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INTRODUCTION 

Materials and Constructions Mechanics is the branch of engineering that fo-

cuses on methods for calculating the strength, rigidity, and durability of components 

in machines and structures. It is a fundamental engineering discipline that combines 

experimental data on material properties with the principles of theoretical mechanics, 

physics, and higher mathematics. Through this combination, it establishes general 

methods for determining the optimal sizes and shapes of structural elements, consid-

ering both the magnitude and nature of the forces acting upon them. 

The problems in Materials and Constructions Mechanics are addressed using 

straightforward mathematical techniques, accompanied by several assumptions, hy-

potheses, and experimental data. 

This subject holds a crucial role in engineering education, as its principles are 

necessary for all engineering specialties. It provides the foundation for studying var-

ious fields, such as structural mechanics and machine design. Mechanics of Materials 

and Structures forms the scientific basis for engineering calculations, which are es-

sential for designing and constructing the wide array of modern mechanical and civil 

engineering structures. 
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1.  FUNDAMENTAL CONCEPTS, HYPOTHESES, AND PRINCI-

PLES 

1.1. Object and scope of the academic discipline "Materials 

and constructions mechanics" 

All solid bodies in nature possess the property of deformation, meaning they 

can change their dimensions and shape. The causes of deformations are diverse and 

can result from loads due to interactions of the body with other bodies, its environ-

ment, or fields; temperature gradients within its volume; and other phenomena that 

alter the physical and mechanical properties of the material of the body. It is evident 

that the level of deformations in real bodies cannot be arbitrarily large. Ultimately, 

the process of deformation can lead to unacceptable changes in the material state and 

consequently to the loss of operational capability of products. These changes mani-

fest, for example, in the occurrence of excessively large cracks and complete destruc-

tion of the body's material, plastic deformations, and so on. 

In engineering, the failure of a product's operational state is referred to as fail-

ure. Conversely, the absence of failures in a product during operation is referred to 

as strength reliability. 

The task of mechanics of materials and structures is to impart to future engineers 

the knowledge, skills, and abilities to perform calculations for machine components 

and structural elements that ensure their reliable operation. 

First and foremost, let us clarify what constitutes the object and subject of study 

in mechanics of materials and structures. 

The object of study in çMaterials and constructions mechanicsè is a struc-

tural element considered as a solid body capable of deformation. 

This structural element must be strong, stiff, and stable. 

Strength refers to the ability of the structure and its elements to withstand 

loads without failure. 

Rigidity refers to the ability of the structure and its elements to deform within 

specified limits under applied loads. 

Stability refers to the ability of the structure and its elements to maintain their 

initial shape under the action of loads in elastic equilibrium. 

From everyday experience, we know that the material of any solid body resists 

its deformation. The physical nature of this resistance can be understood by consid-

ering a model of the pairwise interaction of atoms within the material (see Fig. 1.1). 
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Fig. 1.1. Model of pair material atoms interaction 

 

There is an imaginary mechanical connection between the atoms of the material, 

in which the forces that bring them together 0CR > and the forces of repulsion act 

0BR <  (the reasons for their occurrence are not discussed here). We denote the dis-

tance between the centers of atoms as a, and the equilibrium distance, when these 

forces are mutually balanced, as a0. With a change in the interatomic distance a, the 

magnitudes of the forces of convergence RC and repulsion RB also change. Moreover, 

it was established that for solid bodies these dependencies are approximately as fol-

lows: 
7( ) ~C CR R a a-= and 

9( ) ~ ( )B BR R a a-= - . Equivalent of these forces

( ) ( ) ( )R C BR r R a R a= + . The equilibrium state takes place in the unloaded body state 

(without deformation). Then the condition 0 0 0( ) ( ) ( ) 0R C BR a R a R a= + = is fulfilled. 

The specified dependencies are schematically displayed on the diagram 

(Fig. 1.2). 

 
Fig. 1.2. Dependence of interaction forces between atoms of a solid body on the distance between 

them 
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From this diagram, we can draw the following important conclusions: 

- there are always interaction forces between atoms ï attractive and repul-

sive forces ï which are balanced in an undisturbed body; 

- increasing the distance between atoms results in a critical value of the re-

sultant force RR (point A), beyond which atomic bonds rupture; 

- when atoms approach each other, bond rupture never occurs because the 

resultant force tends towards negative infinity (as the electronic orbitals of 

the atoms would need to be disrupted, requiring extreme temperatures and 

pressures unachievable under earthly conditions). 

The forces acting within the bonds between particles of a material body are 

commonly referred to as internal forces. Based on the conclusions drawn, these 

forces exist in both undisturbed bodies and are responsible for maintaining the body 

as a cohesive unit. However, when considering the strength of a body under loading 

and consequently its deformation, additional internal forces arising within the bonds, 

represented as resultant forces in the discussed diagram, must be considered. These 

additional internal forces are called stresses. 

Thus, stress can be regarded as a measure of a material's resistance to body de-

formation. 

The concept of force is related to the concept of mechanical stress (hereinafter 

referred to as stress).  

Stress is the force per unit area acting on a cross-section of the body. 

Therefore, stress represents the intensity of force, its measure. 

The combination of stresses and strains forms the stress-strain state of the body. 

To determine whether a structure will withstand a given load, i.e., whether its 

strength reliability will be ensured, one must be able to analyze the characteristics of 

the stress-strain state of each structural element. 

The subject of study in çMaterials and constructions mechanicsè encom-

passes the characteristics of the body's stress-strain state. 

Materials and constructions mechanics is an engineering discipline. Therefore, 

methods for calculating the strength, rigidity, and stability of engineering structures 

must be both straightforward and sufficiently reliable in determining the characteris-

tics of the stress-strain state of their elements. For this purpose, models used in cal-

culations must provide an adequate level of correspondence to real objects, the ma-

terials they are made of, loading conditions, and so forth. It is also important to note 

that the complexity level of a model should correspond to the required accuracy of 
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the analysis, considering only factors that are essential for ensuring specified safety 

margins. 

Calculations in mechanics of materials and structures are based on mathemati-

cal analysis methods and rely on experimentation. A phenomenological approach is 

often applied to construct theories, focusing on describing phenomena and their con-

sequences without delving into the essence of the phenomenon itself. This approach 

enables the development of relatively simple models of strength reliability and gen-

eralization of obtained results to a wide range of objects, materials, and loading con-

ditions that match the claimed model properties. 

The quality of developed models of strength reliability significantly depends on 

the intuition and practical experience of the engineer and the level of their training. 

It should be noted that the requirements for model creation conditions are often reg-

ulated by strength standards for respective engineering fields, including necessary 

volumes of experimental research, state building norms in construction and architec-

ture, and other regulatory documents. 

1.2. Material and its model 

If in theoretical mechanics the object of study is an absolutely solid body, when 

we are not talking about the physical and mechanical properties of the material of the 

body at all, then in the mechanics of a deformed solid body these properties come to 

the fore. 

Various materials are used for the manufacture of machine-building structures: 

metals and their alloys, inorganic and organic materials (ceramics, glass, polymers, 

plastics, etc.), as well as composite materials consisting of high-strength threads of 

glass, boron, carbon and the base that covers them. binds (polymers and metals). 

Today, alloys of ferrous and non-ferrous metals remain the main structural ma-

terials in mechanical engineering. Real metals and alloys usually have a polycrystal-

line (granular) structure (Fig. 1.3a). 

 
a) b) 

Fig. 1.3. Material models: a ï polycrystalline structure of the material (engineering-physical 

model); b ï continuous environment (engineering model) 
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Each grain is a crystal that has taken an irregular shape because adjacent crystals 

hindered its formation from the melt. Additionally, the crystalline lattices of grains 

have various defects (such as missing atoms in lattice nodes, atomic displacements, 

etc.). Foreign inclusions, pores, gas bubbles, and microcracks can also be present 

among the grains. Consequently, the material lacks a continuous, uninterrupted struc-

ture. Many alloys consist of crystalline grains with different chemical compositions 

and structures. The mechanical properties of grains vary in different directions, 

meaning they are anisotropic. 

Note. Isotropic physical objects have identical properties in all directions. Iso-

tropic mathematical objects remain unchanged under any orthogonal transfor-

mation. 

Considering the influence of all these factors on material strength is very com-

plex and almost impossible. However, the situation is not entirely hopeless. The 

structural elements of the material are significantly smaller than the elements of 

structures made from this material. For instance, in technical alloys, grain size is on 

the order of tenths to hundredths of a millimeter. Because grains in the body are 

randomly distributed, despite the anisotropy of their characteristics, the properties of 

the body in different directions will be approximately the same. Thus, on a macro-

scopic scale, the material can be considered isotropic. Therefore, in the mechanics of 

materials and structures, all heterogeneous structural elements of the material are 

replaced by an "averaged" continuous medium (Fig. 1.1b), which uniformly fills the 

volume of the body (hypothesis of continuity), and has identical mechanical proper-

ties in any volume and direction (hypothesis of homogeneity and isotropy). 

Thus, in the mechanics of materials and structures, instead of the real material, 

a model of a continuous homogeneous isotropic medium is considered, possessing 

the same mechanical properties as the integral mechanical properties of the real ma-

terial. These properties are studied through experimental research of samples made 

from materials used for machine parts. 

It should be noted that replacing a discrete medium with a continuous one is 

justified when the dimensions of structural elements are negligibly small compared 

to the dimensions of the body. 

There are materials for which the assumption of isotropy is not applicable. An-

isotropic materials include, for example, wood, whose properties significantly differ 

along and across fibers, reinforced materials, etc. 



 

13 

 

 

The assumption of a continuous material structure simplifies the study of stress 

distribution in the body, primarily because it allows the use of methods involving 

infinitesimal quantities and continuous functions. 

Considering the physical properties that all structural materials possess to some 

degree, the material model is endowed with elasticity, plasticity, and creep proper-

ties. Real materials exhibit elastic properties up to a certain level of stress. 

Elasticity refers to the property of a body to restore its dimensions after the 

removal of external load. It is assumed that all bodies are perfectly elastic, meaning 

no residual deformation exists after unloading (hypothesis of ideal elasticity). De-

viations from ideal elasticity, which are always observed in loaded real bodies, are 

insignificant and are ignored within certain limits of deformation. 

Most problems in the mechanics of materials and structures are solved under 

the assumption of linearly deformable bodies, where there exists a direct proportional 

relationship between deformations and loads, i.e., Hooke's law. 

Plasticity refers to the property of a body to retain deformation fully or par-

tially after unloading, which materials widely used for manufacturing parts 

through processes like forging, stamping, rolling, etc. 

During operation, many structural elements and machine parts encounter the 

phenomenon of creep. For example, the diameters of pipes subjected to internal pres-

sure increase over time, and bolted joints loosen due to bolt elongation caused by 

creep. 

Creep is the ability of a body to accumulate deformation under constant ex-

ternal load. It should be noted that in metals, creep is primarily observed at high 

temperatures, whereas in polymers, creep occurs at any temperature. 

The properties of elasticity, plasticity, and creep will be further discussed in 

detail in subsequent chapters of this textbook. 

1.3. Basic models of solid shapes 

Geometric shapes of solid bodies are extremely diverse. Real structural ele-

ments and machine parts often have very complex shapes, and accounting for all 

features of their construction can significantly complicate the analysis of stress-strain 

characteristics. However, excessive complexity in geometric models of bodies is 

generally impractical for the majority of engineering tasks. 

Among the wide variety of geometric shapes of solid bodies, only three basic 

models can effectively be distinguished: rod, shell or plate, and massive body. 
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Rod is a body where one dimension, its length, significantly exceeds the other 

two. 

A rod can be conceptualized as a collection of cross-sectional areas aligned 

along a single axis (Fig. 1.4a). In this case, the axis of the rod represents the geomet-

ric locus of the centroids of the cross-sections. 

 
a)        b)       c)      d) 

Fig. 1.4. Types of rods: a ï straight cylindrical; b ï straight prismatic; c ï curvilinear plane (spiral 

spring); d ï curvilinear spatial (cylindrical spring) 

 

Rods can be straight (Fig. 1.4a, b) and curved (Fig. 1.4c, d), plane (Fig. 1.4c) 

and spatial (Fig. 1.4d). Their sections can be constant in length (Fig. 1.4a, c, d) or 

variable (Fig. 1.4b). This is the most common form of structural element in engineer-

ing and construction. 

