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INTRODUCTION

Materials and Constructions Mechanissthe branch of engineering that fo-
cuses on methods for calculating the strerggidity, and durability of components
in machines and structures. It is a fundamental engineering discipline that combines
experimental data on material properties with the principles of theoretical mechanics,
physics, and higher mathematics. Through this contbmait establishes general
methods for determining the optimal sizes and shapes of structural elements, consid-
ering both themagnitude and nature of the forces acting upon them.

The problems irMaterials and Constructions Mechana® addressed using
straightforward mathematical techniques, accompanied by several assumptions, hy-
potheses, and experimental data.

This subject holds a crucial role in engineering education, as its principles are
necessary for all engineering specialties. It provides the foundation for studying var-
lous fields, such as structural mechanics and machine design. Mechanics of Materials
andStructures forms the scientific basis for engineering calculations, which are es-
sential for designing and constructing the wide array of modern mechanical and civil
engineering structures.



1. FUNDAMENTAL CONCEPTS, HYPOTHESES, AND PRINCI-
PLES

1.1. Object and scope of the academic discipline "Materials
and constructions mechanics"

All solid bodies in nature possess th®perty of deformation, meaning they
can change their dimensions and shape. The causes of deformations are diverse and
can result from loads due to interactions of the body with other bodies, its environ-
ment, or fields; temperature gradients within ittéunee; and other phenomena that
alter the physical and mechanical properties of the material of the body. It is evident
that the level of deformations in real bodies cannot be arbitrarily large. Ultimately,
the process of deformation can lead to unacceptdianges in the material state and
consequently to the loss of operational capability of products. These changes mani-
fest, for example, in the occurrence of excessively large cracks and complete destruc-
tion of the body's material, plastic deformationg] aa on.

In engineering, the failure of a product's operational state is referreddid as
ure. Conversely, the absence of failures in a product during operation is referred to
asstrength reliability

The task of mechanics of materials and structures is to impart to future engineers
the knowledge, skills, and abilities to perform calculations for machine components
and structural elements that ensure their reliable operation.

First and foremost, let us clarify what constitutes the objecsab@ct of study
in mechanics of materials and structures.

The object of study irgMaterials and constructions mechaniéss a struc-
tural element considered as a solid body capable of deformation.

This structural element must be strong, stiff, and stable.

Strength refers to the ability of the structure and its elements to withstand
loads without failure.

Rigidity refers to the ability of the structure and its elements to deform within
specified limits under applied loads.

Stability refers to the ability of the structure and its elements to maintain their
initial shape under the action of loads in elastic equilibrium.

From everyday experience, we know that the material of any solid body resists
its deformationThe physical nature of this resistance can be understood by consid-
ering a model of the pairwise interaction of atoms within the ma{seal Fig1.1).



Fig. 11. Model of pairmaterial atom#teraction

There is an imaginary mechanical connection between the atoms of the material,
in which the forces that bring them togetH&r >0and the forces of repulsion act

R, <0 (the reasons for their occurrence are not discussed here). We denote the dis-

tance between the centers of atoms,asnd the equilibrium distance, when these
forces are mutually balanced,a&s With a change in the interatomic distaacé¢he
magnitudes of the forces of convergeRg@nd repulsionRs also change. Moreover,

it was established that for solid bodies these dependencies are approximately as fol-

lows: R.=R(3~ a’and R,=R,(9~(-a°). Equivalent of these forces
R.(N=R.(d +R( @. The equilibrium state takes place in the unlodutzty state

(without deformation. Then the conditiorR,(g)= R(8) +R( @ 0is fulfilled.

The specified dependencies are schematically displayed on the diagram
(Fig. 1.2).

N\
R,

Fig. 12. Dependence of interaction forces between atoms of a solid body on the distance between
them



From this diagram, we can draw the following important conclusions:

- thereare always interaction forces between aténadgtractive and repul-
sive forced which are balanced in an undisturbed hQody

- increasinghe distance between atoms results in a critical value of the re-
sultant forceRg (point A), beyond which atomic bonds rupture

- whenatoms approach each other, bond rupture never occurs because the
resultant force tends towards negative infinity (as the electronic orbitals of
the atoms would need to be disrupted, requiring extreme temperatures and
pressures unachievable under earthlyditons).

The forces acting within the bonds between particles of a material body are
commonly referred to amternal forces Based on the conclusions drawn, these
forces exist in both undisturbed bodies and are responsible for maintaining the body
as a cohesive unit. However, when considering the strength of a body under loading
and consequently its deformation, additionatiintl forces arising within the bonds,
represented as resultant forces in the discussed diagram, must be considered. These
additional internbforces are called stresses.

Thus, stress can be regarded as a measure of a material's resistance to body de-
formation.

The concept of force is related to the concept of mechanical stress (hereinafter
referred to as stress).

Stress is the force per unit area acting on a cregxtion of the body.

Therefore, stress represents the intensity of force, its measure.

The combination of stresses and strains forms the sttess state of the body.

To determine whether a structure will withstand a given load, i.e., whether its
strength reliability will be ensured, one must be able to analyze the characteristics of
thestressstrain state of each structural element.

The subject of study irgMaterials and constructions mechaniesencom-
passes the characteristics of the body's strsigain state.

Materials and constructions mechangsn engineering discipline. Therefore,
methods for calculating the strengtigidity, and stability of engineering structures
must be both straightforward and sufficiently reliable in determining the characteris-
tics of the stresstrain state of their elements. For this purpose, models used in cal-
culations must provide an adequate leetarespondence to real objects, the ma-
terials they are made of, loading conditions, and so forth. It is also important to note
that the complexity level of a model should correspond to the required accuracy of
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the analysis, considering only factors that are essential for ensuring specified safety
margins.

Calculations in mechanics of materials and structures are based on mathemati-
cal analysis methods and rely on experimentation. A phenomenological approach is
often applied to construct theories, focusing on describing phenomena and their con-
sequences withaulelving into the essence of the phenomenon itself. This approach
enables the development of relatively simple models of strength reliability and gen-
eralization of obtained results to a wide range of objects, materials, and loading con-
ditions that matchhe claimed model properties.

The quality of developed models of strength reliability significantly depends on
the intuition and practical experience of the engineer and the level of their training.
It should be noted that the requirements for model creation conditions are often reg-
ulated by strength standards for respective engineering fields, including necessary
volumes of experimental research, state building norms in construction and architec-
ture, and other regulatory documents.

1.2. Material and its model

If in theoretical mechanics the object of study is an absolutely solid body, when
we are not talking about the physical and mechanical properties of the material of the
body at all, then in the mechanics of a deformed solid body these properties come to
the fore.

Various materials are used for the manufacture of madhinding structures:
metals and their alloys, inorganic and organic materials (ceramics, glass, polymers,
plastics, etc.), as well as composite materials consisting ofstrighgth threads of
glass boron, carbon and the base that covers them. binds (polymers and metals).

Today, alloys of ferrous and ndearrous metals remain the main structural ma-
terials in mechanical engineering. Real metals and alloys usually have a polycrystal-
line (granular) structure (Fig. 1.3a).

AN

.

\r

L

N~
A

I

=

—

A

Fig. 13. Material models: & polycrystalline structure of the material (engineefysical
model); bi continuous environment (engineering model)
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Each grain is a crystal that has taken an irregular shape because adjacent crystals
hindered its formation from the melt. Additionally, the crystalline lattices of grains
have various defects (such as missing atoms in lattice nodes, atomic displacements,
etc.). Foreign inclusions, pores, gas bubbles, and microcracks can also be present
among the grains. Consequently, the material lacks a continuous, uninterrupted struc-
ture. Many alloys consist of crystalline grains with different chemical compositions
and gructures. The mechanical properties of grains vary in different directions,
meaning they are anisotropic.

Note. Isotropic physical objects have identical properties in all directions. Iso-
tropic mathematical objects remain unchanged under any orthogonal transfor-
mation.

Considering the influence of all these factors on matstiahgth is very com-
plex and almost impossible. However, the situation is not entirely hopeless. The
structural elements of the material are significantly smaller than the elements of
structures made from this material. For instance, in technical all@is, gze is on
the order of tenths to hundredths of a millimeter. Because grains in the body are
randomly distributed, despite the anisotropy of their characteristics, the properties of
the body in different directions will be approximately the same. ;Tbls macro-
scopic scale, the material can be considered isotropic. Therefore, in the mechanics of
materials and structures, all heterogeneous structural elements of the material are
replaced by an "averaged" continuous medium (Fig. 1.1b), which unifdfimihe
volume of the body (hypothesis of continuity), and has identical mechanical proper-
ties in any volume and direction (hypothesis of homogeneity and isotropy).

Thus, in the mechanics of materials and structures, instead of the real material,
a model of a continuous homogeneous isotropic medium is considered, possessing
the same mechanical properties as the integral mechanical properties of the real ma-
terial. Theg properties are studied through experimental research of samples made
from materials used for machine parts.

It should be noted that replacing a discrete medium with a continuous one is
justified when the dimensions of structural elements are negligibly small compared
to the dimensions of the body.

There are materials for which the assumption of isotropy is not applicable. An-
isotropic materials include, for example, wood, whose properties significantly differ
along and across fibers, reinforced materials, etc.

12



The assumption of a continuous material structure simplifies the study of stress
distribution in the body, primarily because it allows the use of methods involving
infinitesimal quantities and continuous functions.

Considering the physical properties that all structural materials possess to some
degree, the material model is endowed with elasticity, plasticity, and creep proper-
ties. Real materials exhibit elastic properties up to a certain level of stress.

Elasticity refers to the property of a body to restore its dimensions after the
removal of external load. It is assumed that all bodies are perfectly elastic, meaning
no residual deformation exists after unloading (hypothesis of ideal elasticity). De-
viations from ideal elasticity, which are always observed in loaded real bodies, are
insignificant and are ignored within certain limits of deformation.

Most problems in the mechanics of materials and structures are solved under
the assumption of linearly deformable bodies, where there exists a direct proportional
relationship between deformations and loads, i.e., Hooke's law.

Plasticity refers to the property of a body to retain deformation fully or par-
tially after unloading, which materials widelyused for manufacturing parts
through processes like forging, stamping, rolling, etc.

During operation, many structural elements and machine parts encounter the
phenomenon of creep. For example, the diameters of pipes subjected to internal pres-
sure increase over time, and bolted joints loosen due to bolt elongation caused by
creep.

Creep is the ability of a body to accumulate deformation under constant ex-
ternal load. It should be noted that in metals, creep is primarily observed at high
temperatures, whereas in polymers, creep occurs at any temperature.

The properties of elasticity, plasticity, and creep will be further discussed in
detail in subsequent chapters of this textbook.

1.3. Basic models of solid shapes

Geometric shapes of solid bodies are extremely diverse. Real structural ele-
ments and machine parts often have very complex shapes, and accounting for all
features of their construction can significantly complicate the analysis ofstrass
characterists. However, excessive complexity in geometric models of bodies is
generally impractical for the majority of engineering tasks.

Among the wide variety of geometric shapes of solid bodies, tonde basic
models can effectively be distinguished: rod, shell or plate, and massive body.

13



Rod is a body where one dimension, its length, significantly exceeds the other
two.

A rod can be conceptualized as a collection of esessional areas aligned
along a single axis (Fig. 1.4a). In this case, the axis of the rod represents the geomet-
ric locus of the centroids of the cressctions.

Fig. 14. Types of rods: & straight cylindrical; i straight prismatic; € curvilinearplane(spiral
spring); di curvilinear spatial (cylindrical spring)

Rods can be straight (Fig. 1.4a, b) and curved (Fig. 1.4pjat)e(Fig. 1.4c)
and spatial (Fig. 1.4d). Their sections can be constant in length (Fig. 1.4a, c, d) or
variable (Fig. 1.4b). This is the most common form of structural element in engineer-
ing and construction.

In mechanical engineering, thimalled rods are often used, in which one size
of the crosssection is small compared to others. Fivalled rods include rolled pro-
files such as angle, crossbar, channel, deatwesbar, thirwalled pipe (Fig. 1.5).

—

a) b) c) d) e) f)
Fig. 15. Sections of thirwalled rods: a angle; bi brand,;

c1 channel; d doublebeam; d rectangular tubular;
e- round tubular

The rod model is used to calculate various details and structural elements:
shafts, propellers, turning cutters, pipes, truss elements, aircraft fuselages, etc. Re-
search shows the possibility of using the theory of rods for the approximate calcula-
tion of dructures that do not completely satisfy the condition of the smallness of the
crosssection compared to the length (airplane wing, rocket body, television tower,
gear tooth, etc.)

A shell is a body, one dimension of which is the thickness, which is much
smaller than the other two.

14



In modern mechanical engineering, shell structures are very coniimeyare
strong and quite technological. Shells include ship hulls, aircraft fuselages and wings,
missile skins, various tanks and containers, boilers, etc.

Shells are closed and open, axisymmetric and of arbitrary shape. The shape of
the shell is determined by the shape of its median surface, which is the locus of points
equidistant from the boundary surfaces of the shell. If the middle surface is part of a
cylinder, sphere or cone, then the shell is called cylindrical, spherical or conical, re-
spectively (Fig. 1.6, 1.7).

b

= R

DI

Fig. 16. Tank ai cylindrical shell; bi spheri-  Fig. 17. Plate Springelement as a conical
cal shell shell

If the middle surface is a plane, then such a body is calpgata Depending
on the shape of the outer contour, the plates can be rectangular, round, trapezoidal
and other shapes. Disks of compressors and turbines, circular saws and milling cut-
ters, bottoms and lids of tanks, roofs of buildings are considered asgletestant
or variable thickness.

The development of methods for calculating shells and plates is dealt with by a
special branch of the mechanics of a deformed solid bodgstruction mechanics.
Relatively simple methods, in particular the resistance of materials, can be used to
calculat a very narrow class of shells.

If all three dimensions of the body are of the same order, then we have a
massive body.

These include both lareggzed parts, such as thigkalled machine bodies, ham-
mer heads, machine foundations, and sisiaéd ones a bearing ball, a gear, a head
of a bolt that works on tension, etc.

Details of machines and structural elements of a complex shape can be repre-
sented by a combination of simpler shape models. Thus, the pulleplafebelt
transmission (Fig. 1.8) can be considered as a combination of a massive body (hub
1), a plate (disk 2) and a shell (plate 3). A nozzle with a flange (Fig. 1.9) combines a
shell (nozzle 1), a plate (flange 2) and a massive body (transition zone 3).

15
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Fig. 18. Pulley ofplanebelt transmission: 1 mas-  Fig. 19. Spout with flange: 1 shell;
sive body; 2 plate; 3i shell 271 plate; 3i massive body

It should be noted that the modeling of a real part with one or another element
depends not only on their geometric similarity, but also on those problems that are
solved during strength calculations. These questions will be considered in clause
1.6.1.

1.4. Load modeling

Let's consider the main types of external forces that act on objects during their
operation.

External forces or loads are forces of interaction of a given structural element
with related bodies, environment and field.

Loads are volume and surface.

Bulk loads. They are distributed over the volume of the body and are charac-
terized by intensity the amount of load per unit volume. The volume load intensity
is measured in N/fVolumetric loads include the forces of gravity, inertia, magnetic
and electrical interaction.

Surface loads.These external forces are the result of direct contact interaction
of this body with other bodies and with the environment and are applied to the outer
surface of the body.

The load per unit surface area of the body is called surface load intensity. The
intensityP is measured in N/for pascals (Pa). Examples of such a load are shown
in Fig. 1.10a and b.
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Fig. 110. Surface unevenly (a) and uniformly (b) distributed loads

In most cases, it can be assumed that the distributed force is normal to the body
surface. This is the pressure of steam in the boiler or gas in the engine cylinder, the
pressure on the contact surface of two solid bodies (without taking into account fric-
tional forces), etc. The nature of the change in load on the surface is presented in the
form of P. The equivalent of an unevenly distributed Iéa¢Fig. 1.10a) is numeri-
cally equal to the volume of its spatial envelope p and is applied at the censer of it
weight. In the case of a uniformly distributed load (Fig. 1.10b) over thelarea
uniform R= pA and applied at the center of gravity of this area.

Linear loads. Often, the shape of the body and the nature of the load distribu-
tion allow it to be reduced to thpincipal plane, presenting it in the form of a linear
load. Such a case, in particular, occurs when the load is distributed over a surface
whose width is much smaller than its length, for example, when two cylindrical bod-
ies with parallel axes are in contact.

The linear load on the diagrams is also presented in the form of graphs that
reflect the law of its intensity change (Fig. 1.11a, b and c). At the same time, the
intensity is measured IN/m If the load is distributed evenly along the distribution

line, i.e. 4= Cons|, the plot has the shape of a rectangle (Fig. 1.11a). In fig. 1.11b

shows the diagram of the distribution of the hydrostatic pressure of the liquid column
on the wall of the vessel. As you can see, it has the shape of a triangle. The intensity

of the linea load in this case is variable, i@(X) = Var,

q q | q(x) ’
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Fig. 111. Linear uniformly (a) and unevenly (b, c) distributed loads
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Volume load can also be reduced to linear. For example, the ifoedes dis-
tributed in a straight rod during rotation in the plane of its axis (Fig. 1.11c) are pre-
sented in the form of a linear load acting along this axis.

In the given examples, the load distribution laws are linear. In practice, there
are also more complexontlinear- laws. As for the uniform linear load, regardless
of the law of its distribution, the rule for its definition is one:

The equivalent of a linear distributed load is numerically equal to the area of
its contour and is applied at the center of its weight

Concentrated loads These forces are applied to certain points of the body.
Units of measurement of concentrated forces are newtons (N). It should be noted that
concentrated forces do not exist in nature. When real solid bodies come into contact,
due to their deformationg, contact area of finite dimensions is always created, on
which a continuously distributed pressa@ When the size of the contact area is
small compared to the size of the body, replacing the distributed load with a concen-

trated unifem force is appropriate. (Fig. 1.12a).
F=qa M M

Y

a
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Fig. 112 Concentrated loads:iaconcentrated force; b and c are concentrated moments

Often, in calculations, even a load distributed ov&gaificant area is replaced
by a uniform, i.e., concentrated force. In all cases, the possibility of replacing a dis-
tributed load with a concentrated one is determined by the tasks to be solved and the
required accuracy of the calculation.

In practice, such conditions often arise when loads are reduced to a couple of
forces and are presented in the form of a concentrated mdvheht Gn (Fig.
1.12Db, c). The concentrated moment is also a certain schematization of the real load.
Concentrated moments, like concentrated forces, do not actually exist, since mo-
ments are created by distributed forces. So, the torque is transmitted to the shaft from
the sideof the gear wheel using a key. A distributed load g acts on the tooth of the
wheel (Fig. 1.13a). As a result, the shaft is under the action of the torque m distributed
across the width of the toothed wheel. In calculations, it is usually replaced by a
concentrated moment applied in the middle of the width of the wheel.
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b)
Fig. 1.13. A toothed wheel with a distributed load on the tooth (a) and a diagram of moment
transmission to the shaft (b)

Conventionally, all loads acting on real structures can be divided into determin-
istic, for which the magnitude and direction at each moment of time are known, and
random, whose behavior cannot be predicted. The latter includes random forces act-
ing on a camoving on an uneven road. In the course of mechanics of materials and
structures, deterministic loading is considered. Methods of taking into account the
random load acting on the structure are studied in the courses of statistical mechanics
and reliabilty theory.

According to the nature of changes over time, loads are divided into permanent
and variable.

Constant loads are, in most cases, pressure forces of liquid or gas, own weight,
load of parts in machines with a constant operating mode. Variable loads can be
caused by the unevenness of the work process in the machines. If the load changes
periodicallyin time, it is called repetitive or cyclic. It is associated with periodic
deformatios of machine partsiéformationof connecting rods, piston rods, shafts,
oscillations of structural elements). If the cyclic load is created, for example, by
changing thanachine's operating mode (starting, braking, reversing, etc.), then the
number of cycles during the entire service life of the machine usually does not exceed
10*¢ 1 Bcycles. Such a load is called laycle. When the load occurs during the
oscillations of structural elements, the number of cycles often exceéglsl 1D
Such a load is often called multicycle.

Static and dynamic loads are distinguished by the nature of the change in forces
during their application. The load is considered static if it increases relatively slowly
and smoothly from zero to a certain value, and then remains unchanged. At the same
time, the acceleration of the deformed masses, and therefore the forces of inertia, can
be neglected. Static load can be stenn or longterm.
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Dynamic load is accompanied by significant acceleration of bodies. At the same
time, there are forces of inertia that cannot be neglected. Dynamic load can be short
term or longterm.

Shortterm dynamic loads include impact caused by a body that has a certain
kinetic energy at the time of application of the load (driving piles with copra, forging,
stamping, load during sudden braking of moving bodies). During a shock load, the
change irbody velocity that causes the load occurs in a very short period of time.

Long-term dynamic load occurs, for example, during the rotation of bodies, in
which centripetal acceleration occurs (rotation of machine rotors, flywheels, turbine
disks), as well as during oscillations of structural elements. In the latter case, we have
acyclic dynamic load.

The nature of the load significantly affects the strength and durability of struc-
tural elements, and therefore it must be taken into account during calculations.

1.5. Structure supports and their models

All elements of machines and structures interact with each other in a certain
way, forming fixed connections and kinematic pairs. That is, some or other mechan-
ical ties are imposed on each element, which limdl@®rmatiors. These elms can
be both completely rigid and pliable.

In the future, the elements with the help of which bodies are fixed in space will
be called supports. Each support imposes a certain number of elms on the body. Most
often, in engineering tasks, mechanics deal with absolutely rigid elms. In fact, such
elmsdo not exist in nature, it's just that their flexibility, compared to body defor-
mations, is negligibly small.

Let's consider the most common types of supports.

Hard fastening Such a support does not allow atgformationof the body at
the point of attachment. IRig. 1.14a shows the scheme of rigid fastening in the
plane. An attempt to move under the influence of a load causes a reaction on the part
of each ligament, namely two reactive forces (as an opposition to an attempt at trans-
lational displacement) and a ragetmoment (as an opposition to an attempt to rotate
the body in support).

Thus, the rigid anchorage for a planar system of forces gives three reactions. It
is obvious that there will be six such reactions for spatial systems.
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Fig. 114. Schemes gplanesupports: & rigid fastening; ki fixed hinge; c is a movable joint

Hinged supports If the support allows rotationdeformatiorof the body, then
such a support is called a hinged support. When the rotatlef@minations carried
out in a plane, we have a-salled planejoint. It provides rotationatieformation
relative to the axis of the hinge, perpendicular to the plane of rotation (Fig. 1.15).
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Fig. 115. Hinged connection: 1, 2 details; Fig. 116. Ball bearing of the car
31 hinge axis

Spatial hinges allow turning the body relative to any axis. Examplesabf
hinges are spherical hinges of towing devices of vehicles, ball supports of car sus-
pension levers (Fig. 1.16), connection of drive rods with movable traverses of presses
and breaking machines, etc.

Also, hinged supports are divided into movable and fixed. A fixed hinge allows
the body to freely rotate relative to the hinge axis, while limiting the possibility of
translational displacement in any direction. When it comestarehinge, two re-
actions occur in it (Fig. 1.14b). A movable joint imposes restrictions on translational
deformationin only one direction (Fig. 1.14c), that is, one reaction occurs.

Shown inFig. 1.14 support schemes refemplanesystems. However, the used
principle of imposing ties on the body, which lirdéformatiors in certain directions,
allows you to schematize any supports, including spatial ones.

To illustrate how in practice support schemes are chosen for real objects when

creating calculation schemes, consider a gearbox shaft fixed with bearings in the
housing (Fig. 1.17a).
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Fig. 117. Modeling of gearbox shaft supportsi ahaft with supports; b diagram of the shaft
support for the spatial systemi cliagram of shaft supports foptanesystem

Here the bearings are the actual supports of the shatft. It can be seen from the
figure that one support is the left one, not fixed relative to the body in the direction
of the shaft axis, while the right one is fixed. This design of the supports allows to
compensate for the thermal elongation of the shaft without loading it in the longitu-
dinal direction. Therefore, considering a shaft with supports as a spatial structure, we
conclude that the left movable support excludes any translatlef@imationof this
section of the shaft in the transverse direction, that is, there are two reactions, for
example, horizontal and vertical. The right support gives, of course, three reactions,
since translationalleformationin the direction of the shaft axis is also impossible
here.

As for the possibility of turning the shaft cressctions in the supports, in ad-
dition to the obvious free rotation of the shaft relative to its axis, the design of the
bearings allows the inner ring to freely rotate at some angle relative to the alter an
axial crosssections. The value of this angle of rotation is insignificant and is deter-
mined by the type of bearing. Therefore, bearings can be considered within certain
limits as hinge supportsspatial orplane in which reactive moments do not occur.

At the same time, the left support is a movable hinge, and the right one is a fixed one.
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For the spatial system, the diagram of the shaft supports is presented in Fig. 1.17
b, and for glaneone- in Fig. 1.17 c.

It should be noted that the forces that arise on the supports are distributed over
some surface, but when constructing calculation schemes, they are modeled by con-
centrated forces and concentrated moments. In addition, it is believed that there is no
friction in the pivot supports. Such hinges are called ideal.

1.6. Strength reliability: main stages and principles of con-
struction

The process of building a structural element strength reliability model includes
several key stages, namely:

- development of the calculation scheme of the research object, which is
based on the modeling of the material from which it is made, modeling of
the form, conditions and methods of loading, etc. within the framework of
accepted hypotheses;

- analysis of the stresstrain state of the object using the developed calcula-
tion scheme;

- selection of criteria for assessing the strength reliability of the object.

These stages and approaches to their implementation within the framework of
the mechanics of materials and structures will be developed in the following sections
of this textbook. And here we will make only some general remarks about the ap-
proaches, methag hypotheses, principles adopted today in the practice of engineer-
ing calculations.

1.6.1. Real construction and its design scheme

Real designs and parts mfchines, as a rule, have a complex shape and work
under difficult conditions of power load. It is quite difficult to calculate them taking
into account all the structural features, and there is no need for this, since most of the
latter have a slight efée on the operation of the structure and on the strength of
certain elements of it. Therefore, when calculating a real structure, it is always re-
placed by a calculation scheme, which in a simplified form conveys the shape of the
structure and its interaot with other structures or details.

The calculation scheme is understood as a conceptual representation of the
object, which includes only those properties that are essential from the perspectives
of load conditions, the external environment, and, most importantly, the selected
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reserves of strength, rigidity, and stability, associated with the required accuracy
of calculations.

During the construction of the calculation scheme, the shape of the structural
elements, the connections between the elements, the supporting parts of the structure
and the external load are modeled. When considering a specific part, it is necessary
to esablish which form model can be used: a rod, a shell, a plate or a solid body.
Moreover, the choice of the shape model is determined not only by geometric simi-
larity, but also by the tasks that are set during the calculation. Thus, when calculating
a toothof a gear wheel (Fig. 1.18a) for bending, it is considered as a rod with a
variable crossection loaded by a concentrated force F (Fig. 1.18b).

c)
Fig. 118. Scheme of gear engagement (a) and schemes for calculating the tooth for bending (b)
and contact strength (c)

But if the contact strength of the tooth (the strength of its surface layers) is de-
termined, then the tooth is considered as a massive cylindrical body loaded with a
load g distributed according to a certain law (Fig. 1.18c). In the case of calculation
for bending, only the dimensions of the crgsstion at the base of the tooth are
significant, and in the case of calculation for contact fatigue, the radius of curvature
of the surface of the tooth in the contact zprand its widthb are significant.

If the calculation scheme of a complex structure is built, then its individual ele-
ments are modeled with the help of typical elements of the form, and the connections
between its elements are modeled based on the analysis of the structure's operation.

To describe the connections of the structure (parts) with the foundation, bed, or
other structures, the main types of supports, which are given in clause 1.5, are used.
At the same time, the kinematic ties imposed by the real support are taken into ac-
count However, it happens that when solving a specific problem, not all ties are
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essential, and therefore, to simplify the calculation, support models with a larger
number of degrees of freedom are used.

An important stage in the construction of the calculation scheme is the modeling
of the external load. Usually, forces distributed over a small area are modeled by a
concentrated force, which is equal to the equivalent force of these forces. But when
studying the strength of the surface layers of parts in the contact zone, for example,
the contact strength of gear teeth (see Fig. 1.18 c), or the contact strength of bearing
balls, such a replacement is impossible. In this case, the force of interactien is pr
sented in the form of distributed contact pressure.

The load distributed over the surface should also be considered in the places of
connections, when the bearing or gear wheel, flywheel, etc. form a tension fit with
the shaft. Then there is pressure on the landing surface. As a rule, it is assumed that
its distribution over the surface is uniform (Fig. 1.19a). However, the actual diagram
of the pressure distribution in the direction of the sleeve length is represented by a
certain curve (Fig. 1.19b). Here we observe the concentration of pressure near the
edges of the hole, caused by the displacement of the compressed material in both
directions from the middle of the hole.

p=Const \ p=Var
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a) b)
Fig. 119. Diagramsof pressure in a press joint with uniform (a) and uneven (b) distribution over
the seating surface

In some cases, to simplify calculations, the load distributed over a significant
area or length is alsnodeled as concentrated. Consider, as an example, a shaft con-
nected to a gear wheel and supports (Fig. 1.20). Here, the forces with which the gear
wheel or supports act on the shaft are actually loads distributed along the length of
the seating surfaced.dan be assumed, with a certain approximation, that its distri-
bution is uniform (Fig. 1.20a). In fact, due to the deflection of the shaft under the
action of the force at the point of connection of the shaft with the support, the nature
of the load disthution may be different: the uniform pressure diagram will turn into
a triangular or trapezoidal one. (Fig. 1.20 b).
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Fig. 1.20. Scheme of shaft loading by uniformly distributed (a) and unevenly distributed

forces (b)

Since the regularity of the load distribution is not precisely known, it is modeled
by concentrated forces applied in the middle of the landing surfaces of the gear wheel
or support (Fig. 1.21a). Sometimes, for more accurate modeling of the shaft load in

the presence of deflections, this load is represented as two forces (Fig. 1.21b).
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Fig. 121 Scheme of shaft loading by concentrated forces instead of uniformly distributed (a) and
nontuniformly distributed load (b)

s

Therefore, several calculation schemes can be built for the same object, depend-
ing on the required accuracy and the purpose of the calculation.

Let us consider as an example the compilation of two variants of the calculation
scheme for the support beam of the bridge crane (Fig. 1.22). Two possible variants
of such a scheme are presented here. They differ both in the method of fixing the
beam on th columns and in its load.
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Fig. 122 Calculation scheme of the support beam of the bridge cadngeneral view; b andic
variants of the calculation scheme

The first option (Fig. 1.22 b) will be acceptable, if the fastening allows the ro-
tation of the support sections of the beam within certain limits, that is, we have a
hinged support. The load, consisting of the weight of the cargo and the crane's own
weight is represented by the concentrated fofegand F, applied at the contact
points of the crane wheels with the support beam. The balanced system of forces is
complemented by the supporting reactiBagndRs.

If the beam is rigidly fixed to the columns, for example welded to them, then
rigid fixing should be chosen as supports (Fig. 1.22c). The load scheme here also
differs from the first option: the selfeight of the beam is taken into account, which
is represented by a uniformly distributed load of intensity q, and the number of sup-
porting reactions has increased to six.

When evaluating the adequacy of the proposed calculation schemes, it is neces-
sary to take into account how pliable the beam supports are, and how this can affect
the accuracy of the calculations. The fewest problems will arise when these supports,
l.e. coumns, are absolutely rigid. If such an assumption turns out to be too rough,
then one will have to take into account their malleability. However, the columns, in
turn, are only elements of the structure's frame, connected to the floor beams, stiff-
ening bels, the foundation and the same supporting beams of the crane. Therefore,
their deformations can be determined only as part of the entire structure of the build-
ing, which, by the way, will be loaded not only by the weight of the crane with the
load and th@wn weight of the structural elements, but also by the wind load on the
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roof and walls of the building, the weight of the snow layer on the roof in winter, etc.
p. And this is a completely different calculation scheme.

A very effective tool for drawing up calculation schemes is the use of the prin-
ciple of symmetry, when there are planes of geometric symmetry of the object and
the symmetry of the loads relative to this plane. If these planes coincide, then the
calculationscheme can be reduced to a plane create a soalled planescheme
(the calculation schemes shown in Fig. 1.18, .22 belong tgplaneschemes).
However, the force symmetry condition for constructinglanecircuit is insuffi-
cient. It is also nezssary that all loads act in planes parallel to the plane of symmetry
of the object, as shown in Fig. 1.23.
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Fig. 123. A planecalculation scheme:iasource object; b andiccalculation schemes of the ob-
ject

Here, due to the existing symmetry, the spatial load is reduced to a linear one.
The plane of its reduction is called the plane of force, and irc#ss,it coincides
with the plane of symmetry

It should be noted that in the case of a rod, the presence of a plane of geometric
symmetry is not necessary for the construction of a planar calculation scheme. Here
we should be talking about the plane passing througlpriheipal central axes of
inertia of the rod sections, which for symmetrical sections are also the axes of sym-
metry. For a system consisting of several rotte secalled rod systemthe con-
struction of a planar calculation scheme is possible provided thatdébefall rods
lie in the plane that coincides with the power plane.

If the formulated conditions are not fulfilled, i.e. it is not possible to create a
planecalculation scheme, or when the problem is solved in a more precise formula-
tion, for example, taking into account the contact interaction between elements, but
geometric and force symmetry are present (Fig. 1.24, a), then the symmetry condition
can be us#to reduce the required number of computational operations.

This approach, in particular, is widely used in solving problems using the finite
element method (FEM). The body is "cut" with a plane, one part is discarded, and
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the remaining part (Fig. 1.24, b) is fixed in the plane of dissection in a direction
perpendicular to it (the plane must remain a plane and not move from its place
condition of symmetry). That is, calculations are carried out only for half of the body.
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Fig. 124. A planecalculation scheme: fasource object; bscheme for calculatingEM

:-lj
Pl
S

If the object and its load are characterized by cyclic symmetry (cyclic repeata-
bility), for example along the length of the object, then in this case only the charac-
teristic part of the structure is considered, and its discarded parts are modeled by
symmety conditions.

There is a fairly wide class of objects whose geometric shape and the load acting
on them are symmetrical about one axis. These are axisymmetric shells under the
action of uniform liquid or gas pressure (Fig. 1.25, a), tivaelkled cylinders under
the acton of external and internal pressures (Fig. 1.25, b), rotating disks in the field
of centrifugal forces, etc. Such objects include press connections of cylindrical shafts
with wheel hubs, bearings, etc., shown in fig. 1.19. The axial symmetry of their cal-
culation schemes greatly simplifies the determination of the characteristics of the
stressed and deformed state.
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Fig. 125. Axisymmetric objects: & shell loaded with uniform pressurej la thickwalled cylin-
der loaded with uniform internal and external pressures
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As you can see, the selection of the calculation scheme is the first and very
important stage of the calculation. Its accuracy and lattensiveness depend on
this choice. Sometimes an additional, even small, clarification of the calculation
scheme causea significant complication of the calculation. On the other hand, un-
justified simplification of the calculation scheme can lead to significant errors.

It should be borne in mind that several calculation schemes can be proposed for
one object, and different real objects can correspond to one calculation scheme. That
IS; by studying some calculation scheme, it is possible to obtain a calculation method
for a whole class of real problems described by this scheme.

Thus, having drawn up the optimal version of the calculation scheme of the
structure, it is possible to proceed to the analysis of the characteristics of the stress
strain state of its elements.

1.6.2. Basic hypotheses and principles of materials and con-
structions mechanics

In the mechanics of materials and structures, which is largely based on the meth-
ods of resistance of materials in the calculation of elements of structures and ma-
chines, a number of assumptions (hypotheses) are used, which significantly simplify
the derivéion of calculation formulas. Experimental studies and calculations per-
formed by more rigorous methods of the theory of elasticity show the possibility of
using these assumptions to solve most problems of resistance of materials. In the
future, in cases wdre these assumptions cannot be used, the necessary remarks will
be made.

The main hypotheses used in the resistance of materials and, accordingly, in the
mechanics of materials and structures are as follows.

1. Hypothesis about the natural unstressed state of the bodhis hypoth-
esis allows us to exclude from consideration the force of interaction between body
particles in an unloaded state. The concept of effort as an additional force that occurs
when the body is deformed, introduced in clause 1.1, correspondshgpbibesis.

2. Hypothesis about the continuity, homogeneitgand isotropy of the ma-
terial. According to this hypothesis, the properties of the material do not depend on
the shape and size of the body and are the same at all points of the body and in all
directions. This hypothesis was discussed in detail in Section 1.2 and used to build a
modelof the material studied in the mechanics of materials and structures.

The assumption of the continuity and homogeneity of the material allows an
infinitesimally small element of the structure to be endowed with the properties that
the body volume of real dimensions has, and for the study of internal forces and
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analysis of the stresteformation state of the body, the equilibrium is not considered
of an infinite part of the rod or shell, but of an infinitely small element of them. From
this assumption follows the continuity of the distribution of internal foatesg the
crosssection of the body, which makes it possible to introduce the concept of stress
and deformation at a point of the body.

The assumption of isotropic material is acceptable for most structural materi-
als. However, there are cases when it is necessary to take into account the difference
in material properties in different directions, that is, their anisotropy (wood, compo-
site materials, etc.).

3. Hypothesis about the ideal elasticity of thenaterial. According to this
hypothesis, the material is able to completely restore the original shape and size of
the body after the causes that caused its deformation have been eliminated.

This hypothesis is valid only for stresses that do not exceed a certain value for
the given material, which is called the elastic limit. If the stresses exceed the elastic
limit, then plastic (residual) deformations occur in the material in addition to the
elastic ones, which do not disappear after the load is removed.

Residual deformations can develop over time and at constant stresses, lower
than the elastic limit, if the load occurs in conditions of high temperatures. They are
called creep strains.

The hypothesis of ideal material elasticity is used to solve most problems of
material resistance and elasticity theory.

4. Hypothesis of small displacementsThis hypothesis is also called the hy-
pothesis of small deformations of the system as a whole. It is assumed that during
the loading of the body, the displacements of any point are small compared to the
geometric dimensions of the body. This assumptiaorfirmed for most systems
considered in the mechanics of materials and structures.

5. The statement about the proportional relationship between stress and
strain (Hooke's law). This law was formulated by Robert Hooke in 1660: "what
elongation is such a force." In its original formulation, Hooke's law stated that dis-
placements are proportional to the force that causes the displacement. In this case,
the proportionality factor demds on both the physical properties of the material and
the geometric parameters of the structure. And therefore, the specified relationship
between displacementsdaforce can be considered as Hooke's law for the system.

In the modern interpretation, Hooke's law defines a linear relationship between
stress andtrainat a point of the body. The proportionality factor is a physical con-
stant of the material and is not related to the geometric features of the structure. In
the model of the pairwise interaction of two atoms (Fig. 1.2), this coefficient is
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proportional to the tangent of the angle of inclination of the tangent to the resulting
force curve around the point. Therefore, Hooke's law expresses the properties of the
material itself. Moreover, it is considered that the linear relationship betwess st
andstrainis preserved both during loading and unloading.

It should be noted that nonlinear dependences between forces and displacements
are observed in systems to which the hypothesis of small displacements cannot be
applied, even when Hooke's law is applied in relation to stresses and strains. An ex-
ample can ba spiral spring (see Fig. 1.4 ca rectilinear rod in its initial state that
bends into a spiral. Such systems are called geometrically nonlinear.

Experiments show that Hooke's law is fulfilled for most materials at stresses
that do not exceed a certain value for the given matetallimit of proportionality.

This law is used to solve most problems of resistance of materials.

6. Hypothesisof plane crosssections of a rod(Bernoulli's hypothesis).
According to the hypothesis, the cressctions of the rod, which apéanebefore the
application of the load, remapianeduring the loading.

As shown by calculations using the theory of elasticity, as well as data from
experimental studies, the fulfillment of this hypothesis is influenced by the distance
of the crosssection from the places of application of external forces, the gradual
changan the size of the crossection, the shape of the cresection (during torsion),
etc.

The hypothesis of plane sections plays an important role in the derivation of
most formulas for the resistance of materials. For those cases when it is not fulfilled,
the necessary remarks will be made.

In addition to the listed hypotheses, in the mechanics of materials and structures,
a number of basic principles are used as the basis of calculation methods for deter-
mining the stresstrain state of a body.

1. The principle of initial dimensions or the principle of hardening Ac-
cording to this principle, when compiling the equilibrium equations, the body is con-
sidered as undeformed, having the same geometric dimensions that it had before
loading by external forces. This type of calculation is also called calculation accord-
ing to the undeformed scheme. This allows us to ignore possible changes in the po-
sitions of the application points and the directions of the forces acting on the body as
a result of its deformatn, and which are actually unknown. This principle is based
on the hypothesis of small deformations and displacements.

However, this principle cannot be applied in all cases. Thus, in the already men-
tioned example of a spiral spring, despite the real small deformation of the spring
material within the limits of elasticity, the displacement of its points can be
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commensurate with the dimensions of the 4halled rod (metal strip) from which

it is made. That is, the principle of initial dimensions cannot be used in cases where
large displacements occur. In these cases, the calculation should be carried out ac-
cording to the deformed scheme, in particular, the equilibrium equations should be
written taking into account the deformations of the system.

2. The principle of independence of action of forces (principle of super-
position). In accordance with this principle, the result of the action on the structure
of the system of forces is equal to the sum of the results of the action of each force
separately. So, if several forces are applied to the system, it is possible to determine
the forces, stresses, displacements and deformations from each force separately, and
then add the calculation results accordingly. It follows from this principle that the
result d the action of forces on the body does not depend on the order of their appli-
cation.

The principle of the independence of the action of forces is based on the hy-
pothesis of the smallness of displacements and the proposition about their linear de-
pendence on forces, as well as related to the previous assumption about the reversi-
bility of theloading and unloading processes (here we mean the hypothesis about the
ideal elasticity of the material and the linear dependence between stresses and strains
both when loading and unloading the body).

The principle of independence of forces is fundamental for solving most linear
problems in the mechanics of materials and structures. In cases where this principle
IS unacceptable, special provisions will be made.

3. Saint-Venant principle. Consider a body loaded in two ways: uniformly

distributed (Fig. 1.26, a) and unevenly distributed loads (Fig. 1.26, b).
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a) b)
Fig. 126. Variants of body load: evenly distributed (a) and unevenly distributed load (b)

At the same time, thgrincipal vectors of these loads = fjqdA, are the same,
Ay,
and theprincipalmoments areM =0. Systems of external forces in which fhrin-
cipal vectors angbrincipalmoments are the same are called statically equivalent.
The dimensions of the load distribution platforms are much smaller than the
dimensions of the body. Under such conditions, the S&nant principle is valid:
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If the body is loaded with statically equivalent systems of forces, while the
sizes of the load application zones are small compared to the size of the body, then
at its points far enough from the load zones, stresses stngin do not depend on
the method of load application.

A few remarks should be made here.

First, the SainrWenant principle still lacks a theoretical proof for the general
case. At the same time, it was fulfilled for all obtained exact solutions. Therefore,
this principle belongs to the s@lled heuristic principles: it is valid for a wide sta
of problems, but does not have a general proof.

Second, there is no exact answer as to what the minimum distance should be for
the SaintVenant principle to hold. It is believed that this distance should not be less
than the maximum size of the load application zone.

Despite some uncertainty in quantitative estimates, the validity of the\Baint
nant principle has been experimentally proven, and its physical essence is very im-
portant for engineering calculations. It makes it possible to significantly simplify the
boundary conditions of the problem, if the stresses and strains are determined at some
distance from the load application zone.

It is clear that directly in the load zone and near it, the laws of distribution of
stresses anstrainwill depend on the method of application of loads.

In addition to the principles formulated above in the mechanics of materials and
structures, as well as in the resistance of materials, such general principles of me-
chanics as the principle of freedom from constraints, the principle of minimum po-
tential erergy, the principle of possibteformatiors, etc. are also used.

1.6.3. Internal forces and the method of sections for their deter-
mination

At the heart of thenethod of determining internal forces or efforts is the prin-
ciple of liberation from shackles. According to this principle, when rejecting a me-
chanical yoke imposed on a loaded body, it is necessary to apply a reaction instead,
SO as not to violate the cditions of equilibrium or the given law of motion. In the-
oretical mechanics, external connections are considered, and the reactions that occur
in them are attributed to external forces. It is clear that, being universal, this principle
can be applied in kation to internal ties as well.

The method of determining efforts was called the method of sections. To reveal
its essence, consider a solid body loaded by a balanced system of forces (Fig. 1.27a).
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Fig. 127. To the method of sections for determining efforts: balanced solid (a); a part of the body
with a distributed force in the section (b) andoitscipalvector andorincipalmoment (c)

Since a loaded body is in equilibrium, any part of it is also in equilibrium. It is
obvious that when a body is dissected by an imaginary plane and one part of it is
considered (Fig. 1.27b), then in order for its equilibrium not to be disturbed, it is
necessary to foresee the forces distributed according to a certain law in the section.
These forces characterize the action of one part of the body on another and appear in
the crosssection as a result of the dissection of the internal bonds (see the model of
the paired interaction of material atoms, Fig. 1.1 and Fig. 1.2), which connected the
two parts of the body.

The crosssectional surface is external to the remaining body part. Therefore,
with the help of the crossection method, the internal forces are transferred to the
category of external forces for the body part. Since the body, according to the ac-
cepted hpothesis, is a continuous medium, these forces should be considered as dis-
tributed in the crossection. The task is to find the force at each point of the consid-
ered section. Unknown reactions in theoretical mechanics are found from the equi-
librium condiions of the body. However, in our case, using only the conditions of
equilibrium of a part of the body, we will not be able to solve this problem, since we
do not know the law of distribution of forces in the cresstion. This law depends
on the shape dhe body, character, magnitude and location of external forces.

At the same time, the forces distributed in the section can be represented in the

form of theirprincipal vector R andprincipalmomentM (Fig. 1.27c), applied at
the center of gravity of the section.

Let's project theorincipal vector and therincipal moment on the coordinate
axis, one of which, namely coincides with the normal to the section, and the other
two, y andz, lie in the plane of the section. Then, on each side of the section belong-
ing to the body parts and, we will have six internal force factors: three forces (
R. R, R)and threemoments 4,, M, M,) (Fig. 1.27c). These quantities are

called the components of internal forces in the esestion of the body.
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These components can be found from the equilibrium equations for the body
part under consideration. Based on the principle of hardening, we consider it abso-
lutely solid when the points of application and directions of external forces applied
to the body a unchanged in the coordinate system associated with this part of the
body.

So, having compiled six equilibrium equations for a part of the body, you can

find six components of internal forces, and therefore the ve&aaad vi .
Internal forces, according to the principle of action and counteraction, are

always mutual. That is, for the determination of vectdtsand m , it does not mat-
ter which part of the body is considered to be in equilibriuneft A or right B
(Fig. 1.27).
In the case of arod (Fig. 1.28), special terms are used to denote the components
of theprincipalvector R,, R,, R and theprincipalmomentM,, M, M:
N is the longitudinal force, that is, the component ofghacipal vector that
acts along the x axis, normal to the cross section of the rod;

Q, and Q, 1 shearforces, that is, components of thencipal vector that co-
incide with the transverse axes of the secyiandz, respectively;

M, T torque, that is, the component of thencipal moment acting in the
crosssectional plane (relative to tlxeaxis);

M, and M. - bending moments, that is, components ofgthiecipalmoment,

which act relative to thg andz axes, respectively.

Fig. 128. Part of a rod with the components of firencipalvector and th@rincipalmoment of
effort in the section

Equilibrium conditions for part of the rod are written in the form of equations
relative to the unknown components of internal forces, taking into account that each
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of these components balances the projections of external forces on the corresponding
axes or moments of these forces relative to the corresponding axes:
. n. n,
N :al( Fx)i; Qy :.a(Fy)i ; Q, .:S'FZ)i ;
1= |

(=1

(1.1)

N " n,
Mor =8 My (F) My =aM(F); M, =81 ,(F).

i=1 i 4 i E
Therefore, the method of cressctions makes it possible to find all internal

forces and moments in any cressction of a rod. For this ymeed:

1. mentally draw a crossection of the rod in the place where the components
of internal forces should be found;

2. determine forcesN, Q,, Q and momentsM,,., My, M, as algebraic

sums of projections and moments of external forces acting on one of the parts (left
or right relative to the crossection) of the dissected rod (as a rule, the one with less
loads).

