is given in [33, Section 1.1.9].

An application of this criterion to power functions gives the classical result by Lions
and S. Krein. Namely, the function ψ(r) ≡ rθ is an interpolation parameter whenever
0 ≤ θ ≤ 1. In this case, the exponent θ serves as a number parameter of the interpolation,
and the interpolation space Xψ is also denoted by Xθ. This interpolation was used in
formula (4.11) in the special case of θ = 1/2.

Let us formulate some general properties of interpolation with a function parameter;
they will be used in our proofs. The first of these properties enables us to reduce the
interpolation of subspaces to the interpolation of the whole spaces (see [33, Theorem 1.6]
or [43, Section 1.17.1, Theorem 1]). As usual, subspaces of normed spaces are assumed to
be closed. Generally, we consider nonorthogonal projectors onto subspaces of a Hilbert
space.

Proposition 5.1. Let X = [X0, X1] be an admissible pair of Hilbert spaces, and let Y0
be a subspace of X0. Then Y1 := X1∩Y0 is a subspace of X1. Suppose that there exists a
linear mapping P : X0 → X0 such that P is a projector of the space Xj onto its subspace
Yj for each j ∈ {0, 1}. Then the pair [Y0, Y1] is admissible, and [Y0, Y1]ψ = Xψ ∩Y0 with
equivalence of norms for an arbitrary interpolation parameter ψ ∈ B. Here, Xψ ∩ Y0 is
a subspace of Xψ.

The second property reduces the interpolation of orthogonal sums of Hilbert spaces
to the interpolation of their summands (see [33, Theorem 1.8].

Proposition 5.2. Let [X
(j)
0 , X

(j)
1 ], with j = 1, . . . , q, be a finite collection of admissible

pairs of Hilbert spaces. Then[ q⊕
j=1

X
(j)
0 ,

q⊕
j=1

X
(j)
1

]
ψ

=

q⊕
j=1

[
X

(j)
0 , X

(j)
1

]
ψ

with equality of norms for every function ψ ∈ B.

Our proof of Theorem 4.1 is based on the key fact that the interpolation with an
appropriate function parameter between margin Sobolev spaces in (3.11) and (3.12) gives
the intermediate Hörmander spaces Hs,sγ;φ(·) and Hs;φ(·) respectively. Let us formulate
this property separately for isotropic and for anisotropic spaces.

Proposition 5.3. Let real numbers s0, s, and s1 satisfy the inequalities s0 < s < s1,
and let φ ∈ M. Put

(5.1) ψ(r) :=

{
r(s−s0)/(s1−s0) φ(r1/(s1−s0)) if r ≥ 1,

φ(1) if 0 < r < 1.

Then the function ψ ∈ B is an interpolation parameter, and the equality of spaces

(5.2) Hs−λ;φ(0, d) =
[
Hs0−λ(0, d),Hs1−λ(0, d)

]
ψ

holds true up to equivalence of norms for arbitrary λ ∈ R.

This result is due to [28, Theorem 3.1]; see also monograph [33, Theorems 1.14 and
3.2].
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Proposition 5.4. Let real numbers s0, s, and s1 satisfy the inequalities 0 ≤ s0 < s < s1,
and let φ ∈ M. Define an interpolation parameter ψ ∈ B by formula (5.1). Then the
equality of spaces

(5.3) Hs−λ,(s−λ)/(2b);φ(Ω) =
[
Hs0−λ,(s0−λ)/(2b)(Ω),Hs1−λ,(s1−λ)/(2b)(Ω)

]
ψ

holds true up to equivalence of norms for arbitrary real λ ≤ s0.

The proof of the result is the same as the proof of its analog for a strip [20, Lemma 2].
To proff Theorem 4.1 in the case s ∈ E we need the following proposition.

Proposition 5.5. Let real numbers s and ε such, that s > ε > 0, and let φ ∈ M. Then
the equality of spaces

(5.4) Hs,s/(2b);φ(Ω) =
[
Hs−ε,(s−ε)/(2b);φ(Ω),Hs+ε,(s+ε)/(2b);φ(Ω)

]
1/2

holds true up to equivalence of norms.

The proof of this result is the same as the proof of its analog for isotropic space Hs;φ(·)
(see. [33, Lemma 4.3]).

6. Proof of the main result

To deduce Theorem 4.1 from its known counterpart in the Sobolev case, we need to
prove a version of Proposition 5.4 (with λ = 0) for the target spaces of isomorphism
(4.12). From definition of these spaces follows that the interpolation formula need for
them in the case where s /∈ E. So consider these intervals

J0 = (σ0, σ0 + 1/2), Jr = (σ0 + r − 1/2, σ0 + r + 1/2), with 1 ≤ r ∈ Z

of the varying of s.