In mechanical engineering, thin-walled rods are often used, in which one size 

of the cross-section is small compared to others. Thin-walled rods include rolled pro-

files such as angle, crossbar, channel, double-crossbar, thin-walled pipe (Fig. 1.5). 

 
 a)        b)      c)      d)    e)    f) 

Fig. 1.5. Sections of thin-walled rods: a ï angle; b ï brand; 

c ï channel; d ï double-beam; d ï rectangular tubular; 

e - round tubular 

 

The rod model is used to calculate various details and structural elements: 

shafts, propellers, turning cutters, pipes, truss elements, aircraft fuselages, etc. Re-

search shows the possibility of using the theory of rods for the approximate calcula-

tion of structures that do not completely satisfy the condition of the smallness of the 

cross-section compared to the length (airplane wing, rocket body, television tower, 

gear tooth, etc.) 

A shell is a body, one dimension of which is the thickness, which is much 

smaller than the other two. 
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In modern mechanical engineering, shell structures are very common. They are 

strong and quite technological. Shells include ship hulls, aircraft fuselages and wings, 

missile skins, various tanks and containers, boilers, etc. 

Shells are closed and open, axisymmetric and of arbitrary shape. The shape of 

the shell is determined by the shape of its median surface, which is the locus of points 

equidistant from the boundary surfaces of the shell. If the middle surface is part of a 

cylinder, sphere or cone, then the shell is called cylindrical, spherical or conical, re-

spectively (Fig. 1.6, 1.7). 

 
 

 

 

 

Fig. 1.6. Tank: a ï cylindrical shell; b ï spheri-

cal shell 

 

Fig. 1.7. Plate Spring element as a conical 

shell 

If the middle surface is a plane, then such a body is called a plate. Depending 

on the shape of the outer contour, the plates can be rectangular, round, trapezoidal 

and other shapes. Disks of compressors and turbines, circular saws and milling cut-

ters, bottoms and lids of tanks, roofs of buildings are considered as plates of constant 

or variable thickness. 

The development of methods for calculating shells and plates is dealt with by a 

special branch of the mechanics of a deformed solid body - construction mechanics. 

Relatively simple methods, in particular the resistance of materials, can be used to 

calculate a very narrow class of shells. 

If all three dimensions of the body are of the same order, then we have a 

massive body. 

These include both large-sized parts, such as thick-walled machine bodies, ham-

mer heads, machine foundations, and small-sized ones - a bearing ball, a gear, a head 

of a bolt that works on tension, etc. 

Details of machines and structural elements of a complex shape can be repre-

sented by a combination of simpler shape models. Thus, the pulley of a plane belt 

transmission (Fig. 1.8) can be considered as a combination of a massive body (hub 

1), a plate (disk 2) and a shell (plate 3). A nozzle with a flange (Fig. 1.9) combines a 

shell (nozzle 1), a plate (flange 2) and a massive body (transition zone 3). 
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Fig. 1.8. Pulley of plane belt transmission: 1 ï mas-

sive body; 2 ï plate; 3 ï shell 

Fig. 1.9. Spout with flange: 1 ï shell;  

2 ï plate; 3 ï massive body 

 

It should be noted that the modeling of a real part with one or another element 

depends not only on their geometric similarity, but also on those problems that are 

solved during strength calculations. These questions will be considered in clause 

1.6.1. 

1.4. Load modeling 

Let's consider the main types of external forces that act on objects during their 

operation. 

External forces or loads are forces of interaction of a given structural element 

with related bodies, environment and field. 

Loads are volume and surface. 

Bulk loads. They are distributed over the volume of the body and are charac-

terized by intensity - the amount of load per unit volume. The volume load intensity 

is measured in N/m3. Volumetric loads include the forces of gravity, inertia, magnetic 

and electrical interaction. 

Surface loads. These external forces are the result of direct contact interaction 

of this body with other bodies and with the environment and are applied to the outer 

surface of the body. 

The load per unit surface area of the body is called surface load intensity. The 

intensity P is measured in N/m2 or pascals (Pa). Examples of such a load are shown 

in Fig. 1.10 a and b. 
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a) b) 

Fig. 1.10. Surface unevenly (a) and uniformly (b) distributed loads 

 

In most cases, it can be assumed that the distributed force is normal to the body 

surface. This is the pressure of steam in the boiler or gas in the engine cylinder, the 

pressure on the contact surface of two solid bodies (without taking into account fric-

tional forces), etc. The nature of the change in load on the surface is presented in the 

form of P. The equivalent of an unevenly distributed load R (Fig. 1.10a) is numeri-

cally equal to the volume of its spatial envelope p and is applied at the center of its 

weight. In the case of a uniformly distributed load (Fig. 1.10b) over the area A is 

uniform R pA=  and applied at the center of gravity of this area. 

Linear loads. Often, the shape of the body and the nature of the load distribu-

tion allow it to be reduced to the principal plane, presenting it in the form of a linear 

load. Such a case, in particular, occurs when the load is distributed over a surface 

whose width is much smaller than its length, for example, when two cylindrical bod-

ies with parallel axes are in contact. 

The linear load on the diagrams is also presented in the form of graphs that 

reflect the law of its intensity change (Fig. 1.11a, b and c). At the same time, the 

intensity is measured in N/m. If the load is distributed evenly along the distribution 

line, i.e. q Const= , the plot has the shape of a rectangle (Fig. 1.11a). In fig. 1.11b 

shows the diagram of the distribution of the hydrostatic pressure of the liquid column 

on the wall of the vessel. As you can see, it has the shape of a triangle. The intensity 

of the linear load in this case is variable, i.e. ( )q x Var= . 

   
a) b) c) 

Fig. 1.11. Linear uniformly (a) and unevenly (b, c) distributed loads 
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Volume load can also be reduced to linear. For example, the inertia forces dis-

tributed in a straight rod during rotation in the plane of its axis (Fig. 1.11c) are pre-

sented in the form of a linear load acting along this axis. 

In the given examples, the load distribution laws are linear. In practice, there 

are also more complex - non-linear - laws. As for the uniform linear load, regardless 

of the law of its distribution, the rule for its definition is one: 

The equivalent of a linear distributed load is numerically equal to the area of 

its contour and is applied at the center of its weight 

Concentrated loads. These forces are applied to certain points of the body. 

Units of measurement of concentrated forces are newtons (N). It should be noted that 

concentrated forces do not exist in nature. When real solid bodies come into contact, 

due to their deformations, a contact area of finite dimensions is always created, on 

which a continuously distributed pressure act. When the size of the contact area is 

small compared to the size of the body, replacing the distributed load with a concen-

trated uniform force is appropriate. (Fig. 1.12a). 

 
  

a) b) c) 

Fig. 1.12. Concentrated loads: a ï concentrated force; b and c are concentrated moments 

 

Often, in calculations, even a load distributed over a significant area is replaced 

by a uniform, i.e., concentrated force. In all cases, the possibility of replacing a dis-

tributed load with a concentrated one is determined by the tasks to be solved and the 

required accuracy of the calculation. 

In practice, such conditions often arise when loads are reduced to a couple of 

forces and are presented in the form of a concentrated moment M, N mÖ  (Fig. 

1.12 b, c). The concentrated moment is also a certain schematization of the real load. 

Concentrated moments, like concentrated forces, do not actually exist, since mo-

ments are created by distributed forces. So, the torque is transmitted to the shaft from 

the side of the gear wheel using a key. A distributed load q acts on the tooth of the 

wheel (Fig. 1.13a). As a result, the shaft is under the action of the torque m distributed 

across the width of the toothed wheel. In calculations, it is usually replaced by a 

concentrated moment applied in the middle of the width of the wheel. 
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a) b) 

Fig. 1.13. A toothed wheel with a distributed load on the tooth (a) and a diagram of moment 

transmission to the shaft (b) 

 

Conventionally, all loads acting on real structures can be divided into determin-

istic, for which the magnitude and direction at each moment of time are known, and 

random, whose behavior cannot be predicted. The latter includes random forces act-

ing on a car moving on an uneven road. In the course of mechanics of materials and 

structures, deterministic loading is considered. Methods of taking into account the 

random load acting on the structure are studied in the courses of statistical mechanics 

and reliability theory. 

According to the nature of changes over time, loads are divided into permanent 

and variable. 

Constant loads are, in most cases, pressure forces of liquid or gas, own weight, 

load of parts in machines with a constant operating mode. Variable loads can be 

caused by the unevenness of the work process in the machines. If the load changes 

periodically in time, it is called repetitive or cyclic. It is associated with periodic 

deformations of machine parts (deformation of connecting rods, piston rods, shafts, 

oscillations of structural elements). If the cyclic load is created, for example, by 

changing the machine's operating mode (starting, braking, reversing, etc.), then the 

number of cycles during the entire service life of the machine usually does not exceed 

104é105 cycles. Such a load is called low-cycle. When the load occurs during the 

oscillations of structural elements, the number of cycles often exceeds 105é106. 

Such a load is often called multicycle. 

Static and dynamic loads are distinguished by the nature of the change in forces 

during their application. The load is considered static if it increases relatively slowly 

and smoothly from zero to a certain value, and then remains unchanged. At the same 

time, the acceleration of the deformed masses, and therefore the forces of inertia, can 

be neglected. Static load can be short-term or long-term. 
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Dynamic load is accompanied by significant acceleration of bodies. At the same 

time, there are forces of inertia that cannot be neglected. Dynamic load can be short-

term or long-term. 

Short-term dynamic loads include impact caused by a body that has a certain 

kinetic energy at the time of application of the load (driving piles with copra, forging, 

stamping, load during sudden braking of moving bodies). During a shock load, the 

change in body velocity that causes the load occurs in a very short period of time. 

Long-term dynamic load occurs, for example, during the rotation of bodies, in 

which centripetal acceleration occurs (rotation of machine rotors, flywheels, turbine 

disks), as well as during oscillations of structural elements. In the latter case, we have 

a cyclic dynamic load. 

The nature of the load significantly affects the strength and durability of struc-

tural elements, and therefore it must be taken into account during calculations. 

1.5. Structure supports and their models 

All elements of machines and structures interact with each other in a certain 

way, forming fixed connections and kinematic pairs. That is, some or other mechan-

ical ties are imposed on each element, which limit its deformations. These elms can 

be both completely rigid and pliable. 

In the future, the elements with the help of which bodies are fixed in space will 

be called supports. Each support imposes a certain number of elms on the body. Most 

often, in engineering tasks, mechanics deal with absolutely rigid elms. In fact, such 

elms do not exist in nature, it's just that their flexibility, compared to body defor-

mations, is negligibly small. 

Let's consider the most common types of supports. 

Hard fastening. Such a support does not allow any deformation of the body at 

the point of attachment. In Fig. 1.14a shows the scheme of rigid fastening in the 

plane. An attempt to move under the influence of a load causes a reaction on the part 

of each ligament, namely two reactive forces (as an opposition to an attempt at trans-

lational displacement) and a reactive moment (as an opposition to an attempt to rotate 

the body in support). 

Thus, the rigid anchorage for a planar system of forces gives three reactions. It 

is obvious that there will be six such reactions for spatial systems. 
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or 

  
or 

  

 ʘ)   b)  c) 

Fig. 1.14. Schemes of plane supports: a ï rigid fastening; b ï fixed hinge; c is a movable joint 

 

Hinged supports. If the support allows rotational deformation of the body, then 

such a support is called a hinged support. When the rotational deformation is carried 

out in a plane, we have a so-called plane joint. It provides rotational deformation 

relative to the axis of the hinge, perpendicular to the plane of rotation (Fig. 1.15). 

 

 
 

 
 

Fig. 1.15. Hinged connection: 1, 2 ï details;  

3 ï hinge axis 

Fig. 1.16. Ball bearing of the car 

 

 

Spatial hinges allow turning the body relative to any axis. Examples of such 

hinges are spherical hinges of towing devices of vehicles, ball supports of car sus-

pension levers (Fig. 1.16), connection of drive rods with movable traverses of presses 

and breaking machines, etc. 

Also, hinged supports are divided into movable and fixed. A fixed hinge allows 

the body to freely rotate relative to the hinge axis, while limiting the possibility of 

translational displacement in any direction. When it comes to a plane hinge, two re-

actions occur in it (Fig. 1.14b). A movable joint imposes restrictions on translational 

deformation in only one direction (Fig. 1.14c), that is, one reaction occurs. 

Shown in Fig. 1.14 support schemes refer to plane systems. However, the used 

principle of imposing ties on the body, which limit deformations in certain directions, 

allows you to schematize any supports, including spatial ones. 