Of course, the internal forces in different sections of the same rod can have
different valuesGraphs showing the change in internal force along the axis of the
rod are calleddiagrams

The following rules are used when buildisigearmoment diagrams

- the axis (base line) on which tdeagramss built always repeats the axis
of the rod;

- ordinates are laid perpendicularly from the base line, depicting the magni-
tude of the force on the selected scale, taking into account its sign;

- the numerical values of the characteristic coordinates are placeddin the
agramsand the force sign is placed in the field of diegrams

Diagramsallow you to determine the most dangerous areas or sections of the
rod, in which the internal force factors reach the greatest value, and to calculate the
strength of the rod. The method of constructing graphs for various types of rod load-
ing will be discissed in more detail later.

1.6.3.1 The simplest types of rod loading

In accordance with the listed components of internal forces for rods (longitudi-
nal, transverse forces, torsional and bending moments), a classification of types of
their deformations is introduced.

Pure tension or pure compressioocurs when only longitudinal force N occurs
on some part of the rod in its cross sections.

37



A shearof the rod occurs when only transverse for@,sand (or)Q, arise on

some part of it in the cross sections.
Pure torsionoccurs when only torque occurs on some part of the rod in its cross

sectionsM,,, .
Pure bendingoccurs when only a bending momevit, or M,. At the same

time, if the moments act in one plane, which coincides with the bending plane of the
axis of the rod, then the bending is calj@ane

Plane transverse bendimmgcurs when, in addition to bending moments, a trans-
verse force also acts in the crasstions.

Any other types of rod deformations can be obtained by superimposing the in-
dicated simplest ones, for example, bending with torsemrsionwith bending, etc.

1.6.3.2 Diagrams of internal forces for rods

In the general case, when moving from cresstion to crossection, the forces
in the rod change, and judge the nature of their change with the help of graphs.

The diagramof the change of this component of the internal force along the
length of the rod is called a graph

General remarks and the order of construction odiagrams

The axis on which thdiagramis built is called the base line or base. It always
repeats the rod axis.

The ordinates of theiagramare placed perpendicularly from the base. In scale,
they correspond to the values of internal forces in esesions, calculated accord-
ing to the equations of statics using the method of €essBons.

They builddiagramin the following sequence.

1. Depict the calculation scheme of the rod and the base linesdittgram

2. If necessary, determine the reactions of the rod supports.

3. Breakthe rod into sections. A section is a part of a rod on which the internal
forces change according to the same law. The boundaries of the sections coincide
with the points of application of concentrated loads, as well as with the beginning
and end ofthe distributed load. Within the boundaries of the section, the law of
change of the distributed load is constant.

4. Using the method of crosections, the conditions of equilibrium of the
cut-off part of the rod are successively drawn up in each section in the form of equa-
tions of relative unknown forces. Efforts in this case are considered as functions of
the positionof the section along the axis of the rod.
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Note. Before writing down the equilibrium equation, for each section it is nec-
essary to indicate the limits of the change of the esession coordinate along the
axis of the rod relative to the selected reference point.

5. According to these equations, graphs are constructed within each section
of the rod and, as a result, tti@gramis obtained.

Hatching in the form of lines perpendicular to the base is often app sk &
moment diagramsn addition, on the graphs, the values of forces are placed near the
ordinates at characteristic points, for example, in places of breaks, breaks (jumps) on
the graphs, in places of extremes. The sign of effort, which is placed in a circle, is
also indiated directly on thehearmoment diagrams

Example 1.1 Build forcediagramsor a round stepped rod (Fig. 1.29) in two
load cases: 1 without taking into account the rod's own weight: faking into

account own weight. The diameter of the lower part of thetkosl0,1m; upper-

d, =0,2m. Specific weight of the rod materigl 7,65 1GN/nt .

1. Construction of diagrams of internal forces without taking into account the
own weight of the rod.

According to the calculation scheme, the edightly clamped at the upper
end. On this basis, we conclude that there is no need to determine support reactions,
since the forces in any section can be found from the equilibrium condition of the
part of the rod that does not contain support, thathie,lower part.

We break the rod into sections. There are two of them, and they are limited by
the points of application of concentrated forces.

Within each section, we make cresstions. To record the equilibrium condi-
tions for the cubff parts of the rod, we choose a coordinate system with the origin
at its free end. We will determine the position of the sections on each section from
this poirt (see Fig. 1.29 a).
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Fig. 129. Calculation diagram of the rod (a) and longitudinal force diagram (b), constructed with-
out taking into account the own weight of the rod, and calculation diagram (c) and diagram (d),
constructed taking into account the own weight of the rod

i
,l F=1 kW Qr
b

al

The analysis of the loads applied to the cut parts of the rod in both the first and second
sections shows that we have a linear system of forces acting along the X axis. That is, only longi-
tudinal forces N will occur in the sections, which means thatdtiésrin pure tension compression.

Before writing theequilibrium equation, the sign rule for the longitudinal force should be
agreed upon.

A longitudinal force is considered positive if the load causing it stretches the
rod. If the load compresses the rod, then the longitudinal force is negative

So, forthe first section:

w. 0¢x ¢0,5m

N(x)=FR <kN.

For the second section:

[ 1 . o,8utlx ¢0,8m

N(x)=R -F, F3- 2kN

As you can see, the longitudinal force in each area is constant. Moreover, the
rod is stretched in the first sectiom £0), and compressed in the second section
( N<0). Thediagramof the constant is a straight line parallel to the abscissa axis.
On thediagram(Fig. 1.29 b) we have two straight lines, parallel to the base, with
ordinates on the first sectioN =1kN and N = 2 kNon the second section. At the
points of application of concentrated forces on dirgram there are jumps in the
magnitude of the force in the direction of its action. Thus, at the point of application
of force F, there is a jump (break) by the amount of this force of 1 kN towards pos-
itive values. And at the point of application of foreewe have a jump totaling 3 kN
in the direction of negative values of the longitudinal force. We have a jump of 2 kN

40



In resistance. So here a concentrated force of 2 kN must be applied, which com-
presses the rod. It is not difficult to understand that this force is the reaction of the
support, which we have not previously determined.

2. Construction of diagrams of internal forces taking into account the own
weight of the rod.

In this case, the own weight of the rod is added to the concentrated farces F
and F, (see Fig. 1.29 c). Gravitational force, as is known, is a volumetric load that
can be reduced to a linear, uniformly distributed along the axis of the rod within
each of its parts. Moreover, its intensity is different, since the diameters and, there-
fore, the crosssectional areas of the rod in its lower and upper parts are different.
The intensity of the load by own weight on the lower part:

w=6 =d/p 76510 3024 0% 4 600,525= 0,BN n.

On the upper part of the rod:

=8 =d/p 7,651¢ 31408 4 Q402N m 24N n.

According to the scheme (Fig. 1.29 c), we have three sections on the rod. Let's
write down the equilibrium conditions for the @ft part of the rod at each section.

For the first section:

w. 0¢ x ¢0,4m

N(x)=F 4gx ¥ 06x.

As you can see, tlttagramin the first section is outlined by a straight line. To
carry it out, it is necessary to have two points, for example, the ordinates of the lon-
gitudinal force at the borders of the section: @0 N=1kNand at x=0,4m
N=1 40,6 % 1,24&N.

For the second section:

ww. 0,4m¢ x ¢0,5m

N(X)=R 4 0@ oftx 0,4 1 0664 Xk 2404 0,282

At x=0,4m N=0,28 +2,4 @4 124N;

at x=0,5m N=0,28 +2,4 @5 14&N.

For the third section:

Wwwwo5me x ¢0,8m

N(X)=h -/, @00 qpfx 03) 41 3 G;60,4+2,4 @4 24 Q72+

At x=0,5m N= 2,72 24 08 15XN;

at x=0,8m N= 2,72 2,4 08 O:&N.

The diagram of longitudinal forces is showrfFig. 1.29 g.
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Example 1.2 Construct force diagrams for a rod loaded with moments acting
in a plane perpendicular to the axis of the rod (Fig. 1.30).

Adding the moments applied to the rod, we get:

M- M, M3 M, 16 40 10 +20 .

That is, the system of external forces is balanced, which means that the rod is

at rest or rotates uniformly.
Mo=4O0 kNm  M=10 kNm M, =20 kN'm

M=10 kN _ . .
iz, A! I Bl 7 c! MD! Lz,
777 |z | i 77
o X -
e B b i b ale b o
10

N

20

30
Fig. 130. Calculationschemeof the rod and torque diagram

We break the rod into thresections. Their borders coincide with the points of
application of concentrated moments.

We place the beginning of the reference at point A. We draw sections and write
down the equilibrium equations for the corresponding parts of the rod at each sec-
tion. It can be seen from the load scheme that only torques will arise from the six
force compoants in the crossections, which balance the acting external moments.
Therefore, the rod is in pure torsion conditions.

Note. The special rule of signs for torques is not established, only when writing
the equilibrium equations, they are reconciled in accordance with the directions of
external moments. Signs are also not placedlmarmoment diagram

w . O¢x

,[tor(x): § 40 k.
ww. b¢x @b

for(¥= f- M 40 30-k.

In the third section, it is rational to determine the torque in the section, consid-
ering the equilibrium condition of the right part of the rod (only one momergs M
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applied here). Let's move the origin of the reference x to point D and get the following
expression:
wwuwoex @b

J: tor()a: - Ll :20‘ k .
At each section, the torques are constant, which is understandable, because the
distributed moments are not applied to the rod. The diagrag gf is shown in

Fig. 1.30.

In the crosssections where concentrated moments are applied, we have jumps
on the curves. It should be noted separately that the momgriiOMkNmwas not
included in any of the equilibrium equations. Each time it fell back together with the
corresponding part of the rod. However, in the section where it is applied, there is a
jump of 30 kKNm in the direction of its action, which indicates the cioress of the
performed calculations and constructions.

1.6.3.3 Construction of diagrams of internal forces for a straight rod in
conditions of plane transverse bending

Rods that are irplanetransverse bending are called beams.

In construction, where this term came from, a beam is a separate element of a
building's structure. In mechanical engineering, wheel teeth, axles, and levers, and
other machine elements are called beams when it comes to their calculation schemes.

Depending on the type and number of supports, the beams can be cantilever
(Fig. 1.31 a), singkspan or twespan hinged supports (Fig. 1.31 b), maftan sin-
gle-span (Fig. 1.31 c), muiBpan split (with intermediate hinges)

(Fig. 1.31 d). It should be noted that the span is the distance between the beam
supports.

H— =2 == 2 £°% 2
a) b) C) d)

Fig. 131 Types of beams: acantilever; b’ singlepass; ¢}y multi-run inseparable; d) muti
pass split

Let's dwell on some features related to the construction of frames for beams.

Determination of support reactions

Under the conditions of transverse bending, external forces, including the reac-
tions of the supports, act perpendicular to the axis of the beam. If this were not the
case, longitudinal forces would arise in the cresstions of the beam, and they are
absat during transverse bending. Thus, a planar system of parallel forces acts on the
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beam, which is subject to two equilibrium conditions: the sum of the projections of
all forces on an axis perpendicular to the axis of the beam is zero, and the sum of the
moments of all forces relative to some point of the plane is zero.

These conditions are used when determining the resistance reactions.

Example 1.3 Determine the support reactions for a tsugport hinged beam
(Fig. 1.32).

7 It is most rational to determin
R‘i g 2y ) the reactions in the hinge suppol
IRRIRAIRAT Ml _ from the balance equations of the n
AL ! TF“"I’ g ments of external forces relative
r 1,51 - each of the supports. In this case,"
21 - following sequence should be ¢

Fig. 132 To determine the bearing reactions garyed:

the beam ) )
- apply support reactions in at

bitrary directions;

-draw up the balance equations of the moments relative to the supports, from
which to determine the reactions (if the reaction turns out to be negative, then its
direction should be changed to the opposite, and the reaction will be considered
positive in tke future);

- complete the calculation by checking the correctness of the determination of
reactions, for which you can use the condition that the sum of force projections on
the vertical Y axis is equal to zero.

Note. The sign of the moment is assigned as is customary in theoretical me-
chanics- a positive moment acts counterclockwise. A force is considered positive
when its direction coincides with the direction of the selected axis.

Note. If a distributed load is applied to a beam, then, when determining the
moment of this load relative to a certain point, it is replaced by an equivalent mo-
ment, which, as is known, is equal to the area of the diagtamand is applied at
the center of gravity of thidiagram

We will now determine the supporting reactions of the beam (Fig. 1.32), using
the given recommendations.

Let's apply the reactions in supports A and B, having previously directed them
upwards. We write down the conditions of equilibrium of the moments relative to
each of the supports, from which we find the reactions:

a&Mp =gl 06 F 15 & &M OO0
_0.51%- &l® +1°
2l

Rg = 1 75ql;
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AMpg = Ry 210ql 3 & 0,5 MO 0

2 2 2
RA:l’5q| - z‘?' il = 1, 25q].

Both reactions were negative. Therefore, on the calculation scheme, we change

their directions to the opposite. After that, we check:
aY = Ry gl F+R- 1,259 gl 4ql 1,¥5 .

The check showed that the reference reactions were found correctly.

There were no problems in determining the support reactions in the considered
example, since their number did not exceed the number of equilibrium equations
from which they were found (we have two reactions and two equilibrium equations
for the system of grallel forces). Such problems are called statically deterministic.

However, the task of determining the support reactions can be statically inde-
terminate. Indeed, if we add at least one more support, turning our beam inte a multi
span continuous beam, we get three unknown reactions. The number of equilibrium
equations remined unchanged, that is, we have two equations. The problem has be-
come statically indeterminate. We will get acquainted with the methods of solving
such problems later.

The degree of static uncertainty of an uncut repain beam can be reduced by
placing an intermediate hinge (Fig. 1.31 d). At the same time, to the existing equilib-
rium conditions, the conditions of zero sum of the moments of forces lying on one
side of he hinge, relative to the center of this hinge, are added.

Differential dependencies between effort components during transverse
bending

Consider a balanced rod in conditiongtanetransverse bending (Fig. 1.33 a).
Let's select an element of this rod with length It is acted upon by an external
distributed load of intensity g(x), which, due to the smallness of the element, can be
considered uniformly distributed, and internal forces in sectiénand B
(Fig. 1.33D).

e LA o1 0vag
 afimmT w [ et
X dx x dx
— A B
a) b)

Fig. 133. A rod under conditions gflanetransverse bending:iaload scheme; b rod element
under the action of external and internal forces

Let's write the equilibrium equation of the rod element:
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aYy =Q gdx (Q d§ 0; (1.2)
4Mp =Qdx qd%x M (M dM 0. (1.3)

From equation (1.2), we get the relationship between the transverse force in the
section and the intensity of the load:

_dQ (1.4)
dx
Neglecting the product in equatioz,axd_zX (1.3) as a quantity of the second order

of smallness, and taking into account relation (1.4), we obtain the differential de-
pendences between the forces during transverse bending:
0= amMm ; (1.5)
dx
_dQ _d*Mm
X Tad

According to the obtained dependencies, the same dependencies exist between
the graphs of load distribution, transverse force and moment, as well as between the
graphs of the function and its derivative, known from mathematical analysis. This
greatly faciltates the construction of internal force diagrams and provides a reliable
tool for checking the correctness of the completed constructions.

Sign rule for transverse force and bending moment in the beam

A transverse force in @arosssection is considered positive if the external load
causing it tries to rotate part of the beam clockwise relative to the esassion. If
this rotation occurs counterclockwise, then the transverse force is considered neg-
ative.

The momendiagram is usually built on compressed fibers. Then, in the sec-
tion of the beam, the bending moment is considered positive if the load causing it
deforms the beam in such a way that the upper fibers are compressed. If the lower
fibers of the beam are compssed, then the bending moment is considered nega-
tive.

In Fig. 1.34 shows examples of determining the signs of internal forces in beam
sections according to the formulated rules (signs of forces are indicated on the dia-

grams).
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Fig. 134. To determine the signs of internal forces in cresstions of a rigidly clamped cantile-
ver beam: a, bcompressed upper fibers; ci dompressed lower fibers.

Example 1.4 Applying the formulated rules of signs, for a cantilever rigidly
clamped beam (Fig. 1.34 a), determine the internal forces and construdidheir
grans.

Since the cantilever beam is rigidly pinched, there is no need to determine the
bearing reactions. The beam has one section, within which a sectwadis at a
distance x from the free end.

Let's indicate the boundaries of the section and write down the equilibrium con-
ditions of the cubff part of the beam. At the same time, we will take into account
signs of effort in accordance with the accepted rules:

- transverse force in the cros&ctionQ>o, since the force F tries to rotate
part of the beam relative to the cressction clockwise;
- the bending moment in the section is also positive, since the moment of force
F, bending the beam, compresses the upper fibers.

woex @
Q(x)=F;
f (9= F

According to the equilibrium equation, the transverse force is constant along
the entire length of the beam, and the bending moment varies according to a linear
law. We depict itgliagramwith a straight line, passing it through the ends of the
ordinates corresponding to the values of the moments on the boundaries of the sec-
tion: at x=0 M =0; at x=1 M =Fl.

For the rest of the schemes showfim 1.34,shearmoment diagramare built
according to a similar technique.

It should be noted that there is no physical meaning according to the formulated
rules of signs for internal forces during transverse bending. However, these rules
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make it possible to use the properties and interdependencies of graphs of a function
and its derivative, which in mathematical analysis are related to the right coordinate
system, when constructing graphs.

Let's recall some of these properties. For illustration, let's use the @daits
M presented in Fig. 1.34, remembering that, according to the differential dependence
between bending forces (1.5), tiagramof bending moment® is a graph of the
function, and theliagramof transverse forceQ is a graph of its derivative.

1. If the derivative in this interval is positive, the function increases
(Fig.1.34 a and d), and if it is negative, it decreases (Fig. 1.34 b and c).

2. The graph of a function is always a line of higher order compared to the
graph of its derivativdn Fig. 1.34, thediagrans of moments are outlined by sloping
straight lines, and théiagrans of transverse forces are straight, parallel to the bases,
that is, constants.

3. If the graph of the derivative crosses the abscissa @«f)( then the
graph of the function is an extremum.

4. A break on the graph of the derivative corresponds to a break on the graph
of the function

We will consider the features @fandM diagrans in more detail using a num-
ber of examples.
Example 1.5 Construct the graph@ andM for a singlespan beam loaded with
a concentrated force F=Xk0I (Fig. 1.35).
Let's find the support reactions from t

*a | /-':70/(/V| A conditions of equilibrium of the momer
: ! with respect to the supports.
A4 i |C | B ..
LA | , AM, = F 0,05 Ry+1 O
o5p Ry =10 25 25kN ;
i AMg =F Q75 Ry 1 @
& ; R,=10 75 %B5kN .
IIIIIIII@HIIIIIIII@/(N Check
1,875 ' aY =R, £ R 7.5 10-2,5+(
bi @/(Nm We break the beam into sections.

each section, we make cressctions anc
record the equilibrium conditions for the le
parts of the beam.

Fig. 135. Hinged singlespan beam (to
example 1.5)
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woe¢ x d0,25m

Q(x)=R, F,5kN;

f (3= R 75

At x=0 M =0; at x=0,25m M =1,875kNm

Ww,25mae¢ x ¢1m

Q(x)=R, -F &5 10  25kN;

[ (¥= R x(Fo®y 755 1€ 0,2 2,5 2,F
At x=0,25m M =1,875kNm; at x=1m M =0.

Based on the obtained data, we build dregrans Q and M.

Example 1.6 Construct the grapi3@ andM for a singlespan beam loaded with
a concentrated momekt=20 KNm(Fig. 1.36).

R, M=20 ki o, AR Let's find the support reactions.
@D, - D } )
s » aMa=fF R1 0
- , Rs =20 kN:
a5m aMg =R, 10f - 0;

IE o R, =20 kN.

Check

IS 4¥ avy=~h R 20-20 90
We break the beam into sections.
each section, we make cressctions anc
. @ N record the equilibrium conditions for tF
Fig. 136. Hinged singlespan beam (to ex |€ft parts of the beam.

sl

Jiﬁ':;

i
|

A4

20

10

ample 1.6) w0e¢ x ¢0,5m
Q(x)= R, =20 kN,
[ (9=-R x=20.

At x=0 M =0; at x=0,5m M = 10kNm.

ww,5me¢ x ¢l

Q(x)= -R, =20kN;

f (= -R x f20- 20

At x=0,5m M =10kNm; at x=1m M =0.

Based on the obtained data, we build dnegrans Q and M.

In both examples, the transverse forces on the sections of the beams are steel
values. Theirdiagrans are outlined by straight, parallel bases (see Fig. 1.35
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and1.36). Bending moments are linear functions of length, diagrams are
straight lines. We draw them through the ends of the ordinates calculated at the bor-
ders of thediagramsand set off from the base lines in the selected scale.

Example 1.7 ConstructQ andM diagramsfor a singlespan beam, which is
subjected to a uniformly distributed load with an intensitg=f0 kN/m(Fig. 1.37).

In this case, itis not necessary to determine the support reactions from the equi-
librium conditions of the beam. Since the uniform force of a uniformly distributed
load is applied in the middle of the span (passes through the center of gravity of the
load diagram which is a rectangle), and its value is equal to the area of this rectan-
gle qgl, that is, the product of the intensity by the length of the distribution line, it is

obvious thaRy = Ry =g/2.

R R, i
4 D o k The begm has only one section AB..‘
EHEEIEEE draw a section and write down the equili
AR 2 ’ B rium condition for the left part of the bear
woex dm
_05m _ Q(x)=R, -ax 5 10X
- m - X ~
- = X) = X —q % 5-“%
f (4= R x d
? @ 0 Here, the equivalent load of a ur
=il formly distributed load on a section
length x is equal to the area of a rectan
e with sides x and g. The uniform force is
# plied at the center of gravity of the rectan
@ wm X/2at a distance from the section.
Fig. 137. Hinged singlespan beam (for At x=0 Q =5kN M =o0:
example 1.37) The beam has only on ’ ’
section AB. atx=1m Q= 5kN, M =0.

According to the firsequation, the transverse force changes according to a
linear law and its graph is outlined by a straight line that will pass through the ends
of the force ordinates found on the borders of the section.

The diagram of moments, according to the second equation, is a parabola.
Moreover, the convexity of the parabola must be directed upwards, because the in-
tensity of the force q, according to the differential dependences (1.5), is the second
derivative of the bendingament M, and its sign is negative, because g acts down-
ward, that is, against the positive direction of the vertical axis.
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The diagram of transverse forces crosses the base line, tlgat as in this
section. Since thdiagramof forces is a graph of the derivative with respect to the
diagramof moments, there must be an extremum owlikgramM here. It can be
seen from figure Q that this section is located in the middle of the span. So

M| ., =5 @5 %05 12%Nm

Note. In the general case, the position of the section where the moment becomes
extreme is found by equating to zero the expression for the transverse force in the
area where the extremum occurs. For the example under consideration, we have:

Q(¥)=R, -ax &

From herex:& =2 G5m.

q 1

That is, the extremum of the moment really takes place in the middle of the run.

We build thadiagramof moments by three points: two of them are the ends of
the ordinates of the moments at the boundaries of the section, and the third is in the
section where its extreme value occurs.

Let's formulate the main features of thagramf transverse forces and bend-
ing moments

1. If an external concentrated force is applied to a beam in a certain section,
then on theadiagramof transverse force® in this section there is a jump by the
magnitude of the applied force in the direction of its action, and odi#dgeamof
bending moments! there is a break, the point of which is directed towards the force
(see Fig. 1.35).

Note. All features of the graphs of transverse forces and bending moments are
formulated for the righthand coordinate system

2. In the section where a concentrated moment acts on the beam, there is a
jump on thediagramM by the magnitude of the applied moment in the direction of
its action (the branches of tdeagrambefore and after the jump should be parallel,
if no external concentrated force is applied in the same section). At the same time,
no changes are observed on dregramQ (see Fig. 1.36).

3. There is always no bending moment in the hinged end support (see exam-
ples 1.35 1.37: supports A and B), except for the case when an external moment is
applied there.

4. On the sections of the beam free from the distributed load, the diagram of
the transverse forc&3is outlined by a straight, parallel base (graph of the constant),
and the diagram of the bending momektss a straight sloping line, which is
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consistent with the differential dependencies between these diagrams (see examples
1.35 and 1.36).

5. If a uniformly distributed load acts on the section of the beam, then the
diagramQ is outlined by a straight sloping line, and thagramM is a quadratic
parabola, the convexity of which is directed towards the intensity of the distributed
load (see example 1.37).

6. If the graphQ on the section is positive, then the gréplncreases from
left to right, and if it is negative, then it decreases.

7. In the sections where tllBagramQ crosses the bas@%£0), there is an
extremum on theiagramM (see example 1.37).

Let's consider a few more examples of building frames for beams
Example 1.8 Construct diagram® and M for a rigidly clamped cantilever
beam (Fig. 1.38).
The beam has one section. We choose

1 o =10 K/
add % ! starting point x at the free end and write do
‘ » the equilibrium equation for the left part of t
PENEN. SN [=1m beam:
# @/«/v wo¢ x 1(11rc11n
- _M_ﬁ Q(x)= F B —”Ir@ix x Q0 =5¥¢; -
. : al g i 5
| OLL ;(X):-F%_n@gz e -2 %
J—“M C | é 3

- 21,67

Fig. 138. Cantilever beam with unevenly
distributed load

Here, the equivalent load of the distributed load on the section of length x is

equal to the area of the triangle with sides x a](d<) :q”I‘—aX X. The uniform force

Is applied at the center of gravity of this trianglesat a distance from the section.

Thediagramof the force Q, according to the equilibrium equation, is a quad-
ratic parabola, moreover, monotonically decreasing (without extrema), because the
distributed load, being a derivative of the force Q, does not change its sign. The same
applies todiagramM, for whichdiagramQ is the graph of the derivative. Th&-
gramM is a curve of the third order. On tde&agramM, we have a convexity directed
towards the intensity of the distributed load.

We also see that in the section where the concentrated force F is applied, there
Is a jump on the force curve
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The conducted analysis using differential dependences during bending (1.5)
confirmed the correctness of the performed calculations and construdfenalso
see that in the section where the concentrated force F is applied, there is a jump on
the force curve.

Example 1.9 Construct diagram® andM for a hinged twesupport beam with
a cantilever part (Fig. 1.39)

Let's find the support reactions from the conditions of equilibrium of the mo-
ments with respect to the supports.

F=0,8ql R, AM. = F | Gl 9,83 R, | +M O,
. < @1 |A"M=4qf " 2 “ 2 Bz
IR T R N L i L TE
I "R‘ ‘A»F. I
. AMg = F 20ql £3 ®, |1 +M O
2 2 2
0,841 RA:1’6qI L9l +4 =,1ql.
0.8l 0,2q1 @ !
- | 3 Check:
4341 aY =F gl Ry R =
=0,8 g 4,4 48 C
03l @ The beam has two sections. On the first sec
(SA), we will make a crossection and conside
daF the equilibrium conditions of the left part of t

Fig. 139. Hinged twosupport continuous beam.
beam with a cantilever part

woex dm
Q(x)=F -ax &8ql ax
[ (9= F% &8  qOk5x >

In the second section (AB), we will consider the equilibrium conditions of the
part of the beam located to the right of the section.
wwuex d

Q(x)= R =,3q];
[ ()= R x M3 ot X

We builddiagrans on each site, using the obtained equilibrium equations.
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In the first section, the graph of transverse forces is a straight line. Let's find
the value of the force at the boundaries of the sectiom=a8 Q=0,8ql; at x=1

Q=0,8ql -g =0;4l. we lay off the corresponding ordinates from the base line
on a certain scale and build tltgagram(see Fig. 1.39).

In the second section, the transverse force is a cons@ﬁt:4,3q|. We build
thediagramas a straight line, parallel to the base.

In the first section, the curve of bending moments, according to the equation for
moments, is outlined by a parabola, the convexity of which is directed towards the
intensity of the distributed load. Since the transverse force in this section changes its
sign, an extremum occurs on the moment graph. The abscissa of the extremum can
be found by equating the expression for the transverse force on the first section to
zero: Q(x)=0,8ql -gx 6. From herex=0,8. To build adiagramof moments in
the form of a parabola, we need three ordinates: at the boundaries of the section and
at the extremum.

Thus, atx=0 M =0;

atx=0,8 [ =0,329%,

at x=1 [ =0,3q3.

In the second section, the curve of bending moments is a straight line. We build
it, having previously found the values of the moments on the bordersdad e
at x=0 M =4ql?; at x=1 [ =0,3qg4.

Comparing theliagramsof transverse forces and bending moments, we see that
when thaliagramsof forces is a straight line, thldagramsof moments is a parabola
(first section), and when thiiagramsof forces is a constant, tltkagramsof mo-
ments is a sloping straight line (second section). In the areas of the beam where the
force is positive, the moment from left to right increases, and where the force is neg-
ative, the moment decreases. Therefore, the differential dependenciesikbed.fulf
In addition, in sections where concentrated forces act on the beam, we have jumps
on the forcadiagrams the magnitude of which is equal to the lsgagbforce, and the
directions of the jumps correspond to the signs of the forces. For example, in the

section where the reaction is applied, there is a juRp=4,1ql, and the jump

DQ #,301 0,3 48l occurs in the direction of negative values of the force, if
you move along the baseline from left to right. This corresponds to the sign of the
force, which is negative, because the reactiRacts counterclockwise relative to
sections to the right of itgne of action.
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In the crosssection, where a concentrated external moment (support B) is ap-
plied to the beam, there is a jump on the mordeagramby the magnitude of this
moment in the direction of the compressed fibers, i.e. downwards.

The conducted analysis confirmed the correctness of the construction of the
charts.

1.6.4. Stress

Having found the components of internal forces using the method of sections,
we, however, cannot yet judge the strength of the body, becaysanitipal vector
and the main point of internal forces is a certain convention that makes sense only
from the point of view of compliance with the conditions of balance of the body part.
To judge the strength, we need to know the forces at a specific point ettlmns

Forcesn the section are distributed according to a certain law. To characterize
this law, it is necessary to introduce a numerical measure for effort. To this extent,
as already indicated, there is strefwrcesapplied to a unit of crossectional area.

Let's select a platform around a certain cresstion point (Fig. 1.40), within
which the force acts.

Fig. 140. Forcesn the siteD¢

We take the ratio as the average stii@asn the siteDA

_ DR (1.5)
pc _HA\.
Reducing the size of the site to infinity, we get
_dR (1.6)
p_d_A'

Herepis the total stress at the point.

In the international system of units, mechanical stress is measured in pascals
(Pa). Since this unit of stress is very small, larger units are used in technical calcula-
tions, in particular megapasc#éMPa).
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Note. In the USA, Great Britain and some other countries, a different measure-
ment system is still used. Stresses are measured in it in pounds per square inch (psi)
or kilopounds per square inch (ksi), where 1 MPa is 145 Ksi.

It should be noted that formally there is no difference between stresses and the
intensity of an external distributed load, such as liquid or gas pressure. Their units of
measurement are the sampascal or megapascal. However, in physical essence,
theseare different quantities. The intensity of the external load characterizes the in-
teraction of this body with other bodies, and the tension characterizes the change in
the forces of interaction between the parts of the given body, which occurs as a result
of the external load.

The total stress can be divided into three components: (Fig. 1.41). Here

the normal stress at the point (directed along the normal to thelité)i shearor
tangential stresses at a point.

Fig. 141 Tension on the site

There is a relationship between the values of the total girasd its compo-
nents:

p=y &+ (IF+( )R @

There is a rule according to which stress components are denoted by indices that
correspond to the designation of the axes. So, normal stresses are indicated by indices
of thenormalto the sites in which they a@hearstresses are indicated, as a rule, by
two indexes: the first index corresponds to the designation of the normal to the plat-
form, and the second to the designation of the axis in the direction of its action. Then
the tension irFig. 1.41 will be denoted as follows:

S - it b il

Decomposition of total stress into normal atarcomponents has a certain
physical meaning, since they cause different types of deformations of the body and
different types of destruction.
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If another cutting plane is drawn through the point, then the stress p at this same
point will be different in general, because other bonds are split, which surround the
point.

The set of stresses for a multitude of planes passing through a given point
forms the stress state of the body at that point

As will be shown below, to characterize the stress state at a point, it is sufficient
to know six components of stressethree normal and threshearstresses, which
act on three mutually perpendicular platforms, passing through this point.

The stressed state of the body is called homogeneous when the stressed states
are the same in all its points. Otherwise, the stressed state is called inhomogeneous.

Normal andshearstresses at some point of the cresstion of the rod are con-
nected by certain dependencies with internal forces: longitudinal fpiitansverse
forces Q,, Q, torque My, and bending momentsly,, M, acting in this section
(Fig. 1.42).

Fig. 142 Components of forces in the amdaof the cross section of the rod

To obtain such dependencies, consider the elementaryArem which the
full stress actp = dF? d£. By analogy, we write the expressions for its components:

o AN 99 dQ (L8)
X dAT Y dAT % dA

These expressions do not contradict formula (1.6).

Considering the formulas (1.1), let's write down the general relations between
the components of thegrincipal vector and therincipal moment of forces in the
sectionN, Qy, Qz, My, My, Mzand the stress components at this point of the section.
The sum of the projections of the elementary forces acting on all the elementary areas
dA of the section, on the, y, zaxis and the sum of their moments relative to these
axes will give the value of the internal forces:
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N = nd ﬁdA (1.9)

nde gdﬁ (1.10)
z=nsz = ﬁdA; (1.11)
A A
Mior = antor (ﬁjQ, 'de) %Z@t yxz') d: (1.12)
A A
My =M, = ggdA; (1.13)
A A
M,=fdM, = gydA. (1.14)
A

The obtained formulas are called integral equations of equilibrium for rods.
Here, the components of the internal forces, which are in the left parts of the equa-
tions, are easily found, for example, from the graphs. However, the obtained depend-
ences cannot bdirectly used to determine the stresses, since the law of their distri-
bution in the section is unknown.

The task of determining stresses in a section is always statically indetermi-
nate.

Therefore, to solve this problem, the law of stress distribution in its sections is
first established, guided by certain considerations and observations of the nature of
deformation of the rod, and only then the stresses themselves are found using formu-
las(1.9)7 (1.14).

In the future, when determining the stresses in the rods, always follow this pro-
cedure.

1. The static side of the problem is considered

Here, those from the integral equilibrium equations (.@).14) are recorded,
which refer to this type of rod deformation.

2. The geometric side of the problentasidered

At this stage, for this type of deformation, dependencies between the displace-
ments of the points of the rod and their position in the section relative to the selected
coordinate system are established. This is done on the basis of experimental studies
andwithin the framework of the hypothesislinesections.

The resulting equations are called geometric equations.

3. The physical side of the problem is considered.
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Based on the results of the experimental study of the physicahaadldanical
properties of the rod material, the relationship between stresses and deformations (or
displacements) is established. These dependencies are called physical equations.
Within the framework of the hypothesis of linear elasticity of the mated@tad in
the support of materials, the physical equations are based on Hooke's law.

4. Synthesis is performed.

By jointly solving static, geometric and physical equations, we obtain formulas

for determining stresses due to forces in the section.

1.6.5. Deformations and strains

Under the action of external forces, a solid body changes its original size and
shape, or, as we say, deforrAsthe same time, its points change their relative posi-
tion. In other words, body points are moved relativa thosen coordinate system
X, Y, zZ(Fig. 1.43).Point A, following a certain trajectory, moves to its final position
Ai. The complete deformation of point A is characterized by the veztor
Z)\ In the general case, the deformatiot
different points of the body will varyi.hat
Is, thedeformationvectorD is a function
of the coordinates of the point:

D=@my32.

The projections of the vector on

thex, y, andz axes are denoted loy v, and

w, respectively. They are callsttaincom-
y ponents or simply poirdtrain

Fig. 143. Deformationof point A

ol |

However, strain alone cannot fully characterize the deformation, since its cause
may not only be thdeformation at a given point but also rigid displacements caused
by deformations in other parts of the body.

To characterize the deformation at a specific point in the body, we examine how
the size and position of a particular segment, AB, chéifige 1.44).
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Fig. 144. Linear deformation of the segmer Fig. 145. Angular deformation of the body &
a point

The length of the segment in its undeformed stade.ig\fter the body deforms,
pointsA andB move to position#\; andBs, respectively. The length of the segment

changes by an amouBX(dr), which is called the absolute deformation of the seg-

mentAB.

The linear deformation at a point in the direction r is defined as the ratio of
the absolute deformation of the segmatto its original length:
D(dr)

dar

This value is also called the relative change in the length of the segment.

Regarding the change in the position of the segment, as shown in Fig. 1.44, the
segment shifts as a rigid body and rotates at some angle relative to its initial direction.
In the general case, segments passing through a point in different directioms will r
tate by different angles. This means that previously equal angles between two pairs
of segments at this point will change differently. To quantify these changes, we in-
troduce the concept of angular deformation.

Consider two mutually perpendicular segmeahts and dr, passing through
point A (Fig. 1.45).After deformation, the previously riglaingleBAC changes by

&

(1.15)

an amoung.
The change in the right angle between two mutually perpendicular directions
after deformation is called shear stra
The deformations just considered have a sign.
_p "
912 % -BAC (1.16)

Thedeformations just considered have a sign.

The linear deformatione is considered positive if there is an elongation of
the segmentlf it shortens, the deformation is negative.

The s h e aiscorssidered positiveif the initially right angle decreases.
If the angle increases, the shear strain is negative.
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Example 1.9. A rectilinear rod is sub
jected to tension. A mechanical strain gaug
device for measuring deformations) with

gauge lengtH, =100mm and a scale divisio
valuek =0,00Immis mounted parallel to th

rodds axi s on its s
Fig. 146. Mechanical strain gauge (fc After loading the structure, the strain gat
example 1.9) shows 12 scale divisions. Determine the vz

of the relative linear deformation of segm
AB, where the strain gauge tips rest at poin
andB.
Given the strain gauge readings, the absolute deformation of segment AB can
be found as:

D X % 12 ©,012mm.
1000

Then, the relative linear deformation in the direction of segment AB is:

€ng —D:AB 0012 5 10%

B

Some comments should be made to the given example. In the general case, the
found relative linear deformation can actually be considered as some average linear
deformation of the segmeAB, since the deformation can be unevenly distributed
within its length. Let's say we selected two pairs of points located in different parts
of the line segment. The distances between the points for each pair are the same. If
the change in the distance betm the points is different, then the relative linear
deformationm these zones of the segment will be different. In this case, we are talk-
ing about uneven or nemiform deformation of the segment. If the linear defor-
mation is a constant value, then we will have a uniform or homogeneous deformation.

In this case, the dermation found is a linear deformati@g at any point of the
segment AB in its directian
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Example 1.10 A structural element in th

z A=1mm form of a cube with a rib length @&=25 mmis

e BB Flp deformed under loading so that the length of
Pk o/ I ribs does not change. However, its upper fac

4 T f WJ“C?IJJL(3L shifted relative to the lower one by 1 mm in f

; P . :’ | direction of theX axis (Fig. 1.47). It is necessa

odi 4 i JB ~ to determine the relative linear deformations
Df ;C 4 the element in the direction of the y, zaxes

y a and the displacements between them, cons

Fig. 147. To example 1.10 ing them to be uniformly distributed within tt

entire volume.

Since, under theondition of the problem, the lengths of the edges of the cube
remain unchanged under loading, the linear deformations in their direction (that is,
in the direction of the X, y, z axes) are equal to zero.

The change in the pmeght angle between the x and z axes, caused by the dis-
placement of the upper face relative to the lower one, indicates that there is shear
deformation in this plane:

_p .
= -JDJ
gxz 2 1

Under the condition of uniform deformation, it is obvious that the edges of the
cube will remain straight. We find

tga =——

Thena =,g 004rad.

According to the condition of the problem, there are no shifts between the Y axis
and the X and Z axes, that is, the right angles between them remain unchanged.

So,e, =& ~@& g, =,8 0;0, 904

In most cases, changes in the size and shape of the body after exercise are in-
significant, but they significantly affect its tense state. As already noted, without
analysis of deformations, it is impossible to determine the law of stress distribution
in structural elements.

The set of linear deformations in various directions and angular deformations
in different planes at a point form the deformation state at that point.
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As will be shown later, the deformed state at a point is completely determined
by six components of deformatietthree linear deformations,, ¢ ,and three an-

gular deformations),,, @, .

1.6.6. Estimation of strength reliability of a deformed body.
Safety margin

To quantitatively assess the strength reliability of the structure and its elements,
the probability of failurefree operation is used. That is, the assessment is based on a
probabilistic approach based on a significant amount of statistical data oldained
perimentally or as a result of the operation of products over a certain period of time.

The probability of an event is a number that characterizes the possibility that
the event will occur.

In particular, the probability of a probable event is taken equal to one, and the
probability of an impossible event is equal to zero.

If as a result of n experiments the event was observed m times, then its proba-
bility

m
P= - (1.17)

The meaning ofhis expression is very simple. For example, from one hundred
products per time their exploitation (resource) was refused by ten. Therefore, the
probability of faultfree operation of the product is.

In practice, another characteristic is often usk probability of failure:

F=1-P. (1.18)

In the given example, the probability of failure is.

However, determine the probability of failure or troublee operation of the
product it is very difficult at the stage of its design.

Today, the main method of assessing the strength reliability of a structure is
the determination of strength reserves.

The margin of strength or margin ratio is called the ratio:

_ O
n=_—m. (1.19)

gmax

Here Jj, - the limit value of some parameter (force, tension, etc.), at which the

product's performance is impaire@,,is the maximum value of this parameter un-
der operating conditions.
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Today, in the practice of engineering calculations, stress is most often taken as
such a parameter. The stress itself, or rather the stressed state of the body at a point,
Is a criterion for the strength reliability of the structure.

The state and industry standards set the allowable values of the stock coeffi-
cients [n]. Then the strength reliability condition can be written as

nz [n|. (1.20)

So, the general order of strength calculation is as follows.

1. Based on the analysis, a point in the body is determined where a tense state
is dangerous.

For rods, this point lies in the dangerous cresgection, where the maximum
forces act. These sections are found using graphs.

2. The found stresses at this point are compared with the limit values for this
material, found experimentally, and a real margin of strength is established.

3. Having chosen the permissible value of the margin coefficient [n], check the
fulfillment of the strength reliability condition (1.20).

The strength reliability condition can be written in terms of stress. In this case,
it is called the strength condition:

s ¢4 ] (1.21)

Here[s] is the allowable stress for the material, which is found as
[s] =S'r']—m (1.22)
wherenis the reserve ratio; is the ultimate stress for the material, which is determined
experimentally.

It should be noted that the strength condition (1.21) can be used directly only in
some very simple cases of loading, say in conditions oftpastonor compression
of the rod (we will see this later).

In the general case, on the left in (1.21) there should be some stress function
(equivalent stress), which is specified within the framework of certain theories of
strength.

In addition to stresses, it is often necessary to control deformatiordeéord
mationof structural elements under load. That is, they perfagidity calculations,
comparing the actual values of displacements and deformations with the permissible
ones.

Calculation of strength in engineering practice is considered basic, and cal-
culation ofrigidity, as a rule, is verifiable.
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The choice of methods for calculating strength reliability is also related with the
operating conditions of structures. It is necessary to take into account the nature of
the load (static or dynamic), to take into account such phenomena as cyclic Isad, los
of stability of structural elements that occur during its operation.

Questions for self-testing

What is the object of study in tiMaterials and constructions mechafics
What is the subject of study in tMaterials and constructions mechafiics
What is meant by the concepts of strength and rigidity of the body?
What is meant by the concepts of stability of the structure and its elements?

5. What are the main bodyaterial models considered in the mechanics of
materials and structures?

6. When is the material considered homogeneous?

7. What material is called isotropic?

8. Explain the concept of environmental integrity.

9. What is the elasticity property of the material?

10. What materials are classified as linearly elastic?

11.Which deformations are called elastic, and which are called plastic?

12.What are the main body shape models?

13.How does a rod differ from a massive body, and a shell from a plate?

14.To which models of the shape of bodies should a drill, a cutter, a stamp
matrix, an oil pipeline tube, a foundation for installing equipment, a rocket body be
classified?

15.Which elms are called absolutely rigid?

16.What support is called hinged?

17.How many ties does a rigid compression impose on a body in space?

18.How many ties does a rigid compression impose on a body in a plane?

19.What type of support does it belong to if it imposes two ties on the body
in the plane?

20.How many reactions occur in a moving joint in a plane?

21.What forces are called external?

22.What is the difference between volume load and surface load?

23.To what type of loads are gravitational interaction forces?

24.Are the main vector of inertia forces a volume, surface or concentrated
force?

rwppRE
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25.2What is the surface load intensity?

26.Under what conditions can the surface load be reduced to linear?

27.How do dynamic loads differ from static loads?

28.Name the key stages of building a solid body strength reliability model.

29.What is the design calculation scheme?

30.Under what conditions can the spatial scheme of the structure be reduced
to aplaneone?

31.What objects are called axisymmetric? Give examples and justify the
grounds on which these objects can be considered axisymmetric.

32.List the main hypotheses and principles of the mechanics of materials and
structures.

33.Reveal the essence of the hypothesis about the natural, unloaded state of
the body. What is neglected when introducing this hypothesis?

34.What materials are called homogeneous?

35.When can a material be considered isotropic? Give examples of such ma-
terials and give reasons for their selection.

36.In the framework of which general method of research can the hypothesis
about the integrity of the medium be used when it comes to the material of a solid
body?

37.Formulate Hooke's law for a solid body. What body deformations does it
apply to?

38. Formulate the principle of independence of action of forces. What hypoth-
eses regarding the material of the body and its deformations are based on it?

39. Formulate the Saifwenant principle. Why is this principle classified as
heuristic?

40.What forces are called internal?

41.Formulate the essence of the cresstion method for determining efforts?

42.0n what principles and hypotheses is the ceestion method based? For-
mulate these principles.

43. List the components of the main vector and the main moment of internal
forces in the cross section of the rod.

44.What forces in the resistance of materials are called internal forces or
forces?

45.What is the essence of the method of sections when determining efforts?

46.Which hypothesis of resistance of materials allows using the methods of
theoretical mechanics when determining forces in a section?
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47.List the components of tharincipal vector and therincipal moment of
internal forces in the cross section of the rod.

48. List the simplest types of rod loading. By what signs are they classified?

49. How many equilibrium equations should be written for a part of the body
loaded by a spatial system of forces to determine the components of forces in the
section? What is this equation?

50. How many equilibrium equations should be written for a straight rod
loaded by a plane system of forces to determine the components of forces in the
section?

51.How to determine the moment of force relative to an arbitrary axis?

52.How to find the arm of the force relative to some point of the plane?

5 3What is called the section of the rod when constructing the internal force
graphs?

5 4 \When is the longitudinal force N in the rod considered positive?

5 5What is the maximum number of reactions occurring in the supports of
each of the beams depicted in item 16 when they are loaded?

56. When is the task of determining support reactions considered statically
deterministic?
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2. GEOMETRIC CHARACTERISTICS OF PLANE CROSS-SEC-
TIONS

Thereis aproverbWh e r e itthéast 6tshiwh,er e it br eak:s:s
This folk saying concentrates the centwads experience of the use of various
objects by our ancestors in everyday life, which we now call bodies, parts, elements,
etc. It quite accurately reflects the fact that the strength and rigidity of thesesobject

depends not least on the dimensions of their eses8ons.

If we are talking about a rod as the most common body shape model in engi-
neering and construction, then its resistance to deformation often depends not only
on the size of the crosection, but also on the shape of this cismdion and its
location reléive to the applied loads.

Let's consider the main geometric characteristics of the cross sections, which
determine the resistance of the rod to one or another type of deformation.