Lemma 6.1. Let 1 ≤ r ∈ Z. Suppose that real numbers s0, s, s1 ∈ Jr−1 satisfy the
inequality s0 < s < s1 and that φ ∈ M. Define an interpolation parameter ψ ∈ B by
formula (5.1). Then the equality of spaces

(6.1) Qs−2m,(s−2m)/(2b);φ =
[
Qs0−2m,(s0−2m)/(2b),Qs1−2m,(s1−2m)/(2b)

]
ψ

holds true up to equivalence of norms.
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Proof. According to Propositions 5.2, 5.3, and 5.4 we obtain the following:[
Hs0−2m,(s0−2m)/(2b),Hs1−2m,(s1−2m)/(2b)

]
ψ

=
[
Hs0−2m,(s0−2m)/(2b)(Ω)⊕

m⊕
j=1

(
H(s0−mj−1/2)/(2b)(0, τ)

)2 ⊕ κ−1⊕
k=0

Hs0−2bk−b(0, l),

Hs1−2m,(s1−2m)/(2b)(Ω)⊕
m⊕
j=1

(
H(s1−mj−1/2)/(2b)(0, τ)

)2 ⊕ κ−1⊕
k=0

Hs1−2bk−b(0, l)
]
ψ

=
[
Hs0−2m,(s0−2m)/(2b)(Ω),Hs1−2m,(s1−2m)/(2b)(Ω)

]
ψ

⊕
m⊕
j=1

([
H(s0−mj−1/2)/(2b)(0, τ),H(s1−mj−1/2)/(2b)(0, τ)

]
ψ

)2

⊕
κ−1⊕
k=0

[
Hs0−2bk−b(0, l),Hs1−2bk−b(0, l)

]
ψ

= Hs−2m,(s−2m)/(2b);φ(Ω)⊕
m⊕
j=1

(
H(s−mj−1/2)/(2b);φ(0, τ)

)2⊕ κ−1⊕
k=0

Hs−2bk−b;φ(0, l)

= Hs−2m,(s−2m)/(2b);φ.

Thus,

(6.2)
[
Hs0−2m,(s0−2m)/(2b),Hs1−2m,(s1−2m)/(2b)

]
ψ
= Hs−2m,(s−2m)/(2b);φ

up to equivalence of norms.
We will deduce the required formula (6.1) from (6.2) with the help of Proposition 5.1.

To this end, we need to present a linear mapping P on Hs0−2m,(s0−2m)/(2b) such that P
is a projector of the space Hsj−2m,(sj−2m)/(2b) onto its subspace Qsj−2m,(sj−2m)/(2b) for
each j ∈ {0, 1}. If we have this mapping, we will get[

Qs0−2m,(s0−2m)/(2b),Qs1−2m,(s1−2m)/(2b)
]
ψ

=
[
Hs0−2m,(s0−2m)/(2b),Hs1−2m,(s1−2m)/(2b)

]
ψ
∩Qs0−2m,(s0−2m)/(2b)

= Hs−2m,(s−2m)/(2b);φ ∩Qs0−2m,(s0−2m)/(2b)

= Qs−2m,(s−2m)/(2b);φ

due to Proposition 5.1, formula (6.2), and the conditions s0, s ∈ Jr−1 and s0 < s.
Note that these conditions imply the last equality because the elements of the spaces
Qs0−2m,(s0−2m)/(2b) and Qs−2m,(s−2m)/(2b);φ satisfy the same compatibility conditions
and because Hs−2m,(s−2m)/(2b);φ is embedded continuously in Hs0−2m,(s0−2m)/(2b).

We will build the above-mentioned mapping P in the following way.
For any 1 ≤ n ∈ Z, s ∈ R, and φ ∈ M the mapping

{z0, . . . , zn−1} 7→ w(t) =

n−1∑
k=0

zkt
k

k!
, with z0, . . . , zn−1 ∈ C

defines a bounded operator

(6.3) T : Cn → Hs;φ(0, τ).