To illustrate how in practice support schemes are chosen for real objects when 

creating calculation schemes, consider a gearbox shaft fixed with bearings in the 

housing (Fig. 1.17a). 
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a) 

  

b) c) 

Fig. 1.17. Modeling of gearbox shaft supports: a ï shaft with supports; b ï diagram of the shaft 

support for the spatial system; c ï diagram of shaft supports for a plane system 

 

Here the bearings are the actual supports of the shaft. It can be seen from the 

figure that one support is the left one, not fixed relative to the body in the direction 

of the shaft axis, while the right one is fixed. This design of the supports allows to 

compensate for the thermal elongation of the shaft without loading it in the longitu-

dinal direction. Therefore, considering a shaft with supports as a spatial structure, we 

conclude that the left movable support excludes any translational deformation of this 

section of the shaft in the transverse direction, that is, there are two reactions, for 

example, horizontal and vertical. The right support gives, of course, three reactions, 

since translational deformation in the direction of the shaft axis is also impossible 

here. 

As for the possibility of turning the shaft cross-sections in the supports, in ad-

dition to the obvious free rotation of the shaft relative to its axis, the design of the 

bearings allows the inner ring to freely rotate at some angle relative to the outer and 

axial cross-sections. The value of this angle of rotation is insignificant and is deter-

mined by the type of bearing. Therefore, bearings can be considered within certain 

limits as hinge supports - spatial or plane, in which reactive moments do not occur. 

At the same time, the left support is a movable hinge, and the right one is a fixed one. 
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For the spatial system, the diagram of the shaft supports is presented in Fig. 1.17 

b, and for a plane one - in Fig. 1.17 c. 

It should be noted that the forces that arise on the supports are distributed over 

some surface, but when constructing calculation schemes, they are modeled by con-

centrated forces and concentrated moments. In addition, it is believed that there is no 

friction in the pivot supports. Such hinges are called ideal. 

1.6. Strength reliability: main stages and principles of con-

struction 

The process of building a structural element strength reliability model includes 

several key stages, namely: 

- development of the calculation scheme of the research object, which is 

based on the modeling of the material from which it is made, modeling of 

the form, conditions and methods of loading, etc. within the framework of 

accepted hypotheses; 

- analysis of the stress-strain state of the object using the developed calcula-

tion scheme; 

- selection of criteria for assessing the strength reliability of the object. 

These stages and approaches to their implementation within the framework of 

the mechanics of materials and structures will be developed in the following sections 

of this textbook. And here we will make only some general remarks about the ap-

proaches, methods, hypotheses, principles adopted today in the practice of engineer-

ing calculations. 

1.6.1.  Real construction and its design scheme 

Real designs and parts of machines, as a rule, have a complex shape and work 

under difficult conditions of power load. It is quite difficult to calculate them taking 

into account all the structural features, and there is no need for this, since most of the 

latter have a slight effect on the operation of the structure and on the strength of 

certain elements of it. Therefore, when calculating a real structure, it is always re-

placed by a calculation scheme, which in a simplified form conveys the shape of the 

structure and its interaction with other structures or details. 

The calculation scheme is understood as a conceptual representation of the 

object, which includes only those properties that are essential from the perspectives 

of load conditions, the external environment, and, most importantly, the selected 
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reserves of strength, rigidity, and stability, associated with the required accuracy 

of calculations. 

During the construction of the calculation scheme, the shape of the structural 

elements, the connections between the elements, the supporting parts of the structure 

and the external load are modeled. When considering a specific part, it is necessary 

to establish which form model can be used: a rod, a shell, a plate or a solid body. 

Moreover, the choice of the shape model is determined not only by geometric simi-

larity, but also by the tasks that are set during the calculation. Thus, when calculating 

a tooth of a gear wheel (Fig. 1.18a) for bending, it is considered as a rod with a 

variable cross-section loaded by a concentrated force F (Fig. 1.18b). 

 

 

a) 

 
b) c) 

Fig. 1.18. Scheme of gear engagement (a) and schemes for calculating the tooth for bending (b) 

and contact strength (c) 

 

But if the contact strength of the tooth (the strength of its surface layers) is de-

termined, then the tooth is considered as a massive cylindrical body loaded with a 

load q distributed according to a certain law (Fig. 1.18c). In the case of calculation 

for bending, only the dimensions of the cross-section at the base of the tooth are 

significant, and in the case of calculation for contact fatigue, the radius of curvature 

of the surface of the tooth in the contact zone ɟ and its width b are significant. 

If the calculation scheme of a complex structure is built, then its individual ele-

ments are modeled with the help of typical elements of the form, and the connections 

between its elements are modeled based on the analysis of the structure's operation. 

To describe the connections of the structure (parts) with the foundation, bed, or 

other structures, the main types of supports, which are given in clause 1.5, are used. 

At the same time, the kinematic ties imposed by the real support are taken into ac-

count. However, it happens that when solving a specific problem, not all ties are 
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essential, and therefore, to simplify the calculation, support models with a larger 

number of degrees of freedom are used. 

An important stage in the construction of the calculation scheme is the modeling 

of the external load. Usually, forces distributed over a small area are modeled by a 

concentrated force, which is equal to the equivalent force of these forces. But when 

studying the strength of the surface layers of parts in the contact zone, for example, 

the contact strength of gear teeth (see Fig. 1.18 c), or the contact strength of bearing 

balls, such a replacement is impossible. In this case, the force of interaction is pre-

sented in the form of distributed contact pressure. 

The load distributed over the surface should also be considered in the places of 

connections, when the bearing or gear wheel, flywheel, etc. form a tension fit with 

the shaft. Then there is pressure on the landing surface. As a rule, it is assumed that 

its distribution over the surface is uniform (Fig. 1.19a). However, the actual diagram 

of the pressure distribution in the direction of the sleeve length is represented by a 

certain curve (Fig. 1.19b). Here we observe the concentration of pressure near the 

edges of the hole, caused by the displacement of the compressed material in both 

directions from the middle of the hole. 

  
a) b) 

Fig. 1.19. Diagrams of pressure in a press joint with uniform (a) and uneven (b) distribution over 

the seating surface 

 

In some cases, to simplify calculations, the load distributed over a significant 

area or length is also modeled as concentrated. Consider, as an example, a shaft con-

nected to a gear wheel and supports (Fig. 1.20). Here, the forces with which the gear 

wheel or supports act on the shaft are actually loads distributed along the length of 

the seating surfaces. It can be assumed, with a certain approximation, that its distri-

bution is uniform (Fig. 1.20a). In fact, due to the deflection of the shaft under the 

action of the force at the point of connection of the shaft with the support, the nature 

of the load distribution may be different: the uniform pressure diagram will turn into 

a triangular or trapezoidal one. (Fig. 1.20 b). 
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a) b) 

Fig. 1. 20. Scheme of shaft loading by uniformly distributed (a) and unevenly distributed  

forces (b) 

 

Since the regularity of the load distribution is not precisely known, it is modeled 

by concentrated forces applied in the middle of the landing surfaces of the gear wheel 

or support (Fig. 1.21a). Sometimes, for more accurate modeling of the shaft load in 

the presence of deflections, this load is represented as two forces (Fig. 1.21b). 

 
 

a) b) 

Fig. 1.21. Scheme of shaft loading by concentrated forces instead of uniformly distributed (a) and 

non-uniformly distributed load (b) 

 

Therefore, several calculation schemes can be built for the same object, depend-

ing on the required accuracy and the purpose of the calculation. 

Let us consider as an example the compilation of two variants of the calculation 

scheme for the support beam of the bridge crane (Fig. 1.22). Two possible variants 

of such a scheme are presented here. They differ both in the method of fixing the 

beam on the columns and in its load. 
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b) 

 

a) c) 

Fig. 1.22. Calculation scheme of the support beam of the bridge crane: a ï general view; b and c ï 

variants of the calculation scheme 

 

The first option (Fig. 1.22 b) will be acceptable, if the fastening allows the ro-

tation of the support sections of the beam within certain limits, that is, we have a 

hinged support. The load, consisting of the weight of the cargo and the crane's own 

weight, is represented by the concentrated forces F1 and F2 applied at the contact 

points of the crane wheels with the support beam. The balanced system of forces is 

complemented by the supporting reactions RA and RB. 

If the beam is rigidly fixed to the columns, for example welded to them, then 

rigid fixing should be chosen as supports (Fig. 1.22c). The load scheme here also 

differs from the first option: the self-weight of the beam is taken into account, which 

is represented by a uniformly distributed load of intensity q, and the number of sup-

porting reactions has increased to six. 

When evaluating the adequacy of the proposed calculation schemes, it is neces-

sary to take into account how pliable the beam supports are, and how this can affect 

the accuracy of the calculations. The fewest problems will arise when these supports, 

i.e. columns, are absolutely rigid. If such an assumption turns out to be too rough, 

then one will have to take into account their malleability. However, the columns, in 

turn, are only elements of the structure's frame, connected to the floor beams, stiff-

ening belts, the foundation and the same supporting beams of the crane. Therefore, 

their deformations can be determined only as part of the entire structure of the build-

ing, which, by the way, will be loaded not only by the weight of the crane with the 

load and the own weight of the structural elements, but also by the wind load on the 
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roof and walls of the building, the weight of the snow layer on the roof in winter, etc. 

p. And this is a completely different calculation scheme. 

A very effective tool for drawing up calculation schemes is the use of the prin-

ciple of symmetry, when there are planes of geometric symmetry of the object and 

the symmetry of the loads relative to this plane. If these planes coincide, then the 

calculation scheme can be reduced to a plane - to create a so-called plane scheme 

(the calculation schemes shown in Fig. 1.18, 1.20 - 1.22 belong to plane schemes). 

However, the force symmetry condition for constructing a plane circuit is insuffi-

cient. It is also necessary that all loads act in planes parallel to the plane of symmetry 

of the object, as shown in Fig. 1.23. 

  

 

a) b) c) 

Fig. 1.23. A plane calculation scheme: a ï source object; b and c ï calculation schemes of the ob-

ject 

 

Here, due to the existing symmetry, the spatial load is reduced to a linear one. 

The plane of its reduction is called the plane of force, and in this case, it coincides 

with the plane of symmetry. 

It should be noted that in the case of a rod, the presence of a plane of geometric 

symmetry is not necessary for the construction of a planar calculation scheme. Here 

we should be talking about the plane passing through the principal central axes of 

inertia of the rod sections, which for symmetrical sections are also the axes of sym-

metry. For a system consisting of several rods - the so-called rod system - the con-

struction of a planar calculation scheme is possible provided that the axes of all rods 

lie in the plane that coincides with the power plane. 

If the formulated conditions are not fulfilled, i.e. it is not possible to create a 

plane calculation scheme, or when the problem is solved in a more precise formula-

tion, for example, taking into account the contact interaction between elements, but 

geometric and force symmetry are present (Fig. 1.24, a), then the symmetry condition 

can be used to reduce the required number of computational operations. 

This approach, in particular, is widely used in solving problems using the finite 

element method (FEM). The body is "cut" with a plane, one part is discarded, and 
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the remaining part (Fig. 1.24, b) is fixed in the plane of dissection in a direction 

perpendicular to it (the plane must remain a plane and not move from its place - a 

condition of symmetry). That is, calculations are carried out only for half of the body. 

  
a) b) 

Fig. 1.24. A plane calculation scheme:  a ï source object; b - scheme for calculating FEM 

 

If the object and its load are characterized by cyclic symmetry (cyclic repeata-

bility), for example along the length of the object, then in this case only the charac-

teristic part of the structure is considered, and its discarded parts are modeled by 

symmetry conditions. 

There is a fairly wide class of objects whose geometric shape and the load acting 

on them are symmetrical about one axis. These are axisymmetric shells under the 

action of uniform liquid or gas pressure (Fig. 1.25, a), thick-walled cylinders under 

the action of external and internal pressures (Fig. 1.25, b), rotating disks in the field 

of centrifugal forces, etc. Such objects include press connections of cylindrical shafts 

with wheel hubs, bearings, etc., shown in fig. 1.19. The axial symmetry of their cal-

culation schemes greatly simplifies the determination of the characteristics of the 

stressed and deformed state. 

  
a) b) 

Fig. 1.25. Axisymmetric objects: a ï shell loaded with uniform pressure; b ï a thick-walled cylin-

der loaded with uniform internal and external pressures 
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As you can see, the selection of the calculation scheme is the first and very 

important stage of the calculation. Its accuracy and labor-intensiveness depend on 

this choice. Sometimes an additional, even small, clarification of the calculation 

scheme causes a significant complication of the calculation. On the other hand, un-

justified simplification of the calculation scheme can lead to significant errors. 

It should be borne in mind that several calculation schemes can be proposed for 

one object, and different real objects can correspond to one calculation scheme. That 

is; by studying some calculation scheme, it is possible to obtain a calculation method 

for a whole class of real problems described by this scheme. 

Thus, having drawn up the optimal version of the calculation scheme of the 

structure, it is possible to proceed to the analysis of the characteristics of the stress-

strain state of its elements. 