2.1. Static moments of area and centroid coordinates

We take an arbitrary cros®ction of a rod (see Fig. 2.1).
Y Y

111

Y

O z z - - -

Fig.21. Plane crossectionwith centroid at Fig.22. Section composed of simple shap
pointC

We isolate an area elemata with coordinatey andz. The static moment of
the area element relative to a given axis is calculated, similarly to a force moment,
as the product of its area and the distance to this axis. For instance, Q- dixes,
we have:

dS =y @< (2.1)

Similarly for the axis OY
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ds, = z @¢ (2.2)
The static moments for the entire sectional #&ealative to theDZ- andOY-
axes are:

S = fiy 64 S, = iz @+ (23)
F F

The unit of measurement for the static moment odraa relative to an axis is
cubic | ength, e.g., mmj

If Yc andZc are the coordinates of the centroid of thesssection and A is its
area, then the static moments can be computed as:

S=y @ §=z G (2.4)
By comparing the expressions (2.3) and (2.4), we derive formulas to find the
coordinates of the centroid:
iy oA 7z CHA
Yo =+ A =" A
If the crosssection consists of simple geometric shapes (see Fig. 2.2), the static
moment of such arosssectionis the sum of the static moments of the individual

areas relative to the chosen axis:

(2.5)

Sz :é' Vi A Sy :ai Z A. (26)

The coordinates of the centroid for suatrasssectionare found using the fol-
lowing relationships:

a Yei A a Ze; A (2.7)
Y, = i:1n ; — i:1n
d A a A

n
Where j A - total crosssectional area.
i=1

Note. The coordinates of the centroids of the areas in formulas (2.7) are sub-
stituted with their respective signs according to the chosen coordinate system.

Note. When thecrosssectionhas a hole (see Fig. 2.2), its static moment, like
its area, is considered negative.

Often, the position of the centroid of a compteasssectioncan be determined
without additional calculations. For instance, farasssectionthat has two axes of
symmetry (Fig. 2.3a), the centroid lies at their intersection.drosssectionwith
one axis of symmetry (Fig. 2.3b), the centroid lies on this axis, and in this case, only
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one coordinate of the centroid needs to be determined. In some acassssaction
may have no axes of symmetry, but it is symmetric relative to a certain point, which
then serves as the centroid of thesssection(Fig. 2.3c).

¥ i o

| | | |_
I | I J
a) b) C)

Fig.23. Symmetricakrosssectiors: ai with two axes of symmetry, bwith one axis of sym-
metry, ci with a center of symmetry.

&
kg Y

2.2. Moments of inertia of plane figures

We distinguish between axial, polar, and centrifugal moments of inertia for
planefigures.

2.2.1. Axial moments of inertia

The axial moment of inertia of the area of a figure is defined as the integral
of the products of the areas of elementary segments by the square of their distances
from a given axis.

Thus, the moments of inertia of the figure shown in Fig. 2.4 relative t0Zhe
andOY axes are calculated as follows:

|, =fy’dA |, = f§2dA. (2.8)
A A

Example 2.1.Determine the moment of inertia of a rectangle about its central
axes Y and Z, which are parallel to its sides (see Fig. 2.5).

To determine the moment of inertia relative to thaxis, isolate an area ele-
ment dA in the form of a strip parallel to this axis. Then, according to formulas (2.8),

we can write:
h/2 bh3
|, = ﬁ/sz 2 )ﬁody =
o 12

A
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Y y

S A

dA
] = <
P 12 z
y
Y - Y
Fig.24. Planeshape Fig.25. Rectangle

Similarly, the moment of inertia relative to theaXis will be:
_hb?

Y12
Example 2.2.Find the moment of inertia of a triangle relative to @&axis,
which coincides with its base (see Fig. 2.6).

We isolate an area element in the form of a strip parallel to theaXdx Its

area is:
dA=h( y) dy.
The width of the strip can be expressed based on the proportionality of the seg-
ments:
dA=h( y) dy.
Thus,

b(y)=(b/ B(h -y.
Thus, using formula (2.8), we obtain:
L= FY70A = DI H(h Y dy 2= 3 ydy

A 0 hO

bi?
12

2.2.2. Polar moment of inertia

The polar moment of inertia of an area relative to a certain point (pole) is
defined as the integral of the products of the elemental areas and the squares of
their distances from this point.

Taking pointO as the pole (see Fig. 2.4), we can write:
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I, =y A (2.9)
A
Example 2.3.Determine the polar moment of inertia of a circle's area relative
to its center (see Fig. 2.7).

Vv
A

h

ra Y

b(y)

}}

A
Y

Vi
dA
&
d

=

Fig.26. Triangle with an area element in th  Fig.2.7. Circle with an annular area elemer
form of a strip

Let wus isolate an area el ement in t
dA=2p
The polar moment of inertia of a circle relative to its center:
o 2in o r* d
=i 2 p A /% R
If the pole is the origin of the coordinate systé@Y (see Fig. 2.4), then con-
sidering thatr*=z* #/and taking into account the properties of the integral, we

obtain:

I, =f{z* W)dA =47A H H )= | (2.10)

The polar moment of the area of a figure relative to a certain point is equal to
the sum of the moments of inertia of that figure with respect to any two mutually
perpendicular axes that pass through the giveaint.

Thus, for a circle, the moment of inertia relative to its diameter can be expressed
as:l,+l, 9,8, p*/64.

Note. Axial and polar moments of inertia can only be positive quantities.

12



2.2.3. Centrifugal moment of inertia

The centrifugal moment of inertia of a figure is defined as the integral of the
products of the areas of elemental areas and their distances from the coordinate
axes.

For the axe®©Z andOY (see Fig. 2.4), we can express this as:

- ﬁ/ZdA. (2.11)

Example 2.4.Determine the centrifugal moment of inertia of a rectangle's area
relative to the coordinate ax@Z andOY (see Fig. 2.8).
y Let usisolate an area element in tt
! form of a strip parallel to the OZ axis. Tl
area of this strip is given by:

f dA= bdy.

Now, using the formula (2.11yve can
0,5b = write:
2 h 2 |42
= ﬁ/sz )ﬁ%Cb bd@b— —yd”b n
Y
0 b 'z

Fig.28. Rectangle with an area eleme
in the form of a strip

As mentioned, axial and polar moments of inertia are always positive. In con-
trast, the centrifugal moment of inertia, as indicated by expression (2.11), can take
on positive, negative, or zero values, depending on the position of the axes relative
to the figure.

If the figure is located in the first quadrant, such as a rectangle shown th&ig.
the value of the centrifugal moment will be positive, as all area elements will have
positive coordinategandz. A positive value ofy, will also occur when the figure is
situated in the third quadrant, where both coordinateslz are negative.

If the figure spans two or more quadrants, the sign of the centrifugal moment
will depend on the distribution of the area across those quadrants.

A special case occurs when at least one of the axes is a symmetry axis of the
figure. For example, consider a rectangle in the coordinate sysiedr, where the
y-axis is a line of symmetry (see Fig. 2.9).
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A For any area elemedAtaken with
a positive y-coordinate, there corre
sponds an identical element with t
samey-coordinate but with a negati

dA dA z- coordinate. Thus, the integral in €
I pression (2.11) transforms into zero,
T;i _ij the products of the fornyzdA cancel

each other out.
The centrifugal moment of inertie
) ‘;z of the area of a figure relative to cool
dinate axes, one of which is a line «
Fig.29. Rectangle as a symmetrical figure symmetry, is equal to zero.

‘}J‘

Y

If we again consider the examples shown in Fig. 2.3, the centrifugal moments
relative to they andz-axes forcrosssectiors a) and b) are zero. This is because, In
both cases, at least one of the axes is a symmetry axis. However, this conclusion does
not apply tocrosssectionc), where neither thg nor thez-axis is a symmetry axis.

2.3. Determination of moments of inertia relative to parallel
axes

The moments of inertia of a figure relative to arbitrary axes are related to the
moments of inertia of the figure relative to paralehtral axesi.e., axes that pass
through the centroid of the figure. This relationship is established kii¢beem of
parallel axis transfer

Let us assume that poiftis the centroid of the figure (see Fig. 2.10). The
moments of inertia of the area of this figure relative to the centralNaardZ are
known:

|, = fgdA |, =y dA l,= fysz (2.12)

A A
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r Y

ty

0,

Fig.210. Planefigure in coordinate systems with parallel axes

Let's determine the moments of inertia relative to the ¥xaadZ;, which are
parallel to the central axes:

|, = {7 dA |, = fy.2dA . = ¥,z dA. (2.13)
A A A

Considering thaz, = z Htand Y, = Y +a (see Fig. 2.10), we substitute these
into the expressions for the moments of inertia relative to the newYaxg&sand
Y121:

|, =fR7dA = (F $°dA =2 A2 b zdA fp+ (2.14)
L, =fV2dA =(fj 8°dA F df 2 a ydA fr+c (2.15)
Iy = Y.z dA = dA b+ydA
" ?/Zl A(ﬁ ey A il A ’ (2.16)

+ aﬁsz +ab (ﬁ\
A

A

In these expressions, the integrfglA= S; fyydA= § - the static moments of
A A

the area are equal to zero. Therefore, the expressionsi(42.4%) simplify to:
l, =1, BZA; (2.17)

=1_ a%A: (2.18)

Izl z
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=1, -abA. (2.19)

Y121 yz

The moment of inertia of the area of igure relative to any arbitrary axis is
equal to the moment of inertia of the figure relative to a central axis, parallel to
the given axis, plus the product of the square of the distance between these axes
and the area of the figure.

Similarly, the centrifugal moment of inertia of the area of a figure relative to
any two mutually perpendicular axes is equal to the centrifugal moment of inertia
of the figure relative to the central axes, parallel to the given axes, plus the product
of the distances heveen these axes and the area of the figure.

Note. The coordinates a and b in expressions (2i1{2.19) should be substi-
tuted with their appropriate signs, depending on their relative positions in the chosen
coordinate system.

Note. According to expressions (2.17) and (2.18), the moments of inertia of a
figure relative to its central axes are always smaller than the moments of inertia of
that figure relative to any arbitrary axes parallel to the central axes.

Regarding the polar moment of inertia of the figure relative to pOGint
(seeFig. 2.10), using formula (2.10) and considering expressions (2.17) and (2.18),
we can write:

l,o=I, +, 15 b%A | ,+&a’A+1 I3, @f bIA;

ro A z y
or.
o=l o +2A; (2.20)

ro

wherer’=a’° #°is the square of the distance between the ceBtarsiC.
The polar moment of inertia of the area of a figure relative to any point lying
in its plane is equal to the polar moment of inertia of that figure relative to its
centroid plus the product of the square of the distance between these points and
the area ofthe figure.
The theorem of parallel axis transfer greatly simplifies the calculation of the
moments of inertia for figures. Let us consider a few examples of such calculations.
B Example 2.5.Determine the axia
! % moment of inertia of the area of a trie
gle relative to the axiszxZwhich passe:
through its vertex B and is parallel

/ \ - the base (see Fig. 2.11), given that
Y

2h/3

h

h/3

moment of inertia relative to the ba
A b Dz of the triangle is known.
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Fig.211. Triangle with a system of parallel
axes

Since the axes 4nd % are not central axes, we cannot directly use the theorem
of parallel axis transfer. First, we need to find the moment of inertia of the triangle
relative to the central axiseZ The position of this axis relative to the base is known,
and the moment of inertia of the triangle relative to the base (as established in Ex-
ample 2.2) is also known.

Using the parallel axis theorem, we can find the moment of inertia relative to
the central axis £as follows:

o 2,
_ ah
| . 8x
Then,
22h 5 hg & 2h 3
FETI %? % 3 S%Ai: = A

Considering that, =bh*/12,and F =bhy2 we obtain:

bh* &ah gbh 24" by b
T wm Y TR
By the way, the moment iolertia of the triangle relative to the central axis
| .=bh*/12 -(Y3F bl 2 bt/ 3.
Example 2.6. Determine the polar moment of inertia of the area of a circle rel-
ative to a point lying on its contour.
Using the formula (2.20), we have:
_ .. pd* ad & m? 63
|, =1 . +%A /’32 = %e% g—g
Example 2.7. Determine the centrifugal moment of inertia of the area of a rec-
tangle relative to the coordinate axes that coincide with its sides.
This example can be solved through integration (see Example 2.4). However, it
can also be easily solved using the theorem of parallel axis transfer:

I, =1 yc,c BCA.

Considering that for a rectangle, the central axes parallel to the sides are axes of
symmetry, meanind .. =0, and the distances between the axesaerdy 2and

c= b/2, we can substitute these values into the equations for the moments of inertia:

| hby, BH
22 4
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2.4. Determination of moments of inertia relative to rotated
axes

It is evident that when the axes are rotated relative to the origin of the coordinate
system, the axial and centrifugal moments of the figure change. We will establish the
relationship between the moments of inertia of the figure when the coordinate system
IS rotated.

Consider the original system of coordinate axesndd in which the axial and
centrifugal moments of inertia of the figure shown in Fig. 2.12 are defined,

|, = f¥’dA |, = fy’dA |, = fyzdA. (2.21)

A

A A

Fig.212. Planefigure with rotated coordinate system

After rotating the axes by an dAingl e
the new coordinate systevh andZ; will be given by the following transformations:

Z, = 7c0sa +ysina Y, = ycosa -zsiné.
The axial and centrifugal moments of inertia relative to the rotatedYaeesl
Z;will be given by the following expressions:

|, =fy,"dA =(f§osa zsin a)dA =
A A

=cosafy’dA -2cosa sin azfdA +sih aZ (ﬁ’
A

A A

78



|, = dA = (ffosa ysina§ dA =

Y1
A A

=cosafg°dA +2cosa sin a FHdA +sih ay cﬁ’
A

A A

I = RYdA = (fosa  Wsina)(ycos a zsin gdA
A

A

a ¢
=(cosa -sirf afgydA sin acosg@ fjdA s Z ¢
A CA A =
Taking into account equation (2.21), we have.
|, =1,cosa + sif al-,sin2¢

|, =1,sina + cos a I+, sin2¢ (2.22)

(2.23)

l,, =I,C0s2 -%(y I-,)sin 2&.

Note. The angleUis considered positive when the axes are rotated counter-
clockwise.
By combining the expressions for the axial moments of inertia (2.22), we ob-
tain:
|+, F 1+ | - (2.24)

Therefore, the sum of the axial moments of inertia of the figure during the
rotation of the coordinate system remains constant and is equal to the polar mo-
ment of inertia of this figure relative to the origin of the coordinate system.

v Example 2.8.Determine the axia

3 and centrifugal moments of inertia ol
square relative to the coordinate a¥Xe:
s z and Z;, whi ch are r¢
clockwise from the original coordina
a systemY andZ (see Fig. 2.13).
Fig.213. Square with a rotated coordinate
system

The moments of inertia of the square relative to the axes Y and Z can be found
as for a rectangle (see Example 2.1):
- axial moments of inertia:
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- centrifugal moment of inertid, =0since the axes Y and Z are symmetry

axes.
Regarding t he axand 2)rthetadat reothents of indrtia A (Y

according to the formulas (2.22), can be expressed as:

a4
[+, =.
4 ) 12

This means that we have the same moments of inertia as for the axes Y and Z.
Sincd, =1, andl, =0, according to (2.22)],, =0 it is evident that the ro-

tated axes are also symmetry axes of the square.

2.5. Principal axes of inertia of a figure

If we rotate the axe¥andZ( see Fi g. 2.12) by 90A,
relative to the rotated axes #nd 2, according to formulas (2.22) and (2.23), will
be:
I, =1; I

Y1 z? Iﬂzl y; Zv = zy"

A particular interest lies in the third relationship, which states that when the
axes are rotated by 90A, the centri fug
change in moments of inertia ocaluplkald,:!

there aists an intermediate position of the axes at which the centrifugal moment of
inertia will equal zero.

The axes with respect to which the centrifugal moment of inertia equals zero
are called therincipal axes of inertiaf the figure.

If, at the same time, the origin of the coordinate system coincides with the cen-
troid of the figure, we have the principal central axes of inertia. We will denote these
axes by the lettensandv.

Note. In the following, we will denote the axis u as the principal axis that forms
an angle |l ess than 45A with the axis Z

It has been noted previously that the centrifugal moment of inertia equals zero
if at least one of the coordinate axes is an axis of symmetry. From this, we conclude
thatif the figure is symmetrical, then its axis of symmetry and any other axis per-
pendicular to it form a system of principal axes of inertia.

In the general case pdanefigure has only one pair of principal central axes of
inertia. However, in certain specific cases, there may be multiple pairs of such axes.

Example 2.9.1dentify the positions of the principal central axes of inertia for
the geometric figures shown in Fig. 2.14.
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a) b) c)

Fig.214. Principal central axes of inertia for symmetrical figures

In the square (see Fig. 2.14a), there are two pairs of symmetry axes: those that
are parallel to its sides and those that pass through the diagonals. Therefore, we
have two pairs of principal central axes of inertia. This was also demonstrated in
Example 28 when the centrifugal moments of the square relative to its diagonals
were calculated.

For a regular hexagon (see Fig. 2.14b), there are three pairs of principal cen-
tral axes of inertia, as all of them are also symmetry axes.

For a circle, any two mutually perpendicular central ages principal central
axes of inertia.

To demonstrate that the axial moments of inertia relative to the principal axes
of a figure attain extreme values, we can differentiate one of the equations (2.22)
with respect td

dl
d—Zl:Iysin2a 1,sin2a 2, cos2a
a

| :
= 2(l,,cosz y2 “sin2a) 2.,

The condition for the extremity of a function is that the derivative of the function
Is equal to zero. From the obtained expression, it follows that the derivative of the
axial moment of inertia with respect to the angle of rotatidrecomes zero when
., =0 which means that the axes are the principal axes of inertia.

The moments of inertia of the figure relative to the principal axes are extreme
in value: relative to one of these axes, the moment of inertia is the largest of all pos-
sible values that can be obtained when the coordinate system is rotated, while relative
to the other axis, it is the smallest.
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The moments of inertia relative to the principal axes of a figure are called
principal moments of inertia, and if these axes are also central axes, they are re-
ferred to as principal central moments of inertia. Thus, the principal axes are those
axes aboutwhich the moments of inertia attain maximum or minimum values,
while the centrifugal moment of inertia equals zero.

2.6. Determination of the position of the principal axes of in-
ertia of a figure and the magnitude of the principal mo-
ments of inertia

Since the centrifugal moment of inertia relative to the principal axes equals zero,
by substitutingl,,, =1, 9 into formula (2.23), we set as follows:

|,,COSA - % (, 1,)sin2a = (2.25)

By denotinga = g is the angle that defines the position of the principal axes
relative to the given axeéandZ, we can rewrite the equation as follows:

g2a, =22 (2.26)
-1,
From this expression, we obtain two

,0/2. These angles determine the positions of the principalwa&edyv relative to
the original axeZ andY. Moreover, the smaller of these angles, in absolute value,
does not exceegd)/4. This angle will be the angle with which we operate in the
following calculations.

The angle q, is the angle that, in absolute value, does not exceed aid
indicates the direction of the principal axis of inertia u relative to the axis z. A
positive angled, will be measured counterclockwise from the z axis, while a neg-

ative angle will be measured clockwise.
To find the magnitudes of the principal moments of inertia, we will derive the
formulas based on equations (2.22).
|,=1,cosa, + sif a I-, sin2
u z 0 y % zy 63 (227)
I, =1,sifa, + ,cos g I+, sin2a
The obtained formulas can be made more convenient for use by eliminating the
need to compute trigonometric functions. To do this, we can utilize the condition

(2.24) and subtract the second equation from the first equation from (2.27):
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l,-1, %I, I-)cosza, P, sinZ3.
Using formula (2.26), we can substitute into the last equation
21,,=(, 1,19 2a,. After solving this system of equations, the formulas for the

principal moments of inertid, and |, can be expressed as:

_1¢ N1 s
'“‘Eg('z +y) (+Z ! y)cos:%zrO t

(2.28)

_1¢ N1 s
IV_ES(IZ +y) (4 : | y)003270 t

Letds replace in these expressions,

e 4?2
1 — ol t_g22ao jlo IZy .

COS A, (|Z_ |y)

Finally,

|u=%§('z ) iy 4%{‘
|V=%§(|Z +y):\/(| 1) 4+22y{

Note. According to expressions (2.28), i#ly, then |>1,. This indicates that
the principal moment of inertia is greater thanJwhen the moment of inertia about
the Z axis exceeds that about the Y axis.

Note.If I>1v, then in formulas (2.29) before the square root, we take the posi-
tive signs. Conversely, ifdl v, we take the negative signs.

If the original axes are th@incipal axes of inertia, the formulas for transition-
ing to the rotated axes (2.22) and (2.23) take the following form:

|, =l,cosa +,sirt a

(2.29)

I, =1,sinfa +,cos a (2.30)

(2.31)

_1 :
Ly _E(I , 1)sin2a.
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y Example 2.10.Determine the cen
trifugal moment of inertia of an isosc
| es angl e bracket
to the central axeXOY, which are par
allel to its sides.
N\ | Note. In Figure 2.15, the designe
= - tions of the axes used are based on
conventions adopted in the steel rolli
standards.

g

o
g

\\% N
i

Fig.215. Isosceles angle bracket

According to Fig2.15, the axeXyOYpare the principal central axes of inertia,
as the axis{y is a symmetry axis of the isosceles angle bracket. Based on the steel
rolling standards for an isosceles ang

cipal moments of inertia are provideg=1, 47,8m*; |, E, 463nt. To de-

termine the centrifugal moment of inertig relative to the axeXOY, we will use
formula (2.31). Here, the angle = 45 , as the symmetry axi¥, of the angle
bracket bisects the right angle of the bracket. The afigie negative because it is
measured clockwise from the aXgs Thus,

|Xy:%(|u 1 )sin2a %(17,8 4,63)( 1) 6:585".

2.7. Radii of inertia of a figure

The moment of inertia has the dimensionality of length to the fourth power.
Therefore, formally, we can consider the moment of inertia of a figure relative to any
axis as the product of the area of the figure and the square of a certain quantity called
theradius of inertia

— P 2
,=A B |, A% (2.32)

Here,l, andi , are the radii of inertia relative to tEe andY -axes, respectively.

From the expressions in (2.32), we can find the following formulas for the radii of

inertia:
i :\/E; i -/'_y, (2.33)
‘ A Y A
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If we are referring to the principal central axes of inertia, then we have the prin-
cipal radii of inertia, which are calculated as follows:

iu:\/%; i :\/%. (2.34)

For a circle, the radius of inertia relative to any central axis is the same due to
the radial symmetry of the circle. The formula for the radius of inertia rrr of a circle
relative to any central axis is:

|:\/E:pd4/64g
> VA \ pd¥/4 4

For a square, the principal radii of inertia can be calculated relative to its prin-
cipal axes:

i = a’/12 a
u_ v az \/1—2
For a rectangle, the principal radii of inertia can be calculated by formula:
. bh’/12 _h i ho/12 b
’ bh  v12° ¥ \ bh (12

2.8. Determination of geometric characteristics of composite
sections

In studying Topic 2.1, we have already dealt with composite sections, for which
we determined the static moments of area and the coordinates of the centroids in the
chosen coordinate system.

Continuing this topic, we will consider the procedure for determining the posi-
tions of the principal central axes of inertia and the principal moments of inertia of
composite sections.

1. Decompose the section into simple components. Break down the compo-
site section into simplgeometric shapes, such as circles, rectangles, triangles, etc.,
whose centroids, areas, and other geometric characteristics are known or easily com-
putable. This also applies to rolled profiles, for which all geometric characteristics
are provided in standas.

2. Establish a coordinate system. Set up a coordinate system in which we will
determine the position of the centroid of the composite section using formulas (2.7).
These axes can be arbitrary, for example, central axes for one of the components of
the section
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3. Define the initial coordinate system. Draw the initial coordinate system
through the found centroid of the composite section. We will determine the axial and
centrifugal moments of inertia of the section relative to this system. To do this, we
first deternine the moments of inertia of the individual parts of the section relative
to their own central axes, which are parallel to the axes of the initial system. Then,
using the parallel axis transfer formulas (2.0.72.19), we can express them relative
to theinitial axes. By summing these moments, we find the moments of inertia of the
entire section relative to the initial axes.

Note. If the section has a hole or a notch, then, like the area or the static mo-
ment, the moment of inertia of the absent part is considered negative.

4. Determine the angles of inclination of the principal central axes of inertia.
Using formula (2.26), we find the angles of inclination of the principal central axes
of inertia relative to the initial axes. After calculating these angles, we will plot them
and denote the principal axes according to the rule formulated earlier (see Topic 2.6).
This involves measuring the angles counterclockwise from the original axes, ensur-
ing that the correct signs (positive or negative) are applied based on their orientation

5. Calculate the principal moments of inertia. Using formulas (2.29), we com-
pute the values of the principal moments of inertia for the composite section.

Questions for self-testing

1. What is the static moment of an area relative to an axis?

2. When is the area of a figure and its static moment considered negative?

3. When the figure represents a hole or a cutout in the section, the area and
static moment are considered negative.

4. How is the static moment of an area consisting of simple geometric shapes
determined?

5. What is the static moment of an area relative to the central axis?

6. How do you find the centroid of a section composed of simple geometric
shapes?

7. Where is the centroid located for a section with at least two ax®sref
metry?

8. What is the axial moment of inertia of an area?

9. What is the polar moment of inertia of an area?

10.What is the centrifugal moment of inertia of an area?

11.What is the moment of inertia of a semicircle relative to its diameter?
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12.How are the moments of inertia of a figure relative to two mutually per-
pendicular axes related to the polar moment of inertia relative to the origin?

13. Relative to which side is the moment of inertia of a Hghgled triangle
greater: the leg or the hypotenuse?

14.How do you find the moment of inertia of a figure relative to an axis par-
allel to the central axis if the moment of inertia relative to the central axis is known?

15.How do you find the moment of inertia of a figure relative to the central
axis if the moment of inertia relative to a parallel axis is known?

16.Does the polar moment of inertia of a section change when the coordinate
axes are rotated around the origin by a certain angle?

17.Which moments of inertia of a figure are called principal central moments?

18.How many pairs gprincipal central axes does an equilateral triangle have?

19. Relative to which axes is the centrifugal moment of inertia equal to zero?

20. Relative to which axes do the moments of inertia have extreme values?

21.Which direction of rotation of the coordinate axes around their origin is
considered positive when determining moments of inertia?

22.How do you calculate the radius of inertia of a figure relative to a specific
axis?
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3. TENSION AND COMPRESSION OF RODS. MECHANICAL
PROPERTIES OF MATERIALS UNDER PURE TENSION
AND COMPRESSION

3.1. Determination of stresses and strains under tension and
compression

Consider a straight rod of arbitrary constant section, loaded at the ends by two
forces acting along its axis (Fig. 3.1).
. a i In the vicinity of a certain cross
-t —"———————}—> section point, we select the areé
- Since only longitudinal forces N act
F the crosssections of the rod, there
@ @ reason to believe that only normr
Y\ dd stresses will occur in this area.

F ﬁ—ﬁ @i Let's derive the formula for dete
B E— T -~

mining the stresses in the section. To
this, we will use the integral equilibriui
equations for the rod, following the pr
cedure that was described earlier.

1. The static side of the problem.

For puretensionwe have:

N = slA. (3.1)
A
2. The geometric side of the problem.

The experiment shows: when a system of straight lines perpendicular to its axis
is applied to the side surface of the rod, when the rod is stretched or compressed,
these lines will move parallel to themselves.

If this conclusion is applied to the entire section, then the hypotheplarsd
sections will be correct.

During tensiorcompression, the crosections of the roghlanebefore the de-
formation, remairplaneafter it, moving forward along the axis of the rod.

Let's select a longitudinal element of lengjtind crosssectiondA in the rod
(Fig. 3.1). It is called fiber.

Note. We have already used the concept of fiber when constructing the frames
for the rods during bending.

Fig.31. Rod in pure tension
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According to the hypothesis pfanecrosssections, all fibers in a given section
of the rod are deformed in the same way. That is, their relative deformation is a con-
stant value and does not depend on the position of the platfsradlong which the
fiber crosses with a section, in the system of coordinateyeexedz (Fig. 3.1):
e(y,z) =Cons. (3.2)

This is the notation of the geometric equation for tensmmpression.
3. The physical side of the problem.

Only normal stresses are acting in the at@aln other directions, normal
stresses do not act, because it is assumed that the lateral pressure between the fibers
with which these stresses can be associated, is aBbemirstresses in the platform
also do not act, since there are no transverse forces in the section.

If the material of the rod is subject to Hooke's law, then there is a proportional
relationship between stresses and strains, which can be written in the following form:

s £ . (3.3)
4. Synthesis.
Substitute (3.3) into (3.1):
N=pnslA =FdL.
A A
Considering (3.2), we obtain the condition. Then From here
o =N_ (3.4)
EA

Therefore, under tensiesompression, the stress in the cresstion is a con-
stant value (that is, there is a uniform state of stress) and is calculated by the formula:
_N (3.5)
e

Within the area wher&l = Consi, E =Consiand A=Consfi namely, the rod
that we are considering corresponds to sumiditions (Fig. 3.1)i the relative elon-
gation of a unit of length is a constant value:

S

e N Gonst. (3.6)

EA

That is, the deformation of the rod, and its absolute elong@tign/D. Or, tak-
ing into account (3.6),

D ___N_I (3.7)
EA

This expression is a notation of Hooke's law in absolute terms for termion

pression.
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Equation (3.7) represents Hooke's law for tension and compression in absolute
values. The terrkAin the denominator is called the axial rigidity of tiogl, while
the ratioEAA is called therod rigidity. Indeed, the larger this ratio, the smaller the
absolute elongation of thed under the same load. In other words, ibeéwill be
stiffer.

Using equation (3.7), it is possible to calculate the displacement of any cross
section of theodrelative to a chosen reference point. For instance, the displacement
of crosssection x relative to the left end of thad (Fig. 3.1) will be:

DI (x) =,
EA

As we can see, the largest displacement relative to the left end rofdtheal

be experienced by its right end. This displacement will be equal to the absolute elon-

gation of theod D NI/EA.

If the rodis subjected to a complex load and has a variable-sexg®n along
its length, then equation (3.7) can only be used within a small sabtiomhere
N(x) and A(x) can be considered constant. Then:

D(dx) _N(x) dx

EA(X)
From this, the total elongation of thed is:
' N (x) dx (3.8)
o EA(X)

In a special case, thed may have a constant cressction within certain sec-
tions (a secalled steppedod), and the axial force may also be constant over a part
of therodlength. If there ara such sections, then we obtain the sum:

D :an N_.'. (3.9)

= EA

Example 3.1 Construct the diagrams of axial forces and stressa®uhaaising
under the action of its own weight (Fig. 3.2a). Construct a diagram of displacements
of rod crosssections relative to the fixed end and determine its elongation,rddhe

DI

length isl = 2m, therod crosssectional area iB=4 ﬂD‘lmn% the specific gravity of
the rod material is g=7,85 @ N/, and the modulus of elasticity is

E=2 P MPa.
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s 6,28 0,157
ne A
Y
i =z i 0,345
. 0,590
e
0,735
=
1y vy 0,785

QU OL: (2) um
a) b) c) d)

Fig.32. For example, 3.1: d) calculation scheme of the rod;ibyliagramof longitudinal forces;
c) 1 stress diagram; ddiagramof deformatiors

Let's build a graph of longitudinal forces. Since the rod is loaded only by its

own weight, we have osection. In an arbitrary section at a distance x from the free
end of the rod, we have:

woecn ¢

N(x)= @x

The maximum force acts in pinching and is equal to
N =7,85 @F 4Q0°0 2 6080k

Ata = 0l(x)=0.

We build a diagram of longitudinal forces (Fig. 3.2 b).

Normal stress in an arbitrary section

s N(x)/A =

The stress graph is also limited by a straight line (Fig. 3.2 c), which passes

through the ends of the ordinates:
at 08 =;

atx=I1s =1g7851d ¢ 187 #PO @D,15ME.

To construct the diagram of displacementsoafcrosssections relative to the
fixed end, we will find the displacement of an arbitrary cresstion located at a
distance x from the free end. It will be equal to the elongation of the part midhe
above the crossection under the action of its own weight. Since the weight force

varies along the length of thed, to determine the displacement, we will use formula
(3.8), considering an element of tloel at a distance x from the free end:
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'N(x)dx 'ogad x _ g 20 2
) g Tl e LXad <)

As you can see, tlieformationdiagram is described by a square parabola. To
build it, we will find the value of displacements of several sections:

d? 7,85t 20 )
(| e 0:0785 100m 0, 785nkm
at—0 oE e 1@1 .
atr=0,5m | ﬂ(f @,52) 10 0,738k
26 10
atreim | :7’?5_(1{d1(9 #) 166 0,590mkm;
262 16
it 1am | 28990 1) 1 o sagmim
202 16
at 2m= | 9D.

The elongation of the rod is equal to theformationof the free end relative to
the clamp, therefor@ -0,785mm.

Note. The elongation of the rod can also be found by replacing the distributed
load with its equivalent load, which is equal to the weight of the rod. This force is
applied at the center of gravity, which is located in the middle of the length of the
rod. Thenthe elongation of the rod will be equal to the absolute deformation of the
part of the rod located above the center of gravity. That is,

o A ©d 7,85 10 2 @5 ?06 63,:785rnkm,

EA 2G04
Example 3.2 A stepped rod (Fig. 3.3) i

E O — 5:33@/ F=10 kN loaded with forced~; and F, acting along its
0 4 Bl goplC axis. The crossectional area of the rod in tl
g & AC section is200 mm, and in theDA section-
iy = 400 mm. Find the magnitude and direction
#lr deformation of the points of application ¢
forces relative to the su if the modulus

TSR e

10 of elasticity of the material i& =2 @ MPa.
Fig.3.3. To example 3.2

First, let's build a graph of longitudinal forces.
We have two sections: &l ° I[.

92



Secti 00¢xtd 2Zm

N(x)= 7 =1GkN.

Secti o;mzmk & t0,8m

N(x)= F F  $0-30 +2KkN.

Since the rod is stepped, we will use formula (3.9) to determinketbematiors
in it.

The displacement of the point of forleeapplicationi point Ci is equal to the
absolute deformation of the entire rod:

Neel Ngal N
o Ih b LB T T

_(-10) &0 200 204G DO 20 1® 40®
- ” + - .+ — 0Z5mm
2 0 218 200 2 10 @0 O
The displacement of the point of application of the fdpce point BT is equal
to the absolute deformation of the part of the OB rod:

— NBAIBA NAO_ILAO
A o
_2040 #0 20 1t 400

. — " . B2mm
20 Z0 2 16 400
Both deformatiors turned out to be positive, that is, directed from the support
in the direction of rod elongation.

3.2. Potential strain energy of a rod under tension and com-
pression

Consider an element ofad dx (Fig. 3.4). Since theod material obeys Hooke's
law, there is a linear relationship between the fit@nd the absolute elongation of
the element. The work done by the fodewhich is external to the element, will be

equal to the area under the graph of the dependsinceldx) (Fig. 3.4).

N\
/
N N dA,
<t - - —
A(dx -
. dx Adx) A ~

Fig.34. Determination of the potential strain energy ebdunder tensiorcompression
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Based on the fact that the work of external forces is converted without loss into
the potential energy of deformation of the body, we can write:

dA, = dU %N (X .

Considering that according to Hooke's Iﬁl(/dx) =Ndx E/ for the entireod
we get:
U= N?(x) dx
M2EA(X) (3.10)
Example 3.3 Find the potential energy stored in the elements of the rod system
(Fig. 3.5) when it is deformed by a forde=0,5kN  if | =0,6m; the crossec-

tional areas of the rods ag =400mnf (rod AB) and A, =500mnf (rod AC). The
material of rodAB is steel with an elastic modulus & =2 €0’ MPa, and the ma-

terial of rodACis brass with an elastic modulusiBf =1 €° MPa. The hinge joints

in the system are considered ideal.
“= o According to the principle of inde
pendence of action of forces, the poten
N, energy of deformation of the system car
found as the sum of the potential ener¢
x of deformation of each rod, in particular

U :UAB -UAC'

Fig.35. To example 3.3

It is necessary, first of all, to find the effort in the rods. It is obvious that when
the joints are ideal, that is, there is no resistance to the rotation of the rods in the
joints, onlylongitudinal forces will occur in the crossections of the rod (Fig. 6.5).

We have a system of forces converging at one point.

We will find the unknown forces from the equilibrium equations in the projec-

tions on the axis:

aX = N;sin30 Njtsinds  O; =

aY = F Ncos30 N, €os45 |
sin30” 2
sings 1 2
Substituting the obtained ratio into the second equation, we find:

From the first equation we havé, = N;.
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B 2 3

—N1+—N1— =F .

ThereN; =0,73F =0,732 Q5 G:36KN.

ThenN, =0,70/MN; =0,707 0366 G;258N.

Thus, according to the condition, for each of the rods we have constant cross
sectionrigidity along the length (As=Const and EA,=Const) and constant longi-
tudinal forces Nand N.. Then the expression for energy (B.takes the form:

Nl NG
2E,A cos30  E A cos4E
Substituting the values, we get:

0366010 @6 ., 0,259 10 0,®

2¢2 10! 400 10°00,866 2 116 0B 10 0,70
=58 * 57 100 115 14 0.

U=

3.3. Mechanical properties and mechanical characteristics of
materials and methods of their determination

Speaking about the stressgeformed state of the body at a point, we under-
stand that it is also determined by the physical and mechanical properties of the ma-
terial. For example, when determining stresses and strains in rods, they rely on a
certain functonal dependence between stresses and deformations, namely, according
to Hooke's law. The main characteristics of the material in this law are the modulus
of elasticityE or G and Poisson'satio /7. These elastic steels are determined exper-

imentally, and these characteristics are different for different materials.

For solving practical problems using strength conditionsreyudity, it is nec-
essary to know the characteristics of strength and plasticity of materials. In order to
determine them, materials are tested temsion compression, bending, torsion,
shear, etc. To do this, samples, shapes, and sizes are tested, the manufacturing meth-
ods of which are regulated by special standards. It is often necessary to carry out so
called field tests, when the finished product oancural element is subjected to such
loads that will take place in real operating conditions.

The nomenclature of testing materials to determine their mechanical properties
is quite wide. And one of the main types of teésts tensile test. They make it possi-
ble to establish the most important mechanical characteristics of structural materials.
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3.3.1. Stress-strain diagram

A stressstrain diagram is a graph of the relationship between the stresses that
arise in a test specimen under tension and its deformation from the beginning of
deformation to the complete destruction of the specimen.

The methodology of tensile testing is regulated by state standards.

Testsamples According to the standard, tests are carried out mainly on cylin-
drical (Fig. 3.6a) or, when testing sheet materialglanespecimens (Fig. 3.6b).

In cylindrical samples, certain ratios between the diandgtmd the calculated
length of the working part of the samplemust be maintained: for long samples

|, =10d, and- |, =5d, for short ones. Samples in which the diameler10 mn

and estimated}, =100mm length or50 mm. The standard allows the use of samples

with a different diameter, but on the condition that the specified ratios of diameter
and calculated length are observed. Such samples are called proportional.

< ]
4 — L —
\ 7!
A — to —
l
L L
a) b)

Fig.36. Samples for tensile testsi aylindrical; bi plane

The calculated length can also be determined through theszossnal area
of the sample. Given thali, = pd/4, we get:

- for long samples, =11,3/¢, ;

- for short sampleg =5,65/¢, .

These ratios are also used when determining the dimensiprenesamples.

Testing equipment. For tensile tests, special breaking machines are used,
equipped with an electromechanical or hydraulic drive for loading the sample, grip-
pers for its fixation, as well as a system for measuring and recording experimental
data. Modern breaking machinesaasile, are equipped with a higinecision com-
puter system for collecting and processing information, means of visualizing exper-
imental results, and provide a wide range of loading modes. On Fig. 3.7 shows burst-
ing machines produced bgdding companies in the field of development and man-
ufacture of test equipment.
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0)
Fig.3.7. Tearing machines: a) INSTRON (USA); b) MTS (USA)

In the process of tensile tests, the force applied to the sample at a given time
and the corresponding absolute elongation of the sample are measured.

For this purpose, breaking machines are equipped with speciahf@asuring
devices- dynamometersand means of measuring deformations.

Methods of measuring deformations depend on the required accuracy of the ob-
tained results. The easiest way to determine the elongation of the sample is by the
deformationof the movable gripper, but the accuracy of measuring the deformation
in this way is not high, because ttheformationof the movable gripper, in addition
to the elongation of the working part of the sample with the initial |eiggiEng. 3.6),
also includes deformations of the transitional sections of the sample and the grippers
themselves, displacement, related to the selection of gaps in connections, etc. To
measure deformations with maximum accuracy, special devices are saith
gauges or extensometenshich allow determining the elongation of only the work-
ing part of the sample (Fig. 3.8).
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Fig.38. Hanging strain gauge mai Fig.39. Low-carbon steel tensile diagram in absolute
ufactured by INSTRON ordinates

The main mechanical properties of the material duringtension Based on
the results of force measurements and the corresponding deformations of the sample,
it is possible to construct an initisiressstrain diagramon which the ordinate axis
Is place on a certain scale, the measured force, and along the abscigsthaxis
corresponding elongation of the working part of the sample. It should be noted that
this diagram is built automatically by selfiting devicesequipped with modern ma-
chines, or it iooutput on the computer display.

In Fig. 3.9 shows thé&ensile diagram in absolute coordinatégpical for low
carbon steels.

On this diagram, you can highlight characteristic sections and points, which
correspond to certain stages of sample deformation.

The stage of proportional deformation, when the sample material is subject to
Hooke's law, corresponds to the sectich(Fig. 3.9). HereF . is the force at which

Hooke's law stops working.

Up to pointB in the diagram, the sample material remains elastic. The force
corresponds to this point. Therefore, DB section of the diagram corresponds to
the stage of elastic deformation of the sample.

With furthertensionof the sample, the diagram rises to p&@nafter which the
horizontal sectiorCD begins. Deformation of the sample occurs under constant
force, while residual or plastic deformations appear, which do not disappear after
complete unloading of the sample. This state of the material is called fluidity. The
CD section of the diagram is called the yield point.
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Note. It should be noted that the presence of a yield point is not characteristic
of all materials. It is absent from the tensile diagrams of, for example, alloy steels,
titanium alloys, and many other materials.

The stage of flow is followed by the stage of hardening, which corresponds to
the sectiorDE of the diagram. The sample material regains its ability to resist defor-
mation. Further deformation occurs when the force increases up to some maximum

value F__, (pointE on the tensile diagram).
Up to pointE, the deformation of the working part of the sample was uniform.
After reaching the forck, ., the deformation is localized on a small part of the

working length of the sample, which leads to the formation of a local narrowing on
the sample a neck (Fig. 3.10).
Further deformation of the samg
(section EK) is accompanied by a d
B S p—— e crease in the force applied to the sam

= _ I Point K of thestressstrain diagrancor-
Fig.310. A sample with a neck
responds to the moment of complete

struction of the sampleK. 1 the force a

which the destruction occurred).

Unloading and reloading.If we load the sample with a force of a certain mag-
nitude, without bringing it to destruction, and then completely unload it, then, de-
pending on the type of deformation acquired at the beginning of unloading, we will
get different results. So, if the aelied force is less thah, (see Fig. 3.9), that is,

the load was stopped at the stage of proportional deformation, then the unloading
will occur according to the same law as the load. Orsttessstrain diagramthis
process will be represented by a line that will practically coincide with th®lke
After complete unloading, we will return to poi@tof the diagram, which means
that we will not detect any residual deformations of the sample, which is understand-
able, because the sectiOw of thestressstrain diagrantorresponds to the stage of
elastic proportional deformation of the material.

A different picture will be observed when the forkg, exceeds, and plastic

deformations will appear in the sample. So, if you load the sample to\pointhe
stressstrain diagran(Fig. 3.9), unloading will occur along the lihdL, parallel to
the rectilinear sectio®@A, and not along the path takealong the lineMDCBAQ
This is easily explained by the nature of the deformations that occurred in the sample
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at the time of unloading. Full elongatidh,, of the working part of the sample in-

cludes both elastit:]eII and plasticDl |, deformations:

Dy =1k k.

Plastic or residual deformations are acquired -tisappearing deformations,
while elastic deformations are disappearing deformations. Both at the stage of elastic
proportional deformation and at any other stage, up to the complete destruction of
the samfe, elastic deformations are subject to Hooke's law. Therefore, unloading
occurs according to the same law as at the stage of elastic proportional deformation.

Based on the above, after the destruction of the sample, its residual absolute
elongationDl ;, will be less than the full elongation corresponding to the gQibty

the value of the disappearing elastic deformaﬁhm :

Let's return to the sample that was completely unloaded fromdoiReload-
ing it will take place practically along the same It as during unloading. More-
over, the stage of elastic proportional deformation will now correspond toMhe
section of the repeatetressstrain diagramand the subsequent deformation of the
sample will be accurately described by MEK section of thestressstrain diagram

A number of conclusions can be drawn from the above observations. First, dur-
ing repeated loading, when the sample was previously deformed plastically, the
origin of the coordinates of theressstrain diagranshould be moved to poirt
Second, the absolute residual deformation of the working part of such a sample will
be smaller byDIIOII . Thirdly, the flow of the material will begin at a force that will

be greater than the force obtained for a previously undeformed sample. That is, the
material of the sample becomes stronger, but at the same time more fragile. This
phenomenon is calledasider, and it is the basis of a number of technological pro-
cesses of deformation strengthening of parts, playing a positive role here. However,

in other cases, this phenomenon is undesirable, as it can cause a decrease in the re-
source of structural elementand efforts are being made to reduce its impact.

3.3.2. Stress-strain diagram in relative coordinates.
Mechanical properties of materials.

In order to exclude the influence of sample sizes on the obtained mechanical
characteristics of the material, the tensile diagram in absolute coordihateE
(Fig. 3.9) is reconstructed in coordinates- (stress linear deformation). For this,
the force for any point of the diagram is divided by the initial ceestionalrea of
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the sample:s =F/A,, and the corresponding absolute elongation of the working
part of the sample is divided by the initial calculated length= 10 .

Thestressstrain diagranin relative coordinates corresponding to the initial di-
agram (Fig. 3.9) is shown in Fig. 3.11.

A
0 e
o~
k
-
bh
S
| j g Y
Q €

Fig.311. Conventionabtressstrain diagram

Since the initial crossectional area of the sample and its calculated length
|, are constant values, the obtained tensile diagram in relative coordinates (Fig. 3.11)
Is similar to the initial diagram (Fig. 3.9), which means that all points and sections
of this diagram have the same physical meaning. as well as the correspondg point
and sections of the original diagram. This diagram determines the main mechanical
characteristics of the material.

Strength characteristics:

- limit of proportionality s :Fpr/A) is the greatest stress up to which

Hooke's law is fulfilled (point a on thetressstrain diagran

- limit of elasticity S, = F,/ A is the stress up to which the residual defor-
mation duringensionis not detected (point b on te&essstrain diagran

- yield strengths . =F ./ Ajis the stress at which deformation of the sample

occurs under constant stress (sectiahan the tensile diagram);
- ultimatestrength or temporary resistance of the material is the stress cor-
responding to the maximum force that the sample can withstand during

tension S, =F,/A (pointeon thestressstrain diagram
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Some of the specified strength characteristics require some comments. First, the
formulated definition for the yield point is valid only for materials whose tensile
diagram has a yield point. If there is no yield point, then a conditional yield point is

introduceds ,, - a stress at which the residual deformation289of the calculated

length of the sample. The method of determining the conditional yield strength is
illustrated by the diagram shown in Fig. 3.12.
Secondly, since it is quite diffi
cult to accurately establish the stres
G | which Hooke's law is violated (tr
limit of proportionality) or the stage ¢
elasticplastic deformation (the limi
of elasticity) begins, the concept of t
conditional limit of proportionality i<
introduced - the smallest stress
which the residual defmation is of
0 0.2% - the order of M02% from the calcu
> lated length of the sample,and the
Fig.312. To the method of determining the co conditional limit of elasticity- the
ditional yield strength of the material smallest stress, at which the resid
deformation is within @017 0,05%
of the calculated length of the samp

c)-0‘2

Characteristics of plasticity:
- relative elongation after ruptuigk % (see Fig. 3.11) is the ratio of the in-
crease Iin the estimated length of the sample after rupture to its initial
length:

d =[|"— 16%. (3.11)

0
Here DI, i the essence is residual absolute elongdlign (Fig. 3.9)

- the relative narrowing of the samMe% is the ratio of the absolute de-
crease in the crossectional area of the sample after breaking (in the neck)
to its initial crosssectional area:

v =2 1000, (3.2
Theplasticity of the material is judged by the plasticity characteristics.
A material is considered ductile when the residual elongation after breaking

IS d>5% , and whend <5% the material is considered brittle.
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Modulus of elasticity fortension

In the section Oa of the conventiosélessstrain diagramwhere Hooke's law
Is fulfilled, the relationship between stresses and strains is proportional. You can
write thattga = /s (see Fig. 3.11). That is,

tga =E. (3.13)

The modulus of elasticity fotensionis equal to the tangent of the angle of
inclination of the rectilinear section of thestressstrain diagram constructed in
coordinatesS ~ ¢ to the abscissaxis.