Besides, if w = T (z0, . . . , zn−1) then ∂kt w(0) = zk for each k ∈ {0, . . . , n − 1}. For all
j ∈ {1, . . . ,m} we put

qr,j :=

[
σ0 + r −mj − 1− b

2b

]
=

[
s−mj − 1/2− b

2b

]
.
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Given

F := (f, g1,0, g1,1, ..., gm,0, gm,1, h0, ..., hκ−1) ∈ Hs0−2m,(s0−2m)/(2b),

we put

g∗j,λ := gj,λ if qr,j < 0;

g∗j,λ := gj,λ + T (zj,λ,0, . . . , zj,λ,qr,j ) if qr,j ≥ 0
(6.4)

for all j ∈ {1, . . . ,m} and λ ∈ {0, 1}. Here
zj,λ,0 = Bj,λ,(0)[v0, . . . , v[mj/(2b)]]− gj,λ|t=0,

. . .

zj,λ,qr,j = Bj,λ,(qr,j)[v0, . . . , v[mj/(2b)]+qr,j ]− ∂
qr,j
t gj,λ|t=0,

and, the functions vk ∈ Hs0−b−2bk(0, l), with k = 0, . . . ,max{[mj/(2b)] + qr,j}, are
defined by the recurrent formula (4.8). The linear mapping P : F 7→ F ∗, with

F ∗ := (f, g∗1,0, g
∗
1,1, ..., g

∗
m,0, g

∗
m,1, h0, ..., hκ−1),

defined on all vectors F ∈ Hs0−2m,(s0−2m)/(2b) is required. Indeed, its restriction to each
space Hsj−2m,(sj−2m)/(2b), with j ∈ {0, 1}, is a bounded operator on this space. This
follows directly from (6.3). Moreover, if F ∈ Qsj−2m,(sj−2m)/(2b), then PF = F due to
the compatibility conditions (4.7).

�

The proof of Theorem 4.1. Let s > σ0 and φ ∈ M. We first consider the case where
s /∈ E. Then s ∈ Jr−1 for a certain integer r. Choose numbers s0, s1 ∈ Jr−1 such that
s0/(2b)+1/2 /∈ Z, s1/(2b)+1/2 /∈ Z and s0 < s < s1. According to N. V. Zhitarashu [46,
Theorem 9.1], the mapping (4.1) extends uniquely (by continuity) to an isomorphism

(6.5) Λ : Hsj ,sj/(2b)(Ω) ↔ Qsj−2m,(sj−2m)/(2b) for each j ∈ {0, 1}.

Let ψ be the interpolation parameter from Proposition 5.3. Then the restriction of the
operator (6.5) with j = 0 to the space[

Hs0,s0/(2b)(Ω),Hs1,s1/(2b)(Ω)
]
ψ
= Hs,s/(2b);φ(Ω)

is an isomorphism

(6.6)
Λ : Hs,s/(2b);φ(Ω) ↔

[
Qs0−2m,(s0−2m)/(2b),Qs1−2m,(s1−2m)/(2b)

]
ψ

= Qs−2m,(s−2m)/(2b);φ.

Here, the equalities of spaces hold true up to equivalence of norms due to Proposition 5.4
and Lemma 6.1. The operator (6.6) is an extension by continuity of the mapping (4.1)
because C∞(Ω) is dense in Hs,s/(2b);φ(Ω). Thus, Theorem 4.1 is proved in the case
considered.

Consider now the case where s ∈ E. Choose ε ∈ (0, 1/2) arbitrarily. Since s± ε /∈ E
and s− ε > σ0, we have the isomorphisms

(6.7) Λ : Hs±ε,(s±ε)/(2b);φ(Ω) ↔ Qs±ε−2m,(s±ε−2m)/(2b);φ.

They imply that the mapping (4.1) extends uniquely (by continuity) to an isomorphism

(6.8)
Λ :

[
Hs−ε,(s−ε)/(2b);φ(Ω),Hs+ε,(s+ε)/(2b);φ(Ω)

]
1/2

↔
[
Qs−ε−2m,(s−ε−2m)/(2b);φ,Qs+ε−2m,(s+ε−2m)/(2b);φ

]
1/2

= Qs−2m,(s−2m)/(2b);φ.

Recall that the last equality is the definition of the space Qs−2m,(s−2m)/(2b);φ. To com-
plete the proof it remains to apply in (6.8) Proposition 5.5. �
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Remark 6.1. The space defined by formula (4.11) is independent of the choice of the
number ε ∈ (0, 1/2) up to equivalence of norms. Indeed, let s ∈ E; then according to
Theorem 4.1 we have the isomorphism

Λ : Hs,s/(2b);φ(Ω) ↔
[
Qs−2m−ε,(s−2m−ε)/(2b);φ,Qs−2m+ε,(s−2m+ε)/(2b);φ

]
1/2
.

whenever 0 < ε < 1/2. This means the required independence.
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