1.6.2. Basic hypotheses and principles of materials and con-

structions mechanics 

In the mechanics of materials and structures, which is largely based on the meth-

ods of resistance of materials in the calculation of elements of structures and ma-

chines, a number of assumptions (hypotheses) are used, which significantly simplify 

the derivation of calculation formulas. Experimental studies and calculations per-

formed by more rigorous methods of the theory of elasticity show the possibility of 

using these assumptions to solve most problems of resistance of materials. In the 

future, in cases where these assumptions cannot be used, the necessary remarks will 

be made. 

The main hypotheses used in the resistance of materials and, accordingly, in the 

mechanics of materials and structures are as follows. 

1. Hypothesis about the natural unstressed state of the body. This hypoth-

esis allows us to exclude from consideration the force of interaction between body 

particles in an unloaded state. The concept of effort as an additional force that occurs 

when the body is deformed, introduced in clause 1.1, corresponds to this hypothesis. 

2. Hypothesis about the continuity, homogeneity and isotropy of the ma-

terial. According to this hypothesis, the properties of the material do not depend on 

the shape and size of the body and are the same at all points of the body and in all 

directions. This hypothesis was discussed in detail in Section 1.2 and used to build a 

model of the material studied in the mechanics of materials and structures. 

The assumption of the continuity and homogeneity of the material allows an 

infinitesimally small element of the structure to be endowed with the properties that 

the body volume of real dimensions has, and for the study of internal forces and 
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analysis of the stress-deformation state of the body, the equilibrium is not considered 

of an infinite part of the rod or shell, but of an infinitely small element of them. From 

this assumption follows the continuity of the distribution of internal forces along the 

cross-section of the body, which makes it possible to introduce the concept of stress 

and deformation at a point of the body. 

The assumption of isotropic material is acceptable for most structural materi-

als. However, there are cases when it is necessary to take into account the difference 

in material properties in different directions, that is, their anisotropy (wood, compo-

site materials, etc.). 

3. Hypothesis about the ideal elasticity of the material. According to this 

hypothesis, the material is able to completely restore the original shape and size of 

the body after the causes that caused its deformation have been eliminated. 

This hypothesis is valid only for stresses that do not exceed a certain value for 

the given material, which is called the elastic limit. If the stresses exceed the elastic 

limit, then plastic (residual) deformations occur in the material in addition to the 

elastic ones, which do not disappear after the load is removed. 

Residual deformations can develop over time and at constant stresses, lower 

than the elastic limit, if the load occurs in conditions of high temperatures. They are 

called creep strains. 

The hypothesis of ideal material elasticity is used to solve most problems of 

material resistance and elasticity theory. 

4. Hypothesis of small displacements. This hypothesis is also called the hy-

pothesis of small deformations of the system as a whole. It is assumed that during 

the loading of the body, the displacements of any point are small compared to the 

geometric dimensions of the body. This assumption is confirmed for most systems 

considered in the mechanics of materials and structures. 

5. The statement about the proportional relationship between stress and 

strain (Hooke's law). This law was formulated by Robert Hooke in 1660: "what 

elongation is such a force." In its original formulation, Hooke's law stated that dis-

placements are proportional to the force that causes the displacement. In this case, 

the proportionality factor depends on both the physical properties of the material and 

the geometric parameters of the structure. And therefore, the specified relationship 

between displacements and force can be considered as Hooke's law for the system. 

In the modern interpretation, Hooke's law defines a linear relationship between 

stress and strain at a point of the body. The proportionality factor is a physical con-

stant of the material and is not related to the geometric features of the structure. In 

the model of the pairwise interaction of two atoms (Fig. 1.2), this coefficient is 
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proportional to the tangent of the angle of inclination of the tangent to the resulting 

force curve around the point. Therefore, Hooke's law expresses the properties of the 

material itself. Moreover, it is considered that the linear relationship between stress 

and strain is preserved both during loading and unloading. 

It should be noted that nonlinear dependences between forces and displacements 

are observed in systems to which the hypothesis of small displacements cannot be 

applied, even when Hooke's law is applied in relation to stresses and strains. An ex-

ample can be a spiral spring (see Fig. 1.4 c) - a rectilinear rod in its initial state that 

bends into a spiral. Such systems are called geometrically nonlinear. 

Experiments show that Hooke's law is fulfilled for most materials at stresses 

that do not exceed a certain value for the given material - the limit of proportionality. 

This law is used to solve most problems of resistance of materials. 

6. Hypothesis of plane cross-sections of a rod (Bernoulli's hypothesis). 

According to the hypothesis, the cross-sections of the rod, which are plane before the 

application of the load, remain plane during the loading. 

As shown by calculations using the theory of elasticity, as well as data from 

experimental studies, the fulfillment of this hypothesis is influenced by the distance 

of the cross-section from the places of application of external forces, the gradual 

change in the size of the cross-section, the shape of the cross-section (during torsion), 

etc. 

The hypothesis of plane sections plays an important role in the derivation of 

most formulas for the resistance of materials. For those cases when it is not fulfilled, 

the necessary remarks will be made. 

In addition to the listed hypotheses, in the mechanics of materials and structures, 

a number of basic principles are used as the basis of calculation methods for deter-

mining the stress-strain state of a body. 

1. The principle of initial dimensions or the principle of hardening. Ac-

cording to this principle, when compiling the equilibrium equations, the body is con-

sidered as undeformed, having the same geometric dimensions that it had before 

loading by external forces. This type of calculation is also called calculation accord-

ing to the undeformed scheme. This allows us to ignore possible changes in the po-

sitions of the application points and the directions of the forces acting on the body as 

a result of its deformation, and which are actually unknown. This principle is based 

on the hypothesis of small deformations and displacements. 

However, this principle cannot be applied in all cases. Thus, in the already men-

tioned example of a spiral spring, despite the real small deformation of the spring 

material within the limits of elasticity, the displacement of its points can be 
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commensurate with the dimensions of the thin-walled rod (metal strip) from which 

it is made. That is, the principle of initial dimensions cannot be used in cases where 

large displacements occur. In these cases, the calculation should be carried out ac-

cording to the deformed scheme, in particular, the equilibrium equations should be 

written taking into account the deformations of the system. 

2. The principle of independence of action of forces (principle of super-

position). In accordance with this principle, the result of the action on the structure 

of the system of forces is equal to the sum of the results of the action of each force 

separately. So, if several forces are applied to the system, it is possible to determine 

the forces, stresses, displacements and deformations from each force separately, and 

then add the calculation results accordingly. It follows from this principle that the 

result of the action of forces on the body does not depend on the order of their appli-

cation. 

The principle of the independence of the action of forces is based on the hy-

pothesis of the smallness of displacements and the proposition about their linear de-

pendence on forces, as well as related to the previous assumption about the reversi-

bility of the loading and unloading processes (here we mean the hypothesis about the 

ideal elasticity of the material and the linear dependence between stresses and strains 

both when loading and unloading the body). 

The principle of independence of forces is fundamental for solving most linear 

problems in the mechanics of materials and structures. In cases where this principle 

is unacceptable, special provisions will be made. 

3. Saint-Venant principle. Consider a body loaded in two ways: uniformly 

distributed (Fig. 1.26, a) and unevenly distributed loads (Fig. 1.26, b). 

  
a) b) 

Fig. 1.26. Variants of body load: evenly distributed (a) and unevenly distributed load (b) 

 

At the same time, the principal vectors of these loads 

0

0

A

F qdA=ñ  are the same, 

and the principal moments are 0=M
d

. Systems of external forces in which the prin-

cipal vectors and principal moments are the same are called statically equivalent. 

The dimensions of the load distribution platforms are much smaller than the 

dimensions of the body. Under such conditions, the Saint-Venant principle is valid: 
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If the body is loaded with statically equivalent systems of forces, while the 

sizes of the load application zones are small compared to the size of the body, then 

at its points far enough from the load zones, stresses and strain do not depend on 

the method of load application. 

A few remarks should be made here. 

First, the Saint-Venant principle still lacks a theoretical proof for the general 

case. At the same time, it was fulfilled for all obtained exact solutions. Therefore, 

this principle belongs to the so-called heuristic principles: it is valid for a wide class 

of problems, but does not have a general proof. 

Second, there is no exact answer as to what the minimum distance should be for 

the Saint-Venant principle to hold. It is believed that this distance should not be less 

than the maximum size of the load application zone. 

Despite some uncertainty in quantitative estimates, the validity of the Saint-Ve-

nant principle has been experimentally proven, and its physical essence is very im-

portant for engineering calculations. It makes it possible to significantly simplify the 

boundary conditions of the problem, if the stresses and strains are determined at some 

distance from the load application zone. 

It is clear that directly in the load zone and near it, the laws of distribution of 

stresses and strain will depend on the method of application of loads. 

In addition to the principles formulated above in the mechanics of materials and 

structures, as well as in the resistance of materials, such general principles of me-

chanics as the principle of freedom from constraints, the principle of minimum po-

tential energy, the principle of possible deformations, etc. are also used. 

1.6.3. Internal forces and the method of sections for their deter-

mination 

At the heart of the method of determining internal forces or efforts is the prin-

ciple of liberation from shackles. According to this principle, when rejecting a me-

chanical yoke imposed on a loaded body, it is necessary to apply a reaction instead, 

so as not to violate the conditions of equilibrium or the given law of motion. In the-

oretical mechanics, external connections are considered, and the reactions that occur 

in them are attributed to external forces. It is clear that, being universal, this principle 

can be applied in relation to internal ties as well. 

The method of determining efforts was called the method of sections. To reveal 

its essence, consider a solid body loaded by a balanced system of forces (Fig. 1.27a). 
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a) b) c) 

Fig. 1.27. To the method of sections for determining efforts: balanced solid (a); a part of the body 

with a distributed force in the section (b) and its principal vector and principal moment (c) 

 

Since a loaded body is in equilibrium, any part of it is also in equilibrium. It is 

obvious that when a body is dissected by an imaginary plane and one part of it is 

considered (Fig. 1.27b), then in order for its equilibrium not to be disturbed, it is 

necessary to foresee the forces distributed according to a certain law in the section. 

These forces characterize the action of one part of the body on another and appear in 

the cross-section as a result of the dissection of the internal bonds (see the model of 

the paired interaction of material atoms, Fig. 1.1 and Fig. 1.2), which connected the 

two parts of the body. 

The cross-sectional surface is external to the remaining body part. Therefore, 

with the help of the cross-section method, the internal forces are transferred to the 

category of external forces for the body part. Since the body, according to the ac-

cepted hypothesis, is a continuous medium, these forces should be considered as dis-

tributed in the cross-section. The task is to find the force at each point of the consid-

ered section. Unknown reactions in theoretical mechanics are found from the equi-

librium conditions of the body. However, in our case, using only the conditions of 

equilibrium of a part of the body, we will not be able to solve this problem, since we 

do not know the law of distribution of forces in the cross-section. This law depends 

on the shape of the body, character, magnitude and location of external forces. 

At the same time, the forces distributed in the section can be represented in the 

form of their principal vector R  and principal moment M  (Fig. 1.27c), applied at 

the center of gravity of the section. 

Let's project the principal vector and the principal moment on the coordinate 

axis, one of which, namely x, coincides with the normal to the section, and the other 

two, y and z, lie in the plane of the section. Then, on each side of the section belong-

ing to the body parts and, we will have six internal force factors: three forces (

, ,x y zR  R  R) and three moments ( , ,x y zM  M  M ) (Fig. 1.27c). These quantities are 

called the components of internal forces in the cross-section of the body. 
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These components can be found from the equilibrium equations for the body 

part under consideration. Based on the principle of hardening, we consider it abso-

lutely solid when the points of application and directions of external forces applied 

to the body are unchanged in the coordinate system associated with this part of the 

body. 

So, having compiled six equilibrium equations for a part of the body, you can 

find six components of internal forces, and therefore the vectors R  and M . 

Internal forces, according to the principle of action and counteraction, are 

always mutual. That is, for the determination of vectorsR  and M , it does not mat-

ter which part of the body is considered to be in equilibrium - left A or right B 

(Fig. 1.27). 

In the case of a rod (Fig. 1.28), special terms are used to denote the components 

of the principal vector , ,x y zR  R  R  and the principal moment , ,x y zM  M  M : 

N is the longitudinal force, that is, the component of the principal vector that 

acts along the x axis, normal to the cross section of the rod; 

yQ  and zQ ï shear forces, that is, components of the principal vector that co-

incide with the transverse axes of the section y and z, respectively; 

torM  ï torque, that is, the component of the principal moment acting in the 

cross-sectional plane (relative to the x axis); 

yM  and zM  - bending moments, that is, components of the principal moment, 

which act relative to the y and z axes, respectively. 