Diagram of real stressesThe conventionaktressstrain diagramshown in
Fig. 3.11, bears such a name quite justifiably. Its convention lies in the method of
determining stresses, when the force in the sample that occurs at any stage of defor-
mation is divided by the initial crossectional area of the sampsg. But due to
transverse deformation, the cresectional area of the sample will constantly de-
crease, and especially intensively after the formation of the neck. If the effort is di-
vided by the actdaarea of the sample, then we will get the actual stresses, and the
diagram constructed based on these data will be significantly different from the con-
ventionalstressstrain diagranfFig. 3.13).

(o}

/ kl
= e -

P

Vs

o—-Q/
abooc d k
J, &

0 S—0 z

Fig.313. Diagram ofreal stresses

As we can see, there is no section falling after point e on the real stress diagram.
The resistance of the material to the deformation of the sample increases up to the
moment of its destruction. The effective strength limit of the material, which corre-
spands to poink; of the diagram, is much higher than the technical strengthdimit

temporary resistance, .

However, the mechanical characteristics of the material are determined accord-
ing to theconventional tensile diagram. These data fully satisfy the needs of engi-
neering calculations.
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It is much more difficult to construct a diagram of real stresses, and the data
obtained with its help are used mainly for theoretical research.

Logarithmic deformation. As with stresses, the relative elongation and rela-
tive contraction of the specimen after rupture to a certain egteme conditional
valuesy . After all, they are determined by relating the increase in the length of the
sample to its initial length, and the decrease in area to the initialsgogsenal area
of the sample. In fact, the length of the working part of the sample, where plastic
deformation occurs, constantly changes, as does its-egmt®onal area. Therefore,
it is more correct to consider the increase in the leingftthe sample at this moment
in time as an infinitesimally small value dif and the reduction of the cressctional
areaA asdA. Then the real relative elongation of the sample can be found as an
integral

I 3.14
e= ﬁolﬂ inli. ( )
lo

I0
wherelp andlk are its initial and final lengths, respectively.
Sincel, =I, +Il,andd =1/, we get the dependence

e=inlo* D (1 4. (3.15)
0
Similarly, true lateral contraction
. K 3.16
Y = ﬂ—”dA Iltpﬁ. (3.10)
n A A
SinceA = A - A andy = B/ A, we get
Va2 op 1 (3.17)
A- B 1 -

At small values of relative elongation, conditional and real, or logarithmic, de-
formations practically coincid&o,with d #£0%real elongatiore=9,95%.

As already indicated, tensile diagrams for different materials can differ signifi-
cantly. InFig. 3.14 shows some examples of tensile diagrams for metal alloys com-
mon in mechanical engineering. Judging from the diagrams, they all belong to plastic
materials, but their mechanical characteristics differ significantly.

So, for manganese steel (diagramtesile strengths, =916MPa, residual
elongation after ruptured=30%; for nickel steel (diagram 2),=715MPa,
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d=54%; for carbon steel (diagram 3y, =358MPa, o=38%; for bronze
(diagramd) S, =247MPa, o =36%.
o, i

MPa
1000 -

800

sm_

2

2

T T T T o

10 20 30 40 50 &%
Fig.314. Tensilediagrams for various materials

Samples of brittle materials are destroyed
tension without noticeable residual deformatio
and without the formation of a neck on the sam
Deformations in this case are determined
Hooke's law. Characteristic for many brittle mat
als is, in fact, the absence of a rectilinear sectio
the tensilediagram (for example, for gray ce
irons). The modulus of elasticity is then taken as
tangent of the angle of inclination of the straight |
a passing through the origin and the point on the

_ gram corresponding to the stress at which the d«
Fig.315, Tensile diagram forgbrime maticn is determined. Such a modulus of elasti
materials Is called ashear modulus of elasticyty(Fig. 3.15).

3.3.3. Compression test

These tests are carried out on universal machines or special presses, placing the
sample between the parallel loading plates ohtlaehine. Samples are made in the
form of short cylinders, the height of which does not exceed three diameters, or cu-
bes.

As with stretching, plastic and brittle materials lead to compression themselves
in different ways.
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In Fig. 3.16 shows a compression diagr.
typical of lowcarbon steel. As the experimel
show, the limits of proportionality, elasticit
fluidity, as well as the modulus of elasticity f
compression are approximately the same a:
tension As for the strength limit, it is impossib
to establish it, since the sample does not
lapse, turning into a disc, and the compres:
strength is constantly increasing. For the s:i

[ reason, it is impossible to establish the plasti

Fig.316. Compression diagram ol characteristicef the matesil.
low-carbon steel

Therefore, compression tests for plastic materials are atypical. They are limited,
as a rule, to tensile tests, from which all the necessary information for engineering
calculations is obtained.

Brittle materials behave in a completely different way when compressed. As
already noted, the main characteristic for them is the strength limit. So, under tension
and compression, the strength limits can be very different. For example, for cast
irons, thetemporary compressive strength exceeds the temporary tensile strength

several timess’/ § =2,5...; for ceramic materials this discrepancy is even greater:

s¢/ $=5...1C. There are materials that can take higher loatisision than in com-

pression. These are materials with a fibrous structure: wood, some composites, from
metals- magnesium.

It follows from the above that, unlike plastic materials, compression tests are
mandatory for brittle materials.

Separately, we should dwell on the nature of destruction of samples from dif-
ferent materials under compression. In addition to the properties of the material of
the test sample, the test method, as well as the shape of the sample itself, have a
significantimpact.

During loading, friction occurs between the ends of the sample and the loading
plates of the testing machine due to the transverse expansion of the sample. For plas-
tic materials, its influence is manifested in the acquisition of a bsinegled sample
by the side surface of a poylindrical sample (Fig. 3.17 a). The higher the coeffi-
cient of friction on the contact surface, the more intense it is there will be casks.
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A castiron sample is destroyed during compression due to displacement along
a plane inclined at an anglis to the line of action of the force (Fig. 3.17 b).

Stone samples, depending on the force of friction on the surface of contact with
the slab, are destroyed in different ways: with a significant force of friction, the na-
ture of the destruction of the sample is as shown in Fig. 3.17 c, and when friction is
reduced (for example, with the help of a layer of paraffin applied to the contact sur-
face), longitudinal cracks appear in the sample, which lead to its delamination
(Fig. 3.17 d).

" - —
' ) <A
a) b) c) d)

Fig.317. Character of deformation and destruction of samples after compression depending on
the material: & plastic material; b cast iron; c, d stone

3.3.4. Determination of surface hardness

In the conditions of production, there is a constant need for operational control
of the mechanical properties of parts that, for example, are subject to thermal, chem-
ical or mechanical treatment. It is often simply impossible to carry out standard tests
related to the production of samples and the availability of special equipment. How-
ever, there is a method of indirectly determining the strength limit of the material
based on the surface hardness number of the part. Determining the surface hardness
of patts is a very common type of test. This characteristic also evaluates the ability
of parts to resist wear and cyclic loads etc. As a rule, in the technical conditions, the
required hardness value is indicated on the drawings of the parts.

Hardness is the ability of a material to resist penetration into the body surface
of other, more solid bodies.

There are several methods of measuring hardness.

The most common methods include the use of indenters: hardened ball (Brinell
method); diamond cone (Rockwell method); diamond pyramid (Vickers method).

According to Brinell, the hardness value is determined by the size of the im-
pression, that remains on the surface of the part after pressing the ball. The hardness
number is expressed kyf/mni, but the unit is not indicated when writing. If the
hardness is, for example, two hundred Brinell units, then it is written ad\200
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When the hardness 8B 2 45(, the Brinell method cannot be used due to sig-
nificant deformation of the ball itself. In these cases, they use or by the Rockwell
(HRC) or Vickers (HRV) method.

The value of hardness for some structural materials is related with the strength

limit. Yes, for lowscarbon steek,, © 0,36HB, for gray cast irors,, =(HB -40)/6.

3.3.5. . The influence of various factors on the mechanical prop-
erties of materials

The mechanical properties of materials, which are studied using standard sam-
ples on special equipment, actually depend on many technological and operational
factors, such as the technology of obtaining the materials themselves, thermal and
mechanical pro@sing, temperature, the state of the environment, the nature of the
load, etc. Next, we will stop briefly on some of the most important factors from the
point of view of their influence on the mechanical properties of structural materials
widely used in mehanical engineering.

Effect of load speedStandard tests densionand compression occur at rela-
tively low loading rates, when the growth of deformation of the sample or the rate

e d /dt of deformation i€0,0002 ... 0,05 *. It was experimentally established that

the higher the rate of deformation, the higherstiesses, the same deformations of
the sample will be achieved. That is, the resistance of the material to its deformation
with increasing speed, the load increases.

The level of influence of loading speed is very material dependent. Amorphous
materials, such as plastics, ceramics, concrete, and to a lesser extereliiog
metals (tin, lead), are very sensitive to changes in the rate of deformation. Thus, when
compessing lead samples, the same relative deformation for the deformation

e 9,25 rate is@=125%" achieved under stresses, which are twice the stress for

the strain rate2=0,003".

For steels, a noticeable influence of the loading speed is observed when it in-
creases by at least 3 orders of magnitude. Fosclanvon steel at normal tempera-
tures, a thousanfibld increase in the loading speed leads to an increase in the yield
strength ly a third. InFig. 3.18 shows the tensile diagrams of {oarbon steel ob-
tained for static and dynamic load.
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? The following practically important cor

clusions can be drawn from these diagrams

1 - dynamictensioncurve 2 is highel
than statidensioncurve 1;

- modulus ofelasticity for steel doe

not change under static and dynar

] _ loads;
€ " .
Fig.318. The tensile diagram of low - strength characteristics limits of
carbon steel: 1 static load; 2 dy- proportionality, vyield elasticity

namic load strength- increase under dynam

load, and plasticity characteristits
decrease
Effect of temperature. It has been experimentally shown that all mechanical
characteristics of materials significantly depend on temperatufég.i3.19 shows
the dependences of the main characteristics of strength, plasticity and modulus of
elasticity for lowcarbon steel in the temperature rafige500 C.
As can be seen from the given dependences, the modulus of el&stinitythe

yield strengths , decrease in the entire studied temperature range. Strength Jimit

and residual elongatiosy have a more complicated relationship. In the temperature
range from 100 t@ O O the strength limit increases noticeably, and the residual
elongation decreases. In the specified temperature rangealtnn steel becomes
more brittle. This phenomenon is called blue brittleness of steel.

Whent >300 Cthere is a sharp decrea o, MPa E*10° MPa
in strength characteristics and the growtr o — 22
plasticity, which makes it impossible to u 700 o 18
low-carbon steels for the manufacture of p: 600 pe 1,4
that must be operated atich temperature: 500 \—/ N 10
On the other hand, this behavior of steel w i N\ 5 %
heated is used in technological processe %00 \45
processing metals by pressure: rolling, fo :"‘\{\//
ing, stamping, etc. 200 \\5 T

The influence of technological factors 00— A %
The mechanical properties of materials w 8156 50 30 H6 o

. . : t,'C
the same chemical composition may differ
Fig.319. Graphs of dependence of me

pending on the method of their production ¢  .nanical characteristics of lezarbon
steel on temperature
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processing, for example, theechanical characteristics of cast and rolled steel.

If cast steel is an isotropic material, then rolled steel due to the acquired texture
in the manufacturing process is already an anisotropic material, the properties of
which are different in the direction of rolling and in the transverse direction.

Plastic processing of steel in a cold state (for example, extrusion) leads to slan-
der- strain hardening, which was considered above. The surface layers of many parts
are also riveted in order to increase their durability or contact strength. For ttas, par
are blown with meal, rolled with a roller. Even after normal turning, the machined
surface is riveted. As a result, the mechanical properties of the material of the surface
layers and the base metal differ significantly.

Thermal and chemicdahermal treatment of parts also leads to a change in the
mechanical characteristics of materials in the direction of increasing strength and
hardness characteristics and decreasing plasticity.

Therefore, when determining the mechanical characteristics of materials, it is
necessary to take into account the initial state of the material from which the samples
were made, so as not to make a mistake in choosing the limit state of the material
and alowable stresses when calculating the strengthrgidity of machine parts
and structural elements.

Of course, the properties of structural materials are consider¢ehfonand
compression and the methods of their study, as well as the list of factors affecting
them, do not exhaust all the necessary information about the behavior of these mate-
rials in the process of real operation of parts, which must be taken into ackount a
ready at the stage of their design and manufacture. In the following sections, we will
significantly supplement the information obtained regarding the physical and me-
chanical proprties of materials depending on working conditions, loading methods,
etc.

3.4. Determination of allowable stresses

Based on the concept afiowable stresg¢see chapter 1), it is necessary to de-
termine the limit or dangerous stress for the material.

Since all structural materials can be conventionally divided into plastic and brit-
tle, at least under conditions of static loading and the linear stress state that occurs in
the rod under tensiecompression, it is from these positions that we will chdose
limit state of one or another material.
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Plastic materials.For plastic materialsd %), the limit state is the onset of
yielding, because the occurrence of plastic deformations in the parts is generally con-
sidered inadmissible. Therefore, a dangerous tension is the yield stsepgan

S,, - Then the stress is permissible
S (3.18)
[s]=

ye
Ny
Here is thestrength factor

n.=14..L¢

Fragile materials. For brittlematerials @ $%), the limit state is destruction,
and the dangerous stress is the limit of strength. Then the stress is permissible
n,
Strength factor
n,=2,5...3,C

Note. The indicated values of the safety margin coefficients are standardized
for static load conditions. Their smaller values are taken in the case of materials with
a homogeneous structure and in the case of the calculator's confidence in the cor-
rectness oftte calculation schemes, the accuracy of the chosen calculation methods,
and good knowledge of the material's properties.

Example 3.4 Determine the allowable tensi@mompression stresses for the fol-
lowing materials: gray cast irdd@CH 15steel20al umi num b.ronze Br

Using the data given in the appendices [1], we will present the technical char-
acteristics of the specified materials in the form of a table.

Table 3.1. Mechanical characteristics of materials (for example 3.4)

Strength limit Yield strength, | Relative elongation
Material
S,, MPO S e MPO d, %
Tension | Compression N .
SCH 15 150 650 I I
Steel 20 420 250 25
Br 5 Soft condition 380 160 65
Solid state 400 - 4
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Gray cast ironlSCH 1515 can be classified as brittle materials. It reststssion
and compression in different ways. Taking into account that the coefficient of safety

margin N, =2,5...3,(, we will obtain the following values of permissible stresses:
- fortension[s]| = g,/n, 450'3...15p 2,5 =50...60Pa;

- for compressiofs| = §./n, $65¢ 3...650 2,5 =217...260Pa.

Steel 20 is a plastic materiall (25% 5%), so the yield point is a dangerous
stress. The coefficient of safety margin for stegls-1,5 is accepted. Then

[s]= s./n,. 25015 %6MPa.

BrA5 bronze is presented in two states. In the soft state, it is a plastic material
(d 5% 5%), the coefficient of safety margmn,=1,4...1,€ In the solid state, it

is a brittle material @ 4% 5% ), the coefficient of safety margiy =2,5...3,(. So,
- for a soft statds]|= g./n, 460'1,6..160 1,4 =100...114/Fa ;
- for the solid statds|= s/n, =00 3...400 2,5 =133...160Pa.

Note. The final selection o&llowable stressvalues for gray cast irorand
bronze should be made taking into account the recommendations formulated in the
note.

Questions for self-testing

1. How is the tensile diagram obtained in relative coordinates? What is the
difference between the conventional and the true tedisitgams?

2. Which of the following characteristics are strength characteristics? Elastic
limit, elongation percentage, modulus of elasticity, conventional yield strength...

3. What is meant by the conventional yield strength? Provide examples of
materials for which it is determined.

4. What is meant by the temporary resistance of a material?

5. Name the main characteristics of the plasticity of materials. Based on what
criterion are materials classified as brittle or ductile?

6. Steels resist tension and compression equally. Please explain which
property of steel underlies this statement.

7. What is called the hardness of materials? Name the main methods for
determining hardness and the limits of their application.

8. List the main factors that can affect the mechanical properties of materials.

9. What safety factors are used for ductile and brittle materials in general
mechanical engineering?
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4. CALCULATIONS FOR TENSILE AND COMPRESSIVE
STRENGTH AND RIGIDITY OF RODS

4.1. Strength and rigidity conditions of rods for tension and
compression

The tension and compression of the rod is the type of deformation under which
the real rod and the sample for tensile or compression tests are under the same load
conditions, which allows direct comparison of the current stresses in the rod with the
allowable ones obtained from the results of the experiment.

Using the formula to determine the stresses in the rdadrfisionor compression
(3.5), the strength condition can be written in the form

_N 4.1
S A({ﬂ (4.1)

Let's consider the maitypes of calculations that can be carried out using the
strength condition.

1. Based onthe known dimensions of the part, check whether it can withstand
the specified load by comparing the current stresses at the dangerous point
with those permissible for the given material{dationcalculation).

2. Based on the known loads for the given material, the safe dimensions of
the part are found (design calculation). In this case, the strength condition
(4.1) takes the form:

A2 ﬁ (4.2)
[s]
3. Based on the knowdimensions, the material of the part and the load dia-
gram, find the permissible load value:

Ne¢[ A (4.3)

In order to check the part fogidity, i.e. to determine whether its deformation
under the active load is within the permissible limits, use the conditiogidity,
which fortensionand compression, taking into account formula (3.8), will have the
following form:

|
N (x) dx
D y=7—= [CI].
o EA(Y o]

HereDl is a change in the length of the pz[@l] Is its permissible value.

(4.4)

Using therigidity condition (4.4), it is possible to carry out calculations similar
to calculations using the strength condition. However, as already noted in chapter 1,
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therigidity calculation is, as a rule, verifiable. The main calculation is carried out
according to the condition of strength.

4.2. Calculations on the strength and rigidity of statically de-
terminate rods

If the unknown forces from the system of forces applied to the body can be
determined from the conditions of equilibrium, then such a system is called statically
determined.

We will consider the features of calculations of such systems for strength and
rigidity using several examples.

Example 4.1 Check the strength of the elements of the rod system (Fig. 4.1)
when it is loaded with a force df =15kN, if the crosssectional areas of the rods

A =60mni (rod AB) and A, =80mni (rod AC), and their lengths, respectively

|, =1, dm. The material of théB rod is steel 45, and th&C rod isBrA5 bronze

(solid state). Also determine the vertical and horizoaedbrmationof nodeA. The
hinge joints in the system are assumed to be ideal.
. o Let's find the forces in the rods of t
system. Since the hinges are ideal,
longitudinal forces and (Fig. 4.1) will oc
cur in the sections of the rod.

For a system of forces converging
one point, we have two equilibrium con:
tions:

Fig. 41. For example 4.1

q X = -N;sin30 N4sin30 O, =

aY= -F Ncos30 N,#o0s30
From the first equation we have:

N, =N,.
Substituting the obtained ratio into the second equation, we find:
2N, cos30 +.

ThereN, =N, =F/\/3 153 8®H&N.
Let's find the allowable stresses for the materials of the rods.
For steel 45(d=16%) [s]= §./n,. 86015 24MPa;
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for aluminum bronze
[s]= s/n, #00'2,5 26MPa

We check the rods for strength:
- rod AB

in the solid state: (d=16%),

=N, 8OO0 1) 33vPa [4 240uPa;
A 60

=N, 8560 14 25viPa [ 168vPa.
A 80

Therefore, the strength conditions are fulfilled for both elements of the suspen-
sion.

Let's determine the vertical and horizontsformationof node A of the rod
system.

The increase in the length of each rod is
Nl 866001000 (o,
EA 240
| =Nol 8660C1000 ) ooy
EA 140
Let's depict the system in a deformed state (Fig. 4.2 a). Projections of the com-
pletedeformatiorof node Aj) on the axis of the rods(andu,) due to the smallness
of the deformations can be considered to be equal to the elongation of the rods:

U= Dandu,= D.

Fig. 42. Rod system in a deformed state (a) and pattedefairmatiors (b)

In Fig. 4.2 b shows the picture déformatios on a larger scale. The total
displacement of node A can be found as a geometric sum of segments
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0’=\/U12 +f7 #US 2_2,, Segmentd?, and /1, can be determined by projecting
AA = d, or rather its components, on the axis of the rods:
U =u,cos60 r# sin6o;
U, =u,cos60 /7 sin6C.
Theren, =0, 774mm; n,=0,238nm.
Total displacement/=./0,722 +0,774 =,058m.

To find the vertical displacement of node A, you need to pn&j@c% d the
segment onto the vertical axis. The angle between them

g=30 arctg& 36 ar_ctgo’238
u, 1,031

So,D’ =dcosl7 ~ 1658 0,956 1,0afn

Accordingly, horizontal displacemeBf' =/cos17 ~ 1058 0,92 0,369n

F Example 4.2. Determine the diamete
Y of the steel roBD (Fig. 4.3), which hold:s
the absolutely rigid bea®Cin a horizontal
position, if theallowable stres®f the rod

material is[s | =160MPa, and the permissi

30 43 1%

ble lowering of poinA of the beam under th
action of the load id= =2kN -5mrm. The
dimensions of the beam are give

|, =0,9m, [,.=1,0n. Hinged connec
tions in the system are considered ideal.

The force in the rod BD can be found from the condition of equilibrium of the
moments relative to the hinge C (Fig. 4.4 a):

Fig. 43. To example 4.2

F|_ 05m Im o - 05m I'm .
7 B C A4 B c
30°
B, 30°
: 4,
ENKo
1 >
a) 6)

Fig. 44. System load diagram (a) addformationpattern (b)
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aM.=F 8C R CBEO
There
RD:FAC 2 15 _
CE 1Gin30
Rod BD is in pure compression. Longitudinal foldg, = R, ®kN. Using the
strength condition (4.2), we find:

6kN.

A2 N M 37,5mnf .
[s] 160
Let's find the amount of vertical displacement of point A of the beam. To do this,
we will use the picture of systataformatiors, which is shown ikig. 4.4 b (since
the beam is absolutely rigid, it will turn relative to the hinge C without any changes
in size and shape). For proportional segments, you can write:

AA _ BB _ AC ___15
—=—— 0orAA=BB— =BB— EK5BE.
AC BC I%BC I§1 5

From DBB B, we find thatBB :_B—zzo_ =2BB . The lengthBB, of the scale
sin
segment is equal to the absolute deformation of the rod BD (due to the small defor-

mationsB,B,, we replaced the arc with a perpendicular). Given that the modulus of

elasticity for steel i€ =2 T MPa, we find:
Ngolys  _Ngoles 265000 1DOO
® EA  EAc0s30 20 37,5V D
SqBB =2 92 184nn. From here AA =15 084 2 76n.

The found vertical displacement is less than the specified permissible value.
Knowing the minimum allowable cresectional area of the rod, waetermine
the diameter of the rod:

d=J4Ap =/4 309 p 69mm.

0,82nm.
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Flf C Example 4.3 What should be the maximum allo
' able forced-; andF; (Fig. 4.5) so that the rod is of ur
4,1 form strength? The material of the rod is steel 20. Gt

sectional areash =30mnf, A =40mnf. Leaving the

found force F, unchanged, determine at what forEg
47| the displacement of the free end of the rod will be z
s Check whether the strength of the rod will be ensure
| this case.

_ T4 Note. A rod of uniform strength or a rod of equ
Fig. 45. To example 4.3 . .

resistance is called a rod whose strength reserves ar

same at dangerous points in any crssstion.

The rod has two sections. Tensile stresses caused by-foAdwable stress
for steel 20fs] = s./n,, 250'1,5 16MPa.

The permissible value of the forég can be found from the strength condition
(4.3):
F.=Ng ¢s] 4D 167 30 BGO1GH.
Since the forcd, acts on compression, the rod can be of uniform strength only

under the condition that the stresses in the section BA will have the opposite sign in
relation to the stresses in the section CB and will also be equal to the allowable ones.
Steel, as is knowrs equally resistant ttensionand compression, that is, the number

of allowable stresses is knovﬁﬁ:]c‘ =[ 4, 46™Pa. so,
F-F, 010 F, N5, [s A 0167=40 6630.
There,F, =5010 +6680 41694 .

Let's determine what the forde, should be so that tréeformationof the free

end of the rod is zero. Under this condition, the total elongation of thédrodD,
or, according to the scheme (Fig. 4.5),

D =IQ K DNcslcs NBAI_'BA Fa lFl_ Fj_)a
T EA EA EA EA

11690 .

1-O:On

\ a 0 3
F,=Fa 4& 6501@1 io’
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As we can see, the fordg is the same as the fordg found under the condi-

tion of equal strength, that is, the strength will be ensured.
Note. We obtained such a result only because the lengths of the sections of the

rod are the same. Otherwise, the magnitudes of the fdfgeand F, will differ.

4.3. Calculations of the strength and rigidity of statically
indeterminate rods

In statically indeterminate structures, the number of unknown forces exceeds
the number of equilibrium equations from which they are determined.

4.3.1. The concept of redundant joints

Static uncertainty is associated with the presence-oaked "extra” or redun-
dant links in the system.

In Fig. 4.6 shows a beam that is held with the help of hingad two elastic
rodsBC andBD.

If the hinges are considered ideal, then four ties are imposed on the beam: two
in a fixed hinge and two in the form of rods. Accordingly, four unknown reactions
on the part of the indicated elms are to be determined. Howeverplanesystem
of forces, we have only three equilibrium equations. Therefore, the problem is stati-
cally indeterminate.

Obviously, to ensure the balance of the system, in addition to Aingee rod
would be enougltere, one redundant link is evident

P Ryc R,, R, R, RAzA 41C
B

| é:E \ | F
H z

A4

Fig. 46. A once statically indeterminate Fig. 47. Twice statically indeterminate syster
system

To characterize statically indeterminate systems, the concept of the degree of
static uncertainty is introduced. It is found as the difference between the number of
unknown forces and the number of equilibrium equations. Thus, the degree of static
uncertanty depicted in Fig. 4.6 of the systermis4 -3 1. In this case, the system
Is said to be statically indeterminate once.

119



The magnitude of the degree of static uncertainty coincides with the number
of redundant links in the system.

Another example of a statically indeterminate system is shown in Fig. 4.7. The
central rod 1 is rigidly connected to the bracket 2 in esgssionC and fixed in
supportsA andB. The clamp, in turn, is fixed in suppdt The support reactions,
which in general are loads distributed in the support sections, are represented in the
form of uniform forces reduced to the common central axis of the structure. That is,
together with the forcg, they form a linear system of forces for which there is only
one eqilibrium condition: the sum of all forces acting along one axis is zero. Given

that there are three unknown forddg, R,,, R to be determined, and, the degree

of static uncertainty im=3 -1 2. We have a twice statically indeterminate system.
And this means that there are two redundant links in the system.

It should be noted that excess ties are "redundant" only from the point of view
of static conditions: their removal will not lead to a disturbance of the system's equi-
librium. Their presence, as a rule, is associated with ensuring the strength and rigidity
of the structure. From this point of view, excess ties, as a rule, are far from "extra".

4.3.2. Procedure for solving statically indeterminate systems

It should be recalled that we have already encountered the concept of static in-
determinacy when solving integral equilibrium equations for a rod. Then the general
order of its disclosure was formulated, according to which the static, geometric and
physicalaspects of the problem should be consistently considered and carried out
their synthesis.

The disclosure of the static uncertainty of the rod systems is carried out in the
same sequence, filling the three sides of the problem with the appropriate specific
content.

1. The static side of the problemMake up the equilibrium equations of the
cut-off part of the structure, which contain unknown loads or forces.
2. The geometric side of the problemConsider the system in a deformed
form and establish the relationship between deformatiodsformatiors
of its individual elements. The resulting equations are called deformation
compatibility equations.

Note. In statically indeterminate structures, the deformation of some elements
is impossible without the deformation of others, that is, the elements of the system
are deformed together. Hence the name of the equations.
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3. The physical side of the problemUsing Hooke's law, the deformations
of the elements due to the required forces are expressed. In the case of a
change in temperature, temperature or thermal deformations are added to
the deformations caused by forces.
4. Synthesis.Joint solution of the obtained system of equations
Let us consider examples of solving statically indeterminate systems.
Example 4.4 The rod system (Fig. 4.8
loaded by the forcé&, is symmetrical about th
vertical axis, that is, the side rods 1 and 3 have
same length and croesgctional areas, are inclin
at the same angle® to the vertical and are mac
of the same material, for example, copper. -
middle rod 2 is steel. Find the forclg N2, Nz in
_ FY the rods and select the allowable areas of their
Fig. 48. To example 4.4 tionsAg, A, As, considering the allowable stress
[s]. for copper ands|_ for steel as given.

Let'sconsider the hinges that connect the rods in the system to be ideal. Then,
when the system is loaded with a vertical force F, only longitudinal forces will occur
in them. To determine these forces, let's cut a part of the structure containing hinge
A withan arbitrary section and consider the conditions of its equilibrium. The load
diagram of node A is shown in Fig. 4.9.

There are three unknown forceg N, and N.. The number of equilibrium equa-
tions for a planar system of forces converging at one point is two. Therefore, we have
a statically indeterminate system, the degree of uncertainty of which3s-1 2.

1. . The static side of the problem. Let's write down the equilibrium equation
of node A:
a X= -Nsina N,sina O
aY=Ncosa +N, N,cosa F (

According to the first equatioN; = N,. Then the second equation takes the
form:
2N, cosa+N, =+,
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=)

Fig. 49. The diagram of the loading of node ¢ Fig. 410. Pattern odeformatiors of node
A

2. Geometric side of the problerSince there is geometric and force sym-
metry of the system{=N3), and also taking into account that the side rods are made
of the same material, we conclude that these rods are deformed in the same way. As
a result, only the verticaleformationof node A will take place.

In Fig. 4.10 shows the system in a deformed state, when all rods are elongated.
The increase in the | ength of r.0Tthe 2 cC ¢
elongation of the side rods can be found if we draw arcs from points B and C with
radii BA and CA through point A to the intersection with the axes of these rods after
deformation.

Using the hypothesis of small deformations, we introduce the following simpli-
fications:

- replace the arcs with perpendiculars established from point A to the axes
of rods 1 and 3 in the new position. Then their elongation will correspond
in scale to segments#& and AAg;

- we neglect the change of angles between the rods.

Consi der t he ipb Acgonding to fig.i4.40A A ¥ & ACAsd). That
Is, the equations of the compatibilityd#formations will look like this:

D, =ID Ecb=a.
3. The physical side of the problem. Let's express elongation due to effort,
using Hooke's law in absolute values fension
ul _Nlll ’ uz _N2|2 .
E.A EA
4. Synthesis. Substitute expressions (3) in (2):
Nlll — N2|2
= cosa .

EA EA
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There
N, =N, EAL o =N, EA 08 a
ESAE Il ESAE
Solving (4) and (1) together, we find:
¢ F ECA cosa
N, = = ;
14254 coda
EA

S

F
N, = .
1+ ZECA cosSa

S

—_—) =) =) =) —p——) —) —

If the crosssectional areas of the rods are known, it is not difficult to find the
effort or perform a check calculation. When the design calculation is performed, the

area ratio should be specified /A = k. This will allow you to find the forces N1
and N2. And then one of the areas is found from the strengttitions, for example,

N
A? —[s]l and the second is found from the rafc= A/ k. After that, be sure to

check the strength of the second rdfithe strength condition is not met, then the
calculation should be repeated: first, from the strength condition, determine the area

N
of the second rod, ﬁ and the area of the first from the raflp= AK, at the

same time, it is no longer necessary to check it for strength, because the area found
will be guaranteed to be larger than the one found in the first attempit.

4 = p Example 4.5. For the rodAB, con-
struct thediagramof forces and stresst

1 : - —— ]
F and determine the safdictor. Also con-
600mm struct a diagram of trgeformatiors of its
00 mm .l LA crosssections relative to suppoit (Fig.
Fig. 411 To example 4.5 4.11), if the force i$==10 kN, the cross

sectional area isA=100mnf, and the
material of the rod is steel 30. The size
the gap isD =0,1mm.
First, let's compare the values of displacement of the end section of tthg rod
under the action of the force F and the gapin order to draw a conclusion about
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the static determination of the problem. Given that there is a longitudinal force
N,. =F 20kNin the AC section, we get:

N, 104G @DOo

/,= D, =A4cAc

EA 2QC0 100
So,/, > L. After closing the gap, reactions of both supports will act on the
rod, and the problem becomes statically indeterminate. Degree of static uncertainty
n=2 -1 1
Thecalculation scheme of the rod is shown in fig. 4.12 a.
1. The static side of the problem. Let's write the equilibrium equation:
4X=H, F H; O.
2. Geometric side of the problem. The total elongation of the rod is equal to
the size of the gap:

0,3nm.

D =1R kD
3. The physical side of the problem. According to Hooke's law, the elongation
of sections is found as

u —NACIAC H A! AC.
S EA EA '’
_NCBICB H IJ CB

“ EA EA
4. Synthesis. We substitute (3) in (2):

HAIAC _ H E! CB —
EA EA
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i A

55,56

d m @ MPa

0,17
+
a o

Fig. 412 Calculation scheme (a) and diagrams of forces (b), stresses (c) and displacements (g)
for the rod

Considering (1), we write:
Hlpot(Ha Flge BA .
There
_EAD +Fl, 210 100 0,10 1® 3@
L 900
H,= H, F 555556 10000 4444, &A

The diagram of longitudinal forces is showrFig. 4.12 b.

Let's find the values of stresses in each section and construct a stress graph
(Fig. 4.12c¢).

H

A

55%,56“ ;

s, =MNuc 555556 oo o nn
A 100 .

o =Neo 444444 L nie
A 100

Since the material of the rod is steel, which is equally resistaensonand
compression, the margin of strength will be determined by the maximum absolute

stressS 5. =95,56MPa and yield strength. For steel 3@, =300MPa. Then the

125



strength factoof the rod s n, = ﬂofs 5,4. Considering that for steel the stand-

ard stock factor i@ye 81,5, we conclude that the rod is significantly underloaded.

Let's construct aliagramof thedeformatiors of the crossections of the rod
relative to support A (Fig. 4.12 d). Given that thdséormatiors are determined by
the deformations of the corresponding sections of the rod, we write:

Ar e a(O¢x <0,6m):

/oa= D(x) SacX,

Deformationof section C relative to A
_ Nuclac 5555,560600

/., = . . G17mm
“A T EA 2A0 100
Section CB(O<X <O,3m):
N, X
/x-A= é-A +|()() gA ﬁ

Deformationof section B relative to A

N_.| 4444, 445300
/. . = £ CBCB 317 ~ D
sa= £ EA 240 100

As you can see, tlieformation/ 5 , is equal to the value of the specified gap

0,¥/ 0,67 Orbm

D, which indicates the correctness of the calculations.
We place the found displacements in the corresponding-semt®ns of the
rod in the form of ordinates from the base line ofdlagramand connect their ends

with straight lines, because the dependenéi@é are linear.

4.3.3. Features of statically indeterminate systems

4.3.3.1 Dependence of force values on rigidity ratios of system ele-
ments

The distribution of forces in the elements of statically indeterminate systems
depends on the ratio of theigidity. By changing these ratios, it is possible to change
the distribution of forces in the system elements in any way.

As an illustration, consider a rod system (see example 4.4). Suppose that the
area of the second rod is infinitely large in comparison with the areas of other rods:

A - © . Then,according to expressions
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€ Fﬂcosza
' EA

TN, = E.A :
1 1+2—="t cosa
1 ESAE

i F

N, = .
| 1+ 2M cosa
[ E.A

for determining theforces N, =0, and N, = F. When assuming thafj - ©
andA - o soN,=0, andN,=F/2cosa .

Forces in the rods of a statically indeterminate system are distributed in pro-
portion to theirrigidity.
4.3.3.2. Response to temperature changes

In statically defined systems, a change in temperature does not, of course, lead
to the occurrence of additional efforts. So, the rod shown in Fig. 4.13, in the event of
a change in temperature, it will increase in length due to thermal expansion, but no
forces will arise in its sections.

4y i Ay H _ _ _ H_|B
I
Fig. 413. Statically determined rod Fig. 414. Statically indeterminate rod

By tightly pinching the rod from the right end (Fig. 4.14), we will get a statically
indeterminate system. Suppose thattémeperature of the rod has increasest( ).

An attempt at thermal expansion will cause reactions from the supports. A longitu-
dinal compressive force occurs in the rod. Let's find stresses, which in this case are
called temperature or thermal.

1. The static side of the probleret's write down the condition of equilib-
rium of the rod:

ax =H, Hg O.
ThereH,=Hg .

2. Geometric side of the problem. Since the supports are absolutely rigid, the

elongation of the rodl 0. In other words, the thermal elongation of the rod is
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compensated by the force deformation caused by the reactions of the supports. We
write the deformation compatibility condition as follows:
D =1 k .
3. The physical side of the problem. Force deformation according to Hooke's
law
_NE _HE
N EA CEA

Dt = I# to‘) .
Herea 1 is the coefficient of linear expansion of the rod material.
4. Synthesis. Solving the jointly obtained equations, we find:

and thermal elongation

H= &A(t %),
At the same time, tension
N H (4.5)
S =— = (¢ )

Example 4.6 Find the stress in the rail in winter and summer at a temperature
rangt = 30 C, if the track was laid in the effeason at temperatures10 C. The

modulus of elasticitE =2 T MPa of the rail material, and the coefficient of linear

expansiond =125 @0
Using equation (4.5), we find the maximum stresses:
- insummers = 125 16 2 @( G0 1p - F@Pa

- inwinters = 125 16 2 @9( O30 1 10@Pa.
4.3.3.3. Sensitivity to manufacturing inaccuracy of system elements

Inaccuracies are possible during the manufacture of conjugated structural ele-
ments. These inaccuracies in statically determined systems after their assembly

do not lead to the occurrence of forces in the elements. This is easy to see on
the example of a rod system (Fig. 4.15), where the dotted line shows the system after
assembly, when th&C rod is manufactured with a deviation from the design length.
The system is assembled without any deformations, and therefore without effort. The
only negative consequence is the inconsistency of the obtained geometric shape of
the design with the desigi(the figure, the design shape is represented by solid
lines).
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The only negative consequence is the inconsistency of the obtained geometric
shape of the design with the design (in the figure, the design shape is represented by
solid lines).

In statically indeterminate systems, ir
similar situation, it is impossible to carry ¢
assembly without subjecting the elements
deformations. As a result, forces arise in
elements, which are called assembly force:

Consider the example of a rod statice
indeterminate system presented in Fig.
(example 4.4), in which the central rod 2

Fig. 415. Statically determined syster

made shorter than the design len after assembly
(Fig. 4.16).

Example 4.7 Determine the installatio
forces and stresses in the rods of the system
assembly (Fig. 4.16), if the side rods 1 and 3 r

the same length, =, and crosssectional area

A = A, are inclined at theame angled to the

vertical and are made of the same material, fol
ample copper. The middle rod 2 is steel. Its ¢t

sectional area i$,, and its length .

Fig. 416. To example 4.7

It is obvious that when the valu# is insignificant, then, with some effonge
can make a system. At the same time, the side rods should be compressed, and the
central rod should be stretched. After assembly, node A will occupy some intermedi-
ate position (Fig. 4.17), and residual assembly forces will act in the rods (Fig. 4.18).

y
N, N, N,
o |.a
Fig. 417. System after assembly Fig. 418. Node load diagram
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We have three unknown forces, and amgailibrium equations. Therefore, the
degree of static uncertainty=3 -2 1.
1. The static side of the problem. Let's write the equilibrium equation:
a X =N;sina -N,sina 8

aY=Ncosa -N, N, cosa |
There

2cosa

2. Geometric side of the problem. AccordingRiy. 4.17 with DAAA we
have AA = AACOsa. Based on this ratio, taking into account the scale, we will
write the equation of the compatibility of deformations:

D, {d -l,Jros

or
a= D, + [
cosa
3. The physical side of the problem. According to Hooke's law
— N1|2 |p _N=2|_2
' E.Acosa’ EA

There is no ™" sign in the formula forDl,, since the shortening of rod 1 is
already taken into account in the drawing (see Fig. 4.17).

4. Synthesis.  We  substitute DI, _—.Lz; ID Ny in
E.Acosa EA
a= D, +1[:
cosa
N1|2 + N2|2
E.Acosa EA
Taking into accountN, = N, =N—2 we get:
2cosa
e, _d 1 :
N2 = 1
| 2 +
i E.A 2EAcosa
A
i ' 2cos:a’

130



Knowing the forces and cros&ctional areas of the rods, we can easily find the
stress:

s0=N g@ =N,
A Ay
Note. Taking into account
e, _a 1 :
INZ_E 1, 1
{ E.A 2EAcosa ,
] =N
i ' 2co=a

it can be stated that in the field of elastic deformations there is a direct propor-
tional relationship between the forces or stresses in the system and the amount of
manufacturing inaccuracy of its elements. This phenomenon is often used to ad-
vantage in agineering: by intentionally creating residual stresses in an element of
the opposite sign to those stresses that will arise during operation, we thereby create
a reserve of strength and increase the lb®aring capacity of the element.

Questions for self-testing

1. What stresses are called permissible?
2. The yield point of the material is , =240MPa, the strength limit is

S, =950MPa, the residual elongation after ruptureds18%.

3. Write down the strength condition of the rod under tension and compres-
sion.

4. List the main types of calculations that are carried out using the strength
condition.

5. Determine the real stock factor of the rod considered in point 5.

6. Find the area for which the margin of strength of the rod (see point 5)

would correspond to the standard for stger 410MPa.

7. Write down therigidity condition of the rod under tension and compres-
sion.

8. List the main types of calculations that are carried out usingidicsty
condition.

9. What is theigidity calculation in engineering practice, as a rule: design or
verification?

10.What system is called statically determined?
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11.Which system is called statically indeterminate?

12.What elms are called "extra" or surplus?

13. For what purpose are excess elms introduced into the structure?
14.Which of the two systems is statically indeterminate.

37 3

F F
!

15.How is the degree dtatic uncertainty of the system calculated?

16. The degree of static uncertainty of the strucfuy8. How many redundant
elms are imposed on the system?

17.Formulate the order in which the static uncertainty of the structure should
be revealed?

18.What is the static side of the problem when revealing static uncertainty?

19.Reveal the essence of the geometric side of the problem?

20.Why are geometric equations called deformation compatibility equations?

21.What hypothesis of resistance of materials is used to write geometric equa-
tions?

22.What quantities are connected by physical equations? What law are they
based on?

Hy—— . — 4,
A C B
a a . .
23. ~ Based on the features of statically indeter-
minate systems, answer which of the supporting reactions is greatar: N
117

24.What stresses are called thermal?

25.Do thermal stresses occur in statically defined structures?

26.What stresses are called installation stresses?

27.Give examples of the use of assembly efforts in a structure with benefit for
its operability.
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5. FUNDAMENTALS OF THE THEORY OF STRESSED AND
DEFORMED STATE

5.1. Stress in a deformed solid body

5.1.1. A tense state of the body at a point. The law of parity of
shear stresses

Suppose that there is some body loaded with an arbitrary system of forces
(Fig.5.1). We will assume that when moving from point to point, the stress state
changes rather slowly, and it is always possible to choose such a small enough area
around point Am which the stress state could be considered homogeneous. It is clear
that such an approach is possible only within the previously accepted hypothesis
about the integrity of the material (see topic 1.1.), which allows the transition to ex-
tremely small volmes.

Fig.51. A rigid body loaded by an arbitrary system of forces

We select a volume in the vicinity of poiAtin the form of an infinitely small
parallelepiped (Fig. 5.2).

Z)

[+ dz

<
N
w!

- —( dy

Fig.52. Stresses on the faces of an elementary parallelepiped

133



In the limiting case, all the faces of the parallelepiped pass throughApanat
the stresses in the corresponding intersecting planes can be considered as stresses a
the point.

Note.The shape of the infinitesimal element depends on the selected coordinate
system. So, in the Cartesian system, the element has the shape of a parallelepiped.
For cylindrical or spherical coordinate systems, it is convenient to choose cylindrical
or spheri@al elements.

Let's decompose the total stresses arising on the faces of the elementary paral-
lelepiped into components along the axes. We obtain normadleeatstresses on
each face (see Fig. 5.4). These stresses are marked in accordance with the previously
accepted order: normal stressellsave indices corresponding to the aXe¥, Z to
which these stresses are parabblearstress is indicated by two indices: the first
index corresponds to the axis perpendicular to the area of actionsifaestress;
the £cond index corresponds to the axis to which this stress is parallel.

Normal stresses are considered positive when they act in the tensile direction.
The sign of theshearstresses is not specified.

Consider the equilibrium conditions of an elementary parallelepiped (see
Fig.5.2). On its opposite faces, stresses equal in magnitude and opposite in direction
act in pairs, because they act on faces that actually belong to the same plane. And it
turns ou that tension on one face, for example on the right, characterizes the action
of the right part of the body on the left at pofgtand tension on the left faeghe
action of the left part on the right at this same point. And action, as you know, equals
counteraction.

The forces acting on the faces of the parallelepiped form a spatial system of
forces. The first three equations of equilibriurthe sum of the projections of the
forces on the axis is zeroare carried out identically. That is, we have nine inde-
pendent ess components acting on three mutually perpendicular faces of the ele-
ment

The other three equilibrium conditions are equal to zero auhesof moments
of all forces acting on the element relative to three mutually perpendicular axes.
Namely, theX, Y, Zaxes.

Let's write down the expression for the moments, for example, relative Xo the
axis. Nonzero moments are created by the vectgysandt,. Other moments are

created in pairs by the same forces acting on the same shoulders in opposite direc-
tions and are therefore mutually balanced. So,

(t,,0xdz) dy { ,pdxdy dzoO.
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There

Similarly for other axes.

In this way, we obtained the law of paritysifearstresses:

Ly= b L=nl,, &, (5.1)

On two mutually perpendicular platformsshearstresses perpendicular to a
common edge are equal in magnitude and directed either toward the edge or away
from the edge.

Taking into account this law, there are not nine, but only six independent stress
components acting on the faces of the element (hereinafter referred to as platforms).

Determination of stresses on three mutually perpendicular planes passing
through a given point is the first step in solving problems related to strength calcula-
tions in the general case of a stressed state.

5.1.2. Determination of stresses in common position pads.
Stress tensor

We will show that when six stress components in three mutually perpendicular
platforms are known, nameby,, 5, S5 b ot . (seeFig.5.2), thenitis pos-

sible to determine the stresses in general in any area passing through this point.
From the stressed body, we select an elementary volume in the vicinity of point

A in the form of a tetrahedroma tetrahedron whose three faces coincide with coor-

dinate planes, and the fourth is formed by the secant plane of the general position

(Fig. 5.3.

Z

D

Fig.53. Stresses on the faces of an elementary tetrahedron
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The orientation of this cutting plane in space is determined by the direction co-

sines of the normat relative to theX, Y, Zaxes:
| =cog(x, n; m=cogy, h: n=coqz, . (5.2)

We consider the stress on flaees of an elementary tetrahedron as the stress at
a point due to the smallness of its volume.

Consider the conditions of equilibrium of the tetrahedron. The forces acting on
the faces can be found as the product of the corresponding stress on the face area.