 
Fig. 1.28. Part of a rod with the components of the principal vector and the principal moment of 

effort in the section 

 

Equilibrium conditions for part of the rod are written in the form of equations 

relative to the unknown components of internal forces, taking into account that each 
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of these components balances the projections of external forces on the corresponding 

axes or moments of these forces relative to the corresponding axes: 

( ) ( ) ( )

( ) ( ) ( )

1 1 1

1 1 1

;    ;    ;

;    ;    . 

n n n

x y y z z ii i
i i i

n n n

tor x i y y i z z i
i i i

N F Q F Q F

M M F M M F M M F

= = =

= = =

= = =

= = =

ä ä ä

ä ä ä

 (1.1) 

Therefore, the method of cross-sections makes it possible to find all internal 

forces and moments in any cross-section of a rod. For this you need: 

1. mentally draw a cross-section of the rod in the place where the components 

of internal forces should be found; 

2. determine forces , ,y zN  Q  Q  and moments , ,tor y zM  M  M  as algebraic 

sums of projections and moments of external forces acting on one of the parts (left 

or right relative to the cross-section) of the dissected rod (as a rule, the one with less 

loads). 

Of course, the internal forces in different sections of the same rod can have 

different values. Graphs showing the change in internal force along the axis of the 

rod are called diagrams. 

The following rules are used when building shear-moment diagrams: 

- the axis (base line) on which the diagrams is built always repeats the axis 

of the rod; 

- ordinates are laid perpendicularly from the base line, depicting the magni-

tude of the force on the selected scale, taking into account its sign; 

- the numerical values of the characteristic coordinates are placed on the di-

agrams, and the force sign is placed in the field of the diagrams. 

Diagrams allow you to determine the most dangerous areas or sections of the 

rod, in which the internal force factors reach the greatest value, and to calculate the 

strength of the rod. The method of constructing graphs for various types of rod load-

ing will be discussed in more detail later. 

1.6.3.1  The simplest types of rod loading 

In accordance with the listed components of internal forces for rods (longitudi-

nal, transverse forces, torsional and bending moments), a classification of types of 

their deformations is introduced. 

Pure tension or pure compression occurs when only longitudinal force N occurs 

on some part of the rod in its cross sections. 
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A shear of the rod occurs when only transverse forces yQ  and (or) zQ arise on 

some part of it in the cross sections. 

Pure torsion occurs when only torque occurs on some part of the rod in its cross 

sections torM . 

Pure bending occurs when only a bending moment yM  or zM . At the same 

time, if the moments act in one plane, which coincides with the bending plane of the 

axis of the rod, then the bending is called plane. 

Plane transverse bending occurs when, in addition to bending moments, a trans-

verse force also acts in the cross-sections. 

Any other types of rod deformations can be obtained by superimposing the in-

dicated simplest ones, for example, bending with torsion, tension with bending, etc. 

1.6.3.2  Diagrams of internal forces for rods 

In the general case, when moving from cross-section to cross-section, the forces 

in the rod change, and judge the nature of their change with the help of graphs. 

The diagram of the change of this component of the internal force along the 

length of the rod is called a graph 

General remarks and the order of construction of diagrams 

The axis on which the diagram is built is called the base line or base. It always 

repeats the rod axis. 

The ordinates of the diagram are placed perpendicularly from the base. In scale, 

they correspond to the values of internal forces in cross-sections, calculated accord-

ing to the equations of statics using the method of cross-sections. 

They build diagram in the following sequence. 

1. Depict the calculation scheme of the rod and the base lines of the diagram. 

2. If necessary, determine the reactions of the rod supports. 

3. Break the rod into sections. A section is a part of a rod on which the internal 

forces change according to the same law. The boundaries of the sections coincide 

with the points of application of concentrated loads, as well as with the beginning 

and end of the distributed load. Within the boundaries of the section, the law of 

change of the distributed load is constant. 

4. Using the method of cross-sections, the conditions of equilibrium of the 

cut-off part of the rod are successively drawn up in each section in the form of equa-

tions of relative unknown forces. Efforts in this case are considered as functions of 

the position of the section along the axis of the rod. 
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Note. Before writing down the equilibrium equation, for each section it is nec-

essary to indicate the limits of the change of the cross-section coordinate along the 

axis of the rod relative to the selected reference point. 

5. According to these equations, graphs are constructed within each section 

of the rod and, as a result, the diagram is obtained. 

Hatching in the form of lines perpendicular to the base is often applied to shear-

moment diagrams. In addition, on the graphs, the values of forces are placed near the 

ordinates at characteristic points, for example, in places of breaks, breaks (jumps) on 

the graphs, in places of extremes. The sign of effort, which is placed in a circle, is 

also indicated directly on the shear-moment diagrams. 

Example 1.1. Build force diagrams for a round stepped rod (Fig. 1.29) in two 

load cases: 1 ï without taking into account the rod's own weight; 2 - taking into 

account own weight. The diameter of the lower part of the rod 1 0,1d m= ; upper -

2 0,2d m= . Specific weight of the rod material 4 37,65 10 N mg= Ö . 

1. Construction of diagrams of internal forces without taking into account the 

own weight of the rod. 

According to the calculation scheme, the rod is tightly clamped at the upper 

end. On this basis, we conclude that there is no need to determine support reactions, 

since the forces in any section can be found from the equilibrium condition of the 

part of the rod that does not contain support, that is, the lower part. 

We break the rod into sections. There are two of them, and they are limited by 

the points of application of concentrated forces. 

Within each section, we make cross-sections. To record the equilibrium condi-

tions for the cut-off parts of the rod, we choose a coordinate system with the origin 

at its free end. We will determine the position of the sections on each section from 

this point (see Fig. 1.29 a). 
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Fig. 1.29. Calculation diagram of the rod (a) and longitudinal force diagram (b), constructed with-

out taking into account the own weight of the rod, and calculation diagram (c) and diagram (d), 

constructed taking into account the own weight of the rod 

 

The analysis of the loads applied to the cut parts of the rod in both the first and second 

sections shows that we have a linear system of forces acting along the X axis. That is, only longi-

tudinal forces N will occur in the sections, which means that the rod is in pure tension compression. 

Before writing the equilibrium equation, the sign rule for the longitudinal force should be 

agreed upon. 

A longitudinal force is considered positive if the load causing it stretches the 

rod. If the load compresses the rod, then the longitudinal force is negative. 

So, for the first section: 

ɯ. 0 0,5 x m¢ ¢  

() 1 1N x F kN= = . 

For the second section: 

II. ɯɯ. 0,5 0,8 m x m¢ ¢  

() 1 2 1 3 2 N x F F kN= - = - =- 

As you can see, the longitudinal force in each area is constant. Moreover, the 

rod is stretched in the first section ( 0N> ), and compressed in the second section 

( 0N< ). The diagram of the constant is a straight line parallel to the abscissa axis. 

On the diagram (Fig. 1.29 b) we have two straight lines, parallel to the base, with 

ordinates on the first section 1 kNN=  and 2 N kN=- on the second section. At the 

points of application of concentrated forces on the diagram, there are jumps in the 

magnitude of the force in the direction of its action. Thus, at the point of application 

of force F1, there is a jump (break) by the amount of this force of 1 kN towards pos-

itive values. And at the point of application of force F2, we have a jump totaling 3 kN 

in the direction of negative values of the longitudinal force. We have a jump of 2 kN 
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in resistance. So here a concentrated force of 2 kN must be applied, which com-

presses the rod. It is not difficult to understand that this force is the reaction of the 

support, which we have not previously determined. 

2. Construction of diagrams of internal forces taking into account the own 

weight of the rod. 

In this case, the own weight of the rod is added to the concentrated forces F1 

and F2 (see Fig. 1.29 c). Gravitational force, as is known, is a volumetric load that 

can be reduced to a linear, uniformly distributed along the axis of the rod within 

each of its parts. Moreover, its intensity is different, since the diameters and, there-

fore, the cross-sectional areas of the rod in its lower and upper parts are different. 

The intensity of the load by own weight on the lower part: 
2 4 2

1 1 1 4 7,65 10 3,14 0,1 4 600,525 0,6 q A d m kN m=g =gp = Ö Ö Ö = =. 

On the upper part of the rod: 

2 4 2
2 2 2 4 7,65 10 3,14 0,2 4 2402,1 2,4 q A d N m kN m=g =gp = Ö Ö Ö = =. 

According to the scheme (Fig. 1.29 c), we have three sections on the rod. Let's 

write down the equilibrium conditions for the cut-off part of the rod at each section. 

For the first section: 

ɯ. 0 0,4x m¢ ¢  

() 1 1 1 0,6N x F q x x= + = + . 

As you can see, the diagram in the first section is outlined by a straight line. To 

carry it out, it is necessary to have two points, for example, the ordinates of the lon-

gitudinal force at the borders of the section: at 0x=  1 N kN= and at 0,4 mx=  

1 0,6 0,4 1,24 N kN= + Ö = . 

For the second section: 

ɯɯ. 0,4 0,5 m x m¢ ¢  

() ( )1 1 20,4 0,4 1 0,6 0,4 2,4 2,4 0,4 0,28+2,4N x F q q x x x= + Ö + - = + Ö + - Ö =. 

At 0,4 x m=  0,28 2,4 0,4 1,24 N kN= + Ö = ;  

at 0,5 x m=  0,28 2,4 0,5 1,48 N kN= + Ö = . 

For the third section: 

ɯɯɯ. 0,5 0,8 m x m¢ ¢  

() ( )1 2 1 20,4 0,4 1 3 0,6 0,4 2,4 0,4 2,4 2,72 2,4 .N x F F q q x x x= - + Ö + Ö - = - + Ö - Ö + =- +
 

At 0,5 mx=  2,72 2,4 0,5 1,52 N kN=- + Ö =- ;  

at 0,8 x m=  2,72 2,4 0,8 0,8 N kN=- + Ö =-. 

The diagram of longitudinal forces is shown in Fig. 1.29 g. 
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Example 1.2. Construct force diagrams for a rod loaded with moments acting 

in a plane perpendicular to the axis of the rod (Fig. 1.30). 

Adding the moments applied to the rod, we get: 

1 2 3 4 10 40 10 20 0M M M M- + + = - + + =. 

That is, the system of external forces is balanced, which means that the rod is 

at rest or rotates uniformly. 

 
Fig. 1.30. Calculation scheme of the rod and torque diagram 

 

We break the rod into three sections. Their borders coincide with the points of 

application of concentrated moments. 

We place the beginning of the reference at point A. We draw sections and write 

down the equilibrium equations for the corresponding parts of the rod at each sec-

tion. It can be seen from the load scheme that only torques will arise from the six 

force components in the cross-sections, which balance the acting external moments. 

Therefore, the rod is in pure torsion conditions. 

Note. The special rule of signs for torques is not established, only when writing 

the equilibrium equations, they are reconciled in accordance with the directions of 

external moments. Signs are also not placed on shear-moment diagram. 

ɯ. 0 x b¢ ¢ 

() 1 10 torʄ x ʄ kNm= = . 

ɯɯ. 2b x b¢ ¢  

() 1 2 10 40 30 torʄ x ʄ M kNm= - = - =- . 

In the third section, it is rational to determine the torque in the section, consid-

ering the equilibrium condition of the right part of the rod (only one moment M3 is 
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applied here). Let's move the origin of the reference x to point D and get the following 

expression: 

ɯɯɯ. 0 x b¢ ¢ 

() 4 20 torʄ x ʄ kNm=- =- . 

At each section, the torques are constant, which is understandable, because the 

distributed moments are not applied to the rod. The diagram of torʄ  is shown in 

Fig. 1.30. 

In the cross-sections where concentrated moments are applied, we have jumps 

on the curves. It should be noted separately that the moment M3=10 kNm was not 

included in any of the equilibrium equations. Each time it fell back together with the 

corresponding part of the rod. However, in the section where it is applied, there is a 

jump of 30 kNm in the direction of its action, which indicates the correctness of the 

performed calculations and constructions. 

1.6.3.3  Construction of diagrams of internal forces for a straight rod in 

conditions of plane transverse bending 

Rods that are in plane transverse bending are called beams. 

In construction, where this term came from, a beam is a separate element of a 

building's structure. In mechanical engineering, wheel teeth, axles, and levers, and 

other machine elements are called beams when it comes to their calculation schemes. 

Depending on the type and number of supports, the beams can be cantilever 

(Fig. 1.31 a), single-span or two-span hinged supports (Fig. 1.31 b), multi-span sin-

gle-span (Fig. 1.31 c), multi-span split (with intermediate hinges) 

(Fig. 1.31 d). It should be noted that the span is the distance between the beam 

supports. 