Let us denote the area of the fdcet D the platform of the general position
by A; the areas of the facA®C, ADB andABC- three mutually perpendicular sites
- throughAXx, Ay, Azrespectively. Then, from the condition that the sum of the pro-
jections of all forces on th¥, Y, Zaxis is equal to zero, we get:

T'épr= SAC By A
i PyA= WA H A A,
[PA= LA HA, A,
Here p,, p,, p, T are the components of the total stress p on the site of the

(5.3)

general position of thBCD in the projections on th¥, Y, Zaxis.
Considering the facesDC, ADBandABCas projections of the area of the gen-
eral position oABConto the corresponding coordinate planes, we can write:
A=A A =AM A =An (5.4)
Then equations (5.3) take the form
ep= sl Hm  p
Yoo (5.5)
1Py = W s A
|
1 Pz = t<z| +y{h 7t
Therefore, for any platform, the position of which is given, that is, the direction
cosines of the normal to it are known, the total stpassn be found if the compo-
nents of the total stresses in three mutually perpendicular plat forms are known.
Indeed, knowingy, py, p, we will find

p=\r o . (5-:6)

Remembering that the set of total stresses for a set of platforms passing through
a given point constitutes the stressed state of the body at this point, we conclude

The stress state at a point oftformed body is completely determined by six
independent stress components in arbitrarily chosen three mutually perpendicular
platforms passing through this point.
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These components, recorded in a certain order, are presented in the form of a
tensor- a square matrix:

Sx 1-yx z
Ts = t<y yS zy - (5-7)
Uy §/z

Therefore, it is also said that the stress state of the body at a point is completely
determined by the stress tensor.

Knowing the total stregsin the area of the general position, or rather the com-
ponentsy, Py, Py it is possible to find its normal arstiearcomponents in this area,
which is of considerable practical interest. Considering that we denoted the normal
to theBCD site by, thenormal stress can be found as

S, o pym pn. (5.8)

As for theshearcomponent of the total stress, that is, shearstress in this
area, it is necessary to specify the direction in which it will be determined. Suppose
we are interested in thehearstress in the directiom (Fig. 5.4, a). Its direction in
the BCD area is set by direction cosines in the selected coordinate s)st¥mZ
marking them accordingly

li=cog(x, ; mi=cog y, y ni=cog z, 1.

Z\ z

D

Fig.54. Shearstressesn a plane of general orientatiai shearstress nmin the directiore ;
bi totalshearstresgn

Then
thm Bl ByM i pN. (5.9)
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The totalshearstreson planel & @, lies in the plane of the total strgsand
the normal stress,, (Fig. 5.4, b), and its magnitude is determined by the following

relation.
(5.10)

5.1.3. Principal axes and principal stresses. Types of stress
state

Let us express the normal stress on the platform of the general position in terms
of stress components in three mutually perpendicular platforms, that is, the compo-
nents of the stress tensor at this point of the body. To do this, let's substitute equation
(5.5) into expression (5.8). As a result of simple transformations, taking into account
the law of parity oBhearstresses, we obtain:

S, =8 M nfF 2 Jm 2 mn+2 t,n (5.11)
Shearstresses in the area can be similarly expressed by substituting equation
(5.5) into (5.9):
tom =81 om0 oA si(Im tmi) (5.12)

+ t(mniomm)i ol )+ g
Here, the norma$,, andsheart ., stresses are functions of the direction cosines

of the normakh to the platform of the general position. A change in the orientation
of the site relative to the selected systenXpfY, Zaxes will generally lead to a
change in stresses in it.

Of practical interest is the determination of the largest and smallest normal and
shearstresses from their possible values at a given point and the position of the plat-
forms in which they act.

Before proceeding to the solution of this problem, let's resort to a somewhat
formalized, but very visual presentation of the geometric image of the stressed state.

In equation (5.11), we present the direction cosines as the ratio of the coordi-
nates of the end of some segm&nwhich in direction coincides with the nornral
to the site, to the length of this segment (Fig. 5.5):

| =x/s; m=y/s n=rn/s (5.13)
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Fig.55. Coordinates of segmest

Then,

5,8 =, ¥ LF L2,y 2 ,yzR L2 (5.14)

Accepting formally,s” = K/| s/, get

S+ Sy 475 2 gxyt2 Ly A L zx+. (5.15)

This is the equation of the central surface of the second order, in which the
stresses on three mutually perpendicular platforms are coefficients, and the accepted
valuek is an arbitrary constant that determines the scale of construction.

It is known from the course of analytical geometry that by turning theXaxes
Y, Zrelative to the origin of the coordinates, it is possible to achieve such a position
that the terms containing pairwise products of coordinates disappear in the equation
of the surface (5.15). This can be interpreted as the fact that the coefficidraseof t
terms become zero. Since the coefficients areshisarstresses on three mutually
perpendicular platforms, we conclude that three mutually perpendicular platforms
withoutshearstresseg, , {,, ,, can always be drawn through this point.

z
Three mutually perpendicular platforms passing through a given point, in
which there are neshearstresses, are called the main platforms, the axes perpen-
dicular to them are called the main stress axes, and the normal stresses acting in
these platforms are the main stresses.
The main stresses are usually denotedpy s, .

The rule for arrangingndices for the main stresses:
5> 8§ > (5.16)
and the inequality here has an algebraic meaning.

Example 5.1 Mark the main stressgacting on the faces of the elemental par-
allelepiped (Fig. 5.6).
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According to the index placement rt

80 MPa
| (5.16), taking into account the rule of signs
i 30 MPa normal stresses in the site, namely, that ter
-1 B Ead stresses are considered positive, and comg
/" ‘;““ sive stresses are considered negative, we

| have the following mainr&sses:
Fig.56. Main stresses (for example 5.1 51:3(]\/|Pa; S =0; S =8aViPa

Let us now assume that the mutually perpendicular faces of the elementary tet-

rahedron are the main sites (Fig. 5.7).
Z)\

D

w!

y

Fig.5.7. A tetrahedron, the three faces of which are the main sites.

Then the equilibrium equations of the tetrahedron (5.5) take the form:

ep, = sl

‘:py= sm. (5.17)
T

i p,= 8N

Taking into account that for the direction cosines of the nonrtta¢ condition
is valid

1Z2+m? n® L (5.18)
get
02 p2 p2 (5.19)
_;_'__y +Z %
st $ %
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Here py, py, p, can be considered as the coordinates of the end of the full stress

vectorp on the site of the general positiB&D in the selected system of coordinate
axesX, Y, Z(see Fig. 5.7). We draw a conclusion about the geometric image of the
stress state at a point.

The geometric location of the ends of the full stress vector at this point is an
ellipsoid, the main semaxes of which are the main stressés, S, ;(Fig. 5.8).

It is called the stress ellipsoid.

Fig.58. Stress ellipsoid

Based on this geometric image, an important property of the main stresses is
obvious- the property of extremity:

The largest of the principal stresses is simultaneously the largest of the possi-
ble values of the total stress for a set of platforms passing through a given point.
At the same time, the smallest of the principal stresses is the smallest of the possible
values of the total stress.

Indeed, if the platform passing through pak(see Fig. 5.8) is turned so that it
fits, for example, with the coordinate plane 23, then it becomes the main platform in
which the full stresp=§s.

For the main sites, the stress tensor takes the form:

s, 0 O
T,=|0 s 0. (5.20)
0 0 sj

In the case when all the main stresses are the same in magnitude and sign:
S1 =8 3 S, thenthe ellipsoid turns into a sphere. This type of stress state is
called comprehensive uniform tension or compression. Of course, in this case, any
platform passing through poiAtwill be the main one, and the stressed state will be
characterized by the smlled spherical tensor
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T, =|0 g O] (5.21)
0 0 s

In general, there are three main stresses at a point. However, in some cases,
some of the main stresses may be absent.
According to the number of acting principal stresses, the following types of
stress state are distinguished.
1. The volumetric or triaxial stress state of a body occurs at a point when all
three principal stresses are naero.
2. A plane or biaxial stress state of a body occurs at a point when two prin-
cipal stresses are different from zero.
3. Thelinear or uniaxial stress state of the body at a point occurs when one
of the main stresses is different from zero.
Examples of some possible variants of stress states at a body point are shown in

Fig. 5.9.
o, G, G, G
T T
& y T 3 = o = —
5 m I, o
a) b) c)

Fig.59. Types of tense states of the body at a pointthaeedimensional or thredimensional;
b1 planeor biaxial; ci linear or uniaxial

Any stress state that is different from linear (volumetric or planar) is called a
complex stress state.

5.1.4. Determination of the magnitude and direction of principal
stresses

To solve the inverse problem of the stress state, assume tli&Cihtace of
the elementary tetrahedron is the main site (Fig. 5.10). The normal stress in it, also
called the total stress, is the principal stress directed along the nortnaldenoted
bys.
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Fig.510. The face of an elementary tetrahedron as a main site
Considering that
p, = $; py= SN pP,= 9. (5.22)
the equilibrium equations of thetrahedron (5.5) take the form:

TéS|:x‘5 AL Ly

ism =gl gms 5:25)
sn =gl gmp-

or
&s, - B gt 0
i (5.24)
.txyl (ys )ms L ®.

~

|
itd +ym (4 s)n- G
Considering the obtained equations as a system of homogeneous equations with
respect to the guiding cosinkam, n of the normah, we conclude that it has a ron

zero solution, since the condition is satisfléd-m? > *. That is, the principal
determinant of this system is zero:

(Sx - )S yxt zxt
ty (§ -)s 5 t] =C
Ly g/z (z'S ) S

Expand the determinant and, grouping the terms contagywgh the same
degree, write the following cubic equation:

s® -l 51 Isg- 0. (5.26)

(5.25)

143



Here

ls1= & +yS 4 (5.27)
2= 8§ %5 S, % SxS G tis (5.28)
SX X V4
- y . (5.29)
ISS_ I(y yS zy "
1:xz E/z

Three material roots of the cubic equation (5.26) give three values of principal
stresses;, S, 3

The directions of the principal axes can be easily found by substituting into the
equations of the system (5.24) alternately insteasl whlues of principal stresses
and solving them with respect to the directing cosines of the normal to the corre-
sponding principal sites.

Since the principal stresses are determined by the nature of the stress state of
the body at a point and do not depend on the choice of coordinate ${s¥na,
then and the coefficients in equation (5.26) do not depend on the choice of coordinate
system. In other words, they remain invariant when the coordinate axes are rotated.
Therefore, they are called stress state invariandg@sstensor invariants

If the principal axes 1, 2, and 3 were selected as the initial ones, the invariants
will be written through the principal stresses:

U= § +S g (5.30)
ls;p= ¢85 %8 Sz (5.31)
s, 0 O
l.3=|0 s 0| =5 s (5.32)
0 0 s,

It is obvious that in a plane stress state, when one of the principal stresses is
absent, the third invariarl; =0. And in a linear stress state, when there are no two

principal stresses at once, the second and third invariants will be zero. That is
o=l g 9.
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Example 5.2 Determine the magnitude at
direction of the principal stresses and detern
the type of stress state at a point where all si
components are equal in magnitude on three
tually perpendicular platforms passing throug
(Fig. 5.11).

Subject t0s, = 3 s~ ty, =4S

Fig.511 To example 5.2 Then the stress state invariants, according
(5.27)-(5.29), 151 =3s; Igo =1 g D. Substituting
these values into equation (5.26), we obtain

3y 5 1% Ise S Egf?-0.

Hence, the roots of the equation, also known as principal stregsdg; 3s,
S = 0.

Thus, the stress state at the point is linear.

To find the direction of the principal stress relative to the given axes (normal to
the initial sites), we substitute the values of the corresponding stresses into the equa-
tion of system (5.24).

g-2s +sm sn O-

{ sl- 2sm +sn &.
} sl+sm -2sn &
From here we get=m =n. So,the axis 1 (normal to the site of actien) is
equally inclined to the original sitesTaking into account the condition

1°=m*> =" t, we havd=m = 14/3.

5.1.5. Determination of stresses at non-principal pads

In the direct problem of stress, three mutually perpendicular pads are the prin-
cipal pads. Using formula (5.11), we obtain expressions for the normal stress on the
pad, whose orientation relative to the principal axes is given by the guide cosines
| =m =n of the normah (Fig. 5.7):

s, =& 8 ot (5.33)
Shearstress in this area in somedirecttn accor ding to L (5
t,m =448  mm | 3nh, (5.34)

Total stressaccording to (5.6), taking into account (5.17):
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p=\/ 32 +im? %2 (5.35)

Thus, the analysis of the stress state at the point of the deformed body allowed
us to identify three mutually perpendicular sites, called the main sites, which have
the following crucial features: they have sleearstresses, and the normal stresses,
called the principal stresses, are extreme (see Section 5.1.3).

However, at the point of a deformed body, there are some other sites that are of
considerable practical interest. These are, in particodéahedral siteandsites of
maximum totakhearstressesThe definition of their position and stresses in them
will be discussed in the following paragraphs.

3 y Example 5.3.Determine the total, norma
3 and totakhearstresses on the site (Fig. 5.12), n
05=80 IPa| mal n to which the axes 1, 2 and 3 make an(
M 4 N a=60, b 45, g 60 accordingly.
b ; Uﬁf il Directional cosines are norma®
> | =cosa =cos60 Gt
i, : m=cosb =cos45 /W :

n=cosg =cos60 G;!
Fig.512 To example 5.3
The total stress on the inclined platform is found by formula (5.35):
p=\ $12 +%82 2% 2580 0,25 (W00 05 6400 0,25 51 MPa.

Normal stress, according to formula (5.33), taking into account the signs of
principal stresses

s, = M8 gnf S50 025 ED 0,5+80 25 -7 MPa.
The value of the totalhearstress is calculated by formula (5.10):

ty p° -2s\5:77 7.8 5LEMPa.

5.1.6. Octahedral sites and octahedral stresses

An octahedr al area is an area whoos
axes.

This site got its name from the octahedron, an octahedron that can be obtained
from an elementary parallelepiped (Fig. 5.13). In each of the eight quadrants of the
coordinate axis system 1, 2, 3 (the main axes of the stress state) can be an equidistant
platform. Their combination forms an octahedron.
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t For an octahedral platform, the following con
163 tion holds:

l=m =.

GCor N . . 2 2 2 . .
2 )(gml . Considering that“ +m~ #° I, we will get:
L=y ] s ‘Ton' Ty 1

rm)ﬂ’}/ &nl 1 12=m? =2 .:£

)

2O

‘ Then, using formula (5.33), we obtain the expi
sion for the normal stress in the octahedral pad:

Fig.513. Octahedral platforms

_S1t 5 +§ (5.36)
Sokt—T-

The totalshearstress in the octahedral pad is found by formula (5.10), taking
into account (5.35) and (5.36):

okt—_\/( § - g (+25 .3)25( + 5])2_ (5.37)

This is called octahedral pressure.

As we can see, the octahedral norteakions , is equal to the average value
of the principal stresses at a given peitite secalledaverage stress,.

Octahedral tangent loadirfg,, related to the intensity of stressesi is a cal-
culated value used to solve problems in the theory of plasticity:

\/_\/ 1S _2 2+ §)2 -(33 i}Z (538)

S

So,

-3 5.39
sl \/E gct ( )

Example 5.4 Find the octahedral no
. . mal andshearstresses at the point whe
L,, | : normal stresses act on the faces of
elementary parallelepiped (Fig. 5.4%

- |s,|=40MPa,|s,|=30MPa

«Y

L L |s,|=20MPa. How will the octahedra

9 b) stresses change if the direction of act
Fig.514. For example 5.4: aoption 1, s. is reversed (Fig. 5.14 b)?
b - option 2 y " :
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Since the faces of an elementary parallelepiped are not subgttaostresses,
they are the principal sites. According to the rule for placing indices at principal
stresses for the first variant of the stress state (Fig. 5.14 a), we have
5,= § 40MPg; s,= 5 30MPa; 5;= § =20MPa.

Octahedral normal stresses, according to (5.36),

_S,+s +540 30 20

oct 3
The octahedrashearstress, according to (5.37),

1 2 2
l‘octz:_% (§_ 2‘52 (+25 _3)5( j- 51)' S

S ,6MPa

%\/(40- 307 {30 20° (+20 4F 2628Pa

If we reverse the direction of the stregs(see Fig. 5.14 b), we will have the
following  principal  stresses: S;= § 4A0MPa; s,= s =20MPa
s,= § =30MPa. We obtain the following values of octahedral stresses:
_S,+s +5 .40 20 30

oct —
3

t t:% (40 £20° (+20 3¢ ( 30 4P - 30,9tPa

o]

S =3,3MPa.

As you can see, the octahedral stresses have changed their magnitude, and the
normal octahedral normal stress has also changed direction, becoming compressive.

5.1.7. Maximum shear stresses

Let's determine the value of theeximumsheaistress at a point of the deformed
body and the position of the platform in which it acts. Of course, we are talking about
the totalshearstress in the pad.

We write, according to (5.10)

2 2 2
th T

Here t, 1 total shear stress on the pad with a norman;
tc S, I are the total and normal stresses in this area, respectively.

If the initial axes are principal, then, taking into account (5.33) and (5.35), we

obtain
2

2 =% g3 hP {2 m? s
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Using the condition (5.18), let's express one of the guiding cosines, for example,
n, in terms of the other twa> =1 12 m?. Then

l‘j: §|2 +2%12 +32(3_ | 2 mZ) 81|_25 szB 3(1 _32 ma_Zg

=s; {5 -3 (Hs " g 6. +91°L , 9
Let's define the angles of the nornmatelative to the axis 1 through, and
relative to the axis 2 throudh Then the guiding cosines are writtenl a&scos ¢ and
m=cos L. According to the rule for determining the extremum of a function, we
differentiate the expression (5.40) by angleandb and equate the derivatives to
zero:

20142 F ok (s +JF (5 Jmig . g} o G4
oLt B 298 (s +)¥ (5 JmiE - s} o (G4

Let's analyze theonditions for the obtained inequalities. There can be three
such conditions.
1. I=m 9. Butinthis casen= 2. Thatis, the normal coincides with the
axis 3, and the site is, accordingly, the main site where theresiseagstress. That
iS, we have the condition of minimum tosdlearstresst,, ©.

(5.40)

2. Fulfilment of the second conditiolf =m? 4 is impossible, because in
this case, i.e., this guiding cosine will be an irrational number.

3. Let us analyze the third condition by transforming the expressions in curly
brackets to the form

(s:-8{ 15 #2683 (3 W3 (s JPlgo
(s2- 8 25 #2282 (5 W3 (s J¥lgo.

The conditions of zero equality of the obtained expressions are possible when
S, = 4ands, = 4. Butthis meansthe&d; = s 3, thatis, we have the case of
all-round uniform tension or compression, when all the sites passing through the
point are the main ones (see Section 5.1.3). This means tishieidustresses in any
site will be zero.

Another condition for the equality of the resulting expressions is the equality of
the expressions in curly brackets. It is easy to show that the second expression turns
to zero if, when =0, andm, 0. In this case, the expression in curly brackets in the
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first equation will not be zero, but the condition of zero for the entire expression
(5.41) is met.
As a result of simple transformations, we get

-2 ,s4ms 0 or (52—§(1 ZmZ) 0.

From herem=cos b :«FZ/ z, and the angleé =45 .

Thus, under this condition, the maximsimearstresses will act

at the sites, the directional cosines of the normal for which
| =0;m = ﬁ/z; n #_27 z. This is the area parallel to the principal axis 1 and
equally inclined to the other two principal axes 2 and 3.

The value of the totadhearstress in this pad is obtained by substituting the
found values for the directional cosines of its normal into expression (5.40).

1 % 1 5.43
2 =3 zs)gsg— ) pegt o4
So’tlmax _SOZ 2-

If we assume thdt, 0, andm=0, we will similarly obtain the guiding cosines
of the normal to the area parallel to the principal axis 2:

m=0; | = \ﬁ/Z;n #_2/ z, in which the maximumshear stresses will act
_ S - F

thax 2
For the third pad, which will be parallel to axis 3, the guide cosines are normal,
by analogy with the previous casesn=0;| = ﬁ/z; m #_27/ Z,

and the value of the largedtearstresst 5., = ¥ :

The obtained results allow us to conclude on the value of the maximum total
shearstress at a point from all possible values. The largest of the obtained values of
maximumshearstresses will be the one for which the difference between the princi-
pal stresses in absolute value will be the largest.

Taking into account the rule of placing indices at principal stresses (5.16), we
come to the final conclusion that

‘f ‘_sl- S (5.44)
max _T
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The maximum shear stress at a point of a deformed body acts in the area
equally inclined to the directions of the largest and the smallesss of the prin-
cipal stresses (Fig. 5.15) and is equal to half the difference in the values of these
stresses.

Y

Fig.515. Area of action of the largeshearstress at the point of a deformed body

Example 5.5 Find the largesthearstresses at a point in the two cases of stress
(see Example 5.4, Fig. 5.14). Indicate the areas in which they will act. What is the
effect on the value of the largesttearstress of changing the directisnin the sec-
ond variant of the stress state (Fig. 5.14 b)?

Under the first variant of the stress state (Fig. 5.14 a), the lasjesrstress,

according to (5.44),

- - +

This stress acts in the area parallel to theaXs and equally inclined to the X
and Zaxes.
According to the second option

S1- % 3x - ¢ 40+30

t 35MPa
max 2 2

This stress acts in a plane parallel to the Z axis and equally inclined to the X
and Y axes.

If in the second variant of the stress state (Fig. 5.14 b), the direction ef the
on the contrary, this will not have any consequences for the maxameginstress,
because although it will change its sign, it will remain the average principal stress
s,which does not affect the valuetgfy.
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5.1.8. Plain stress state

In the plane stress state, the equations of the direct and inverse problems are
obtained from the general relations for the bulk stress state.

All transformations here are associated with the rotation of the coordinate sys-
tems (sites) in the plane.

5.1.8.1 Direct problem of plane stress state

Let's assume that only two of the three main tensions are salahds,. The
third main tensios ;=0. Let's draw the element as a rectangle, as shown in Fig. 5.16.
Let us determine the stresses in mutually perpendicular platforms inclined to
the principal axes at angles(let us call it platforma) andb (let us call it plat-

form b).
Let's use formulas (5.33) and (5.34). In our case, they will take the form
s, = +4m§,
tn m :lIBi fnm .
)
Fig.516. Planar stress state: direct problem
For the sitea

Sx = 1% ﬁn%
Herel, =cos ¢, m =cog 90~ -) asim 1 are the directional cosines of the x
normal with respect to the principal axes 1 and 2. Then
s, =805 a Sief
For the sitéh
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Sy = 1@ _ﬁné
Herel, =cos I, m,=cog( 90~ J bsir i are the directional cosines of the
normal with respect to the principal axes 1 and 2. Then
s, =805 b gsif .
Shearstresses on the site

tn m :1@1' MNEY
Here lj=cosg {90 ~ } @sinz, mj=cosg {90 (90 ) g a cos:
(see Fig. 5.16) directional cosines of the direction of actibg,. Then.

thy

. . Sy - .
=,60sasin  a,sirsg <os)a 1-2 2 sin2.

According to the law of parity afhearstresses,, = 1.

Considering thab 90 |, we finally obtain thdollowing relations for the
direct problem of a plane stress state:
s, = gcog  a+ ,sid (5.45)
s,= gsin® at+ ,s08 (5.46)
t =¥sin 2 ; (5.47)

Note. The stresses on the righand side of equations (5.45Y5.47) can be
with any combination of indices.

Note The principal stresses in equations (5.4%%.47) should be substituted
with due regard for their sign.

Note. If the result of calculating the normal stress is with a plus sign, then this
stress acts in the direction of tension, and if with a minus sign then in the direction
of compression.

Note. Shearstress is considered positive if it tries to rotate the element clock-
wise.

5.1.8.2 Inverse problem of plane stress state

As already noted in Section 5.1.4, the third invariant of the stress tensor in the
plane stress state; =0. Then the cubic equation (5.26) takes the form:

s(€ ky 34) 0
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One root of this equation is zero, which is understandable, since we have a plane
stress state. The other two roots can be found from the quadratic equation:

s? -l sl O.
Let us determine the magnitudes and directions of the principal stresses for the

case of a plane stress state, the diagram of which is shown in Fig. 5.17.
Let's write down the stress state invaria

5 2 for this case:
| — .
T 6/ ISl_ 3 +Y’
B — — 2
%\ ISZ = 3 y?’ Xy*
s, | Substituting these expressions into
—} l‘r ] * quadratic equation, we get

Wil \f,\\ s? ( S @;)s (sx+y sp O

i 7 The roots of this equation are:
_ o . e 0 2 42
Fig.517. Plane stress state: invers S12 _ée S -{] ( X §,) TSy
problem. e

To find thedirections of the principal stresses, it is not necessary to solve the
system of equations (5.24) with respect to the directional cosines. It is more conven-
ient to use formulas (5.45)5.47).

Subtract equation (5.46) from (5.45):

Sy - ¢ (7 sy)eos2 .
On the other hand
Dividing the equations, we get
2t
Sy =

Finally, in the general case, we obtain the following relations for the inverse

problem of the plane stress state:

=192 <.

_lé 2
sﬁ:-igg +s \‘“/( .5 -y)s 4% (5.48)
2t
tg2a =——. (5.49)
S.- §
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Note. The stresses on thight side of equations (5.48), (5.49) should be sub-
stituted taking into account their sign.

Note. The indices for principal stresses are placed after determining their mag-
nitude and sign in accordance with the rule of index placenseb)(

Note. When determining the direction of the principal stresses, formula (5.49)
Is written in the form:

-2
tg2a ———;y

Sy - §

Then the angle found is plotted from thexts counterclockwise if the angle
found is positive, or clockwise if the anglensgative. The axis drawn in this way
will be the principal axis along which the algebraically larger of the principal

stresses found acts.

Y Example 5.6.Find the stresses on tl
», . o, mutually perpgndicular planes with norn
\ > I /«x1 ?<1.a.1ndy1 (see Flg: 5.18), if the stresses at
erw o o initial sites  with normal x and vy
<—T . % S, =100MPa, s,=60MPa, f  =80MPa
T The angle between the normal linesndx;

sf e, j =30

Fig.518 Example 5.6

The problem will be solved by considering the inverse and direct problems of
the stress state sequentially. That is, as an intermediate step in the solution, we will
find the principal stresses and the orientation ofghiacipal sites.

1. Find the magnitude and direction of the principal stresses.
Using formulas (5.48), we find the magnitudes of the principal stresses:

1lé¢ 2 1.
Smx:—§§ Ty \[f( xS 'y)S 4% gzgﬂo 60 (/(100 GPZ +4 8203-

2

min

:%(40 °226,2jMPa

From heres, = &, 33313%Pa, 5,=0, s,= §,, =93,13MPa
We verify the correctness of the calculations by finding the first invariants of
the stress state for the nomain and main sites:
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l,=5, *§ =5 35 i
100- 60 =133,135 -93,13
So,40MPa= 40MPa, which means that thealculations are correct.

Let's find the position of the main sites. According to formula (5.49), taking into

account the remark about the sign in the numerator of this formula (see note 5.8):
-2t -2 80
tg2a = y -2 8D =1.
s.,- § 100 +60

Fromherea =22,5.

Let's depict the main sites on the diagram (Fig. 5.19), taking into account the

comments made in notes 5.8.
Vi

Fig.519. Principal and noprincipal sites for a plane stress state (see example 5.6)

2. Let's solve the direct problem: knowing the principal stresses, find the
stresseat the sites with normaland yi. To do this, we determine the angle between
the x normal and the 1 axis:

a,=30 25 52%
Then by the formula®@5 1 (5.47)
S,= §cos a+ ,sif | a33,135 G;B706 93,135 0,6294 PR
s, = §sin® a+ ;s08 | a&33,135 36294 93,135 0,8706 494P8.
Checks,+ §, =928 49,28/Pa |,.
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233195 4931930105 143,135 0,659 109NaBa.

t =21 34in2 4
2
Theshearstress on the site with normalig positive, so we direct it
in a clockwise direction.
5.1.9. Linear stress state

In a linear stress state, the principal stresses can act in tensile,syhen
(Fig.5.20, a) or compressive, when ,0 (Fig. 5.20,b).

Gl

o f,

a) b) 5 l
Fig.520. Linear stress state:-dension; Fig.521 Linear stress state: main and nor
b - compression main sites

Using the equations obtained for the plane stress state, it is easy to calculate the
stress at any site inclined to the principal stress. For example, for the scheme shown
in Fig. 5.21, using equations (5.456.47), we obtain the following relations:

Sx =808 ; S Sisin2 . (5.50)

This is a direct problem. The inverse problem can be solved in the same way.

Note.In the inverse task, both for linear and plane stress statestringses on
the nonmain sites can in general constitute a spatial system, i.e., act in three mutu-
ally perpendicular sites instead of one or two. In this case, it is difficult to immedi-
ately assess what kind of stress state is actually occurring. In aagy tee task
should be solved using the relations obtained for the bulk stress state. A vivid illus-
tration of the above is Example 5.2.

. 2
=.Sin" ;
1 t,

Y y

Example 5.7.Find the octahedral normal asbearstresses at the point where
the stress state is linear (Fig. 5.22).
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We have the following stresses on an octahedral site:

0'1‘
- octahedral normal stresses
T:A,CD a, sokt: §/3'
—-%1 | - octahedrakhearstresses
P
. l [okt -~ A '§
3
s, ¥

Note.If we compare the results obtained with the data g
Fig.522. Example 5.7 jn Example 5.2, it becomes obvious that the three mutually
pendicular sites, the original ones in this example, are octahe
sites.
First, the values of the octahedral normal stress and the normal stress in the
initial site (Example 5.2) coincide, sin&=s, /3.
Second, the octahedrahearstress is the totathearstress in the octahedral
pad. At the same time, the todlearstress in the original pad (Example 5.2)

ty T/ ¥ % ts\/§:£ ¢ That is, their values also coincide.

Third, ina Imear stress state, any axis perpendicular to the axis of actios
the main site, which means that any site with a directing cosine of the normal to
which relative to the axis 1 is equal 16/3, is an octahedral platform. These sites,
in turn, can be and mutually perpendicular, as in Example 5.2.

oy Example 5.8 Find the largesshearstresses at poir
=T o (Fig. 5.23). Compare them with the octahedsalear
T;m — stresses at this point
H% We have the following main tensions:
S{ =S S F O.
- Then the largesthearstresses, according to (5.44)

tay 9.5 1.
Fig.523. Example 5.8 max !

If we compare the octahedrsihearstress at this point (see Example 5.7), whose
value ist_,, =+/2/3 s ©0,471 ,, with the found maximushearstress, it is 0.943 of
the maximunshearstresses

Note. As in the case of the octahedral pad, under linear stress, any pad at a
given point of the deformed body that is inclined to the direction of the principal axis

1 in tension or 3 in compression at an angletdf is the site of the greateshear
stress.
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5.2. Strains and deformed state of the body

5.2.1. Relationship between deformations and strains (Cauchy
equation)

As already noted, the displacements of points of a deformed body cannot serve
as an unambiguous characterization of the deformation, since they can be caused not
only by the deformation of the body at a given point, but also by its rigid displace-
ments assoated with deformations of other parts of the body.

An important task is to establish a connection between the relative deformations
of a body at a point and the known components of its displacements.

Note. It should be noted that the displacements of points can be found, for ex-
ample, empirically. For example, whmsiona straight rod, we can easily find the
displacement of any point on its surface relative to agalected reference point by
simple measurement. This means that we can also establish functional relationships
between the displacements of these pointstlagid positions in a given coordinate
system.

Cut out an elementary parallelepiped with edge lendgthdy, dz. After defor-

mation of the body, this volume changes both in size and shape. Figure 5.24(a) shows
a parallelepiped before deformatiolPABCDEFGJ and after deformation
(A:B1C1D1E;1F1G1J:) without changing its shape, i.e. without changing the right an-
gles between its edges.

E, F. z
ZA //'_1 ________ Al ' \ E F,
El ~ | F -l r‘ ________ ﬁr ow
| o E___| F | w+2d;
ﬁ___‘____ af } 1 ; 0z
i | Gi \ | |
J ! } G } } } }
‘ | [ | | | dz
| A 4, 1B,
| |4 1 —-— #w
‘ 4 x A B _
DL ______ /C u >
1 1 |- ou
D C & u+ 6xdx
v -
a) b)

Fig.524. Deformationof the faces of an elementary parallelepipedinaspace; b in the projec-
tion on the coordinate planezx

Fig. 5.24,b shows the projection of th®BFE face onto theXAZ coordinate
plane A1B;F;E; is the position of the face after deformation). Pdiralong thex-
axis received a displacemetfitand along the-w-axis. The displacements of the
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point F along these axes are respectively equalliop—udx and W+M—Ndz. It is
MX Mz

obvious that the absolute deformation of this face along {##wasx(increase in its

length) isD(dx) H 4%, and along the-axis- D(dz) W 42 Then the relative lin-
kX Wz

ear deformation of the ed@dB along the xaxis, according to (1.15), is equal to the
ratio

g%
e X =
X
dx  px
For the other two axes, we gef; V. e, iy
Hy Kz

Consider the angular deformation of the element. Fig. 5.25 shows the change in
the previously straight angles of tABFEface. The relative displacement between
the x and z axes, according to (1.16),

gXZ% ‘BJAE, BAB  EAE

Since the angles are very small, you can replace them with tangents:
Lo

'|' BA% 0% X szy;
BA dx  px

Hu
U g, —dz
0 F, . EE u
~— 7 | EAR 0—L B
E L= F EA dz pz
// // Thus, the angular deformation
/ / dz the XAZplane
/ 2 W p
g oW,
A=~ pors ~ Oz ™ 4;
dx B x
Fig.525. Angular deformation of a face of a Similarly, we can show the
elementary parallelepiped Y\ w M
B e Ty T

Let's write down the expressions for the six components of relative linear and
angular deformations:
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_Hu, _
ex__s - Xe-__l
TURA Z1
5.51
g =W Mg Wl (5:51)
DY W zZp™ z px

The resulting relations are called tBauchy equations

5.2.2. Strain state of a body at a point. Strain tensor

By analogy with the stress state, the following definition of the deformed state
can be given.

The set of deformations for the set of directions passing through a given point
forms the deformed state of the body at the point.

We show that the six components of deformaepn & ,.e ,,9,, g for

three arbitrarily chosen mutually perpendicular directions x, y, z passing through a
given point, completely determine the deformed state at that point. In other words,
we will show that, knowing these six independent strain components, we carefind th
linear strain at a given point in any direction, as well as the relative displacement
between any two mutually perpendicular directions.

So, let's find the linear deformation in a certain directfiofi-ig. 5.26, a). Here

U i is the displacement vector of pointé;v, Wi its projections on the, y, zaxes.

¥4

\\
_ =
<
N
N
<\
=

«)

Fig.526. Before determining the deformations at pd\nta - linear deformation in the direction

of r; b - the relative shift between the directioﬁs‘ P!
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Let d denote the projection of the displacement vedtasnto the directiorr .
We can write that
d =l vwn wr.
Herel, m, andn are the directional cosines of thierelative to the x, y, z axes,
respectively.

Then the linear strain in the direction 10f according to the Cauchy equations
(5.51)

e '
ur

Applying the formula for differentiating complex functions, for our case we ob-
tain

ﬁ:_udx ny AL&I —= u_m u_rﬁ_
o xadr ywlr zqdr X py pz
Then
_ au (
e =—(ul wmn I—m— m+n
rur( V\H‘)?}"rﬁ zug T&eluy Uz nﬁk
A W DU Ve Wl B w0
X M Y XH YH zZ B X B

A ¢ 4
The result is this:
e =Jé m%e n’+ gJm + gnn 4 (5.52)

In the same way, we find the relative displacement between mutually perpen-
dicular directions; * 1, (Fig. 5.26,b). Let us denote the projections of the displace-
ment vector U to the specified destinations via, =l, wmn whR and
d, =l, wm, wh,. Therel;, m, n.T directional cosines of the directiaj |2, m,

n, - are the guiding cosines of thig direction The relative shift between these di-
rections, according to the Cauchy equations,

v M
O, o, i
After simple transformations, we get:
gr1r2 2 x|§2 2 W1m2 2 M, € xy( Ilm'z g'zmi (5'53)

+ g(mn, mn)  gmb )t
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It should be noted that the deformed state of a body at a point has the same
properties as the stressed state.

For example, among the set of directions passing through a given point, there
are threemutually perpendicular axes in the system with no angular deformations.

Three mutually perpendicular axes passing through a given point, in whose
system there are no relative displacements are called the principal axes of the de-
formed state, and the linear deformations that occur in their directions are called
principal strains.

Principal deformations are designated by analogy with principal stresses,
€, & 3. I'heyare found from the cubic equation

e 44 °%el # 1g 0. (5.54)
whose coefficients are invariants of the deformed state:
la=¢ Y e, (5.55)
lo= €, f,e £ &ee}- 1-. (5.56)
e2 y y z X 4 Xy 4 yz g Z
1 1 |
& 5 & 5 2
| = 1 1 (5.57)
e3 2 gl ye 2 Zy
11 |
ngz E gz 2§

Comparing expressions (5.57) and (5.29), we note that they are structurally sim-
ilar: the analog of normal stresses in expression (5.29) is the linear deformation in
expression (5.57), and the analogsbéarstresses is half the angle of displacement
in the corresponding plane.

Since the third invariant of the stress state is the stress tEnsthren the third
invariant of the deformed state is the strain teffsoDue to the main deformations,
it will be written in the form

ee 0 O
=0 ¢ O (5.58)
0 0 g

The formula fordetermining the linear strain in an arbitrary direction, (5.52),
through the principal strains will take the form:

e =|& .m’e (5.59)

Te
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and the formula (5.53) for determining the displacement between two mutually
perpendicular directions will take the form:

O, 218 24N, 2 Nh. (5.60)

5.2.3. Volume deformation

In addition to linear and angular deformations, in the mechanics of a deformed
solid, it is also necessary to determine the volume strain, i.e., the relative change in
volume at a point.

If an elementary parallelepiped had volume (Fig. 5.24), then after deformation
its volume will be

d °‘6 6 w
dv = aéjx dx dy 4 dy &4 dz d;b(dydlz
SRl s ikakiz:

Accordlng to the Cauchy equatlons (5.51), we write
dv=dy(l +,¥1 @A ,)+e =

=dVp(1 +.& j+ & 48 +,6 €, ¢ €,6)

Neglecting in this expression the products of deformations as quantities of
higher order of smallness, we obtain

dV:d\(,(l +ye gt ez).

Volume deformation of a body at a point is the ratio of the increase in the
volume of an element due to deformation to its initial volume.

So,
dv- dy d_Vo(l"' g e z)+ @\
d\p d\4 '
8 =x€ y+ € Her=4% (5-61)

That is, the volume strain is equal to the sum of the linear strains at a point. In
other words, it is the firghvariant of the strain tensor.

Example 5.9.A parallelepiped with dimensions is loaded, as a result of which
the relative linear deformations in the direction of its edges are respectively

6.=0,06, g = 0,02; e, =0,03. Determine the volume of the parallelepiped after

deformation.
The relative volumetric deformation of the parallelepiped is found by formula
(5.61):
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&/ =x€ y+ & 8,06 602 0,03 O£

Becauses, fV \p)/\p, where i where V is the volume of the parallelepi-

ped acquired as a result of deformation, anrd V5 its initial volume, then hence
V=\p(1 +9.

The initial volume of the parallelepipad =20 60 40 24=10m@¥. So
V=24 ¥(1 607 25,68 fowrn.

5.3. Generalized Hooke's law

So far, we have considered the stress and strain seggasately. However, it is
clear that stresses and strains are interrelated quantities, and there are certain depend-
encies between the components of the stress and strain states.

According to the hypotheses formulated earlier, the material of a deformed body
Is considered as a continuous homogeneous isotropic medium. On this basis, it can
be argued that:

- by the property of homogeneity, the dependence between stresses

and strains will be the same at all points of the body;

- by the property ofsotropy, they will not depend on the choice of coordi-
nate system, and, most importantly, the main axes of stresses and strains
will coincide;

- since the medium is continuous, then, treating it as a continuous mathe-
matical space, the dependencies between stresses and strains will be con-
tinuous functions.

5.3.1. Hooke's law for the principal axes of stress and strain

In general, the functional relationships between stresses and strains can be rep-

resented as shown below:
€ :"1( 15 2’53)? € :fz( 1° 2’53)? €3 :"3( 1o 2’33) (5.62)

It has been experimentally established that in the elastic region, the relationship
between stresses and strains for most structural materials can be assumed to be linear.
This was first shown by Robert Hooke for tension and compression. Therefore, the
law of elastic proportional deformation is called Hooke's law.

So, taking into account Hooke's law, the functions (5.62) are linear. Let's write
them in the general form:
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€8 ¥y S ep , L33
iez B 15 €% 2 Bzt
{6 By 1S €5 , Syt

Based on the principle of independence of the action of stress and strain forces
in an elastic bodgaused by a certain force are independent of other forces applied
to the body. As a result, the stresses or strains in a body caused by a group of forces
can be found as the sum of the stresses or strains caused by each force in particular.
According to tlis principle, each of the principal strains can be represented as the
sum of three components. For example,

€ =1 1F €y (5.64)

Here, on the righhand side of the equation, the first index indicates the direc-
tion of deformation, and the second index indicates the factor that causes this defor-
mation. That is

- g, 1 istherelative linear deformation in the directiorsef caused by the

(5.63)

action of onlys; ;

- €127 is the relative linear deformation in the directionsgf, caused by
the action of onlys,;
€5 I is the relative linear deformation in the directionsyf, caused by
the action of onlys.

Since the stressés, », (s dile orthogonal, in ratio ty, the deformatiortlsis
longitudinal, while the deformatiot$, andUs are transverse.

Numerous experiments have sho

Q
< 3 that the longitudinal and transverse delf
Cpe—o»F ~ o, Mations caused by this stress have of
(___a___' A site signs. Thus, under tension in the
- atra rection ofs; e, ®, ande, € and
Fig.527. Longitudinal and transverse de €3 € (Fig. 5.27).
formation of an element Here the longitudinal deformation
Da
S 5
. Db
transverse deformatiog, = e
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The absolute value of the transverse strain is always less than the absolute
value of the longitudinal strain, and the value of their ratio for a given material
and test conditions does not depend on the amount of strain up to a certain load
level and is alled the Poisson's ratio or transverse strain coefficient.

Si
Si

If we compare equation (5.63) with equation (5.64), it is obvious that the longi-

tudinal and transverseformations are equal:

g = (=123 (5.66)
g & (1=123) 2,23 j) (5.67)
For an isotropic material, the transverse strain caused by a given stress is con-
stantin any direction. That&,; =3 1, € 33= 8 . Itis also obvious that the

o (5.65)

trans

e

long

m= 4o0rm k.

same stresses; = s 3 Will cause the same longitudinal and transverse defor-
mations: €, =,£ 4 €, =1£ 53 €, =& 3 Considering (5.66) and

(5.67), we can write thad,=e,, =6,:; §,=63 =83 B & &.
The coefficientsg; andg; are called the elastic constants of the material.

Consider a linear stress stasg: ,0; s 3 9. The equations of the system
(5.63) take the form:
e ®|1
€ =3€6r
Thecoefficient at longitudinal deformation is usually denoted as

= = -%-
€1= 6y =83 E’

where E is the tensile modulus of elasticity or Young's modulus, which is de-
termined from a tensile test.

From (5.65)g; = porgs; = gn; .Thatis. = m,and from here, =g.

So, for an isotropic homogeneous material, we have two independent elastic
constants: the modulus of elasticity and the Poisson's ratio.

Taking into account the sign of the transverse strain, we finally write equation
(5.63) in the form:
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1.
=E85 - (ms+) ¢
1. .
92:E@‘§ - (m35+1)'7t (5.68)
e=2gs - (ms+,)q
3 E 1 2

The resulting equations (5.68) are a record ofgereeralized Hooke's lafor
an isotropic material.

YA Example 5.10.The element (Fig. 5.28) is I

T, © cated in a plane stress state. Find the magnitude

. = direction of the principal deformations if the stres
Gzill 'T = -~  onitsfacess, =80MPa, s, =40MPa, ¢, =60MPa
R . Element material gray cast iron with elastic mot

cgl_%‘ ulus E=115 @OMPa and the Poisson's rat

Fig.528. To example 5.10 m=0,23.

Let us find the principal stresses using the relations for the inverse task of the
plane stress state (5.48):

1l¢ 12 -
Smax=5§§ + s d( S 5)s 4% gag&ﬂ 40 {(80° 4Y -4 60 &

min

=%(120 °126,5MPa .

From heres; = §ax 123,25MPa; s, 0; s3 = s 3,25MPa
The main deformations are found by Hooke's law (5.68):

1 1 )

=( 15 -.Jns—=—(123,25 0,233,256 (1,08 1&
€ E( 1 3)“ 1,15(.].@( }3
& =T 35 o s—22 (325 12325+ 0,24 -

E 1,156

1 1 .

= ~)ms—=_( 3,25 0,23 123,25 O 0,27 1§
s =( s - 1,15@[@( b

Assuming the material is isotropic, the directions of the principal axes of defor-
mation are found by formula (5.49), since igtropic material the principal defor-
mation axegoincide with the principal stress axes:

5 Iy
o = 2 22069
Sx - ¢ 80 40
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From here.a =35,78 .

Theprincipal stress and strain axes of the element are shown in Fig. 5.29.
YA

3
z A S, 1
yx -
35,78°
<Jv )

G, *
Txy
-
Gy" ’ny

Fig.529. Main stress and strain axes

Example 5.11 Cylindrical element made c
homogeneous isotropic material, inserted witho
gap in the hole in an absolutely rigid ple
(Fig. 5.30), is compressed in the longitudinal dir
tion. The normal stress in this direction

S, = 100MPa. Find what is the octahedral norm

stress in the element, if the Poisson's ratio of
material 77= 0,33. Friction on the surface of the ¢

ement to be neglected.

When compressed, the element should deform in the transverse direction, i.e.,
expand. However, due to the absolute rigidity of the slab, there will lnefoo-
mationin this direction. That is, the element will be subjected to a pressure evenly
distributed over the surface from the walls. Taking into account the axial symmetry
of the task, it can be argued that any two mutually perpendicular sites parallel to the
x-axs of the element will have the same compressive normal stresses.

Since there is no friction on the contact surfaces of the element, there are no
shearstresses on them. Therefore, the normal stresges,, 5 are theprincipal

Fig.530. Example 5.11

tensions.
Stresses, ‘s, is found from the condition that there are no deformations in

the transverse direction. Using Hooke's law, write down the condition:
1.
& TE& ¥ ( m sy g6
Considering thak, = 5, we get:
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s, =5 4 s 933 100 49,2:MPa
1- m*~ 1 0,33

We have thesprincipal tensions:s; = $ 49;25;MPa, s3 = t00MPa. Then

the octahedral normal stress is
_s;t s +5_49,25 49,25 100

S ot 66,4 MPa
3 3

5.3.2. Hooke's law for non-major stress and strain axes

Let's move on to the minor stress and strain axgandz.
Let us assume that the guiding cosines of Hagig in the system of principal
deformation axes atg my, ni. Then, according to (5.59),

2 2

e, =If me N

Let's rewrite equation (5.68) by adding and subtracting on thehayid side

of the first equatiorm g, second equatidnm s, third equatiori mg. Then Hooke's

law will take the form:

1.
e -Eél Hm slsr g

(5.69)

1. 5.70
e, ?él ) m slgr § (5.70)

1.
s Tl 4 m sl

Herelg; = § +,s g+ 5 =ys 3FI isthe firstinvariant of the stress ten-

sor.
According to (5.59),

e, =le ‘e

X

Substituting equation (5.70) into this expression, we obtain:
1 -
e =41 H(mfs amf s pd)+ o 1F-mh 0]

Given (5.33), Lecture 11, and the fact tfat m? 4n? %, We will finally have

1.

=gl m Slgq-.
X
€ Eg -9 SSl

For the relative displacemegy,, according to (5.60),
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gxy 2 llﬁ 2 _fanZ 2 @iﬂl
Herel,, mp, Nz T are the directional cosines of theyis in the system of prin-
cipal deformation axes. Substituting (5.70), we obtain:
2 .
Oy =€l H(mis mms anF st (Il mn, np) .