 
   

a) b) c) d) 

Fig. 1.31. Types of beams: a ï cantilever; b ï single-pass; c) ï multi-run inseparable; d) multi-

pass split 

 

Let's dwell on some features related to the construction of frames for beams. 

Determination of support reactions 

Under the conditions of transverse bending, external forces, including the reac-

tions of the supports, act perpendicular to the axis of the beam. If this were not the 

case, longitudinal forces would arise in the cross-sections of the beam, and they are 

absent during transverse bending. Thus, a planar system of parallel forces acts on the 
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beam, which is subject to two equilibrium conditions: the sum of the projections of 

all forces on an axis perpendicular to the axis of the beam is zero, and the sum of the 

moments of all forces relative to some point of the plane is zero. 

These conditions are used when determining the resistance reactions. 

Example 1.3. Determine the support reactions for a two-support hinged beam 

(Fig. 1.32). 

 
Fig. 1.32. To determine the bearing reactions of 

the beam  

It is most rational to determine 

the reactions in the hinge supports 

from the balance equations of the mo-

ments of external forces relative to 

each of the supports. In this case, the 

following sequence should be ob-

served: 

- apply support reactions in ar-

bitrary directions; 

- draw up the balance equations of the moments relative to the supports, from 

which to determine the reactions (if the reaction turns out to be negative, then its 

direction should be changed to the opposite, and the reaction will be considered 

positive in the future); 

- complete the calculation by checking the correctness of the determination of 

reactions, for which you can use the condition that the sum of force projections on 

the vertical Y axis is equal to zero. 

Note. The sign of the moment is assigned as is customary in theoretical me-

chanics - a positive moment acts counterclockwise. A force is considered positive 

when its direction coincides with the direction of the selected axis. 

Note. If a distributed load is applied to a beam, then, when determining the 

moment of this load relative to a certain point, it is replaced by an equivalent mo-

ment, which, as is known, is equal to the area of the load diagram and is applied at 

the center of gravity of this diagram. 

We will now determine the supporting reactions of the beam (Fig. 1.32), using 

the given recommendations. 

Let's apply the reactions in supports A and B, having previously directed them 

upwards. We write down the conditions of equilibrium of the moments relative to 

each of the supports, from which we find the reactions: 

2 2 2

0,5 1,5 2 0;

0,5 6 2
1,75 ;

2

A B

B

M ql l F l R l M

ql ql ql
R ql

l

ä =- Ö + Ö + Ö - =

- +
= =-
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2 2 2

2 1,5 0,5 0;

1,5 2 2
1,25 .

2

B A

A

M R l ql l F l M

ql ql ql
R ql

l

ä =- Ö + Ö - Ö - =

- -
= =-

 

Both reactions were negative. Therefore, on the calculation scheme, we change 

their directions to the opposite. After that, we check: 

1,25 4 1,75 0A BY R ql F R ql ql ql qlä =- - + - =- - + - =. 

The check showed that the reference reactions were found correctly. 

There were no problems in determining the support reactions in the considered 

example, since their number did not exceed the number of equilibrium equations 

from which they were found (we have two reactions and two equilibrium equations 

for the system of parallel forces). Such problems are called statically deterministic. 

However, the task of determining the support reactions can be statically inde-

terminate. Indeed, if we add at least one more support, turning our beam into a multi-

span continuous beam, we get three unknown reactions. The number of equilibrium 

equations remained unchanged, that is, we have two equations. The problem has be-

come statically indeterminate. We will get acquainted with the methods of solving 

such problems later. 

The degree of static uncertainty of an uncut multi-span beam can be reduced by 

placing an intermediate hinge (Fig. 1.31 d). At the same time, to the existing equilib-

rium conditions, the conditions of zero sum of the moments of forces lying on one 

side of the hinge, relative to the center of this hinge, are added. 

Differential dependencies between effort components during transverse 

bending 

Consider a balanced rod in conditions of plane transverse bending (Fig. 1.33 a). 

Let's select an element of this rod with length dx. It is acted upon by an external 

distributed load of intensity q(x), which, due to the smallness of the element, can be 

considered uniformly distributed, and internal forces in sections A and B 

(Fig. 1.33 b). 

  

a) b) 

Fig. 1.33. A rod under conditions of plane transverse bending: a ï load scheme; b ï rod element 

under the action of external and internal forces 

 

Let's write the equilibrium equation of the rod element: 
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( ) 0Y Q qdx Q dQä = + - + =; (1.2) 

( ) 0
2

B
dx

M Qdx qdx M M dMä = + + - + =. (1.3) 

From equation (1.2), we get the relationship between the transverse force in the 

section and the intensity of the load: 

dQ
q

dx
= . 

(1.4) 

Neglecting the product in equation 
2

dx
qdx  (1.3) as a quantity of the second order 

of smallness, and taking into account relation (1.4), we obtain the differential de-

pendences between the forces during transverse bending: 

2

2

;

.

dM
Q

dx

dQ d M
q

dx dx

=

= =

 

(1.5) 

According to the obtained dependencies, the same dependencies exist between 

the graphs of load distribution, transverse force and moment, as well as between the 

graphs of the function and its derivative, known from mathematical analysis. This 

greatly facilitates the construction of internal force diagrams and provides a reliable 

tool for checking the correctness of the completed constructions. 

Sign rule for transverse force and bending moment in the beam 

A transverse force in a cross-section is considered positive if the external load 

causing it tries to rotate part of the beam clockwise relative to the cross-section. If 

this rotation occurs counterclockwise, then the transverse force is considered neg-

ative. 

The moment diagram is usually built on compressed fibers. Then, in the sec-

tion of the beam, the bending moment is considered positive if the load causing it 

deforms the beam in such a way that the upper fibers are compressed. If the lower 

fibers of the beam are compressed, then the bending moment is considered nega-

tive. 

In Fig. 1.34 shows examples of determining the signs of internal forces in beam 

sections according to the formulated rules (signs of forces are indicated on the dia-

grams). 
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a) b) c) d) 

Fig. 1.34. To determine the signs of internal forces in cross-sections of a rigidly clamped cantile-

ver beam: a, b - compressed upper fibers; c, d ï compressed lower fibers. 

Example 1.4. Applying the formulated rules of signs, for a cantilever rigidly 

clamped beam (Fig. 1.34 a), determine the internal forces and construct their dia-

grams. 

Since the cantilever beam is rigidly pinched, there is no need to determine the 

bearing reactions. The beam has one section, within which a section is made at a 

distance x from the free end. 

Let's indicate the boundaries of the section and write down the equilibrium con-

ditions of the cut-off part of the beam. At the same time, we will take into account 

signs of effort in accordance with the accepted rules: 

- transverse force in the cross-section 0Q> , since the force F tries to rotate 

part of the beam relative to the cross-section clockwise; 

- the bending moment in the section is also positive, since the moment of force 

F, bending the beam, compresses the upper fibers. 

ɯ. 0 x l¢ ¢ 

()

()

;

.

Q x F

ʄ x Fx

=

=
. 

According to the equilibrium equation, the transverse force is constant along 

the entire length of the beam, and the bending moment varies according to a linear 

law. We depict its diagram with a straight line, passing it through the ends of the 

ordinates corresponding to the values of the moments on the boundaries of the sec-

tion: at 0x=  0M = ; at x l=  M Fl= . 

For the rest of the schemes shown in Fig. 1.34, shear-moment diagrams are built 

according to a similar technique. 

It should be noted that there is no physical meaning according to the formulated 

rules of signs for internal forces during transverse bending. However, these rules 
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make it possible to use the properties and interdependencies of graphs of a function 

and its derivative, which in mathematical analysis are related to the right coordinate 

system, when constructing graphs. 

Let's recall some of these properties. For illustration, let's use the graphs Q and 

M presented in Fig. 1.34, remembering that, according to the differential dependence 

between bending forces (1.5), the diagram of bending moments M is a graph of the 

function, and the diagram of transverse forces Q is a graph of its derivative. 

1. If the derivative in this interval is positive, the function increases  

(Fig. 1.34 a and d), and if it is negative, it decreases (Fig. 1.34 b and c). 

2. The graph of a function is always a line of higher order compared to the 

graph of its derivative. In Fig. 1.34, the diagrams of moments are outlined by sloping 

straight lines, and the diagrams of transverse forces are straight, parallel to the bases, 

that is, constants. 

3. If the graph of the derivative crosses the abscissa axis (Q=0), then the 

graph of the function is an extremum. 

4. A break on the graph of the derivative corresponds to a break on the graph 

of the function 

We will consider the features of Q and M diagrams in more detail using a num-

ber of examples. 

Example 1.5. Construct the graphs Q and M for a single-span beam loaded with 

a concentrated force F=10 kN (Fig. 1.35). 

 
Fig. 1.35. Hinged single-span beam (to 

example 1.5) 

Let's find the support reactions from the 

conditions of equilibrium of the moments 

with respect to the supports. 

0,25 1 0;

10 0,25 2,5 ;

A B

B

M F R

R kN

ä =- Ö + Ö =

= Ö =
 

0,75 1 0;

10 0,75 7,5 .

B A

A

M F R

R kN

ä = Ö - Ö =

= Ö =
 

Check: 

7,5 10 2,5 0A BY R F Rä = - + = - + =. 

We break the beam into sections. At 

each section, we make cross-sections and 

record the equilibrium conditions for the left 

parts of the beam. 
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ɯ. 0 0,25 x m¢ ¢  

()

()

7,5 ;

7,5 .

ɸ

ɸ

Q x R kN

ʄ x R x x

= =

= =
. 

At 0x=  0M = ; at 0,25 x m=  1,875 M kNm=  

ɯɯ. 0,25 1 m x m¢ ¢  

()

() ( ) ( )

7,5 10 2,5 ;

0,25 7,5 10 0,25 2,5 2,5 .

ɸ

ɸ

Q x R F kN

ʄ x R x F x x x x

= - = - =-

= - - = - - = -
. 

At 0,25 x m=  1,875 M kNm= ; at 1 x m=  0M = . 

Based on the obtained data, we build the diagrams Q and M. 

Example 1.6. Construct the graphs Q and M for a single-span beam loaded with 

a concentrated moment M=20 kNm (Fig. 1.36). 

 
Fig. 1.36. Hinged single-span beam (to ex-

ample 1.6) 

 

Let's find the support reactions. 

1 0;

20 ;

A B

B

M ʄ R

R kN

ä =- + Ö =

=
 

1 0;

20 .

B A

A

M R ʄ

R kN

ä = Ö - =

=
 

Check: 

20 20 0.A BY R Rä =- + =- + =. 

We break the beam into sections. At 

each section, we make cross-sections and 

record the equilibrium conditions for the 

left parts of the beam. 

ɯ. 0 0,5x m¢ ¢  

()

()

20 ;

20 .

ɸ

ɸ

Q x R kN

ʄ x R x x

=- =-

=- =-
. 

At 0x=  0M = ; at 0,5 x m=  10 M kNm=- . 

ɯɯ. 0,5 1 m x m¢ ¢  

()

()

20 kN;

20 20.

ɸ

ɸ

Q x R

ʄ x R x ʄ x

=- =-

=- + =- +
. 

At 0,5 x m=  10 M kNm= ; at 1 x m=  0M = . 

Based on the obtained data, we build the diagrams Q and M. 

In both examples, the transverse forces on the sections of the beams are steel 

values. Their diagrams are outlined by straight, parallel bases (see Fig. 1.35 
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and 1.36). Bending moments are linear functions of length, and diagrams are 

straight lines. We draw them through the ends of the ordinates calculated at the bor-

ders of the diagrams and set off from the base lines in the selected scale. 

Example 1.7. Construct Q and M diagrams for a single-span beam, which is 

subjected to a uniformly distributed load with an intensity of q=10 kN/m (Fig. 1.37). 

In this case, it is not necessary to determine the support reactions from the equi-

librium conditions of the beam. Since the uniform force of a uniformly distributed 

load is applied in the middle of the span (passes through the center of gravity of the 

load diagram, which is a rectangle), and its value is equal to the area of this rectan-

gle ql, that is, the product of the intensity by the length of the distribution line, it is 

obvious that 2A BR R ql= = . 

 
Fig. 1.37. Hinged single-span beam (for 

example 1.37) The beam has only one 

section AB. 

The beam has only one section AB. We 

draw a section and write down the equilib-

rium condition for the left part of the beam. 

ɯ. 0 1 x m¢ ¢  

()

() 2

5 10 ;

5 5 .
2

ɸ

ɸ

Q x R qx x

x
ʄ x R x qx x x

= - = -

= - = -
. 