Considering (5.34), and the fact that the sum of the products of the directional
cosines of the perpendicular segmdiitstmm, +yn, G, Let's write it down:

2(1+

gxy E X);'
Here, the inverse of the coefficienttgy,, is usually denoted b:
-_E
2(1+ m) (5.71)

and is called the shear modulus.

Thus, formula (5.71¢stablishes the relationship between the elastic constants
of a material.

Finally, we obtain a generalized Hooke's law for the-m@jor stress and strain
axes:

1. t

e=g8s-(ms+)g . &
1 t, (5.72)
- gg,

y ES'§ B (mZS+x)‘% yz
e;é%g - (mxs+y)sg . %

Note.In equations (5.72), whety 9, sog; 9. This confirms the conclusion

made above that th@incipal stress and strain axes for an isotropic material coin-
cide.
2 Example 5.12 Find the linear defor
y\ {GZ mations of the mutually perpendicular st
mentsAB andDC of the element (Figs.31),

X
D | o=30"  whichis in a plane stress state, and the 1
c, 1

o | 4 B tive displacement between them, if t
¢ stresses on its faces S; =50MPa,
Gl S, =30MPa. Modulus of elasticity of th

Fig.531 Example 5.12
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element materialE=2,1 @MPa and the
Poisson's ratior=0, 28.
From the task condition, it follows that the faces of the element apeitiogoal
areas. Therefore, we will determine the deformations forprorcipal directions.
The task has two solutions.

Option 1.According to Hooke's law (5.68), we first find encipal defor-
mations:

= s——=_(50 0,2830 168 1®
1 1 )
e, = ms—=—(30 0,28 50 7(6 10=

" 0.28 5
= — s —= 50 30 40,7 ¥0-.

By formula (5.59), we find the Iinear deformatios’ e, segments AB and

DC, respectively.

2 2 2
e =1g oMme 3N,

Here |, =cos30~ 9,861 is the directional cosine of theaxis relative to the
principal axis 1; m, =cos(-60 )~ 01 is the directional cosine of theaxis relative
to theprincipal axis 2;n, =cos90~ €1 is the directional cosine of theaxis relative
to theprincipal axis 3.

e, 39,810° 0,86 7,6¢10 %5 @0,71® 0 (6,8 i.

2 2 2
ey =g Ne Ny,
Wherel ,m , n i by directing the axis cosines in relation to the principal
axes, which are respectively equal ltp=cos120° =0;£ m =cos30 6,86¢
n,=cos90 €So

e, 49,810° ( @3> 7,61 @86 010,71d 0 0,6 F.
The relative displacement between the directions of segments AB and DC, ac-
cording to formula (5.60), is equal to
Gy 21dy 2mm, 2gmnye 2 19,6100 0,868 0)0 2 7B B 045 0B
-2 1,716 0 610610 . O

The ™" sign indicates that the angle between the x and y directions will in-
crease.
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Option 2. First, let's find the stresses in the areas perpendicular to the x and y
directions. That is, we solve the direct problem of the plane stress state. We will use
formulas (5.45) (5.47).

s,= scos a+,sif  &0cos 30 ~38sin 30 50=0,75030 0;25Méa
= gsin® a+ ,808 &0sih 30 ~3@8cds 30 50-0,250 30 0475 MB@

317 3gin2 a—502300 866 8,6BIPa.

Xy

According to Hooke's law (5.72), we find the linear deformations in the given
directions.

e r( y)nzmd_) (45 0,28 3) 168 10

( )nzlaé (35 0,28 4§ 1Gh6 I

To find the relative displacement between thand yaxes, we determine the
modulus of the
of the material shear:

__E _2140 @82 1GMPa.
2(1+m 2(1+0,28
So
tyy _8,66 .
Oy ==L =——"_ 16;6 10%.
Y G o8008

Note. In the first solution, unlike the second one, we were able to find not only
the magnitude of the relative displacement between the x and y directions, but also
its sign. However, for engineering calculations, the sign of the displacement is not
really important.

5.3.3. Hooke's law for volume deformation
Let's write equation (5.68). After sortransformations, we get:
1.
e +,e 3+4Eag1; 2)(+ m sy

This equation establishes the relationship between the first invariants of the
strain tensor and the stress tensor. Since the first invariant of the strain tensor is equal
to the volume strain, then, taking into account (5.61), we can write Hooke's law for
the volume strain:

(5.73)
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- 74
& =@( $+S +3)~" (5-74)

Of considerable interest is a special case of the volumetric stressaditabeind
uniform compression, which was discussed in Section 5.1.3, edmepressive prin-
cipal stresses of equal magnitude act at a point.

Similar conditions can be realized by immersing a ball in a liquid to a certain
depth. According to Pascal's law, the pressure on its surface will be uniform. The
stresses in all directions will be the same, i.e., the principal stresses will be the same.
They will be equal to the amount of pressure on the surface of the ball, which is

called hydrostatic pressure:

S, =5 3 SPp. (5.75)
For this case, equation (5.74) will take the form:
_3(1-2p  p (5.76)
T E P X
K is the modulus of bulk deformation:
E (5.77)

C3(1- 20y
According to formula (5.74), for materials with Poisson's ratie9, 5, volume
deformationg, #®. That is, when loaded, the volume of the body does not change.
Such materials are called incompressible. An example of an almost incompressible
material is rubber, for which the Poisson's ratimisO, 45.

Example 5.13 Using the results of solving the task (see Example 5.11), calcu-
late the value of the relative volume strain of the cylindrical element (Fig. 5.30).
What will be the value of the volume strain if the element is inserted into a hole in

the slab with a guaréeed gap? Modulus of elasticity of a mateEat1,1 00 MPa .

When an element is inserted into a hole without a gap, a volumetric stress state
occurs. The volumetric deformation is equal to:

12 OG1?49 25 49,25 40p 6,13 18.
1,140

If the element is inserted into a hole with a gap, then when the hole walls are
loaded, no pressure is applied to its side surface. So, only compressive stress will act
on the elemens, = t00OMPa. That is, there is a linear stress state and the volume

strain is equal to

1S F Sg)t s—=1r

rzmg 4 12083y, 5g9.10%
E 1,100
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5.4. Potential strain energy in the general case of a stress
state

When a body is loaded, the forces acting on it perform work on the displace-
ments associated with the deformations of the body. It can be assumed that this work
Is completely converted into potential energy accumulated by the elastic body during
its deformdion. Minor energy losses, mainly in the form of heat, accompanying the
deformation process are negligible. That is, the condition is the condition

A, =U. (5.78)
¢ work of external forced;) 1 potential strain energy.

Z4 , Thanks to the stored energy, the elastic b
1 returns to its to its original state after the loau

& removed. the load is removed from it. Let's re
how an ordinary spring behaves under these
3 ditions.
_ Let's find the specific potential energy
- & deformation, i.e., the energy accumulated

y i unit volume. To do this, consider a body elem
Fig.532 Element in avolumestress 1N & bulk stressed state (Fig. 5.32), whose f
state are theprincipalareas.

The potential energy accumulated during the deformation of this element will
be equal to the sum of the work of the forces distributed along its faces.
Strength.s,dydz performs work on thele-

formation of the face to which it is applie
namely on thedeformationof D(dx). At the

same time, based on the linear law of de
mation- Hooke's law this work will be equal tc
the area of the triangle on the forsteain graph
(Fig. 5.33).

This force does not perform any work on
displacements of the other faces, since it is
pendicular to their directions. The work of ott
forces applied to the element is determined
similar way.

Then, taking into account condition (5.78), based on the principtelepend-
ence of forces, we find the potential strain energy accumulated in the element:

c,dydz
A

A(dy)
Fig.5.33. Graph of force versus strail
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dU:% gdydz @ @ —;  dzslx ( c)ﬁ)iz) 5 dxdy (s Jz
_1 D(dx) , Bdy) 03 o
2 dx Zay ¥ dz |

Since the principal stress and strain axes coincide, that is
e =1,€y €, =,€ 3 We can write it down:

dxdydzg $
e

1
du :dedydz( $1€6 75 §9-

Then the specific potential strain energy

1 5.79
=5(3:8 £55 a4 (5.79)
Taking into account Hooke's law (5.68), we have:
1 (5.80)
u=-§¢ s #3(1Mmss s §.

The potential strain energy of the whole body can be found by taking the integral

over its volume
U = rjdxdyd..
\Y

When a body is deformed, both its volume and shape change.

From a practical point of view, it is important to know what part of the energy
goes to changing the volume, and what part of the energy is spent on changing the
shape. Again, based on the principle of independence of forces, we can formally di-
vide energyinto two components:

u=u, . (5.81)

Here U, - is the specific potential energy of volume change] specific po-

tential energy of deformation.
Let's find firstU,. To do this, let us represent each of phi@cipal stresses in
the form of a sum:
S1 P % S P % S3; P S (5.82)
In other words, we decompose the stress state of the element into two stress

states (Fig. 5.34). The first is an-atund uniform tension (or compression). The
second one supplements it to the specified stress state.
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463_ 4”_ 4‘*_ Since the stress state of a body i

o, p s pointis characterized by a stress ten:

- = - +

/s, 4 4, we can write it down:

Fig.534. Two components of the stress sta
ball and deviator

T, =T, D. (5.83)
Usl ball tensor (5.21)Ds i stress deviator. The hydrostatic pressure p is selected

in such a way that no change in volume in the additional stress state does not occur.
That is, the components of the ball tensbydrostatic pressure ocause a change
in the volume of the elemgrand the components of the stress deviatos,, $ 1
change in its shape (hence its name: from the English devidfimee there is no
change in volume in the additional stress state, according to Hooke's law for volu-
metric deformation,

1- 2
o =[5 3 s O
Since in the general casg, 0,5, we get the condition:

Sts 15 G (5.85)
That is, the first invariant of the stress deviator is zero.
Adding expressions (5.82), taking into account (5.85), we find
S +5 % 8p.
So

(5.84)

S, +5 % (5.86)

3 :

As we can see, for tHermulated conditions for dividing the stress state into
two components, the hydrostatic pressure is equal in magnitude to the octahedral
normal stress at a given point.

To find the specific potential energy of volume change, we use formula (5.80),
substituting the components of the ball tensor instead of the principal stresses:

1l .

U—Egﬂo -6 ph ;
and taking into account (5.86), we get:
:1- 2/77(5 +s +92
6E ' '

The specific potential energy of volume change is proportional to the square
of the octahedral normal stress at the point.

p:

(5.87)
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We find the energy of shape change as a difference
u, =u -y,.

That is, we subtract expression (5.87) from expression (5.80). After some sim-
ple transformations, we get:

u, :16%7@ s, -8) (s ¥ (+s)- (5.88)

The specific potential energy of deformation is proportional to the square of
the octahedrakhearstress at a point.

Example 5.14 A steel plate is subjected to a plane stress state under load. At
some point O, relative linear strains in three directions were found using strain
gaugess;, S, S (Fig. 5.35):g, =2 W*, e, = 41 10", e, =4 W*. Determine the
specific potential strain energy at poitif the modulus of elasticity of the material
E =2 P MPa, Poisson's ration=0, 25.

In order to determine the specific potent
strain energy at point O, it isecessary to first fin
the principal stresses that occur at this point (
formula (5.80).

We know linear deformations in three dire
tions §, S and 3, given by the guide cosines re
tive to the coordinate axes x and y (Fig. 5.35).
formula (5.52), to determine the linear deft
mation in an arbitrary direction, we express t
given deformations through the linear and sh
deformations in the x and xes system:

2 2
e =)l me Jag
Substituting the given values, we obtain a system of equations fdefitre
mations in the xand yaxis directions:

€00 s, e0® , 0.8 § 0608 O
14 5 08> y, 0.8 e, 0P 0
4a0* = d B -, (9% H( 309 O

From here.e, # 1@, e, =1:47 100, g,, 8,125 10°.

Fig.5.35. Example 5.14

— — —
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Using Hooke's law, let's find the stress components in the areas perpendicular
to the directions of these axes. To do this, we write the formulas for linear defor-
mations from system (5.72) with respect to stresses. In our case, we obtain:

S, (g + g)e —ZQOE (4 0;25 1,49 10 O77,49Pa

E 2(106 .y
sy:m( g + /g)ei_o’zg(lA? 0:25 4 A¢ O 10,8@Pa

-_E - 200 3,125 10 281Pa.

b m 9 11029

Solving the inverse problem of the plane stress state, we find:

max_58§+)’s\7/ 542§ =

min

_1e _ 1
_2379,49 10,03 {f( 79,49 10,03 4?53 2( 67,46 100MPa

— =) =) =) =) =) =) (]

From here.s; 84,12t MPa, s, =0, s3; = 16,66:MPa
Then the specific potential strain energy at point O
_ 1/ _

U—E(s1 +s 2 /71753)5 =

1
2C21(If

(84123 { 16,665 200% 10,655 84,12

=2013,93 =2,014 ¢/n?
Note. In this example, the method of determining the principal stresses in struc-

tural elements under plane stress conditions, which is widely used in practice, was
considered.

Questions for self-testing

What is anumerical measure of internal effort?

What is called stress?

What units are used to measure stress?

What should be understood by the concept of "stressed state of a body at a

hwppPE

point"?
5. In what coordinate system is an infinitesimal volume chosen to thein
shape of a ball?
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6. How many independent stress components act on the faces of an elemen-
tary parallelepiped? Justify your answer by referring to the relevant hypotheses and
laws of resistance of materials.

7. What determines the stress state of a body at a point?

8. What stress is called the totdklearstress in a pad?

9. What are the principal stress axes?

10.The stresses at tipeincipalsites have the following values:0 MPa;-10
MPa;-100 MPa. Label these stresses with the appropriate indexes. Show how these
stresses act on the edge of the element.

11.What is the property of extremality of principal stresses?

12.What should be the principal stresses at a point of a deformed body for the
stress ellipsoid to be a surface of rotation?

13.Under what conditions does -atbund uniform tension occur at a point of
a deformed body? What type of stress state occurs under these conditions?

14.What is the difference between the linear stress state of a body at a point
and the bulk state?

15.What axis should the element be rotated about (see p. 14) so that all its
faces becomprincipal platforms?

16.Why are the coefficients, | ©,1 g in the cubic equation for the inverse

stress task called invariants? At the point of the deformed body, the principal stresses
are100 MPa, 60 MPaand10 MPa Find the normal and total stresses on the site,
the directional cosines of the normal to which with axes 1 and 2, respeatiyaly
0,5.

17.What is the octahedrahearstress under conditions of -atdund uniform
tension?

18.What is the octahedral normal stress under conditions-ofaatid uniform
compression?

19.The principal stresses at the point are respecti&€lyPg 50 MPa and
0. In which area is the maximushearstress and what is its magnitude?

20.When is theshearstress in a pad considered positive in plane stress prob-
lems?
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6. STRENGTH CRITERIA

The simplicity of assessing the strength reliability of rods in pure teftsion
pression is due to the same loading conditions of the real rod and the prototype
(which, incidentally, is also a rod) used to study the material properties. However,
the mostmportant thing is that both the real radd, in the samplehe same stress
state is realizedlinear.

Under other types of loading, it is possible to check the strength of the rod by
simply comparing the stresses acting in it with the permissible values obtained in
tension or compression, provided that a linear stress state is also realized at the dan-
gerots points of theod.

Under nonlinear stress conditions, the situation is much more complicated.
Strength reliability is associated with the conditions for the material to reach the ul-
timate state, which, in turn, is determined by the stress state of the body at a point. In
other words, it is determined by all the principal stresses in force. It is unproductive,
or rather unrealistic, to establish experimentally the limit values of these stresses at
an arbitrary combination of them, due to the significant methodological coryplexi
of such experiments.

Therefore, from the very beginning of the formation of deformable solid me-
chanics as a science, scientists have taken a different thatpath of searching for
strength criteria, that would allow the results of simple experiments, such as pure
tension @ compression, to be used in calculations of strength under complex stress
conditions.

6.1. The concept of the strength criterion

The strength criteronis understood as a certain physical quantity that, under
the conditions of the material's limit state at a given point of the deformed body,
acquires the same value, regardless of the ratio of the principal stresses.

The problem of rational selection of the criterion is reduced to determining a
certain function of the components of the stress tensor of the form

K:f( $ B 3,9])- (6.1)
Herem & material constants, which are determined from the simplest tests.

Function (6.1) at stresses that correspond to the material's ultimate state retains
its value equal t&, regardless of the type of stress state. In this sense, it gives us the
right to compare linear and complex stress states. ThH&isghe strength criterion.

181



The strength criterion has a very specific physical interpretation: maximum nor-
mal stress, maximum deformation energy, etc.
Condition (6.1) in coordinate(s;l, S, § can be represented by a surface that

limits the region of safe stresses (Fig. 6.1). This surface is called the boundary.
Fracture boundary surface is the geometric
cation of points whose coordinates are equal tc
strength limits, and the points lying on the yit
strength surface correspond to the yield streng
thematerial at different stress states. In the fig
s, the boundary stresses are denoted by

5 st S &
s, %l In a plane stress state, the surface degene
into aplanecurve, which in this case will be calle
the fracture curve or yield curve.
In strength calculations, ultimate or dangerous stresses are limited by the intro-
duction of astrength factarln the general case of a stressed statesttbregth factor
Is the number n, which indicates how many times all the components of the stress
tensor should be increased simultaneously to make the material's state at the danger-
ous point the ultimate state:
si=n @ $ = ,9sn (6.2)
The first hypotheses about the conditions for the onset of a material's ultimate
state were made at theginning of the development of strength science. At the end
of the of the nineteenth century, the fundamentals of classical limit state theories
were already known. Today, there are several hundred strength theories that allow
predicting the strength ralbility of a wide range of structural materials under a wide
variety of operating conditions. Five classical strength theories are mainly used in
the resistance of materials, which will be discussed below.

Fig.61. Boundary surface

(oo |

6.2. Classical theories of strength

6.2.1. Fracture criterion

They are used when the ultimate state of the material is fracture, which occurs
by tearing caused by the action of normal stresses or elongations. This limit state is
typical for brittle materials.
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6.2.1.1 Criterion of the greatest normal stress (first theory of strength)

This theory dates back to Galileo Galilei, and its formal justification can be
found in the works of Lam®, Kl ebsch, a

Failure with crack formation is believed to occur in the general case of a
stressed state when the largest principal stress in absolute terms reaches a danger-
ous value.

As you know, the tensile strength is the dangerous stress for brittle materials.
Then the condition for the onset of the limit state, or in this case, the fracture condi-
tion, according to this theory, can be written as follows:

S5,= § Orlsy= g . (6.3)

Heres, ands, T tensile and compressive strengths of the material, respec-

tively.

We obtain the strength conditions in the following form:

s, ¢[ 9 Isi¢[ 4. (6.4)

Thus, the first classical theory of strength of the thmeecipal stresses takes
into accounbnly one- the maximum stress, considering that the other two have no
effect on strength do not affect the strength

Experience has shown that the criterion of the highest normal stresses is only
suitable for very brittle materials, such as stone, brick, glass, concrete, and ceramics.
But it is completely unsuitable for ductile materials.

6.2.1.2 Criterion of the greatest linear strain (second theory of strength)

The idea of choosing thmaximumlinear deformationas a strength criterion
was developed by Marriott. It is generalized in the works of Poselier, Grasgoff, and
Navier.

It is believed that material fracture under a complex stress state occurs when

the largest linear strain in absolute valu@,_ reaches a dangerous valué’,

which is determined from the experiment for tensile or compressive strength.
That is, the condition for the transition to the limit state is as follows:
e = & (6.5)

max

Let

1.
€max :1eEE 1 S( 2 mQS

In pure tension (linear stress state)
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S1.
€ =

and in the limit state® = SE )

Thus, the condition for the onset of the limit state is fracture wéien g, is
takingshape:

Si- ’(7 St 3)5 U (6.6)
condition of strength:
s, - (ms 3z § ] (6.7)

This criterion, as we can see, allows to take into account all gheepal
stresses, but it is rarely used due to significant discrepancies with the results of its
experimental verification for a wide range of materials. There are a number of obvi-
ous internal contradictions in the theory of maximum linear deformation, which we
will not dwell on.

This theory is presented here solely as a tribute to the historyadveopment
of strength science, and it is not recommended for practical use.

6.2.2. Yield criterion

The onset of yielding in the resistance of materials is considered to be the limit
state for plastic materials. Hence the name of this group of strength criteria. This type
of fracture is accompanied by residual deformation and is associated with with irre-
versible shifts in the crystallographic planes caused by the actgheafstresses.

6.2.2.1Criterion of the greatest shear stress (third theory of strength)

This theory was proposed by Coulomb in 1773. It became known thanks to the
works of Tresca and Sailvtenant.

If the maximum shearstress in the material reaches a dangerous value, the
material reaches a limit statematerial flow, regardless of the type of stress state.

Since we are talking about the fluidity of the material, the dangerous stress cor-
responds to the yield strengfl),. Then the condition for the onset of the material's

limit state, or yield condition, will be as follows:
l‘max: )49' (68)

. S, - £ . . .
Sincet . =+ > £ and in pure tensioh, ., =52—1 condition (6.8) takes the

form:
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S$,- § =5 (6.9)
and the strength condition
s, - s[4 (6.10)
This criterion has been well tested experimentally and is confirmed for plastic

materials that resist tension and compression equally. However, it has a significant
drawback: it does not take into account the average principal sgess

6.2.2.2 Criterion of specific potential energy of deformation (fourth the-
ory of strength)

It was first proposed by Maxwell in 1856. It was developed in the works of
Huber, Mises, and Genka.

The limit state- material flow - begins when the potential energy of defor-
mation of a deformed body reaches its limit value, regardless of the type of stress
state.

u, =us. (6.11)
In the general case of a stressed state
_1+m; 2 2 2 (6.12)
U =g 851 -s5) (s o (s )
In pure tension
u, _1+ msf. (6.13)
3E
Fluidity occurs whers, = g.. Then the yield condition (6.11) takes the form:
1 2 2 2 (6.14)
ﬁ\/(sl_ s) £ 5 -f (hsi)s
and the strength condition
(6.15)

1 2 2 2
——4/(S51 - +, S 5)- +9)s |[-].
s - 8 (259 €0 +)5 [
For plastic materials that resist tension and compression equally and compres-
sion,condition (6.14) coincides with the experiment by 90%.

6.2.3. Mohr's criterion

None of the above criteria is perfect. Most importantly, none of them of them
covers the limit states under all types of stress conditions. What is meant by this?

We have conditionally divided materials into brittle and ductile. However, it has
been established that the properties of materials depend on the stress state. Under
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some principal stress ratios, a material can be brittle, while under others it can be
ductile. For example, a brittle material, such as granite, acquires the ability to deform
plastically at high levels of hydrostatic pressurei@lnd uniform compressn). On

the contrary, materials that are ductile under normal conditions, such as steel, become
brittle under allround uniform tension.

Therefore, the application of a particular strength theory in each case must be
consistent with the nature of the stress state.

Creating a single criterion for all cases of stress states is an extremely difficult
task. One of the first attempts to solve it was made by Otto Mohr, who was based on
the assumption that strength in the general case of a stress state is determined by the
magnitude and sign of the largest and the smalles$; of the principal stresses,

and the influence of the average stregscan be neglected. His judgments were

based on the experimentally established fact that the material resistance increases
when moving from the tensile zones,(>; s () to the compression zone

(s; U s 0

The theoretical justification of the criterion can be found in the literature [1].
Here we present it without proof.

The condition of the limit state according to Mohr's theory takes the form:

S
s,-—X 5 =% (6.16)
SYQ:
or
s
S;- -t § =% (6.17)
Su
From heres ., s, ands,, s, T yield strength andltimatestrength for

tensionand compression, respectively.
Let's take steel as an example. If steel is in conditions closertwalll uniform
tension, it behaves like a brittle material when the yield stresgth=0. Then con-

dition (6.16) is transformed into a fracture condition according to the theory of max-
imum normal stresses;; = § = 5.

Under normal conditions, steel is a plastic material that resists tension and com-
pression equally. That iss,, = §, . Then condition (6.16) is transformed into a

yield condition according to the theory of maximshearstressess, - § = 3.

But this is from the field of theory. Unfortunately, Mohr's criterion has not be-
come a universal criterion due to significant methodological difficulties in its
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application, on the one hand, and because of the failure to take into account the av-
erage principal stress, on the other.

However, Mohr's criterion is widely used in strength calculationstfoictural
elements made of stalled sembrittle materials, for which tensile and compressive
strengths differ (cast iron, higgtrength steels, etc.). In this case, either the fracture
condition (6.17) or the strength condition is used

[s]
sl stk (6.18)
o Example 6.1 Three cubes mad
F : of steeld5, bronzeBrOF10-1 in solid

state and gray cast irddCH12, are
loaded with the same compress
force F=20 kN (the first loading op:
tion in Fig.6.2). Find the sides of th

a) cubes from the condition of the
Lx equal strength. Also check how mu
the safety margins of the cubes w
change when they are placed withi
a gap in a hole in a completely rig
slab flush with its surface (the seco
loading option in Fig. 6.2), and
loadthem with the same forc

, b) | F=20 kN.
Fig.62. For example 6.1a- first load option,
b - second loading option

The first load option.

The dimensions of the sides of the cubetierspecified materials are found
from the compressive strength condition, having previously determined the permis-
sible stresses using the reference data from [1].

Dangerous stresses for steel 4§,=360MPa, and allowable stressi

[s]= $./n, 86015 20MPa.

For bronze BrOFl16lL in the solid state d 3%) dangerous stress
S, =300MPa, allowablestress- [s|= s/n, 800'2,5 2MPa
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For gray cast ironSCH12 in compressiors,  =500MPa, allowable stress
[s].= s./n, B0Q3 6MPa.

From the condition of strength :% ¢ 9. find the dimensions of the sides

of the cubes.
For steel cubeA 2 20000 240=83,38inf. Hence the side of the cube

a2 JA =/83,33 9,13nm. Assumeq, =9,2mm

For bronze cubeA, 2 20000 120 =166,6TnT. Hence the side of the cube
ag 2 \|A, =/166,67 %2,90enm. Assumed, =12,9mir

For cast iron cube A2 20000 167°126nf. Hence the cube side

A2 [Asen =120  £0,954nm. AssumeBgy, =11,0mi

The second loading option.

Since the slab is absolutely rigid, the transverse deformation of the cubes when
they are compressed by a force F will cause compressive loads on the sides of the
slab walls. This means that compressive stresses will act in these direcfians

s,, and the cubes will be in a volumetric stress state (Fig. 6.2).
Tensions, =,—FA. The other two principal stresses are found from the condition

of no deformation in the wall direction:

A
feey TE ¥ ( m sy §&
|

~ 1 s

fe: £8= (ms)ge

Assuming that the materials of the cubes are isotropic, we obtain the stress re-
lations:

s - g .M
Yy §1_mX'

So, taking into account the sign of the force, we have the following principal
stresses.
For a cube of steel 45 (Poisson's rato=0, 25):
. = 20000 _0,25
X 922 1- 0,25
Thatis.s; = 8 91:37MPa, s; = 236,29MPa.
For a bronze cube BrOF10 (Poisson's ration =0, 35):

236, 2¢MPa, Sy =58 236,29 91, 3MPa
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12,9
Thatis.s; = 8 $4;7IMPa, s3; = 120,1éMPa
For a gray cast iron cub&tH 12 (Poisson's ration =0, 25):

$2016MP, s, = 5 =2°2120,18 64,7MPa
1- 0,35

s, = 29990 465 20MP, sy =5 = 0.25 165,20  551MPa.
112 1- 0,25
Thatiss; = 8 55;IMPa, s3 = 165,2¢MPa.

Note. When performing calculations using strength theories, the concept of de-
sign or equivalent stress is used, which allows the strength condition to be repre-
sented in the classical sensé:(l:[ :i Here, i is the index corresponding to a par-

ticular strength theory.

Let's determine the design stresses according to the relevant strength theories
for each material and determine how steength factos will change compared to
pure compression. To do this, we will compare the values of the calculated stresses
with the permissible stresses for the material, since the dimensions of the sides of the
cubes were chosen for stresses equal to the permissigdses (not taking into ac-
count the rounding of the results to the first decimal place)

A cube made of steel 45.

Since steel 45 is a ductile material, we will use the criterion of the greshiesit
stress (the third theory of strength) and the criterion of the specific potential energy
of deformation (the fourth theory of strength):

s!'=§ -5 9LE37 236,29 144,92Pa.

st'v=%J(§ - (s s (#s)-s =

:%\/( 91,37 91,3] (+9%437 236,30 ( 23629 9137

=144,9MPa..

Thus, for a given loading scheme of a cube, the calculated stresses according
to the third and fourth theories of strength coincide (in fact, providedshat s,

the expression for the calculated stress according to the fourth theory of strength
coincides with the expression for the third theory of strength, which is easy to verify).

Then[s]/ §' =[ ¥ \'s 240/144,92 4,6, which means that the safety margin

has increased by 1.65 times.
Bronze cube BrOF1AQ.
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Bronze in its solid state is a brittle material. Let's use the first theory of strength
to calculate it:

s, =| s| 420,18vPa.
Then[s]/ s. 2, thatis, the safety margin has not changed.

A cube of gray cast iro8aH 12.
Gray cast iron has different tensile and compressive strengths, so we will use
Mohr'stheory:

S’[ =4 [S]tG .
e I [S]fr]ls 3

Let's find theallowable stres$or pure tension.
For gray cast ironStH 12 in tensions; . 420 MPa; allowablestress

S
[s], = e 120 4aMpa
n 3
Then
Mo 40 _
s, = 56,11 +— 168,33 =15,MdPa.
167
The result requires comment. The calculated stresses are significantly positive
values The minus sign at the calculated stress indicates that the material is in a safer

state, even compared to the unloaded state, vefier 0. Despite the paradoxical

nature of this statement, it has a right to exist. Such a result is associated with certain
inaccuracies given by Mohr's criterion in the area of comprehensive compression,
but these inaccuracies are, as we can see, includeckisafety margin. Therefore,

in practice, a negative result should be interpreted as zero. That is, in our case

s" =0 and thestrength factoincreased to infinity, because we obtained a stressed
state equivalent to the unstressed state.

Questions for self-testing

1. What do you need to know to characterize the stress state of a body at a
point?
2. What types of stress state do you know?
3. Under what conditions of operation of a structural element, its strength test
does not require the use of strength criteria:
a) in pure tensioncompression;
b) under linear stress;
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C) in a volumetric stress state;

4. What types of limit states can be achieved in static tension of a sample
from mild steel?

5. What kind of limit state is characteristic of standard gray cast iron speci-

mens in compression?

What is called the strength criterion?

In what coordinates is the boundary surface constructed?

What is called the boundary surface of fracture?

What is called the boundary surface of fluidity?

10 For what type of stress state is the fracture or yield curve constructed?

11.What is meant by thstrength factom a complex stress state?

12.What are the criteria of destruction you know?

13.What physical quantity is the criterion for the first classical theory of

© 0N

strength?

14.Which criterion is used as the largss$iearstress at a point: fracture or
yield?

15.What physical quantity is the criterion for the fourth classical theory of
strength?

16.For what materials is Mohr's theory used in strength calculations?
17.What is theprincipaldisadvantage of the third theory of strength?
18. The plastic material is under conditions ofralind uniform compression:

s; = $ 3 s 460MPa What is the calculated stress according to the third

and fourth theories of strength?

19. What limit state is characteristic of structural materials under conditions of
all-round uniform tension?

20.The tension state at some point of the body is as folleywsi20MPa

s, 20MPa s3 = 80MPa. Find the design stress if the permissible com-
pressive and tensile stresses for the material are in the[sz}gig 4[ s]t.
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7. STRENGTH CALCULATIONS OF RODS UNDER SHEAR
AND BEARING

7.1. Determining shear stress in arod

A rod experiences shear when, out of the six components pfitiagpalinter-
nal force vector and moment, only the transverse f@pgandQ, are nonzero. This
type of loading can be approximated when equal and opposite forces are applied to
the rod perpendicularly to its axis from opposite sides, with their lines of action pass-
ing at a relatively short distance from each other (Fig. 7.1a).
Fy F

| | A
e e
blld Bl .
) | Tr
Y
a) b) a) b)
Fig.71. Shear of a rod: & cutting a rod Fig.72. Shear of a rod: & loading scheme,
with scissors; b shear accompanied b b1 stress distribution in the cresgction

bending

This type of loading is exemplified by cutting a rod with scissors. However, in
practice, it is difficult to achieve pure shear, as it is usually accompanied by other

types of deformation, most commonly bending (Fig. 7.1b).
In shear calculations, to simplify the process, an idealized scheme is used, as-

suming that no deformations other than shear occur.
Using the integral equilibrium equations for a rod (1.10) or (1.11), we can derive

a formula for determining stress in the rod.
In crosssection ab, the transverse fol@g = F. From this point onward, omit-

ting the indices, we can write:
Q=ftA (7.1)
A
Shear deformation can be visualized as the displacement of one part of the rod

relative to another in the transverse plane (Fig. 7.2a), as if these parts were perfectly
rigid. This concept of shear deformation leads to the assumption that the shear stress

is uniformly distributed across the sectidify, z) =Cons.
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Thus,
Q=F =A. (7.2)

And hence
F (7.3)

—

Although the assumption of uniform shear stress distribution across the section
Is a rough approximation, it allows for simple and reasonably accurate strength cal-
culations for many structural elements and machine parts, such as riveted, screw, bolt
joints, keys, weldedvelds, and similar components.

7.2. Practical Calculations for Shear and Bearing

7.2.1. Strength Calculations for Shear

The strength condition for shear can be expressed as:

_Qmax
rmax_ A ¢ 51]

Where([t ] i is the allowable shear stress.

(7.4)

Unlike pure tension or compression, the allowable shear s[ﬁ‘gésdepends

not only on the material but also on the design features of the elements subjected to
shear, or, for example, on the technology used to create a welded joint. For instance,
in the case of rivets made from the same steel, different allowablesttesses are
applied depending on how the hole for the rivet is nigderilling or punching.
Letds explore the features of shear
Example 7.1 Determine the minimum number of rivets needed to ensure that
the joint connecting two sheets can withstand a given Faakb kN (see Fig. 7.3).

Given:d=10 mm [¢,]=100 MPa.
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F /|\ Under the action of forces F, whic
—”1——:——%85 S t%;;——"? cause the sheets to shift relative to each o
Y F in the mm (see Fig7.3), the rivet shafts ar
: subjected to shear.

id 9 We will assume that these forcase
F i @ _F evenly distributed among all the rivets, a
i the transverse force in the shear plane of e

|

|

I

@f' rivet is:

Fig.73. For example 7.1

Q=F/n,
w h e rias the number of rivets. The
the condition for shear strength takes f
form:

t=— ¢ ¢]
From here
, 4F 4015 16
pd?[ 4] B0 100
We accept finallyn =6.

<

7.2.2. Strength calculations for bearing

It should be noted that the loads applied to elements interacting during operation
not only cause shear but also induce bearing on the contacting suBeaesg re-
fers to the plastic deformation of these surfaces.

In Fig. 7.4a, the pressure distribution diagram on the contact surface under the
forceF is shown.

V772220
—\
—

77777777
1777727722727 /

a) b)
Fig.74. Loading scheme in the contact zoné: @essure distribu- Fig.75. Diagram for deter-
tion diagram on the contact surfacd; proportional law of pres- mining the bearing area

sure distribution

In reality, determining the stressrain state of a body in the contact zone is a
complex problem in the theory of plasticity. However, with sufficient accuracy
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within acceptable safety margins, the magnitude of the maximum stress on the con-
tact surface, or the maximum bearing strgs, can be found quite simply, based
on certain assumptions. Specifically, it can be assumed, first, that according to the
boundary force conditions on the contact surf&e= Q.. (see Fig. 7.4b). Second,

the pressure on the contact surface changes proportionally to the change in the pro-
jection of the aredA of the lateral surface onto the diametral plane:

G _ dA (7.5)

Omax  OA

Thus, g dA= g, dA =Cons.
The forceF can be expressed through the pressure on the contact surface as:

F=ffdA 9., 9§ G. A S7A. (7.6)

Then,
F . (7.7)

Here,¢y: is the bearing area, which equals the projection of the contact surface
onto the diametral plane (Fig. 7.5). For the given examfyjex dd
The strength condition for bearing is:

_F (7.8)
Su = 4 ¢ s ]
The allowable bearing stress is related to the allowable compressive stress as
follows:
[s,.]=(2..2.9[ 4..

d Example 7.2 Using the conditions fron

-7 /% 5 Example 7.1, determine the minimum numbe
— rivets based on the strength condition for bear

0 given that the thickness of the sheetd is8mm,

T s the allowable bearing stress for the rivet mate
%%;:-‘ * is [s,] =350MPa, and the allowable bearir

Fig.76. For example 7.2 Stress for the sheet materia[ &, | =420MPa

The loading scheme artige stress distribution diagrams in the crasstion of
the rivet are shown in Fig. 7.6.
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Since the bearing areas for both the rivets and the sheet are the same and equal
to:

A, =dd 40 80 8amn.
Thus, the minimum allowable number of rivets will be determined based on the

strength condition for the rivet, as the weaker element in the connection with the
lower allowable bearing stress. Therefore:

F
sbr - ({ ‘%r]r '
Here, Fi=F/n i is the force acting on a single rivet.
Then,
F 45Q40

n

2
A [sw] 80CB50

Let 6S n&3 S ume

Note. Calculations for shear and bearing are complementary calculations.
When performing the design calculation, the safe dimensions of the elements or their
minimum quantity are determined based on the strength conditions for both shear
and bearing. The largedimension (or number of elements) from the results found
should be chosen.

Therefore, by comparing the results of the shear and bearing calculations in our
examples, we accept the minimum number of rivets-a6.

7.2.3. Strength calculations of welded joints

In modern mechanical engineering, welded joints are extremely common due
to high manufacturability and economy, compared to the same riveted joints. How-
ever,they are not inferior to them in strength and reliability.

There are many types of welded joints and methods of obtaining them. The most
common are connections using butt and corner, or ralidds. Calculations for their
strength have certain features and are highlighted in special literature. However,
within the framework of the resistance of the materials, one can fairly accurately
calculate the strength, in particular of the comelds, assuming, with a certain de-
gree of convention, that they work in shear.

In Fig. 7.7 shows examples of welded joints using conebds.
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] 4 4k
TR :
Ll =
- r ) | "Qe
755 | w '
B :
a) b) c)

Fig.7.7. Types of corner welds: a and bap welds; d teeweld

If the direction of the corneweldis perpendicular to the direction of the force,
then such aveld is called a frontal or endield (Fig. 7.7 a). And if its direction is
parallel to the acting force, then tiveldis called a flank or sidereld (Fig. 7.7 b).

Consider the corneveld (Fig. 7.8). If we
do not take into account the inflonhen in

F > crosssection the corneweld can be consid
e © A4 . . .
- / ered as an isosceles right trianglBC. The cut
X] C B ] F
ki

of theweldwill take place in the minimum se:
tion passing through the height of the trian
CD.

Fig.78. Geometry oftornerweld

Given that the height of the triangke= dos45 — 0°7, we will find the cal-
culated crossectional area of theeld as A, =hlg ©,7 I, wherelsis the calcu-

latedweldlength. It is taken 10 mm shorter than the actual length ofié¢thd: taking
into account the soalled "failures" at the beginning and end of wedd, where the
material is of poor quality and has low strength. Thaljs| -10.

Considering that thehearstresses in the shear plane are uniformly distributed,
and considering that twwelds work in the joint (see Fig. 7.8), the strength condition
will have the form:

F _ F [ @] (7.9)
A, L4d(l -10 '
Permissible tensidi,| are found from the tables, depending on the technology

of obtaining theweld, the type of electrode, etc. The e index indicates that/éhe
was obtained by electric arc welding.

The strength condition (7.10) is valid for both frontal and fheelkds.

It should be noted that the frontaklds are rigid, their destruction is not ac-
companied by noticeable residual deformations. Therefore, they do not resist
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dynamic loads. Flankvelds belong to the soalled viscouswvelds, because they
break with significant residual deformations. They resist dynamic loads better than
frontalwelds and are therefore more common in practice.

F1f f Example 7.3 From the condition o

3, shear strength, find the required lengi
(% % of the weld (Fig. 7.9), if the streng
F =30kN, and the permissible she

"""""" Stressl:fe] =80MPa.

Fig.79. For example 9.3

The shear strength condition of thneelds has the form

t _(Ilsf'l ls*lzz) qabs 45 o]

Here;| =l . 0 10 48w, | .=l 10mm,

From the strength condition, we find:

|5 = F 1. |- ﬂ 80- 27,2m.
dcos45] | 50,7 80

From here

=l , #0 27,2 16 3&2m.

7.3. Pure shear

7.3.1. Pure shear as a special case of a plain stress state

Let's analyze the stress state at an arbitrary point of theszossen of the rod
under shear conditions. Within the accepted assumptions that no deformations, ex-
cept for shear, occur in the load zone, atigarstresses act in the cressction of
the rod. Neglecting the lateral pressure between the fibers and using the law of parity
of sheasstresses, we will obtain such a state of stress as shown ih FigOf course,
this scheme of element loading, according to the S&n@ant principle, is valid only
for points far enough deep into the rod from the point on the surface where the force
is applied.

As can be seen from the figure, the element is in a plane stress state.

A special case of a plane stress state, when @hlgar stresses act on four
mutually perpendicular faces of the element, is called pure shear.
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Pure shearis quite often imple-

F
! mented in practice. In addition to tl

(11 T\t ! case of shearing of the rod, this type
f&@? } planestress state also occurs in otl
! types of deformation of rods, which v
Fig.710. Stress state in the shear zone of will study in the following sections c
rod the course, for example, in case of p
torsion, in case of transverse bend
of rods in certain of its fibers.
Let's depict the element in a plane (Fig. 7.11) and determine the magnitudes and
directions of theorincipal stresses. To do this, we will use the equations for the Iin-
verse plane stress state problem.

Becauss, = s 0, t,, =, t,, =, g

Ty 1
then by formula (5.48) we obtain: Ne——=" <
Smax = Smin = \
That is,

The direction of the principal stresses ¢
be found using the formula (5.49):

Gs

Fig.711 Pure shear

tha_—.M =.
Sy -
From hera =45 .
We direct the principal axis 1 by me
thexaxi s, as shown in Fig. 7.11. The str

principal planes, taking their signs into account.
Hooke's law for pure shear, according to formulas (5.72), can be written in the

form:

g—i or =G (7.10)
G - d
Specific potential energy under pure shear:
1. 2. 2
=_—¢ + + - +
SE 6 2S 3+3(-1Ms§ %3 & (7.11)
:i(zﬁ 2> 2)nt1+ 2
2E E
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Or, taking into account the relation (5.71)
t2 (7.12)
u=—
2G
The first invariant of the stress tensor under pure shear
la= ¢ +S gt s =0

Therefore, all physical quantities are proportiohgl, are also zero:

+ +
- octahedral normal stress;,, =%§ -

1- 2
L E 01( 1S F Sg)t G
- specific potential energy of volume change:
1- 2m,
= 6E (51 +‘% +§
Thus, with pure displacement, the volume of the body does not change, and all
the energy goes to changing its shape. That is, according to formulas (7.11) and
(7.12), the energy of the shape change is also calculated.

- volume deformatione,

7.3.2. Verification of strength and allowable stresses under pure
shear conditions

Under pure shear, the strength condition can be written as:
t ¢ ] (7.13)
Here[t] I allowablesheaistresses, which can be determined, like the allowable

tensile stresses, from the experiment. Below we will get acquainted with the meth-
odology of shear tests. However, we immediately note that these tests are methodo-
logically more difficult than tensileests and, for this reason, are not so common.
In practice, to determine the allowaBleearstresses, strength theories are most
often used, expressing these stresses in terms of the allowable tensile stresses.
Secondtheory of strength. The strength condition (6.7) for pure shear condi-
tions takes the forn{t |

S .
From heret ¢1[+—] which means:

1+ 1y
g Is] (7.14)

1+ r
Atm 0,25 ..04:[t] £0,7..08[ |.
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Third theory of strength. Strength condition (6.10) for pure shear conditions:
s; - s[qor 2t ¢].
From here:
[t] 9 ]. (7.15)

Fourth theory of strength. Strength condition (6.15) for pure shear conditions:
1 2 2 \/ 2 2
s+ +3 S )" or t2 +%t 4+ [t ].
sl + £ (455 § ] 3

From here[t] ®,6 |which means

Nl

Questions for self-testing

1. What type of deformation of a rod is called pure shear or displacement?

2. Write the integral equation of equilibrium for a rod under conditions of
pure shear.

3. Provide examples of practical implementations of pure shear conditions.

4. What type of deformation often accompanies the shear of a rod, leading to
the idea of pure shear with a certain degree of conventionality?

5. What stresses arise in the crgestion of a rod during pure shear? What
is the distribution law of these stresses across the section?

6. Write the strength condition for a rod under pure shear.

7. The allowable shear stress is determined solely by the material of the rod:
I yes; 1T no. Choose the correct answe

8. What deformations occur in the contact surfaces of elements working un-
der shear?

9. Whatis the law of pressure distribution on the contact surface during crum-
pling in material resistance?

10. Write the strength condition farumpling.

11.What is the area of crumpling?

12.Which welds are called frontal or butt welds, and which are called side or
fillet welds?

13. Write the strength conditions for fillet and butt welds.

14.Why is the design length of a weld taKEhmmless than the actual length?

15.What distinguishes rigid welds from ductile welds?

16. Are butt welds classified as rigid or ductile?

17.Which welds better resist dynamic loads: butt welds or fillet welds? Justify
your answer.
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18.When does pure shear at a point in a body occur? To what type of stress
state does pure shear belong?

19. Provide practical examples of pure shear.

20. Are the shear stresses in the planes of pure shear simultaneously the max-
Imum shear stresses at that point in the deformed body? Justify your answer.

21Wr i te Hookeds | aw for pure shear.

22.What is the volumetric deformation under pure shear conditions?
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8. STRENGTH AND RIGIDITY CALCULATIONS OF RODS IN
PURE TORSION

The torsion of the rod occurs when, of the six components of the internal forces
in the section, only the torque is different from zero.

This type of deformation is caused by pairs of forces whose plane of action is
perpendicular to the axis of the rod. Torsions, helical springs, etc. work for torsion.

8.1. Torsion of around rod

8.1.1. Determination of stresses and strains. Conditions of
strength and rigidity

Consider a cylindrical rod that is rigidly clamped at one end, and a pair of forces
M is applied to the other end (Fig. 8.1, a). Only torques will occur in its sections
(Fig.8.1, b)

a) b) C)

Fig.8.1. Torsion of a round rod: mload scheme; b rod element; ¢ crosssectional stress

Determine the stress and displacement in the rod during twisting. To do this, we
will use the scheme for solving the integral equations of equilibrium for the rod.
1. The static side of the problem.
Of the six integral equilibrium equations (1i9)1.14), only the torque equation
will remain, which in our case, in accordance with the scheme (Fig. 8.1, c), will be
written as follows:
Mtor = ﬁ /‘m (81)
A
2. Geometric side of the problem.
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Experimental verification confirmed tt
validity of the hypothesis of plane sectiol
which wasdiscussed in the case of tensic
compression, and for the case of torsion ¢
cylindrical rod. Based on this hypothesis,
will make several assumptions.

- creating a cylindrical side surface
ter twisting the rod to an angje turn into spi-
ral lines (Fig. 8.2);

Fig.82. Geometric picture of rod defor- o th_? radi draV\_m In the end sections
mation during twisting main rectilinear, that is, they are not curved
- the distances between adjacent ¢

tions do not change.

Let's formulate the hypothesis giinecrosssections during torsion.

The crosssections of the rodplane before deformation, remaimplane when
the round rod is twisted, turning relative to each other by a certain angle of tivist

Let's consider the rod element with lengbh (Fig. 8.1, b) on a larger scale
(Fig. 8.3).