Here, the equivalent load of a uni-

formly distributed load on a section of 

length x is equal to the area of a rectangle 

with sides x and q. The uniform force is ap-

plied at the center of gravity of the rectangle 

2x at a distance from the section. 

At 0x=  5 Q kN= , 0M = ;  

at 1 x m=  5 Q kN=- , 0M = . 

 

According to the first equation, the transverse force changes according to a 

linear law and its graph is outlined by a straight line that will pass through the ends 

of the force ordinates found on the borders of the section. 

The diagram of moments, according to the second equation, is a parabola. 

Moreover, the convexity of the parabola must be directed upwards, because the in-

tensity of the force q, according to the differential dependences (1.5), is the second 

derivative of the bending moment M, and its sign is negative, because q acts down-

ward, that is, against the positive direction of the vertical axis. 
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The diagram of transverse forces crosses the base line, that is 0Q= , in this 

section. Since the diagram of forces is a graph of the derivative with respect to the 

diagram of moments, there must be an extremum on the diagram M here. It can be 

seen from figure Q that this section is located in the middle of the span. So 

( )
2

0,5 
5 0,5 5 0,5 1,25 .

x m
M kNm

=
= Ö - =  

Note. In the general case, the position of the section where the moment becomes 

extreme is found by equating to zero the expression for the transverse force in the 

area where the extremum occurs. For the example under consideration, we have: 

() 0.ɸQ x R qx= - = 

From here 
5

0,5 
10

AR
x m

q
= = = . 

That is, the extremum of the moment really takes place in the middle of the run. 

We build the diagram of moments by three points: two of them are the ends of 

the ordinates of the moments at the boundaries of the section, and the third is in the 

section where its extreme value occurs. 

Let's formulate the main features of the diagrams of transverse forces and bend-

ing moments 

1. If an external concentrated force is applied to a beam in a certain section, 

then on the diagram of transverse forces Q in this section there is a jump by the 

magnitude of the applied force in the direction of its action, and on the diagram of 

bending moments M there is a break, the point of which is directed towards the force 

(see Fig. 1.35). 

Note. All features of the graphs of transverse forces and bending moments are 

formulated for the right-hand coordinate system. 

2. In the section where a concentrated moment acts on the beam, there is a 

jump on the diagram M by the magnitude of the applied moment in the direction of 

its action (the branches of the diagram before and after the jump should be parallel, 

if no external concentrated force is applied in the same section). At the same time, 

no changes are observed on the diagram Q (see Fig. 1.36). 

3. There is always no bending moment in the hinged end support (see exam-

ples 1.35 - 1.37: supports A and B), except for the case when an external moment is 

applied there. 

4. On the sections of the beam free from the distributed load, the diagram of 

the transverse forces Q is outlined by a straight, parallel base (graph of the constant), 

and the diagram of the bending moments M is a straight sloping line, which is 
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consistent with the differential dependencies between these diagrams (see examples 

1.35 and 1.36). 

5. If a uniformly distributed load acts on the section of the beam, then the 

diagram Q is outlined by a straight sloping line, and the diagram M is a quadratic 

parabola, the convexity of which is directed towards the intensity of the distributed 

load (see example 1.37). 

6. If the graph Q on the section is positive, then the graph M increases from 

left to right, and if it is negative, then it decreases. 

7. In the sections where the diagram Q crosses the base (Q=0), there is an 

extremum on the diagram M (see example 1.37). 

Let's consider a few more examples of building frames for beams 

Example 1.8. Construct diagrams Q and M for a rigidly clamped cantilever 

beam (Fig. 1.38). 

 
Fig. 1.38. Cantilever beam with unevenly 

distributed load 

The beam has one section. We choose the 

starting point x at the free end and write down 

the equilibrium equation for the left part of the 

beam: 

ɯ. 0 1 x m¢ ¢  

()

()

2max

2 3max

1
20 5 ;

2

1 1 5
20 .

2 3 3

q
Q x F x x x

l

q
ʄ x Fx x x x x

l

=- - Ö Ö =- -

å õ
=- - Ö =- -æ ö

ç ÷

 

 

 

Here, the equivalent load of the distributed load on the section of length x is 

equal to the area of the triangle with sides x and () maxq
q x x

l
= . The uniform force 

is applied at the center of gravity of this triangle 3x at a distance from the section. 

The diagram of the force Q, according to the equilibrium equation, is a quad-

ratic parabola, moreover, monotonically decreasing (without extrema), because the 

distributed load, being a derivative of the force Q, does not change its sign. The same 

applies to diagram M, for which diagram Q is the graph of the derivative. The dia-

gram M is a curve of the third order. On the diagram M, we have a convexity directed 

towards the intensity of the distributed load. 

We also see that in the section where the concentrated force F is applied, there 

is a jump on the force curve 
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The conducted analysis using differential dependences during bending (1.5) 

confirmed the correctness of the performed calculations and constructions. We also 

see that in the section where the concentrated force F is applied, there is a jump on 

the force curve. 

Example 1.9. Construct diagrams Q and M for a hinged two-support beam with 

a cantilever part (Fig. 1.39). 

Let's find the support reactions from the conditions of equilibrium of the mo-

ments with respect to the supports. 

 

 
Fig. 1.39. Hinged two-support continuous 

beam with a cantilever part 

 

2 2 2

0,5 0;

0,5 0,8 4
4,3 ;

A B

B

M F l ql l R l M

ql ql ql
R ql

l

ä =- Ö + Ö + Ö - =

- + +
= =

 

2 2 2

2 1,5 0;

1,6 1,5 4
4,1 .

B A

A

M F l ql l R l M

ql ql ql
R ql

l

ä =- Ö + Ö + Ö - =

- +
= =

Check: 

0,8 4,1 4,3 0.

A BY F ql R R

ql ql ql ql

ä = - - + =

= - - + =
 

The beam has two sections. On the first section 

(SA), we will make a cross-section and consider 

the equilibrium conditions of the left part of the 

beam. 

 

ɯ. 0  x l m¢ ¢  

()

()
2

2

0,8 ;

0,8 0,5 .
2

Q x F qx ql qx

qx
ʄ x Fx qlx qx

= - = -

= - = -
 

In the second section (AB), we will consider the equilibrium conditions of the 

part of the beam located to the right of the section. 

ɯɯ. 0 x l¢ ¢ 

()

() 2

4,3 ;

4,3 4 .

B

B

Q x R ql

ʄ x R x M qlx ql

=- =-

= - = -
 

We build diagrams on each site, using the obtained equilibrium equations. 
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In the first section, the graph of transverse forces is a straight line. Let's find 

the value of the force at the boundaries of the section: at 0x=  0,8Q ql= ; at x l=  

0,8 0,2Q ql ql ql= - =- . We lay off the corresponding ordinates from the base line 

on a certain scale and build the diagram (see Fig. 1.39). 

In the second section, the transverse force is a constant: 4,3Q ql=- . We build 

the diagram as a straight line, parallel to the base. 

In the first section, the curve of bending moments, according to the equation for 

moments, is outlined by a parabola, the convexity of which is directed towards the 

intensity of the distributed load. Since the transverse force in this section changes its 

sign, an extremum occurs on the moment graph. The abscissa of the extremum can 

be found by equating the expression for the transverse force on the first section to 

zero: () 0,8 0Q x ql qx= - =. From here 0,8x l= . To build a diagram of moments in 

the form of a parabola, we need three ordinates: at the boundaries of the section and 

at the extremum.  

Thus, at 0x=  0M = ;  

at 0,8x l=  20,32ʄ ql= ;  

at x l=  20,3ʄ ql= . 

In the second section, the curve of bending moments is a straight line. We build 

it, having previously found the values of the moments on the borders of the diagram: 

at 0x=  24M ql= ; at x l=  20,3ʄ ql= . 

Comparing the diagrams of transverse forces and bending moments, we see that 

when the diagrams of forces is a straight line, the diagrams of moments is a parabola 

(first section), and when the diagrams of forces is a constant, the diagrams of mo-

ments is a sloping straight line (second section). In the areas of the beam where the 

force is positive, the moment from left to right increases, and where the force is neg-

ative, the moment decreases. Therefore, the differential dependencies are fulfilled. 

In addition, in sections where concentrated forces act on the beam, we have jumps 

on the force diagrams, the magnitude of which is equal to the applied force, and the 

directions of the jumps correspond to the signs of the forces. For example, in the 

section where the reaction is applied, there is a jump 4,1AR ql= , and the jump 

4,3 0,2 4,1Q ql ql qlD = - =  occurs in the direction of negative values of the force, if 

you move along the baseline from left to right. This corresponds to the sign of the 

force, which is negative, because the reaction AR acts counterclockwise relative to 

sections to the right of its line of action. 
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In the cross-section, where a concentrated external moment (support B) is ap-

plied to the beam, there is a jump on the moment diagram by the magnitude of this 

moment in the direction of the compressed fibers, i.e. downwards. 

The conducted analysis confirmed the correctness of the construction of the 

charts. 

1.6.4.  Stress 

Having found the components of internal forces using the method of sections, 

we, however, cannot yet judge the strength of the body, because the principal vector 

and the main point of internal forces is a certain convention that makes sense only 

from the point of view of compliance with the conditions of balance of the body part. 

To judge the strength, we need to know the forces at a specific point of the section. 

Forces in the section are distributed according to a certain law. To characterize 

this law, it is necessary to introduce a numerical measure for effort. To this extent, 

as already indicated, there is stress - forces applied to a unit of cross-sectional area. 

Let's select a platform around a certain cross-section point (Fig. 1.40), within 

which the force acts. 

 
Fig. 1.40. Forces in the site Dɸ 

 

We take the ratio as the average stress AD in the site AD   

c

R
p

A

D
=
D

. 
(1.5) 

Reducing the size of the site to infinity, we get 

dR
p

dA
= . 

(1.6) 

Here p is the total stress at the point. 

In the international system of units, mechanical stress is measured in pascals 

(Pa). Since this unit of stress is very small, larger units are used in technical calcula-

tions, in particular megapascals (MPa). 
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Note. In the USA, Great Britain and some other countries, a different measure-

ment system is still used. Stresses are measured in it in pounds per square inch (psi) 

or kilopounds per square inch (ksi), where 1 MPa is 145 ksi. 

It should be noted that formally there is no difference between stresses and the 

intensity of an external distributed load, such as liquid or gas pressure. Their units of 

measurement are the same - pascal or megapascal. However, in physical essence, 

these are different quantities. The intensity of the external load characterizes the in-

teraction of this body with other bodies, and the tension characterizes the change in 

the forces of interaction between the parts of the given body, which occurs as a result 

of the external load. 

The total stress can be divided into three components: (Fig. 1.41). Here s is 

the normal stress at the point (directed along the normal to the site); ,  ¡ ¡¡t t ï shear or 

tangential stresses at a point. 

 
Fig. 1.41. Tension on the site 

 

There is a relationship between the values of the total stress p and its compo-

nents: 

() ()
2 22+ +p ¡ ¡¡= s t t. 

(1.7) 

There is a rule according to which stress components are denoted by indices that 

correspond to the designation of the axes. So, normal stresses are indicated by indices 

of the normal to the sites in which they act. Shear stresses are indicated, as a rule, by 

two indexes: the first index corresponds to the designation of the normal to the plat-

form, and the second to the designation of the axis in the direction of its action. Then 

the tension in Fig. 1.41 will be denoted as follows: 

,  , x xy xz¡ ¡¡s­s t ­t t ­t. 

Decomposition of total stress into normal and shear components has a certain 

physical meaning, since they cause different types of deformations of the body and 

different types of destruction. 
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If another cutting plane is drawn through the point, then the stress p at this same 

point will be different in general, because other bonds are split, which surround the 

point. 

The set of stresses for a multitude of planes passing through a given point 

forms the stress state of the body at that point. 

As will be shown below, to characterize the stress state at a point, it is sufficient 

to know six components of stresses ï three normal and three shear stresses, which 

act on three mutually perpendicular platforms, passing through this point. 

The stressed state of the body is called homogeneous when the stressed states 

are the same in all its points. Otherwise, the stressed state is called inhomogeneous. 

Normal and shear stresses at some point of the cross-section of the rod are con-

nected by certain dependencies with internal forces: longitudinal force N; transverse 

forces Qy, Qz; torque Mtor and bending moments My, Mz acting in this section 

(Fig. 1.42). 

 
Fig. 1.42. Components of forces in the area dA of the cross section of the rod 

 

To obtain such dependencies, consider the elementary area dA, on which the 

full stress actsp dR dA= . By analogy, we write the expressions for its components: 

; ;
y z

x xy xz

dQdN dQ
  

dA dA dA
s = t = t =. 