2r

Fig.83. Rod element: & geometric pattern of deformation of the elemerit;doosssection of
the rod; ¢ stress state at the point of the rod

Let's draw two generatoegh, andcod, on the surface of the rod.
After twisting, the right section relative to the left will turn at an adgleand

the generators will turn into helical linegsbaand @d; with an elevation anglg
(Fig. 8.3, a).
with Dablwe get the following ratio:
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g o i (8.2)
agly  dx
For an element highlighted by an arbitrary cylindrical surface at a distance
from the axis (Fig. 8.3, b):

6 =L (8.3)
dx
Herecclll—J I relative or linear angle of rotation, which is denoted by a letter
X
i (8.4)
4
Then
9 =1 (8.5)

3. The physical side of the problem.
Considering the deformation of the elemabtdof infinitesimal thickness, se-
lected on the surface of arbitrary radiugFig. 8.3, c), neglecting the change in the

linear dimensions of the sides due to their smallness, we can assume that the element
Is in pure shear conditions, since its deformation consists only in the change of pre-
viously straight angles to an angle

For pure shear, Hooke's law can be written in the form:

t, © | (8.6)
or
t, & .« (8.7)
4. Synthesis.
Substitute (8.7) into (8.1):
M, = f{3g FdA.
A

HereGg =Cons. Then
Mo =GN FdA =G g. (8.8)
A

whereuwdis the polar moment of inertia of the cross section of the rod.
From here we get the formulas for determining the relative angle of twist of the
rod and theshearstress in the section:
M

= Vor
q ol (8.9)
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t, = IW J (8.10)

As follows from formula (8.10)shearstresses in the section are distributed ac-
cording to a linear law. When =0 (on the rod axis)t ®©. They acquire the greatest

value on the contour of the section when= [, I (Fig.8.4):

M

t'max = tor r )

l p
Let's mark
Ip
W, =—2 (8.11)
: r
T max
Fig.84. Diagrams of shearstresses whereWpis the polar moment of crosctional
resistance.

The polar moment of resistance is called the ratio of the pala@ment of
inertia to the distance from the pole to the farthest point of the section.
So,

¢ =l (8.12)

For a solid rod:

For a hollow rod:

4 3
|p:p3i2(1 - 9; Wp:%(l =)

Herea =%, whered i outer diameter of the rod, ar@l}, is its inner diameter.

Let's define displacement during rotation. If we are interested in the mutual
twisting angle between two arbitrary sections, the distance between whideis,
using expressions (8.4) and (8.9), we obtain:

| |
D d
/ = Qex =%‘% ay
0

0 p
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If the rigidity of the crosssection is within the cylindrical section of the rod
Gl , =Constand torqueM,, =Cons|, then, by analogy wittensioncompression, a

uniform deformation takes placEor this case, we obtain Hooke's law in absolute
values duringorsion:

. M
J =4 Gl (8.13)
Torsional strength condition:
M
f = tor ] .
S ¢} (8.14)
Rigidity condition:
rad
o = 0[47 (8.15)
or
My 380 1 deg
G 6l 5 [ —. (8.16)

Note. Permissible linear twisting angles depend on the nature of the active load.
So, for steel shafts under static loddy]=0,3degm; with cyclic loading

[g] =0,25degm, and under impact loafty] =0,15degm.

Example 8.1 Compare the maximum stresses and weights of solid and hollow
shafts, which have the same external diameters, the same length, are made of the
same material and perceive torques of the same magnitude. Ratio of diameters for a
hollow shafta =0,5.

Maximumshearstresses for a solid shaft during torsiofy,, = 16—'\3“’“ and for

16M,,, . Then

hoIIow—z‘,Lm(i:m

tdx = 1 4 g,
tim, 1 0,0625

Weights are referred to as cressctional areas of shafts:
2
GiiA fi -9 .
Gi Ai 4pd?
So, hollow shatft is 25% lighter than a solid shaft, while the maximum stresses
in it exceed the maximum stresses in a solid shaft by only 6%. That is, from the point

2 4 &25 0,7.
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of view of saving material, reducing the weight of the structure, a hollow shatft is
definitely more rational.
Example 8.2.Check the strength of the stepped rod (Fig. 8.5), rigidly pinched

in the support# andB, and loaded with a moment in the sect®M, =120N .

Also find the angle by which the secti@will turn relative to the supports. The
material of the rod is steel 45. All the necessary dimensions are indicated in the
Fig.8.5.

M, M} d,=12mm M It is obvious that this rod is staticall

. indeterminate: we have one equilibriu
AC Jr\fﬁ;m’— 7 7 condition- the sum of moments relative
_ h=04m | 1,=0.4m the axis of the rod is zero. And the two

-

active moments Mand M arising in the

106,23 .
Nm  resistances are unknown.

13,77 1. The static side of the problem. T

'm equilibrium equation has the form:

afn=f o4 1 § 5O
Fig.85. For example 8.2 2. Geometric side of the proble
Since the ends of the rod are tigh
clamped, the angle of rotation of sectior
relative to section B is zero:

Jo-1=0¢ uwth P
3. The physical side of the problem. Using formula (8.13), we obtain:
: JQH-- _(a[d)'Ms)k
Jq)-bl Glplijc-B G|p2 .

4. SynthesisSubstituting expressions (3) into equation (2), we will have:

J:d)l.'l._l_(:’: ¢ " MS)b 5.
Glg  Glp

From here
ML , .

= My _Mldy 12004 B g ooy
.+, Td% kd? 0,418 04 200

Then
Mg=M, -M, 0 106,23 137K m.

The torque diagram is shown in Fagb.
The maximumshearstresses on the AC and CB sections:
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_16M, 160106,23 @D

r .= &/7,63MPa;

max1 pdle. ﬂos

tmax2=16M3B —16C&3.T77 a 40,58VPa
pd; Mz

Let's determine the allowable stresses for the material of theFardsteel 45
we get:
S
[t]=09 § =0,5= 852  opiPa
N, 15
Let's see What .1 tax2 [ thatis, the rod strength condition is fulfilled.
Determine the angle of rotation of section C relative to the supports.

g oh 106,230,4 B 3D

Ju- ” ———— 070034
TG, T 8ad 030

j [ gh 13,770,4tH 3D
- B~ . - -
) Glp,  8a0 010

As we can see that is, a geometric condition (2) holds, which indicates the cor-
rectness of the static uncertainty disclosure.

Based on the obtained data, we build a graph of the increase in the angles of
twisting the rodD j (Fig.8.5).

0-0034.

8.1.2. The nature of the rod's fracture under torsion

Therefore,a net shift occurs at any point of the round rod during torsion
(Fig. 8.3, ¢). The maximurshearstresses act at points on the contour of the cross
section. According to the law of parity shearstresses, the same stresses arise in
the longitudinal sections of the rod (Fig. 8.6).

Under pure shear, the largest normal stresses are the principal ssresses

S5 - operate in sites inclined at an angle to the sites of actiofi 5. In Fig. 8.6,

the lines of action ofhese stresses are depicted by helical lines with an angle of
elevation45 .
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Depending on the properties of t
material, all these stresses can be (
gerous.

If the material igorittle, it does not
resist normal stresses well. The destt
tion of rods made of such materials

Fig.86. Stress state in a rod during torsion accompanied by the formation of crac
directed along helical lines (Fig. 8.7,

The destruction of rods made of plastic materials is associated with shifts in the
areas of action of maximushearstresses. Therefore, for example, steel shafts are
destroyed in the cross section (Fig. 8.7, b). And wood does not resist shearing along
the fibers well, and cracks appear precisely in this direction (Fig. 8.7, c).

'{%ﬁm??ﬂ

.“":*\\ O\ o E ) J"\\ \ _’3/’?,, _ g
il e\ = =\

a) b) c)
Fig.8.7. Types of rod failure duringprsion ai brittle material; i plastic material; ¢ wood
with fibers along the axis of the rod

ey

8.2. Torsion of non-circular cross-section rods

Determination of stresses in rods with a fomcular section during torsias a
rather difficult problem that cannot be solved by the methods of resistance of mate-
rials. The reason is that for such rods the hypothesis of plane sections does not hold,
which greatly simplifies this problem for a round rod. Crssstions in a twisd
non-circular rod are significantly distorted (deplaned), and the law of stress distribu-
tion in the crossection becomes complicated. Stresses become functions of more
than onevariable- the radiug, as in the case ofith a circular crossection, and
already two coordinates of the crassction point. When determining the shear an-
gles, it is necessary to take into account not only the mutual rotation of the cross
sections, but also the local skew associated withuheture of the crossection.

8.2.1. Features of the shear stress distribution in non-circular
sections of the rod under torsion

Let's make some general remarks about the laws of stress distribution in the
section.
Shearstresses near the contour of the section are diresttedrto the contour.
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This is easy to verify if we assume that this statement is false. Then tension
should be directed at an angle to the contour (see Fig. 8.8).

\\\\\\- //

Fig.88. Shearstresses on the contour of the se Fig.89. Shearstresses in the outer corne
tion of the section

Let's decompose this tension into two components: along the tangentomthe
tour(ti) and along the norméli). According to the law of parity afhearstresses

stress must act on the orthogonal fatei=i . But this face belongs to the side sur-
face of the rod, which is free of Iload, and therefore stress

there are noneonit. 3¢ j=j t 0.
That is, theshearstress near the contour is direcgd@aro the contour, which

had to be proved.
In the case when the cressction has external corners, there are stear

stresses in them.
This statement, as in the previous case, will be proved from the opposite. As-

sume that there is a stress near the corner point of the dg@ign8.9). Let's dis-
tribute this stress on the sides of the corner. According to the law of pasityeaf
stresses, stresses also act on the faces of the element that belong to the side surface

of the rod tf = and tj i=. Since the lateral surface of the rod is free
from load, then tensiobj =, t O, which means antli = t j=0.

That is, there are nshearstresses near the outer corner in the cross section,
which had to be proved.
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8.2.2. Torsion of arod of rectangular cross-section

Taking into account the peculiarities of stress distribution incwular sec-
tions of the rod during torsion, it is quite simple to depict a qualitative picture of such
distribution both along the perimeter and alongghacipal central axes of inertia
(Fig. 8.10).

M, At points A and B there are maximur
shearstresseq 5, andtj,,, in accordance.

! BT 1A\ In strength calculations andgidity of
< :_'i Tone rods with a nostircular crosssection use

f | Y z readymade formulas obtained by the meth¢

b of the theory of elasticity.

: | /f For a rod with a rectangular cressction,

T these formulas are similar to those used to

Fig.8.10. Diagrans of distribution oshear Culate round rods:
stresses in a rod of rectangular section ¢

ing twisting
M
l = tor 8.17
max V\/tor ( )
_ M (8.18)
T

tor

Here |, andW,- geometric characteristics, which are conventionally called
moments of inertia during torsion and moments of resistance during torsion. Their
dimensions arennt andmn?, respectively.

For a rectangular section

|, = bmb; (8.19)
W, =amb; (8.20)
Uinax = Bha (8.21)
Rod strength condition:
M (8.22)
l- — tor g
e amb’ ¢
Rigidity condition:
_ My &J (8.23)
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Here are the coefficienta, b, h depend on the ratim=g and are cited in

reference books atmeresistance of materials.
At m2 4 these coefficients can be found using the formula:
m- 0,63

a=m>=> .
3

: 1
For narrow rectangular sections, wher>10, a = b§:.

Then the geometric characteristics are found as

= (8.24)
tor 3 1
w_ =ho (8.25)
tor 3 -

Example 8.3.Find the dimensions of the rectangular cresstion of the rod in
which the torque acts under the condition of strenftthe ratio of its sides

m= h/b 2. Also find the relative angle of rotation of the rod, assuming that the
torque along the length is constant. The material of the rod is st&#&bgth factor
nye:1,5.

Let's find the permissible stress. For stg®|7 , =190MPa

Then [¢] =% =1li§ R MPa.

ye
For a given aspect ratio of a rectangular sectiooefficientsa =0,246and
b 0,229

From the condition of strengi{8.22) we find:

p2 o M o 20000 4y gppy
am[ ] \o0,24602 27

Thenh=mb 2 1§74 28 48nr

The relative twist angle of the rod, according to the forngla3),
M, _ 200410

Gbhbmid 8QA0 @229 204, Th

6116 1®

Ormax =
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8.2.3. Torsion of complex non-closed profiles

Consider some open section consisting of several simple elements for which it
is easy to defind,, andW, (Fig. 8.11).

tor;

2

1

P

Xp

n

Fig.811 Complex open section
For the entire section:

Itor = Itor1 +t0r2 + tc->'r-n a I:tori (826)
i=1
Suppose that someh part of theM,or acts on every-th element. Then

Mtor = Ivltorl -|Mtor2 + I\/Hforn a Mtori (827)
i=1

And the twisting angle for the entire sectiand its individual elements is the

same:
9 =14 4
Let's express it by M,

M M _Mt0r2 M

tor — _ o — for, (8 28)
Gl tor Gl tor, Gl tor, Gl tor,
From here
| | |
— tor, . tor, . . tor,
Mtorl_Mtor | J Mtor2 :NItor """\/Itorn Mtor .
tor tor tor

As you can see, the torque in the section is distributed between the constituent
elements in proportion to theigidity.
The largesthearstress for eachth element:

o = |\/|tori M., iltorl g M. gto_ri _
W, W, ol W, &,
The maximum shearstress will occur in the element for which the relation
e /\N ¢ acquires the greatest importance:

-CD: Ot

0
[max: | o %, 8 ' (829)
i max



e Example 8.4. Determine the largesshear
stresses and the relative twist angle of the cross
tion of the steel rod (Fig.8.12) under the action
torque M., =200N Q. Set, whether the method

dividing the section into elements affects the resu
S calculations.

40

y

30
Fig.812 For example 8.4

Maximumshearstresses in the section:
tmax - MIOY/V\{OF;

—_ I tor

W, =7 -
tor, /Vvtori max

were

And, according t0§.26),

lor = .al o -
Let's divide the section into components in two ways&Hig).
Option 1. (Fig. 8.13, a).
For element | wehave: h =30mmb =5mmh/h =6. According to table
13[1] &,=0,299: 4,=0,299
Thenw,, =a,hif 9,299 30 5 O 224 2&n

= bhp? 0,299 30 8 01124, 2A8nf

I tor,

aby - lo, _1121,25
\ [ =
o e I W, 224,25
X Jig S Jig For element Il we haveh, =30mm
st = b=10mm  h/b=3  4,=0,267
30 25 b, =0,263
2) 6) Then
Fig.8.13. Splitting the section into component _ - -
a methodl (a) and method 2 (b) W, =a,h 9,267 30 160 80FmM

=bhbd 6,263 30 180 7880nnf

I tor,
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|
on 7890 g oo
W

for, 801
H21,25 A390 9611,aIm"

Correlation I, AV, more for element I, which means that greatest stress

tor,

+

tor,

will occur in the middle of its longer sides:
M, al, 0 200410

too =2 4 ————0,85 218,aMPa
lor Moy 2, 9011,25
Relative twist angle
q= My - = 200(..16 277 100
Gl, 8Q0¢ 11,25
Option 2.

For element | we havd} =40mmb =5mmh /b =8;4, =0,307 b, =0,307

Thenw,, =a;hif ,307 40 8 & 307mm

lo, = b 9,307 4D 8 O1538nf

For element Il we haveh, =25mmb,=10mm h,/b,=2,5; &, =0,256;
b,=0,249

Thenw,, =a,h§ 0,256 25 160 64

Lo, = o005 9,249 25 160 6228nnt

Moment of inertia of the sectian, =1, +, 1535 6225 7#60m’
| I
We have the following ratios:— 535 Hmm, —=2 = 6225 9,73nm
307 W 640

tor, tor,

Correlation I, W, again, it is more for element II, which means that the
greatest stresses will act here:

al, 0 .
£ = 3 20000 73 250,avPa
| ) 7760

tor (;‘, tor =y
Relative twist angle
M 200Q.G

=S = S 302 10
77G1. BAT 760

As you can see, thmethod of dividing the section into components affects the
results of the calculations. These differences include:
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- for moments of inertia

()

Itg) _9011,25 416:
| 7760

- for stresses

()
Inax 2180 4 g1,
@ 250,8

- for relative twist angles
(1) 1 0
95-=21129 986
q 3,22A0

The obtained result indicates the imperfection of the method of calculating the
rod of a complex open profile for torsion within the framework of material resistance.
Therefore, when there is a need for a more accurate analysis of thesttmsstate
of such rods, the methods of the theory of elasticity should be used.

Note. It should be noted that even with the low accuracy of stress and strain
calculations, the presented method can be considered quite acceptable for strength
assessment within the limits of strength reserves accepted in the support materials.

Note. Satisfactory accuracy of the calculation of stresses and strains can be
obtained by the considered method for cresstions consisting of thiwalled ele-
ments.

8.2.4. Torsion of thin-walled profiles

Thin-walled profiles include profiles in which the wall thickness of any of the
elements that make up this profile is much smaller than other characteristic sizes of
these elements. In mechanical engineering, aircraft and shipbuilding, mining, con-
struction and other branches of technology and industry, such profiles have become
widespread and must be counted on for strengthrigidity, including during tor-
sion.

There are open and closed thwalled profiles, the calculation methods of
which differ in terms of strength amaidity.

8.2.4.1 Open profiles

Open or open thiwalled profiles include, for example, rolling profiles: angles,
channels, beams, double beams, etc.
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Consider an arbitrary thiwalled open

3 ! profile (Fig. 8.14). It consists of rectangles.

5 a rule, for rectangular elements of tirlled

4 — profiles, the ratio of their siddy/b>10. And
— that means the coefficients for the

Fig.8.14. Open thinwalled profil : : :
9 pen TiRwWalee protie a = bl/3. Denoting the walthickness with

a Greek letted , according to formulas (8.24
(8.25), we obtain:

I
Then — =, formula (8.29) for maximurshearstresses takes the form:

or

M r
[max :Ii (Xax'

tor

(8.30)

Here | :1'3?‘ ha.
3ia

tor

According to formula (8.30), the largedtearstresses in open thimalled pro-
files occur in the element with the largest wall thickness.
The relative twist angle is found by formula (8.18).
Now consider an example in which the rod from example 8.4 will have a thin
walled profile (Fig. 8.15).
3 Example 8.5 See condition for exarr
ple8.4.
Let's divide the section into comp
nents in two ways (Fig.8.16). It should

’ o m——3

= noted that irthis case the method of divisic
will affect only the magnitude of the mome
~ of inertia of the section,, .
X : Option1 (Fig. 8.16 a).
~ 0 | For element | we haveh =38mm
Fig.815. For example 8.5 01 =3mm h/ai :12,67131 — {7 :]/3;
Thenl,, =bh, & Z?? 2mndf
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3 ~3. For element Il we haveh, =30mm

M' -
1 1 d,=2mmh,/d,=15;a,= b /3.
& S 30¢%
=
0o o Thenl,, =bh, @'_T 80mnt.
! Finally
30 27 ’
- lor =l +ior, 342 80 422m’
a) b) Option 2.

_ L o For element | we haveh =40d3d;
Fig.816. Splitting the section into component

a method1 (a) and method 2 (b) tp 3d3C; hy/d; 43,3%5.a; = b 13,
40C8°
3

Then; g = iy Jd 3683t

For element Il we havel}, =27mmd, =2mm h,/d,=135a,= § /3.
27;23 2 mnf.

Thenl, =bh, &

tor,

o =l,, +, 360 72 43mm’

The maximunshearstresses for the 1st and 2nd methods of splitting are, re-
spectively, equal to:

Moment ofnertia of the section

tor, tor,

! o My .. 2OOCIGB H21,8MPa ;
Itor‘ 422
l ey, =0 My .. 200&63 1388, MPa
or 432
Relative twist angle
g = Mo, —2..000"(? 59,2 105
Gl 8Q0 422
g, = M~ 2“OOC1(? 57,8 100
Gly, 8Q0 432
So, we have the following differences:
- for moments of inertia
(®
It_02f:4_22 3098
12 432

tor

- for stresses
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1)
s 14218 , o,
1388,9

ax

4
4

SSIE=

for relative twist angles
g¥ 59,2010
g? 57,840°

As we can see, icomparison with example 8.the differences in the results
are quite insignificant.

Example 8.6. Determine maximum
shearstresses and the absolute twist angle
tween the ends of a thimalled steel pipe witt
a length of0,5 m cut along the generat:
(Fig.8.17), under the action of torq!
Miwr=60Nm if the outer diameter of the piy
] dex=100mm and the internadi,=94mm

Fig.817. For example 8.6

The moment of inertia of the section of the cut pipe during twisting can be found
as for its sweep, that is, a rectangle, taking into account that the thickness of the pipe
IS constant:

., Lo,
3

Here s ighe length of the middle line of the pipe:
s=0,50d d) 05 (1p0 9+ 304iMmM

Then
., :w =2742,6Imn"
The maximurnshearstresses can be found using the form8l&Q):
z‘max=% " %@ 65,63MPa

Let's find by the formula8(18) the relative angle of twisting of the pipe, taking
the shear modulus for steeks [ 1 ¢

g=Ma 6040 273 109"
Gl 8AC0 274261 mm
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Then the absolute twist angle between the end sections of the pipe is

i = @7310% @00 @13rador | %7 285

8.2.4.2Closed profiles

Consider a rod of an arbitrary closed profile (Fig. 8.18, a), which is twisted by
a momentMy,. Since the thickness of its wall is small, it can be assumed that the
shearstresses are evenly distributed throughout the thickness.

a) b)

Fig.818. Closed profile: a) load scheme; b) stress state of the rod element

Let's cut the rod element with two adjacent planes at a distiaacel two more
planes along the generator, and let's depict it in an enlarged form (Fig. 8.18, b). On
the faces of the element belonging to the ceesgions, there are varialdbear

stresses along the perimetgrandt,. On horizontal faces, in accordance with the

law of parity ofshearstresses, stresses will act accordirtély =, and t*2 =,. Un-
der the condition of equilibriurd X =0. That is,
t; @iz - 5dzdO (8.31)
Or
t;d 53 d Eonhsl (8.32)
Now consider the cross section of the rod (Fig. 8.19).
The middle line of the profile wall is marked with a dakitted line, which is
the locus of points that lie at the same distance from the outer andunferes of
the profile. A force applied at some point of the midline of the profile creates a mo-

ment about the axis of the member

dM_ =t ds €

tor
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Herer is the distance from the rod atsa
point on the midline.
Consider the triangl®AB. Its area

dw =L ds «
>

Then
dM,_=2f d .

tor
Integrating we find:

=2t d,

Fig.819. Cross section of theod

'[OI'

wherewi the area of the figure bounded by the middle line optioéle.
From here
_ Mg
C2d w
The maximum stresses in a closed profile will occur where the profile has the
smallest thickness (here it should be recalled that forctased profiles the highest
stresses occur in the place where the thickness of the profile is the greatest).

Therefore, the strength condition for a closed-thailed profile is:
t- tor
mo= g 1 (8.33)

Let's determine the absolute angle of rotation of the rod. To do this, we will use
the relationship for the potential energy of deformation of the rod. Since a pure shear
occurs at the points of the rod during pure torsion, then, according to formulg (7.13

for an element with a volume aofV = dx dl<s we have

£2
dU =—dx dlis;
2G

and for the entire rod

1 27 dg I-(ﬁ gﬁ )fl ds
ZG 2G C

Taking into account that & 2“" we will get
w

2] _ds
U — tOI’ .
BG <ﬁ—d (8.34)
On the other hand
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U=Mo/ (8.35)
2
Equating theight-hand sides of the obtained expressions, we find

. Mtorl ds (836)
/= awc Py

and the relative twist angle

_ My 0S (8.37)
9= 2wy

For a cylindrical thirwalled rod, whenr =Const and, d €ons! w = rﬁ,
¢yds=2 p, the stresses will be equal to:
M

t = Zp—tozrd (8.38)
r
Relative twist angle
M
g=—"0_ (8.39)
20r° 6

Example 8.7.Using the data of example 8.6, find the largstarstresses and
the relative twist angle of a continuous thalled pipe (without a longitudinal sec-
tion) and compare the obtained results.

Theshearstresses in the pipe wall can be found using the forn8ug8). The

+ q.
average radius of the pipe= O,M =0,2% 100 9% 48mm and the

wall thicknessgd =3mm. Then

= 2;";2 = 62;15(")3 £35MPa.

The relative twist angle, according to the formwa3Q), is
rad

M;f” — 60(1(?. 349 10—
20r° @ 2 ¢85 ®8@d O mm
We compare the values of stress and deformation in a continuous pipe and in a
pipe cut along the generating line:

q:

. . i~y 4
H_0503 46 G_2730 47516

ti | 135 di i3 490007

As you can see, the stresses in the cut pipe exceed the stresses in the solid pipe
by almost 50 times, and the relative twist angle is three orders of magnitude higher.
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8.3. Potential energy of rod deformation under torsion

Expression (8.35) for the potential energy of deformation during pure twisting
is valid under the condition that the work of the torque on the angles of twisting of
the rod, represented by the rigtand side of this equation, is completely transformed
into the potential energy of its deformation. For a rod element of leixgtie get:

du =Mo" (8.40)
2
According to Hooke's law, in absolute values for a round rod (8.13) for a rod
element of length dx, we cawrite:
dj = MadX. (8.41)
Gl,
2

thendU :M; and for the entire rod
ZGIID

M g, dx

U = fre—. .
Mo (8.42)

For a rod of noftircular crosssection

2
U= ~'\2/'(§;dx. (8.43)
|

tor

8.4. Calculation of helical cylindrical springs with a small
pitch

Helical cylindrical springs are one of the most common types of elastic elements
in engineering, which are subjected to compressive or tensile loads. Most often, they
are wound from round wire with a constant anglenolination of the turns.

Consider a helical cylindrical spring with an average coil raBushich is
stretched by a force (Fig. 8.20).
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Fig.820. Scheme of loading the coil of the Fig.821. Stressed state in the cresesction of the
spring coll of the spring: & from the cut; b from torsion

As can be seen from the figure, the wire from which the spring is wound works
in shear and at the same time in torsion. HgreF andM,, =FR. In fact, the wire

also bends. However, at small angles of inclination of the coil, i.e. for springs with a
small step, bending can be neglected.

Therefore, two groups shearstresses act in the cressction of the wire: from
the cutti and from torsiortj (Fig. 8.21).

From the section, thehearstresses are distributed uniformly in the section.
Their value can be determined by the formula

6 2 éiz (8.44)
A pd
The maximunshearstresses during torsion occur on the contour of the section:
o= 25 (8.45)
A pd

Based on the law of the distribution shearstresses in the crosgction
(Fig. 8.21), we conclude that the point on the inner radius of the spring paiht
A, where theshearstresses for both groups coincide in direction, is a dangerous point.
Therefore, the largeshearstress in the crossection can be found as the sum:
pd> o
or
16FRa, d
max —p ER: P (8.46)
In springs of a large average radius, wound from a thin wire, for which the ratio
is correctd/4R< 4, tensionti from torsion are much greater than from shear

t
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stressed i. Therefore, such springs couwrily on the torsion of the wire, neglecting
the cut:

J6FR
pd°
The axial deformation of the spring is determined, also taking into account only
the torsional deformation of the coil. Let's separate the coil element of length ds from
the spring (Fig. 8.22). Considering the crgsstion of the coiA to be fixed, we

determine the angle by which the creestionB will turn relative to it under the
action of the torque:

(8.47)

tmax

d = Mtords_
Gl,

As a result of the rotation of segme®©®'will return tothe same angld (i
taking a positioBBO". Segmen©0’ ¢haracterizes the axial deformation of the spring
due to the twisting of the coil element ds:

OO ¥d!l Rd .

The deformationof the lower end o
the spring relative to the upper end, wh
is determined by the value of the twist ¢
gle of the entire rod from which the spril
is wound, is found as

, l%%i ds M,R
—_— ﬁq —_ r — tor
Fig.822. Scheme of the deformation of the /=iRds =R | as
S

. . Gl
spring coil element s p P s
The total length of all coils of th
spring: ffis=2 (Rr;
S

wheren is the number of turns of the spring. Then
/ :MZ ,[Rn.
Gl,

4
Taking into account thavl,, =FR, al :% , we finally find:

_64FRn (8.48)

|
Gd*
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lF Example 8.8. Determine what force

""l — F should be applied to an absolutely rigid pl

(Fig. 8.23) so that the distance between it anc
%% support is35 mm Also determine the large
E) —

shearstresses that will occur in both springs. T
| L D=36mm_
|

45

wound ared;=1,5 mmandd,=3 mm and the num
ber of their turns, respectively=10 and n,=8.
The material of the springs is steel

diameters of the wires from which the springs
D, =60 mm

Fig.823. For example 8.8

Based on the load scheme, we conclude thalléf@mationof the plate asso-
ciated with the deformation of the springs can be considered in two stages: first, only
spring 1 is deformed, and then both springs are deformed simultaneously. The total
displacement of the plate, according to the condition of the pmbles
451 35=10mm.

At the first stage, when the first spring is compressesirmm, a force arises in
it, which, according to formula (8.48), will be equal to

- |iGd  _5@ 10" 1D
64(0,D;)°n, 64 0,93 @0
At the second stage, the deformation of the springs shousdntoa. Since in

this case the system becomes statically indeterminate, let's consider its static, geo-
metric and physical aspects.

;542 N.

1. The static side of the problem. The equi
rium equation, according to the scheme (RBg24),
has the form:

L a)

F=Fy # .

35

Here is the poweF; is the additional force aris
ing in the first spring during its deformation at t|
second stage together with the sprihg

Fig.824. For example 8.8 2. Geometric side of the problem. The def
mation of the springs is the same, theref
| 1 = é 5mm

3. The physical side of the problem. According to formula (8.48)
64 (0,D;)°ny | 64F,(0,D,)*n,
ot ° cdd

Iq
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4. Synthesis.

4 . e .
- |1Gd13 _ 508 1«?‘ 1,@. &:542N.
64(0,m;)°n, 64 0,93p @0
4 . .. ..
e __ 1,64 58 16 36 234N,

2~ - ..
64(0,D,)°n, 64 0,96p @
ThenF =0,542 +0,542 2,344 3,4N.

The maximumshearstresses in the springs can be found by the formula (8.47).

16(Ri+F)(0,9;) 16¢1,084 ()5 3@

2% 44 MPa.
pdf pl,(ié3

t maxq

16F,(0,D;) 16(2,344 @5 60

13:26 MPa.
pd3 p3d |

t maxo

Questions for self-testing

1. When does pure torsion of the rod take place?

2. Write the integral equation of equilibrium of the rod for conditions of pure
torsion.

3. Whathypothesis is used when compiling geometric equations for a round
rod under conditions of pure torsion? Formulate this hypothesis.

4. Does the length of a round rod change during pure twisting?

5. What type of stress state is realized in the rod during pure torsion?

6. Where is the dangerous cressction point of a round rod during twisting?

7. Write down the condition of strength of a round rod during torsion.

8. The yield point of the materiak_ =240f 1 ¢, the strength limit is

s, 550§ 1 ¢ the residual elongation after rupture ie8%. What is the permissi-

ble shearstress?

9. Modulus of elasticity of the material feensionE =2 UF MPa, the coef-
ficient of transverse deformation 0, 25. Find the shear modul@ of the material.

10.Why are the largest normal stresses in thiseaahl?

11.Write down the expression for Hooke's law in absolute terms for pure tor-
sion of the rod.

12.Write down therigidity condition of a round rod during torsion.

13.How are the stresses directed on the esassional contour of the rod dur-
ing twisting?
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14. According to which law can you justify the direction of stresses on the
contour of the section during torsion: Hooke's law, the law of pargheéistresses
or Newton's third law?

15.What is the moment of inertia when twisting a rectangular rod?

16. At which points of a thirwalled open profile are the maximushear
stresses during torsion?

17.Where are the maximushearstresses in a closed thivalled profile dur-
ing torsion?

18. Write down the formulas for determining thleearstresses and the relative
twist angle in a thirwalled cylindrical tube during twisting.

19.Where are the dangerous points in a cylindrical helical spring when it is
stretched or compressed?

20. Write down the strength andyidity conditions for a cylindrical helical
spring with a small pitch.
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9. STRENGTH AND RIGIDITY CALCULATIONS OF RODS IN
PLANE BENDING

As you know, the bend is clean and transverse. When the bending moment is
the only force factor in the crosgction of the rod, the bending is called clean. When,
together with the bending moment, transverse forces also act in the section, then the
bendirg is called transverse.

9.1. Stress in a straight rod during pure bending

In Fig. 9.1 gives examples of practical implementation of pure bending condi-
tions.
M M In Fig. 9.1 a show a tweupport beam

ﬁP’ ;Iqé which is acted upon by moments of the se
©
™)

magnitude and opposite directions. That is,
given system of forces is in equilibrium, whi
means that there are no supporting reaction:
a result, there are no tramsse forces in th
crosssections, and only bending moments &
a) Pure bending of a part of the rod can

RA1 F F 1RB obtained by applying to it two identical conce
A ;;B

trated forces at the same distance from the
ports (see Fig. 9.1 b). This is the scheme of
so-called fourpoint fold. It is easy to make su
that the reactionsithe resistances will be eqt
© @ in magnitude to the acting forceR; = Ry =F.
F Under such conditions, only the bendi
moment will act on the central section of 1
beam between the points of application
@ forces.
b) -In order to determine the stresg in acer
Fig. 9.1. Schemes of implementation o section of the rod durlhg pf”e bending, V\_Ie \
pure bending conditions:iawith the ~ SOlve the corresponding integral equation

help of two moments; bwith the help of equilibrium according to the adopted algorith
two forces

> a a

- —
- -

Fa Fa

®

1. The static side of the problem.
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Of the six integral equilibrium equations (1-:9)1.14), only the equation for the
bending moment will remain. Assuming that the bending occurs relative zaxise
(that is, thez axis is perpendicular to the plane of the drawing), we write the equation
as follows:

[ =AYy d (9.1)
¢
2. Geometric side of the problem.

In order toinvestigate the nature of the deformation of the rod during bending,
a simple experiment can be conducted, where an elastic model, for example, a rubber
model, is used as a rod, which allows obtaining quite significant deformations.
A rectangular grid of longitudinal ar
- transverse lines is preliminarily applied to 1
side surface of the rod (Fig. 9.2 a). After be
ing the rod, the following is observed:

” {3 Iy - longitudinal lines become arcs of a c
’ : cle;
- transverse lines as cressctional con-
tours remairplane
— - contour lines return, remaining norrr
b) to the longitudinal fibers;
Fig. 9.2. Deformation of the rod under cor - the ends of the roghlanebefore defor-

ditions of pure bending:iarod before de-

formation: bi rod after deformation mation, remairplaneeven after deformation.

All of the above confirms the fulfillment of the hypothesigpEnesections for
the case of pure bending of the rod.

From the given picture of deformation of the rod during bending, it is clear that
not all fibers are deformed in the same way. In our case (Fig. 9.2), the upper fibers
are shortened, and the lower fibers are lengthened (by the way, when constructing
the beading moment graphs, we also distinguished compressed and stretched fibers).
Therefore, there must be fibers that do not change length when the rod is bent.

A set of fibers that do not change their length when the rod is bent is called a
neutral layer.

The neutral layer ofthe rod intersects with its crossection along a straight
line, which is called the neutral line of the rod crosection.
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Under plane bending conditions, the neutral layer will always be perpendicular
to the force plane, and therefore the neutral line will always be perpendicular to the
force line in the section.

Let's highlight the rod element with length dx (Fig. 9.3). Let us assume that the
x-axis belongs to the neutral layer.

I I yT After bending, previously paralle
sections | and Il will turn to an angle
remainingplane

A piece of fiberaghy, which be-
longs to the neutral layer, does
change its length:

aly= Glpyordx=md .

Relative deformation of the fibe
segmentab, which is at a distance
from the neutral layer, we find as

. Cab-ab (1 %)d jox

by dx
Fig. 9.3. Rod element: & before deformation; : :
b1 after deformation = (r -Fy)d _J dr J
rd | r
So,
e 2 (9.2)

r

3. The physical side of the problem.
Since, according to the integral equation of equilibrium (9.1), at an arbitrary
point of the crossection of the rod during pubending, only the normal stress acts,
and the lateral pressure between the fibers is neglected, it can be concluded that the
fibers are in a linear stress state. Hooke's law for a linear stress state:

e = (9.3)
E
4. Synthesis.
s =£ e?Ezy (9.4)

E E
[,=fcY dA& fy.
o M
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Here ﬁysz: |, is the moment of inertia relative to thaxis. Then the curva-

¢
ture of the neutral layer of the rod
i_M, (9.5)
r El,

Considering the curvature of the neutral layer as a measure of the deformation
of the rod during bending, expression (9.5) caimberpreted as Hooke's law in ab-
solute values for pure bending. Prodéty, is called the bendinggidity of the rod

section.
Substituting (9.5) into (9.4), we get

S = M,
=7 Y (9.6)

z

This formula, which was first derived by the French scientist K. Navier, allows
you to determine the normal stresses at any point of the section during bending. As
you can see, the law of their distribution along the esession height is linear. It
remans to determine the location of thaxis, that is, the position of the neutral line
in the section. To do this, consider those of the integral equilibrium equations (1.9)
(1.14), which contairs , and which were not used in this solution. Namely:

N=feF and M, = 2dF.
A A

Since in pure bending relative to thexis N=0 andM,=0, then, taking into

account (9.6), we have the following conditions:

M M My g
IZ

V4

| e
zZ A Z A

where S, is the static moment of the cressctional area relative to thexis,
and 1, is the centrifugal moment of inertia of the section.

M
Becausel—Z . 0, then
z

S =0 (9.7)

l,,=0 (9.8)
The static moment of the area is zero relative to the axis passing through the
center of gravity of the section, and the centrifugal moment is zero relative to the

main axes. Thus, theandz axes (Fig. 9.3) are th@incipal central axes of inertia
of the rod section.
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Finally, we conclude that during plane bending, the force and neutral lines in
the section are mutually perpendicular and coincide with the correspqofingal
central axes of inertia. In our case, the neutral line coincides withetkis, and the
power line with they axis.

Using Navier's formula, let's construct a diagram of the distribution of normal
stresses in a crosection of arbitrary shape (Fig. 9.4), considering the axes indicated
in the figure as itprincipal central axes of inertia.

force y As can be judged from the strefia-

line \ J‘A O gram the greatest normal stress acts

§‘ neutral (zero) |~® pointA, that is, at the point farthest from t
= crossing line neutral line g-axis). The sign of this stres
~ IS consistent with the direction of the ber

Y A -

ol VE ing momentM, in the figure. In this direc

" M, O tion, the upper fibers of the rod a
' B h @ stretched, and the lower fibers are cc

pressed. Then the largest normal stress

Fig. 9.4. The diagram of the distribution of cording to formula (9.6),
normal stresses along the height of the rod ¢
tion

_M V4

Smax ymax-

z

Let's mark

W, =2 (9.9)
Ymax
whereW, is the moment of resistance of the section relative to the z axis.
The axial moment of resistance is the ratio of the axial moment of inertia of the
section to the distance to the farthest point ofsthaion from this axis.
Then the greatest absolute value of stress in the section is found by the formula:
M

S max :V\TZ (9 10)

z

For our example, this is tensile stress. To determine the greatest compressive
stress acting at poii, formula (9.6) should be used, since this point is not the far-
thest from the neutral line:

M
‘SB‘ _I 2Yp.
yA
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v at” Example 9.1. Compare the strength r
A . .
\ serves of the beam in two variants of the Ic
z C, B V4

)M % 4y tion of its crosssection relative to the pow:

a b D line (Fig.9.5), if the bending moment in tl

-2 5 beamM=2kNm The material of the beam

Option 1 Option2 steel 20. The crossection of the beam is
Fig. 9.5. For example 9.1 square with a sida=50 mm

In both versions, the location of the cross section, the y and z axes arathe
cipal central axes of inertia as the axes of symmetry. At the same time, the y axes
coincide with the power lines, and the z axes coincide with the neutralsgotssn
lines.

The maximum stresses act in the points of the -@estsons farthest from the z
axis, which for the first variant of the location belong to the sides AB and CD, and
for the second these are points A and D. The moments of inertia relative to the z
axis ae the same for both variants, because they argtimeipal moments of the

same sectiont!d =1(2 =a4/12. The moments of resistance will differ, since the dis-
tances to the points farthest from the z axis are different:

(1) = E‘ " (2) = i
Yinax 5 Yiax \/5 )
which means
() 4 (2) o4
wi = tel 2 gz W@ lel 2B g
0 12 a (2) 12 a
Yinhx Ymax

According to the formulad(10 themaximunstresses in sections

M, _2ad
W2 0,12066

p4

© M, _20¢ NG
S - 94,12MPa; s
Wl 0,17¢56 "

133,3: MPa

For steel 20 yield poins,, = 250MPa. Then the strength reserves of the beam:

S
- for an option1 n® = = =250 Z,66;
sW 9412
() = Sy _ 290

- for an option2 n*’ =

s® 13333

max

From heren®/n? =2 6¢/1,87 =1,4.

235



Therefore, the margin of strength of the beam according to the first variant of
the location of the section relative to the power line exceeds the margin of strength
according to the second variant of the locatiorabyostl1.5 times.

9.2. Shear stresses in the rod under plane transverse bend-
ing
During transverse bending, in addition to bending moments, transverse forces
with whichsheaistresses are associated act in the esessons of the rod. To derive
the formula for their determination, consider a cantilever beam of rectangular section
loaded with a concentrated force at the free end (Fig. 9.6).

N Let's cut the beam element dx with two i
jacent planes. In both cressctions | and Il
transverse forces of the same magnitude aci
@ @ cording to the diagra®. The bending momen
1m in these sections are differeM:andM+dM, re-

g @ spectively (see Fig. 9.7 a). Under the actior
g the specified forces, normal aistiearstresses

Fig. 9.6. Beam under transverse bendi OCCUr in the sections.
conditions

Fle x|l & 7 X

F

The normal stresses in sections | and Il are found using Navier's formula (9.6).
These stresses for an arbitrary layer of fibers will be equal to:

M . M +dM
Si r Yy: Si F-I—y. (9.11)
z z
I
o I I N,
M M+dM = = Dl\
i 0 Y% A k\‘.\\\‘\r’/ D,
X AR L . 7
4 &
: N,
Al dx AZ dx - b -
a) c)

Fig. 9.7. To determine thehearstresses during bendingi doading diagram of the beam ele-
ment; bi diagram of selection of a part of the beam elemehtpading diagram of part of the
beam element

Thediagramof normal stressas presented in Fig. 9.7, a.
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To find theshearstresses, we formulate some assumptions about the nature of
their distribution in the cross section.
1. Shearstresses in the section parallel to the transverse fdjce
2. In this layer of fibers at a distance y from the neutral layer sttear
stresses are the same in magnitude across the entireseoctiss width.
Note. These assumptions are valid only for sections with aspect fatiws 2,

when the transverse force is parallel to side h.

Next, in a plane parallel to the neutral layer of the beam, at a distance y from it,
we will cut off a part of the rod element (Fig. 9.7, b). Consider the equilibrium con-
ditions of the elementary parallelepipfgA.B;B,C:C;D;D,. To do this, let's first
analyze what forces act its faces.

FacesA1A:B:B,, C,C,D1D, and Aj/A,C;:C; belong to the lateral surface of the
rod, which is free of load, so no forces act here.

In the A;B.C1D; face, there are normal onesand tangentg i tension. Let's

find the equivalent normal stres$és= fj $dA. Here is an elementary playground
A

dA= bd :is at a distanc&from the neutral crossection line (Fig. 9.7, b). Then

NPV

A Z ZA
Here pkdA =S ( )) is the static moment of the area of the fAgB,C,D; rela-
A
tive to thez axis, that is, the part of the cressctional area located between the layer
of fibers at the levey and the edge of the beam. So

N1=|MSZ( ) (9.12)

Similarly, we find the equivalent Nn the face®;B,C;D2:
Nz:w%(ﬁ (9.13)

IZ

Now consider the fackil ;DiD,. The normal stresses on this face, which arise
due to the lateral pressure between the fibers during bending of the beam, are ne-
glected due to their smallnesShearstressedi here arise according to the law of
parities of shearstresses, sincehearstresses are actingion orthogonal faces
(Fig. 9.7, c). Due to the smallness of the fdgé,D1D, (one of its dimensiondx)
we will consider stressi evenly distributed, and their equivalent
dT = tbdx =hd:
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Let's write the equilibrium equation of the element, projecting the forces on the

X axis:
axXx =N, N dT 0,

or
M +dM M
| Sz(y)l—g()) bdx 0.
Z VA
From here
thax —dl'v' (.
z
Taking into account thadM/dx= G, we finally get:

This formula was first derived by D.I. Zhuravsky, a famengineer of Ukrain-
lan origin, whose name this formula bears.
Static moment for a rectangular section

_ 3a, 05-y 5 bI‘F 3 4
S,(y)=H0,5h ))geyéz— o k0.5h %05y 038h — % 3

3
Then, taking into account that for a rectangzle% we get:

Qblr 8 42&12 30 a42
b8g ) Bre 2on & 619

It follows from the given formula that the relationship betweerski@aistresses
in the section during transverse bending and the position of the layer of fibers relative
to the neutral line is parabolic. At the extreme points of the sectipr2, t .
The largesshearstresses will occur in the neutral layer when y=0:

29 3Q (9.16)
2bh 2 A
The diagram of the distribution shearstresses along the height of a rectangu-

lar crosssection is shown in Fig. 9.8.

t
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Y\ Although Zhuravskii'sformula was de-
X rived for rectangular sections with the ra
I h/b>2, however, in practice it can be used

< == gsections of any shape, except for narrow |

Z  tangles located so that the line of force is |

allel to the smaller side. We will consider
such sections later.

b . So, for an arbitrary section, Zhuravsky

Fig.9.8. Diagramof shearstresses for a {ormy|a can be written in the following forn
reCtangU|ar section

. 280y (9.17)
b(y) 1,

Hereb(y) is the width of the section at the level where shearstresses are
determined, and which for an arbitrary section will be a variable value.

Example 9.2.Using the example datal,compare the largeshearstresses in
the crosssections for two variants of their location (Fig. 9.5), assuming that in addi-
tion to the bending moments in the cregstion of the beam, the forCewill also
act.

Option 1. The largesshearstress can be found using the form8ale) for a

rectangle:

1 Q
(B g 55

Option2. Thelargestshearstress that occurs in the neutral layer can be found
fa o
82 &2
Here Ai- the area of the triangle ABC, which is equal to half the area of the

square (Fig9.5), ahj isthe distance from the center of gravity of this triangle to the
z axis. Then

8.2
using the formula9.17).For our sectionsS, (y) = Syax =Ah igag
¢

(2 Q%(Y Q@2 a Q
b(y) I, ﬁa@“@g a2
SOt%)ax/ (;ﬁ)ax 155, that is, theshearstresses according to the first variant of the

location of the section are one and a half times higher than the stresses according to
the second variant of the arrangement.
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9.3. Analysis of the stress state of the rod along the height of
the cross-section under plane transverse bending.
Strength conditions

Based on the nature of the distribution of stresses acting during transverse bend-
ing, weconclude that the stress state in the eeesdions of the rods is heterogene-
ous, and this should be taken into account in strength calculations.

Consider a hinged twsupport beam (Fig. 9.9).

) T
4 )i F l B 41— ( +
R=0,5F R,=0,5F é l
: (ElL -
[T ) | §
TR DS
0,5F 7
) ~hk-
2 FT
0,5F!
a) b)

Fig.9.9. To the analysis of the stressed state of the beam during transverse bendiiaggram
of beam loading and force graphi Istress state at points along the cresstion height of the
beam

In an arbitrary crossection of the beam, in addition to the supporting eross
sectionsA andB, transverse forces and bending moments act at the same time, the
graphs of which are presented in Fig. 9. 9, a. In Fig. 9.9, b shows the graphs of the
distribution of normal andhearstresses along the cressction height. Let's choose
a number of points in the cresection of the rod and analyze the stress state in them.

Point 1 This is the farthest point from the neutral layer. Here= 5., \—')A\/:

t O.
We have a linear stress state, and the strength condition for this point is written
as follows:

M

™M 0.18
Smax T [¢] (9.18)

Point 2.Here
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There is a plane stress state. To check point 2 for strength, you should use the
appropriate strength criterion, depending on the material of the beam.
Let's determine thprincipal stresses at this point. According to formula (5.48)

S %( sV+2 & 2}; s, ©; s, %( sy- 2 st 2)\.
If the material of the beam is brittle, then the criterion of the largest normal

stresses (the first theory of strength) should be used. The stoamglition accord-
ing to this theory

sh, =48 %‘é ¢ % 452) ] (9.19)

If the material of the beam is plastic, then we use the criterion of the largest
shearstresses (the third theory of strength) or the criterion of the greatest potential
energy of a change in shape (the fourth theory of strength). According to these theo-

ries, the calculated stresses are equal to:

1] — .
Sp =15 B

sy =p(s oS (2 9 (s ¥

Substituting the found expressions for ghencipal stresses, we obtain the
strength conditions in the following form:

Sw m { ] (9.20)
Slp\)/ m { ] (9.21)

If the material of the beam resists tension and compression in different ways,
then you should use Mohr's criterion (the fifth theorgtoéngth):

G
T s,

Marking [s] /[ 4. =m we get the strength condition:

sV 12m *m\/ 2 g1 24 [ {] (9.22)
mbx-

Point3. This point belongs to the neutral layer, where9; t
Strength condition:

s

stnax (€] (9.23)
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Point4. Here the strength conditions are similar to the strength conditions for
point 2.

Point5. As in point 1, there is a linear stress state. If the distance from the neutral
layer to point 5 is the same as to point 1, that is, the section is symmetrical about the
z axis, then the strength condition for point 5 is written similarly to condi8d8j.

Since in our example compressive stresses are acting at this point, we obtain the
following strength condition:

M
S max W [¢ ]frﬁ

If this point is closer to the neutral layer than point 1, then the strength condition
should be written as:

M
S fnax :I_ y(S) [¢ ]fr]SL

z

(9.24)

(9.25)

Heresj,,, | stresses at point 5, and they are the largest compressive stresses in

the sectiony(S) is the distance from the neutral layer to point 5.

Note. If the material of the rod is equally resistantémsionand compression,
then only points 1, 2 and 3 should be checked
100 Example 9.3.Determine the safety margins in the |
tentially dangerous points of the beam shown in Fig.
A and, having acceptde=700kN I=1m. The cross section
the beam is shown in Fig.9.10. The material of the bec
I steel with a yield strengtl,, = 250MPa.

According to the diagrams of efforts (Fig.9.9, a),
dangerous crossection is in the middle of the beam, wh
the maximum bending moment a
M max =0,5F1 =0,5 700 1 CB5€ and transverse forc

A Q=0,5F =0,5 0 35Q@ 1.

1. Let's find theprincipal central moment of inertia ¢
/ Y  the section.
100 2. Since the section has two axes of symmetry, i
Fig. 910. Eor example 9.3 axes are the@rincipal central axes of inertia.

100

30

)
A

200

100

To find the moments of inertia relative to the z axis, let's divide the sectio
components: rectangle | and two identical squares Il and Ill (Fig. 9.11). Then
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y+ 3 2 4 ~
bh ag 2 0
=1, 4., I+, -—= 2 A% G
= z g 4 fi 12 égfz C27% 8
\
. a L, 0
] Z :30@0§ ) 106 WBF 105 § 48666,67 7t
- v 12 0
« \ 2
S| b 7 . .
- Section resistance moment;
v S )
| 7 z w, =z _48666,67010 243,33 1Emn?
. buig Ymax 200
© | |

3. Let's build stress distribution graphs along t

Z, height of the beam section.

3.1 Diagramof normal stresses.

Let's find the value of the maximum normal stre:

- M 350468
W, 2433316

a

Fig. 9.11. For example 9.3

143,84MPa.

On the neutral section line (z axis) 0.
Based on these values, we build a normal stteggam(Fig.9.12). Taking into
account that, according to the load scheme (Fig. 9.9, a), the upper fibers of the beam

are stretched, the normal stresses in these fibers will be positive.
1 143,84 MPa

|
10,79 MPa
2 35,96 MPa

771,92 MPa
AN __H39s5MPa

= 4

—

Fig. 9.12. Diagrans of stresses in the cressction of the beam during transverse bending

3.2To construct theliagramof shearstresses, we calculate their values at the
points indicated in Fi@.12.

Point1. There are nghearstressest 9.

Point2. Static moment of the area located abovdekiel of the poing, that is,
square Il

s =ne 200 160 150 16mnd.
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To determine thehearstresses for this level relative to the neutral line, there
are actually two points to consider:2* belonging to the side of the square Il, and 2**
belonging to the side of the rectangle I, since the width of the section b(y) at these
points is different.
For a point2*
(2 QS 35040 150 19

* " — 16:79MPa.
b)), 100618666,67

For a point2**
(2 Qs 35046 130 1
b1, 30(18666,67 b
Point 3. Static moment of the area of half the section relative to the z axis
s,=4") +4™) 150 1 100 30 80 1656 fmnd.

35 96MPa.

Then
QS, 35046 185 1D
b@™ 1, 30(18666,67 (b

4. Let's find the strength reserves of the beam at the specified points.
Point1l. Heres o« 43,84f 1 « Margin ofdurability

39,55MPa.

t® = mlax

S e 250
n = = -
S..x 143,84
_ M (2) _ 35040 . ”
Kok s =— =""""" 100 7,9 - 1 (29
Point2** . Here I, y 23666.6010 <MPa; t 35,96 MPa.

sl =/ % 442 7597 4 35,980 101,71 MPa

S 250
e Z,46.
L s 101,71

p

Point3. Heref , =39,50MPa. Having putt,,=0,5 5, 0,5 250 126IPa
we find that

t, _125
t 39,55
From the obtainedesults, we conclude that we have the smallest safety margin

at the point 1 section. Therefore, the extreme points of the section of the beam in
question are dangerous.

316.
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9.4. Strength calculations in plane transverse bending

9.4.1. The principal condition of strength

In practice, in most cases of transverse bending, the most distant points from
the neutral line of the crosection of the rod are dangerous. This, in particular, is
shown in example 9.3. In such cases, the strength calculations are limited only to the
study of the maximum normal stresses in the dangerous section using the strength
condition (9.18), which is called the basic condition of bending strength:

—_— MmaX
S max = 0 ¢ 4. (9.26)

The verification calculation is carried out in ttedlowing sequence:
1. Diagrans of internal forces in the rod are built and a dangerous section is
found in which the maximum bending momafi.xacts in absolute terms.
2. Calculate or find from reference books the moment of resistance of the
section W relative to the neutral line.
3. Using condition (9.26), check the strength of the rod.
When the design calculation is performed according tetimeipal condition
of strength, the necessary moment of resistance of thesmzossn is found

W 2 M ; (9.30)
[s]
and then find all the necessary crssstion dimensions.

920 Kt \ Example 9.4.Check the strength of the cast ir

IREEEEAEAEREE : : . .
H beam (Fig.9.13), having previously arranged its
— tion in the form of an equilateral triangle relative to
OF: > neutral line in the most optimal way. The side of
705 triangleb=50 mm Permissible compressive stresse

() W the beam materials] =160MPa; for tension -

S = 40MP
Fig.9.13. .For example 9.4 [S]t - a.

The largest normal stresses in the crgsstion act at the point farthest from
the neutral line. For a triangle, this point is its vert&nce the cast iron, from which
the beam is made, better resists compression, it will be correct to place the section
relative to the z axis (neutral line) in such a way that the top is in the zone of action
of compressive stresses. According to the lahemme in the beam, the lower fibers
are compressed during bending. Therefore, the section should be placed with the top
down, as shown iRkig. 9.14.
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Y The dangerous crossection of the beam is in ti

Bl‘—b—’lc jam, where the maximum bending moment
\ /\M M .. =0,2%N (. To determine the stresses at dang
4

Z ous points, it is necessary to calculate the magnituc
the principal central moment of inertia of the sectic
A For a triangle 1, =bh*/36. According to the condition

Fig. 9.14. Beam section b=50mnt h =bcos30 ~ 50 0,886 43Bn

Thenl,=50 @8,3/ 36 ¥12763, 1A'
Distances to the extreme points of the section:
y,=2h/3 2 43,3 3 28,8im y,.=h3 43,33 4,48
Let's check the strength of point A:

2h/3

|s|= M Ya ﬂze,m 64,0MPa [  160MPa
l, 112763,72 ¢
Let's check the strength of the point of the BC side:
5 = Mo ﬂlms 32,00MPa [ 48/Pa
I 112763,72 !

z

As you can see, thgincipal condition of strength for the beam both in terms
of tensile and compressive stresses is fulfilled.

Note. From the obtained results, it can be seen that if point A of the-cross
section were in the zone of action of tensile stresses, that is, if theseqt®s were
oriented with the top up in relation to the neutral line, then the condition of strength
would not be fulfilled:

_M_... _25Q0
S =

28,87 64,0MPa
| Y 112763,72 Ht

z

48/1Pa

9.4.2. Full verification of rods for transverse bending strength

In practice, there are cases when it is impossible to ignore the effect of trans-
verse forces in strength calculations. This applies to beams with thin higksemss
tions, for example,-beams,T-beams, etc., in which large bending moments and
transverse forces occur at the same time. There are other cases, in particular when a
relatively short beam bends. Then significant transverse forces can occur in it at small
bending moments, and points bajing to the neutral layer can become dangerous.

For such cases, a ftdtrength check of the rod is required according to the
method described in clause 9.3.
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As for the design calculation, it is carried out according to the basic strength
condition for normal stresses (9.27), but it is necessary to perform a full check of the
designed rod for strength in all its potentially dangerous points.

R,=30kN | F=36kN Ry =AY Example 9.5.Select the beam sec
X ‘ ’%’B tion of the steel beam (Fig. 9.15) with pi
e Im - missible  stresses; [s]=160MPa,

T]
+ —
i [T @ N [t] =100MPa and perform dull-strength
6
9 check of the beam
@ Y According to theprincipal strength

condition(9.27) we will findhe moment o

Fig. 9.15. F le9. - '
Ig. 9.15. For example9.5 resistance of the section:

W2 Mo —61%86 37500mni  37,%m

[s]

According to the applicationl [1], the nearest larger moment of resistance,
compared to the one found, halsdam No. 10. Let's write out some of its geometric
characteristics from the assortment tables for further use during a full check of the
beam for gength;

- axial moment of inertia of the section=198snT';

- axial moment of section resistandé =39, 7sm ;

- static moment of half therosssectional area relative to the z axis
S, =23,0sm.

In order to carry out a fullstrength check, let's draan |-beam section to scale
(Fig.9.15, a) anddiagramthe distribution of normal andhearstresses along the
crosssection height, having previously calculated the values of these stresses at sev-
eral characteristic points.

To simplify the calculations, we will present theelam shelf in the form of a
rectangle with the dimensions of the sis55mMM and h=t <,2mm (Fig.9.15,

b). Due to the small thickness of the shelf t, such a replacement will not significantly
affect the results of stress state calculations in the area adjacent td#aan shelf.
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b=55 um ©, Mlla @, Mlla

o 151,13 506
) /129,7 » 61,87

d=4,5wm | =45 ||
—_—

h=7,2 mm

=72 mm_
42,8 mm

77,44

——
~

100 mm

h=

+ ]
b=55 mm

a) 0) B)
Fig. 9.16. I-beam crossection (a) and (b) and graphs of stress distribution along its height (c)

PointL. s® =M 890 151 1 3upa ¢ =o0.
W 39700
Point 2. This point belongs to thebleam shelf.
s =|Myz _6a0 42,8 29, MPa

19810

Let's calculate thehearstresses at this point.

Note. The tbeam shelf refers to sections for which the assumptions regarding
the distribution ofshearstresses formulated by Zhuravskiy are not fulfilled, since
here nb=7,2/55 =0,13 <: However, we will ignore this caveat and calculate the
shearstress according to the specified formula in order to evaluate only a qualitative
picture of the distribution odhearstresses along the height of thbdam shelf. As
will be shown later, piot 2 is not considered potentially dangerous.

Staticmoment of the area located above the level of the Roirg. shelves,

s =43 7256 4B8 3,6 18374, mn?.

z

Then
(@) Qs? 3040 18374,4
b)), 550198 1if
Point 3. This point belongs to the riser of thé&déam.
s® =@ 129,7 MPa.

506 MPa.

t® —QSS(’Z 310(10_3_ 183744 6x87 MPa.
b®1,  4,5¢198 1

QS, 3040 23 1®H

Point4. s =: t¥ = . —— (7,4MPa
e b1,  4,5¢198 1if
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According to the obtained results, we build the graphs of the str&tsibution
along the height of thebeam (Fig9.15, c).

We will check the strength of the beam at potentially dangerous-sectisn
points. According to the stress diagrams, thesegpairts1, 3 and 4.

Point1.s® =151,13Pa <160Pa ;¢ = The strength condition is fulfilled.

Point3. s? =129, ™MPa; ¥ =61,8MPa Calculated stress according to the

fourth theory of strength:
sV=V$ 8% #297 36187 168MPa 160Pa

The strength condition is not met.

Point4. s =0; t¥ =77,440MPa <100MPa

As you can see, the polits dangerous here

Note. When analyzing the strength reliability of structures, overloading of their
elements is allowed, but not more tr&2 of the allowable stress value. It is worth
reminding here that the margin of safety implies a reduction of the ultimate stresses
to the value permissible for plastic materials by 50§4=1,5), and for fragile ones
I on150- 200%(n~=2, h 6 3
168,24 16Q 1o _

Point overload 3 is 5,15%>59, which is unacceptable.

Therefore, the design calculation carried out according tqptingcipal condition of
strength is not final. In practice, they follow the path of successive selection of pro-
files with larger dimensions, until the strength condition at the dangerous point is
fulfilled.

We choose the doubbeam No12 with the following geometric characteristics:

- axial moment of inertia of the section=350 &;
- heighth=120mm
- shelf widthb=64mm)
- shelf thickness=7,3mm
- riser thicknessl=4,8 mm
Then for the poin8 we have:

.o M 6

Ve 5o omg527 99,3MPa

£ 3 Qs 304¢ [64 7,860 3,68)

4%01IMPa.
b1, 4,8¢850 1if
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sV=y90,34 +3 47,01 121,68Pa 180Pa

The strength condition feilfilled.

9.4.1. The choice of a rational shape of the cross-section of the
rod under bending

In the design calculations, using the strength condition (9.27), the required mo-
ment of crosssection resistance is found. At the same time, the shape of the section
can be any. Using the data and the solution of example 9.5, we will determine the
dimensims of the rectangular and round sections of the beam (Fig. 9.17).

YA YA Example 9.6.Choose a rectangul;

1 /% one, with a ratio of sidé¥ =2, and rounc
< . . sections (Fig. 9.17) of a steel beam (F
z %/ z 9.15), and compare the weights of thi

Y beams with the weight of a beam wathl-

b d beam section.

- 3
-

Fig.9.17. For example 9.6

2
For a rectangular sectiofv, :% %b3 3750(mn¥. From here

b:,3/3C3;500 38,31 mn h=2b 2 3831 76,6 mm

3
For round sectiorw, :% =3750C mn?. From here

d= 3,32(:1;7500 72 56 MM

It is obvious that three sections with the same moment of resistance relative to
the z axis have different areas, which means that the beams will have different
weights: the weights of one linear meteeath beam are considered as the areas of
their cross sections. We have the following cresstional areas:

- |-beam No. 12 A =1470mnf
- rectangle A =bh 88,31 1,62 2935,3tM

.
. circle—At:pj —‘02’562 #135,08nn7

Then
G:G:G=A: A A 3470:2935,31:4135,08=1:2:2,
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As you can see, in the considered example, the weight of a beam with a rectan-
gular crosssection is twice that ainl-beam, and with a round cressction, almost
three times. This difference would be even greater if we were to consider a beam
with an I-beam section 10, which, according to the solution for Examplé,
turned out to be overloaded by only 5.15%. The difference in the weighieainh
and round beams can reach four times.

So, we conclude that, from the pointvaeéw of material capacity, the most ra-
tional crosssection of the rod under bending conditions is thedm. Other forms
of sections are used based on other considerations. For example, axes working for
bending have round sections, and this shape is t® rational from the point of
view of the features of their design, manufacturing technology and working condi-
tions.

However, the formulated conclusions make sense only for rods made of plastic
materials. The fact is that in the considered examples we were talking about symmet-
rical sections relative to the neutral line. Since the plastic material is equally resistant
to tensionand compression, it is important that the extreme points of the- @eoss
tion have the same stress modulus, which will ensure its minimum dimensions. This
Is typical for symmetrical sections.

It is another matter when the material of the rod is fragile and has different re-
sistance tdensionand compression. Then half of the symmetrical section will be
significantly underloaded. And such a crs&etion cannot be considered rational.
We have already touched on this feature, considering a beam with &ectiss in
the form of an equilaterafiangle (see example 9.4). It can be argued that a-cross
section asymmetrical with respect to the neutral line would be rational for beams
made of such marials. Moreover, the crosection point further away from the neu-
tral line should be in the field of action of the stresses of that sign, the resistance of
the material is greater. For example, instead ofstmaped section, a3haped sec-
tion should le used.

Example 9.7.The beam is made of gray cast iron with permissible compressive
stresse$s | =120MPa, for tension [s] =30MPa. Bending moment in the danger-

ous section of the beaM _ =0,6kN . Select the Thaped section of the beam

with the size ratich=5b (Fig.9.18, a). Determine the required height of the riser of
the Fbeam sectioi (Fig. 9.18, b), which will ensure the specified load capacity of
the beam. The dimensions of the shelves and the thickness dfé¢bmlriser are the
same as those of thebkam section. Compare the weight of one linear meter of
beams.
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. |lh s © h e ©
+ +
A
A - b1
< JM z Q jM ¥4
b % ~
a) b)
Fig.9.18 Beam (a) and twdream (b) crossections and diagrams of stress distribution along
their height

Place the crossection in such a way that the maximum stresses are compres-
sive (Fig.9.18, b), because the material of the beam better resists compression.

1. Determine the geometric dimensions of the esestion. To do this, first
determine the coordinate of the center of gravity of the brand along the y axis.

Let's divide the section into two rectangles (Fig. 9.19). We will look for the po-

sition of the center of gravity in the
Y , __ay  (05n+0®)bh BB’
o Yc Sb.
A+h 2bh 100
> 'z The moment of inertia relative to theaxis:
—ho 1 S [ . 3
< Py l, _ﬁ {1,%)%bh lﬁ (& 1,5)° bh
b E " 125o4 504 400
= 41,2%% +— 11,26% “=b*
_ _ 12 12
Fig. 9.19. Brand crosssection Let's find the size b from the strengtmdition for the
farthest crosssection point belonging to the riser, a
where the compressive stresses are acting.
M 72000
Smax__ymax =  An4
I 40

z

72000 j\/ 72000
[s]. 120

Let's check the strength of the second extreme point ofdegsection, which

belongs to the shelf and in which the tensile stresses are acting:
M 4 0,640 L 36000 36000
s =— =—i0,5b (D) = =
] Y max 40m* ) b® 8,43

=60,00MPa }s| 30MPa.

From hereb2 i/ &43nm
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Since the strength condition is not fulfilled, we will repeat the calculation of the
size b, based on the allowable tensile stress:

36000
b3 ¢[S]t
From  here D2 i/3[60]00 j%o £0,63nm and,  accordingly
s
t

h=5 ®,63 53,151m

2. Determine the height of the riser H of tHeelam section.

According to theorincipal strength condition9.27) the required moment of
resistance of thelbeam section

w2 Mos 06A0 5
[s], 30

On the other hand

I 1  fFbH® _éht* &aH b B
W = =z = 1 2 D b
T 0,5H +b; 12 glz &5 2%‘

A 3 echt 2 2 3 .
L FOH o8 AH B8 3 ogant.
05H+bp 12 g12 ¢ 2 2= g

After the necessary transformations, we obtain a cubic equation with respect to
H:

H3+32H2 -48H 191 (

Note.For the convenience of calculations, the dimension of the length was con-
verted to centimeters, and the coefficients and the free term were rounded to whole
numbers.

The positive root of this equation is the desired riser height:

H =3,06sm =30,8mm

4. We compare the weight of one linear meter of a cantilever and a cantilever
beam. The crossectional area i#y =2bh =2 1063 5315 1129,9%M |-beam
crosssection- A =2bh +bH 21083 53,85 10,63 30,6 01455, 12N

ThenG,:G =A: A 3129,97:1455,25 =1:1,2

As you can see, a beam wathl-beam crossection with the same load capac-
ity on 30% heavier than a beam with ashaped section.

However, in the problem of choosing a rational cigsstion, not everything is
so clearcut. For example, the samdédéam considered in the previous example can
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be designed by imposing another condition: the ratio of the sides of the shelves and
the riser of the-beam are the same as in the beam=5b, and it is necessary to
find these dimensions from the condition of strength of theam. Let's do the fol-
lowing calculation.

1. Let's determine the geometric dimensions of-#edm section, based on the
new condition for their selection.

Since in this case the height of the riser is related to its thickness, the expression
for the moment of resistance will have the following form:

| 1 fbh* _ehd ah b, 4 1 eipsy _esH 2 o A
W,=—z = Ll bald Sfhb i —= 0 2.3 (39736 | 8,9
" Yo 0.50+b; 12 “g12 & 281 % 367 12 ¥ 72 (39 @@

Therefore, based on the strength condition of thedm b= 3’;?843 8,84mm.

Thenh=5 84 44,zmm

Let's now compare the weights of the beams. The area obtaar section is

A =3bh =8 8B4 442 1172,18mM Then
G:G=A:A 32129,97:1172,18 =1:1,C

That is, the difference in weight is dlo

Note. The difference between the first and second options is that we initially set
as a mandatory condition the same dimensions of the shelves and the thickness of the
risers of the brand and the gable, and in the second version we designed the gable
with the ame ratio of the sides of the shelves and the riser as in the brand, not con-
necting their sizes themselves by no condition. And it turns out that according to the
first option, the brand is definitely a more rational crasstion for the beam, and
according to the second option, there is no special difference between the two cross
sections, from the point of view of the load capacity and material capacity of the
beam. The analysis of the advantages and disadvantages of the obtaineskcross
tions canbe continued if one of the criteria for evaluating their rationality is, for
example, the overall dimensions of the cresstions.

From the given example, it is clear how wide Htepe for choosing optimal
solutions is for the designer when solving practical problems. And only after him,
making the right technical decision, which is possible only with deep knowledge,
broad erudition and healthy intuition based on experience.
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9.5. Bending of thin-walled profiles

9.5.1. Shear stresses in thin-walled profiles

Examples of thirwalled profiles can be rolled profilesbeams, beams, chan-
nels, etc. Most of them have risers and shelves. And when it comes to the distribution
of shearstresses, it has already been noted that in risers or-whahshigh rectangles
- they are distributed in accordance with the assumptions formulated by Zhuravskyi
(see item 9.2). In the shelves, this distribution has a completely different character.
To analyze the law of distribution sheaistresses in shelves, consider the beam
shown in Fig. 9.6, which has ashaped section. Let's highlight the beam elerdent
with two adjacent sections | and Il (Fig. 9.20, a). According to diagddmg. 9.6),
transverse forces of equal magnitude and different bending moments act in both sec-

tions:M (section 1) andM+dM (section II).
J’+ M+dM
M

oo

Fig. 9.20. To determine thehearstresses in the shelves of thialled profiles: d diagram of
beam element loading;ibloading scheme of the shelf element; shearstresses in the faces of
the shelf element

Select the elemeiatcidie;a.c.dze, from the shelf, as shown Kig. 9.20,a, and
consider the condition of its equilibrium, projecting all the forces acting in its faces
onto thex axis.

Let's analyze the forces acting on the faces of the selected element. First, the
faces of the element belonging to the side surface of the shelf are free of load and no
forces arise here. Secondly, in the faagsd;e; andayc,d.e; there are longitudinal
forces associated with normal stresses that arise here during bending. However, due
to the increase in moment, these forces are different in magnitude: in the face
aicidier N, =N, and in the facexc.de; N, =N +dN. To balance these forces, a

force must act in the faahe d,e in the direction of the -axis, that isshearo the
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face. Denoting this force by yswe write the equilibrium condition in the following
form:
ax=N dr N N -dT -N dN 0.
From here
dT =dN (9.28)
BecausedN= N, -N, whereN; andN. are determined by formulas (9.12) and
(9.13) obtained in section 9.2, then

dT = dN M%(? IM Sy EIIM ) (9.29)

z

Here S,( y) is the static moment of the arag,de; relative to the neutral sec-
tion line and is a function of the z coordinate (see Fig. 9.20, a). For our example
S(y=105b-3( h ©,5}.

On the other hand, the force dT is related;hearstressest; , acting in this

face (Fig. 9.20, b). Assuming that due to the sthadkness of the shelf, the stresses
are uniformly distributed, we write:

dT = ftdx (9.30)
Equating the righthand sides of expressions (9.29) and (9.30), we obtain:

t,tdx =(]=M§( ).

From heret %MX §%l)

z

According to the law of parity ashearstressesshearstresses; of the same

magnitudeand directed to the common edgge; act in the face amcidie;
(Fig.9.20,c).

Thus, theshearstresses in the shelf on the line dl1el, located at a distance z from
theprincipalcentral axis of inertia of the section y, are calculated by the formula:

Qs,(y) (9.31)

—_—

S (N
Here it is taken into account th@= dM/ dx.

Therefore, we can finally formulate assumptions about the nature of the distri-
bution ofshearstresses in the shelves:
1. There areshearstresses at all points of the shgff parallel to the middle
line of the shelf, that is, directed perpendicular to the direction of the transverse force
Q in the section.
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2. At all points of the arbitrary lind;e;, theshearstresses are the same, i.e.,
constant throughout the thickness of the shelf, and depend only on the didtance
theprincipalcentral axis of inertia of the section.

Note. Of courseshearstresses also act in the shelves in the direction parallel
to the transverse force Q, but their value is negligibly small, as we have already
verified by solving example 9.5.

Shearstresse§q in shelves always form a single flow with strestas risers

(walls) of a thinwalled profile (Fig. 9.21).

\ f

¥l © :1: Ik
S N |

* o

f h )

* T, ‘ - B ]
—_—la] |->->—J<—<—i—|

Fig. 9.21 Distribution ofshearstresses in shelves and risers of-hailled profiles during trans-
verse bending

Having established the nature of the distributiosl@arstresses in the shelves
and obtained the calculation formulas for their calculation, we can now return to ex-
ample 9.5 and clarify the stress state of tbedm in the dangerous section.

According to the results of the design and verification calculations, the girder
was selected No. 12, while the point 3 ofriker in the city of its connection with
the shelf turned out to be a dangerous point. Let's depict the specified profile in a

schematic form on a scale (Fig. 9.22).
15,46 @)Mna

| ©, Mlla a4 @, Mlla
1 ¢
A § 2’3|1| - = /90,3 4 47,01
a 3 b=64mm___
~N
: L o3| d=48mn [
s 4] 60,18
Q

h

; =|

Fig. 9.22. I-beam crossection andliagramof stress distribution along its height
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Since the stresses at all specified points along the height of the girder were not
calculated for this section, we will do it now.

Point1, s® =V gac 162,74 1 «

W 58400

Theshearstresses at this point can be found using the forrfuii), bearing
in mind that they are unchanged by the thickness of the shelf.

For an arbitrary point of the shelf at a distance z from the vertical axis
(Fig.9.22) we get:

QS ab _shat 3IPAC 64 § 1206 B3 5

ty Tf” T 0 B 2 & a0 02

As we can seshearstresses, along the length of the shelves change accord-
ing to a linear law. At the extreme points of the shelf, wied, 5b, t, 9. The max-

imum shear stresses act in the middle of the shelf at=o0:
ty max 9,483 32 1546 1 « The graphs of the stress distribution in the shelves are

shown inFig.9.22.
So, to the point there is a plane stress state. Calculated stress according to
the fourth theory of strength

st/ :\/102,71? 81846 166,171 O 160f ).

Point 2. This point belongs to thedeam shelfShearstresses here are the

same as in the poibtNormal stresses® =My2 —GO..GS
| 350410

z

than at the pointl, which means that the calculated stresses will be smaller. That is,
there is no point in checking this point for strength.

52,7 96,34 1 (, smaller

Point 3. This point belongs to theddeam riser and all the necessary calcula-
tions for it, as a dangerous crasgction point, have already been carried out. For
comparison, we present the previously found stress values at this point:

s® =@ 98,34[ 1 ¢t® A7,004 1 sy 221,620 1 ©460 [ 1.

QS, 3040 3,7 1D
di, 48850 18
As you can see, the strengtinditions are fulfilled for all potentially dangerous
crosssection points.
Separately, it should be noted that even after a refined calculation sh#ae
stresses in the shgpointsl and 2) point 3 remained the dangerous intersection
point.

Point4.s® 0; t® = ¢ 60,18f 1 © 100 < 1.
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9.5.1. Concept of shear center

In thin-walled nonclosed profiles during transverse bendisgearstresses,
forming a continuous flow in crossectional elements (Fig. 9.21), can affect the char-
acter of beam deformation. To find out exactly how this influence manifests itself,
consider cantilever rigidly clamped beams dfelam and channel cressctons,
shown in Fig. 9.23.

Sections of beams witbhearstresses acting on them are shown in fig. 9.24.
Having replaced thehearstresses with the corresponding for€eand T, we see
that in the dbeam section (Fig. 9.24, a), which has two axes of symmetry, the forces
T are mutually balanced in the shelves. The transverse @nexluced to therin-
cipal central axisy, balances the external for€e and, as a result, the beam is in
plane transverse bending.

Fig. 9.24. Sections ofdbeam (a) and channel (b) beams with forces acting on them

In the channel, the forces in the shelves form a couple of forces, the moment of
which is nothing but a torque in the section. That is, the channel beam, in addition to
bending, will also perceive torsional deformation. Thus, the previously formulated
condtion for the occurrence of plane transverse bending of the rod, according to
which the line of force in the crosection must coincide with one of thancipal
central axes of inertia, in the case of thialled profiles, is valid only for cross
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sections with two axes of symmetry, for example,aiot-beam crossection. Oth-
erwise, bending will be accompanied by torsion.

In Fig. 9.25 shows-beam and channel beams (Fig. 9.23) oteformed state.

In the case of the channel, the essence of the problem is to choose the point of
concentration of internal forces in the creextion of the beam. At one time, the
center of gravity of the section was chosen as such a point. But at the same time, as
we can see, an unbalanced momenslbéarforces may arise.

In order to avoid torsion during bending of thwalled beams, you should
choose another crosgction point for the summation of forces, relative to which the
moment ofshearforces will be zero. And it is through this point that the plane of
action of the load must pass. This point is called the bending center.

a) b)

Fig. 9.25. I-beam (a) and channel (b) beams in a deformed state

In sections with two axes of symmetry, the center of bending coincides with the
center of gravity of the section. As for sections with one axis of symmetry, the posi-
tion of the bending center is easy to find from the condition[that0.

Consider a channel section, the forces in which are represented by the transverse
force Q and the moment of the pair shearforces in the shelveM; =T (h -t)

(Fig. 9.26, a). Herd is the force in the shelf (Fig. 9.24, b).
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Fig. 9.26. Initial (a) and reduced (b) system of forces in cresstion

Assume that poin€ is the bending center. Then, according to the definition

i} ad 0
aMc =M¢ @652 z+CQT(-h ) -0.

From here
y ad 0 2
AMc =M , © z+.5T(h ) 0. (9.32)
g2 2
An elementanshearforce dT = &tdzact on the shelf elemedtz From here
b- 79
T=t f fdz
- (20 )
The tension in the shelf, according to (9.31),
Qs(y
oo,

Here, the static moment of the part of the channel shelf, located to the left of the
line nn, relative to the z axis (Fig. 9.26, a) will be equal to:

s,=tb-z "

Then
t(h-t) > 2 t(h -)(h @)
T:Q(2| ) ﬁ (b -% _adz Q_( jl( ) _
-(0 )
Substituting the obtained expression in (9.32), we find:
_t(h-t)°(b -d)* d 9.33)
41 2
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Thus, the channel beam will be
plane bending conditions if the forces &
ing on it lie in the plane that passes throt
the found bending centé& parallel to the
y axis. Otherwise, its bending will be &
companied by twisting. In fig. 9.27 sho\
one of the possible methods of practical Fig.927. Load diagram of a c_hannel beam int
alization of the load of the channel bean center of bending
the center of bending, when a support
platform is welded to the all of the chan-
nel.

Example 9.8 Find the position of the bending center of the profile in the form
of an equilateral angle loaded with a transverse fQr{f€ig.9.28, a).

b)

Fig. 9.28. For example©.8

The y and z axes are tipeincipal central axes of inertia of the section. The
shearstresses in the shelves at a distance s from the edge are

QS
th,

Here, the static moment of a part of the shelf of length s relative to the z axis,
given that it is inclined to this axis at an angleﬁ e

S

S, =

\/_ 2¢

3
Moment of inertia of an equilateral anglezb— :

Then



From the obtained expression, we see thatstiearstresses are a quadratic
function of the distance s and reach their maximum valse=dt:
i =R
max 2\/_Z)t '
The total transverse force in each shelf (Big8, b) is equal to
_ Qa4 § 08 Q
T—ptds Wfﬁs > gs 75-

Having projected the forces T on the y axis, we see that the sum of their projec-
tions is equal to Q. That is, the transverse force Q in the section is equivalent to the
shearforces T in the shelves of the equilateral corner:

Q=T .

Moreover, it, as dotal vector, passes through the point of intersection of the
lines of action of two forces T, relative to which these forces do not create a moment.
From this it follows that the bending center lies at the intersection of the shelves, that
Is, at point C.

9.6. Calculations for bending rigidity

9.6.1. Deformation of rods during bending

We considered the calculations of the rods for bending strength. Now let's focus
onrigidity calculations.

During planebending, the axis of the rod is bent, remainingamecurve. At
one time, when solving the problem of determining the normal stresses in the rod
during bending, the curvature of the neutral layer was chosen as a measure of defor-
mationa/r . But from a practical point of view, such a measure is quite inconvenient,

because it is quite difficult to measure the curvature. To assess the deformation of
the rods, such displacements are used, which are easy to both measure and determine
analytically.

Consider a straight roda cantilever beamthe load scheme of which is shown
in Fig. 9.29. Its axis is distorted, while the centers of gravity of the @®s$ons are
moved (recall that the axis of the rod is the geometric location of the centers of grav-
ity of the crosssections).
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YA F An arbitrary pointC on the axis
. X of the rod moves along the trajectc
S I CC,.. The projection of thisdefor-
C, A ,’ g mationon they-axis is denoted by w
u B ! and on thex-axis byu.

= U, Deflectionis called the displace

Ll

Fig. 9.29. Lineardeformatiors in beams during bend ment of the center of gravity of tl
ing cross section of the rod in the dire

tion perpendicular to its axis.

Axial deformationis calleddeformationalong the axis of the rod.

In fact, these twdeformatiors are incommensurable. So, for a cantilever beam,
their maximum values refer to the Iength—vg@l: L and Umax = 1 :

I 100 | 15000

Due to the smallness of the axd®formation we neglect it and consider that
the centers of gravity of the sections move only in the direction perpendicular to the
initial axis of the rod (Fig. 9.30, a).

Due to the curvature of the rod, its cross sections, remaghamg turn and,
according to the hypothesis gianesections, coincide with the normal to the axis of
the rod (Fig. 9.30, b.)

The angleg of the rotated section in relation to its initial position is called the
angle of rotation

w

N
A
Y
Q
>

. B lF Deflection w will be considere
A/ = =c *| LI positive when theleformationof the
N . F:orresppndlrlg point is upwgrd, that
IBI ] in the direction of the w axis. The
_\a) tation angle will be considered po:
", i tive when- the section is rotated cot
) x l terclockwise.
4 cly B The curved axis of the rod
Cl} 0 3 called the bent axis or elastic line.
0Gx) % Since the bent axis shown
6) I Fig.9.30, is nothing but a graph of tl
b) functionw(x),and the angle is forme
Fig. 9.30. Deflections (a) and angles of rotation of si by the tangent to the bent axis at t
tions (b) in the beam during bending point, then
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dw( X)

tgq = (9.34)
dx
Due to the smallness qf
_dw(x) (9.35)
a(x) =

We obtained a differential dependence between the angle of rotation and the
deflection of the rod.

9.6.2. Differential equation of the elastic line of the rod

So, in order to determine the deformation of the rod in its arbitrary-sezs®n,

first of all it is necessary to obtain the equation of the elastic line
w= f(x).

Based on the physical nature of the bent axis afatigit should be a continuous
and smooth curve (without breaks and breaks). This means that its first derivative
must be continuous and smooth.

Let's establish the relationship between the curvature of the axis as a measure
of the deformation of the rod and tteformatiors of its sections during bending.

For plane transverse bending, we obtained the following formula for curvature:

1 _M(x)
= 9.36
() EI(X) (5-%)
From analytic geometry, the curvature equation of a plane curve is known:
d2
a-w
1 _ o d¥
3
r(x) & adw 25% (9.37)
e]-"'ae& Q u
e ¢

Taking (9.36) intaaccount, we obtain the exact differential equation of the bent
axis (elastic line) of the rod

d?w
o dl M(x)
3
w5 El(x) (9.39)
'+$—
6 ng QH
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In the resulting equation, the signs should be matched. With the chosen direc-
tion of the coordinate axesandx (Fig. 9.30), the curvature, as is known, is consid-
ered positive if we have concavity on the graph of the function. Comparing the sign
of the bending moment, taken for horizontal rods, with the sign of curvature
(Fig.9.31), we see that they coincide with the chosen direction of the coordinate

axes.
w w
M M
T
D) )
M>0; 1/p>0 M<0; 1/p<0
X X
a) b)
Fig. 9.31 Deflections (a) and angles of rotationsettions (b) in the beam during bending
o 2,
Taking into account tha?%lv 8: tg® (is the value of the second order of small-
cdx =+
ness, we finally get:
d*w_M(x) (9.39)
d¢ EI(X

This is the basic differential equation of an elastic line.
Integrating, we get:

dw M(x) (9.40)
i H—EI dx C
w = X LVILE(IL)dx +Cx £ (9.41)

The constants of integration in the obtained equations are determined from the
conditions of fixing the rod. Thus, in the case of a rigidly pinched cantilever beam
(Fig. 9.30), for which there are meformatiors in the fastening, we have:

- atx=0 q 6, which mean€=0;
- atx=0 w =, thenD=0.
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R,=0,5¢q! R,=0,5¢

Example 9.9.Construct the graph®,

A q A
TIIREEEEEEE M, w and g for a twosupport hinged beat
8, . £ (Fig.9.32).
D ! _ The supporting reactions are eqt
o R.=R :qz_l_ Let's write down thexpression:
=
N9 for the transverse force and bending mornr
q”f o in an arbitrary section of the beam:
¥ woex d
()
o Q(x)=R, -ax a p:
24E1 2 ’
o
g gl gX
o M = - = =
B (x)=R,x > 5 o
e ® The differential equation of the elas

S : : : ..d*°w_ 14aqgl_ g¥
line will look like this;— = — - x ——
S dé El aeg 2 2

384E1

Fig. 9.32 For example9.9

Integrating, we get

at) 5 Fmigex E 2

x El 4El GEI
1. gl gx
W{ X)=— X —— —— Cwx L.
(=g e S 2

Constants of integration can be found from the boundary conditions:
at x=0 w =0, hence D=0;

- at gt el 0. From herecc= -9
12EI  24El ' ©24E1

3

atx=1 w =0, SOW_,

So,

_q q q’ .
9(x) 4E| d 6EI d 24E1
g . _ada , ad
12E| 24| 24|
Based on the obtained equations, we build the corresponding grapi 82ig.
Therefore, by integrating the differential equation of the elastic line of the rod,

w(x) =

we can calculate the displacemegtandw of any section. However, this method
becomes extremely cumbersome when the number of rod sections is greater than 2,
since the number of constants of integration to be determined increases dramatically.
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Consider a twesupport beam loaded at poifit by a concentrated force

(Fig.9.33).
RAA F ARs Here we have two sections. Le
0, 5 lC consider each of them.
! AJ EJ/‘ B Area of the £:
DTS M (x), = R,
/
- L 1 R X2
Fig. 9.33. Deformationin a twosupport hinged CI(X), :a (X)dx EAEI G
beam during bending R
w( x) =2 X

CB section:

a(), == m(xex X EL c).

Bl 2F| 2F| @
_R¥ F(x- IAC)3
W(X)n - 6EI 6E] Ql X q'

Two elastic steels are to be determined in each se@jpb;, andC;,, D, TO
determine them, in addition to two conditions on the suppom)=0 and

W(I) =0), one should use the condition of smooth and continuous conjugation of the

adjacent sectionAC and CB at pointC. The condition consists in the equality of
deflections and angles of rotation of sect®for both sectionsg|(l,c), = ()

andw(l,.), =w(l ), -

Therefore, for a rod with one section (Fig. 9.32), two constants of integration
are to be determined. For a rod with two sections (Fig. 9.33), it is necessary to deter-
mine already four constants. If the number of sections is n, then the integration of
differential equations for all sections giv&sconstants. That is, it is necessary to
solve a system dfn equations, of which two equations are the boundary conditions
on the supports, and alsz(n- 1) the equation is the condition of continuous and

smooth conjugtion of all sections of the elastic line of the rod.

However, the timeonsuming process of calculating integration constants using
a certain algorithm can be greatly simplified by reducing the calculation to the defi-
nition of actually only two constants, regardless of the number of sections. We will
conside the method of determinindeformatios in beams, which is based on such
an algorithm.
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9.6.3. Method of initial parameters

We will show that these two constants are the angle of rotation and the deflec-
tion of the beam at the origin of the coordinates.

Consider a beam on which the main types of loads that we operate act. The
direction of the loads is chosen so that the bending moments in the cross sections of
the beam are positive (Fig. 9.34, a).

F, M R=F  =F, e M G F
f\ LT, myRT w3k o M
b—Jl | A E CD = ,_H_FHF\HEABA
c Z)e ’%f M [@leg ] |/ *
— - @
b b
c C
d d
! B I
a) b)

Fig. 9.34. Beam load scheme (a) and calculation scheme for the method of initial parameters (b)

To reduce the number of constants of integration to two, it is necessary that the
constants in all sections of the beam when integrating the equation of the elastic line
are the same. This is possible under the condition that on each section the expression
for bending moments will contain all the terms that were part of the expressions on
the previous section, and the additional terms that appeared on this section will dis-
appear on the common boundary with the previous one. Such conditions can be en-
sured ly writing the differential equations of the elastic line of the beam, following
a certain algorithm:

1. The origin of the coordinates is always placed in the leftmost-sexgson
on the axis of the beam, and in this system expressions for bending moments in each
section are made.

2. Expressions for bending moments are always obtained from equilibrium
conditions for the left part of the beam. That is, these expressions should include the
loads applied to the beam to the left of the section.

3. Ifa concentrated momeht acts on the left part of the beam, then it should

be represented in the equation as a produfx- a)’, where(x- a)’ 4. Here a is
the abscissa of the point of application of the morive(dee Fig. 9.34).
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4. When the distributed load does not reach the end of the beam, it should be
continued by applying a compensating distributed load of the opposite sign on this
area. These additional distributed load&im 9.34, bis depicted by dashed lines.

5. Integrate the obtained differential equations of the elastic line on the sec-
tions of the beam without opening the brackets.

Consider a part of the beam of length |, limited by sectibnsand E
(Fig.9.34,b). Let's place the origin of coordinates at point D and add expressions for
bending moments at each section.

Section I

M(x)=M, Qx.

Sectionll:

M(x)=M, Qx ™(x a .

Section Il

M(x)=M, €Qx ™(x & Fx b.

Section IV:

M(x)=M, €Qx M(x & Ft+x bq(%iz

Section V:
M()=m, Qx M(x & Fox § -dxd U

By comparing the obtained expressions, we see that the expressions for the mo-
ments at each section can be obtained from the expression at the next section, dis-
carding the members that contain the loads appearing at this next section. At the same
time, theexpressions for the moments at the boundaries of each given and the next
section will be the same. For example, at the border of settianglll (x=b), we

0
getM, =M,; M, @x M'(X a)"
Let's write the differential equations of the elastic line on each section, starting
from the first.

2

Section I
d2w(x) _ 1 (9.42)
=—|(M
dx? EI[ o QX
Integrating the resulting equation twice, we get:
dw(x) 1€ X (9.43)
X) = =M X — +
9(x) dx EI§ ° ¥ G
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Section llI:

dZW( ) 1 . 0
37 ESM Qx M(x a

d 1e 2
a() 4 3 60 @S Mpx g

Fiex 9

'I(X-l @2 Q|

2

w=Ltam X mteal B cu gy

EI@ 2

Section |V:

dw(x) _ A
dx ElgM Rux M(x

=

dx El é

w(x)=1é

ab) 2 L8 o e 4 A5 {8 g

> 2 2
M, = -z
El g 2+Q)6

Section V:

d’w(x) _ 1
dx? _EIgM Qx M
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(9.44)

(9.45)

(9.46)

(9.47)

(9.48)

(9.49)

(9.50)

(9.51)

(9.52)

(9.53)

(9.54)



d 4 ’ -y’ L (9.55)
q(x) _V(\le(X) :é_lgmox QjLXE Méx g F(in CI(X6'()
_q(x-Gd) o8
B
_18 o o (x-a)° _(x-B' (x 9 (9.56)
W(X)_ElgMOZ +Q)6 Wl > F-'( 5 qT
x-d)’ 0
q ) 4G, X B/a

Having imposed the condition of equality of angles of rotation of cross sections

and deflections at the boundaries for adjacent sections, for sections IV and V we
obtainx=d:

1¢€ d’ d- b d -o° o
q|\/ ‘X d E| eIVIOd @O? M’(d a)— FLT) q(46_) CR/ l\J_l_ —
@ v
2 3 3
- - [
= q‘ _ ___e d Qa._ M(I'd a) -F(d=i b) q(d |C) q(d d) Q f
¢ Elg 2 6 6 |
We will get from here
Cv =G (9.57)
Hence, taking int@account (9 57)
d2 d’ d b 2
Wil = 5y € I u! F£ '*Eg'(%d Qo t
@ v
_1e d o d (d-a)2 (p B’ (d 9
= éM, — — M -
V\(/‘x:d EI @ 0 A~ 2 @O 6 2 24
d d)’
Dy =0y (9.58)

Having carried out similar operations for the boundaries of other sections, we

make sure that the corresponding arbitrary constants of integration are equal in all
sections:

C=G G & & C (9.59)
b=D B, B R D (9.60)
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The constant€ andD can be found from equations (9.43) and (9.44) by putting

x=0:
_ _C _ D (9.61)
q‘x:O =0 E| ! szo Y% El

That is, the constants of integrati@handD are proportional to the angle of
rotation and deflection at the origin.

In the general case, the equations for deflections and angles of rotation can be
written in the following form:

1€ % X Lo (x-a)

W(X)=W) 'ﬂOX TETEMOE Q)'g a+M 1

(x-b)° . (x-9°
o AT AT
x X . I\/I(x- a)
1! 2!
. (x-¢ . (x-d’g
tad——— -add—— U
3! 3! 0
Equation (9.62) is called the universal equation of the elastic line, and equation
(9.63) is the universal equation of the angles of rotation of sections.

Bending momeniM, and transverse fordg@,, which act in therosssection of

the beam that coincides with the origin of the coordinates, are called static initial
parameters, and the deflectispand angle of rotation, in this section geometric

(9.62)

+q F

(9.63)

initial parameters.

Let's consider several examples of determining displacements in beams using
the method of initial parameters. Let's start with a beam on two supports, loaded with
a uniformly distributed force, which was considered in example 9.9, and compare the
obtainedresults.
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Example 9.10. For a twesupport
hinged beam (Fig.9. 35) determine the an
of rotation of support sections A and B a
find the deflection in the middle between 1

supports.
Let's write down the universal equati
Fig. 9.35. For example 9.10 of the elastic lindor this beam:
Here , since the origin of the coordinates coincides with the support. Ini-

tial angle of rotation we find from the condition that the deflection at support B is
also zero:

From here . The universal equation of the elastic lta&es the form:

Deflection in the middle of the beam

Let's calculate the values of the angles of rotation of the support sections
The angle of rotation of section A of the beam is the already found geometric

initial parameter:

The angle of rotation of section B can be found using the universal equation of
angles of rotation of beam sections:

So

As you can see, the displacement values are obtained completely

coincide with the results of calculations carried out using the basic differential equa-
tion of an elastic line (examp®9).
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