(1.8) 

These expressions do not contradict formula (1.6). 

Considering the formulas (1.1), let's write down the general relations between 

the components of the principal vector and the principal moment of forces in the 

section N, Qy, Qz, Mtor, My, Mz and the stress components at this point of the section. 

The sum of the projections of the elementary forces acting on all the elementary areas 

dA of the section, on the x, y, z axis and the sum of their moments relative to these 

axes will give the value of the internal forces: 



 

58 

 

 

x

A A

N dN dA= = sñ ñ ; (1.9) 

y y xy

A A

Q dQ dA= = tñ ñ ; (1.10) 

z z xz

A A

Q dQ dA= = tñ ñ ; (1.11) 

( ) ( )tor tor y z xy xz

A A A

M dM zdQ ydQ z y dA= = - = t - tñ ñ ñ ; (1.12) 

y y x

A A

M dM zdA= = sñ ñ ; (1.13) 

z z x

A A

M dM ydA= = sñ ñ . (1.14) 

The obtained formulas are called integral equations of equilibrium for rods. 

Here, the components of the internal forces, which are in the left parts of the equa-

tions, are easily found, for example, from the graphs. However, the obtained depend-

ences cannot be directly used to determine the stresses, since the law of their distri-

bution in the section is unknown. 

The task of determining stresses in a section is always statically indetermi-

nate. 

Therefore, to solve this problem, the law of stress distribution in its sections is 

first established, guided by certain considerations and observations of the nature of 

deformation of the rod, and only then the stresses themselves are found using formu-

las (1.9) ï (1.14). 

In the future, when determining the stresses in the rods, always follow this pro-

cedure. 

1. The static side of the problem is considered. 

Here, those from the integral equilibrium equations (1.9) ï (1.14) are recorded, 

which refer to this type of rod deformation. 

2. The geometric side of the problem is considered. 

At this stage, for this type of deformation, dependencies between the displace-

ments of the points of the rod and their position in the section relative to the selected 

coordinate system are established. This is done on the basis of experimental studies 

and within the framework of the hypothesis of plane sections. 

The resulting equations are called geometric equations. 

3. The physical side of the problem is considered. 
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Based on the results of the experimental study of the physical and mechanical 

properties of the rod material, the relationship between stresses and deformations (or 

displacements) is established. These dependencies are called physical equations. 

Within the framework of the hypothesis of linear elasticity of the material adopted in 

the support of materials, the physical equations are based on Hooke's law. 

4. Synthesis is performed. 

By jointly solving static, geometric and physical equations, we obtain formulas 

for determining stresses due to forces in the section. 

1.6.5. Deformations and strains 

Under the action of external forces, a solid body changes its original size and 

shape, or, as we say, deforms. At the same time, its points change their relative posi-

tion. In other words, body points are moved relative to a chosen coordinate system 

x, y, z (Fig. 1.43). Point A, following a certain trajectory, moves to its final position 

A1. The complete deformation of point A is characterized by the vector D. 

 
Fig. 1.43. Deformation of point A 

In the general case, the deformation at 

different points of the body will vary. That 

is, the deformation vectorD is a function 

of the coordinates of the point: 

( ), ,x y zD=D . 

The projections of the vectorD  on 

the x, y, and z axes are denoted by u, v, and 

w, respectively. They are called strain com-

ponents or simply point strain. 

 

 

However, strain alone cannot fully characterize the deformation, since its cause 

may not only be the deformation at a given point but also rigid displacements caused 

by deformations in other parts of the body. 

To characterize the deformation at a specific point in the body, we examine how 

the size and position of a particular segment, AB, change (Fig. 1.44). 
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Fig. 1.44. Linear deformation of the segment 

 
Fig. 1.45. Angular deformation of the body at 

a point 

 

The length of the segment in its undeformed state is dr . After the body deforms, 

points A and B move to positions A1 and B1, respectively. The length of the segment 

changes by an amount ( )drD , which is called the absolute deformation of the seg-

ment AB. 

The linear deformation at a point in the direction r is defined as the ratio of 

the absolute deformation of the segment dr to its original length: 

( )
r

dr

dr

D
e = . (1.15) 

This value is also called the relative change in the length of the segment.  

Regarding the change in the position of the segment, as shown in Fig. 1.44, the 

segment shifts as a rigid body and rotates at some angle relative to its initial direction. 

In the general case, segments passing through a point in different directions will ro-

tate by different angles. This means that previously equal angles between two pairs 

of segments at this point will change differently. To quantify these changes, we in-

troduce the concept of angular deformation. 

Consider two mutually perpendicular segments dr1 and dr2 passing through 

point A (Fig. 1.45). After deformation, the previously right-angle BAC changes by 

an amount g. 

The change in the right angle between two mutually perpendicular directions 

after deformation is called shear strain and is denoted by ɔ, measured in radians.  

The deformations just considered have a sign. 

1 2 1 1 1
2

r r B AC
p

g = -Ï . (1.16) 

The deformations just considered have a sign. 

The linear deformation er is considered positive if there is an elongation of 

the segment. If it shortens, the deformation is negative. 

The shear strain ɔ is considered positive if the initially right angle decreases. 

If the angle increases, the shear strain is negative. 
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Example 1.9. A rectilinear rod is sub-

jected to tension. A mechanical strain gauge (a 

device for measuring deformations) with a 

gauge length 100bl mm=  and a scale division 

value 0,001k mm=  is mounted parallel to the 

rodôs axis on its side surface (see Fig. 1.46). 

After loading the structure, the strain gauge 

shows 12 scale divisions. Determine the value 

of the relative linear deformation of segment 

AB, where the strain gauge tips rest at points A 

and B. 

Fig. 1.46. Mechanical strain gauge (for 

example 1.9) 

Given the strain gauge readings, the absolute deformation of segment AB can 

be found as: 

1
12 0,012 

1000
ABl k n mmD = Ö = Ö = . 

Then, the relative linear deformation in the direction of segment AB is:

50,012
1,2 10

100

AB
AB

ʙ

l

l

-D
e = = = Ö. 

Some comments should be made to the given example. In the general case, the 

found relative linear deformation can actually be considered as some average linear 

deformation of the segment AB, since the deformation can be unevenly distributed 

within its length. Let's say we selected two pairs of points located in different parts 

of the line segment. The distances between the points for each pair are the same. If 

the change in the distance between the points is different, then the relative linear 

deformation in these zones of the segment will be different. In this case, we are talk-

ing about uneven or non-uniform deformation of the segment. If the linear defor-

mation is a constant value, then we will have a uniform or homogeneous deformation. 

In this case, the deformation found is a linear deformation ABe  at any point of the 

segment AB in its direction. 
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Fig. 1.47. To example 1.10 

Example 1.10. A structural element in the 

form of a cube with a rib length of a=25 mm is 

deformed under loading so that the length of the 

ribs does not change. However, its upper face is 

shifted relative to the lower one by 1 mm in the 

direction of the X axis (Fig. 1.47). It is necessary 

to determine the relative linear deformations of 

the element in the direction of the x, y, z axes 

and the displacements between them, consider-

ing them to be uniformly distributed within the 

entire volume. 

Since, under the condition of the problem, the lengths of the edges of the cube 

remain unchanged under loading, the linear deformations in their direction (that is, 

in the direction of the x, y, z axes) are equal to zero. 

The change in the pre-right angle between the x and z axes, caused by the dis-

placement of the upper face relative to the lower one, indicates that there is shear 

deformation in this plane: 

1
2

xz JDJ
p

g = -Ï =a. 

Under the condition of uniform deformation, it is obvious that the edges of the 

cube will remain straight. We find 

1 1
0,04

25

JJ
tg

JD a

D
a= = = =. 

Then 0,04 xz rada=g º . 

According to the condition of the problem, there are no shifts between the Y axis 

and the X and Z axes, that is, the right angles between them remain unchanged. 

So, 0x y ze =e =e =; 0xy yzg =g =; 0,04xzg = . 

In most cases, changes in the size and shape of the body after exercise are in-

significant, but they significantly affect its tense state. As already noted, without 

analysis of deformations, it is impossible to determine the law of stress distribution 

in structural elements. 

The set of linear deformations in various directions and angular deformations 

in different planes at a point form the deformation state at that point. 
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As will be shown later, the deformed state at a point is completely determined 

by six components of deformation - three linear deformations , ,x y ze e eand three an-

gular deformations , ,xy yz zxg g g. 

1.6.6. Estimation of strength reliability of a deformed body. 

Safety margin 

To quantitatively assess the strength reliability of the structure and its elements, 

the probability of failure-free operation is used. That is, the assessment is based on a 

probabilistic approach based on a significant amount of statistical data obtained ex-

perimentally or as a result of the operation of products over a certain period of time. 

The probability of an event is a number that characterizes the possibility that 

the event will occur. 

In particular, the probability of a probable event is taken equal to one, and the 

probability of an impossible event is equal to zero. 

If as a result of n experiments the event was observed m times, then its proba-

bility  

m
P

n
= . (1.17) 

The meaning of this expression is very simple. For example, from one hundred 

products per time their exploitation (resource) was refused by ten. Therefore, the 

probability of fault-free operation of the product is. 

In practice, another characteristic is often used - the probability of failure: 

1F P= -. (1.18) 

In the given example, the probability of failure is. 

However, determine the probability of failure or trouble-free operation of the 

product it is very difficult at the stage of its design. 

Today, the main method of assessing the strength reliability of a structure is 

the determination of strength reserves. 

The margin of strength or margin ratio is called the ratio: 

lim

max

g
n

g
= . (1.19) 

Here limg  - the limit value of some parameter (force, tension, etc.), at which the 

product's performance is impaired; maxg is the maximum value of this parameter un-

der operating conditions. 
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Today, in the practice of engineering calculations, stress is most often taken as 

such a parameter. The stress itself, or rather the stressed state of the body at a point, 

is a criterion for the strength reliability of the structure. 

The state and industry standards set the allowable values of the stock coeffi-

cients [n]. Then the strength reliability condition can be written as 

[]n n² . (1.20) 

So, the general order of strength calculation is as follows. 

1. Based on the analysis, a point in the body is determined where a tense state 

is dangerous. 

For rods, this point lies in the dangerous cross-section, where the maximum 

forces act. These sections are found using graphs. 

2. The found stresses at this point are compared with the limit values for this 

material, found experimentally, and a real margin of strength is established. 

3. Having chosen the permissible value of the margin coefficient [n], check the 

fulfillment of the strength reliability condition (1.20). 

The strength reliability condition can be written in terms of stress. In this case, 

it is called the strength condition: 

[]s¢ s. (1.21) 

Here []sis the allowable stress for the material, which is found as 

[] lim

n

s
s = . (1.22) 

where n is the reserve ratio; is the ultimate stress for the material, which is determined 

experimentally. 

It should be noted that the strength condition (1.21) can be used directly only in 

some very simple cases of loading, say in conditions of pure tension or compression 

of the rod (we will see this later). 

In the general case, on the left in (1.21) there should be some stress function 

(equivalent stress), which is specified within the framework of certain theories of 

strength. 

In addition to stresses, it is often necessary to control deformations and defor-

mation of structural elements under load. That is, they perform rigidity calculations, 

comparing the actual values of displacements and deformations with the permissible 

ones. 

Calculation of strength in engineering practice is considered basic, and cal-

culation of rigidity, as a rule, is verifiable. 
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The choice of methods for calculating strength reliability is also related with the 

operating conditions of structures. It is necessary to take into account the nature of 

the load (static or dynamic), to take into account such phenomena as cyclic load, loss 

of stability of structural elements that occur during its operation. 

 

Questions for self-testing 

1. What is the object of study in the Materials and constructions mechanics? 

2. What is the subject of study in the Materials and constructions mechanics? 

3. What is meant by the concepts of strength and rigidity of the body? 

4. What is meant by the concepts of stability of the structure and its elements? 

5. What are the main body material models considered in the mechanics of 

materials and structures? 

6. When is the material considered homogeneous? 

7. What material is called isotropic? 

8. Explain the concept of environmental integrity. 

9. What is the elasticity property of the material? 

10. What materials are classified as linearly elastic? 

11. Which deformations are called elastic, and which are called plastic? 

12. What are the main body shape models? 

13. How does a rod differ from a massive body, and a shell from a plate? 

14. To which models of the shape of bodies should a drill, a cutter, a stamp 

matrix, an oil pipeline tube, a foundation for installing equipment, a rocket body be 

classified? 

15. Which elms are called absolutely rigid? 

16. What support is called hinged? 

17. How many ties does a rigid compression impose on a body in space? 

18. How many ties does a rigid compression impose on a body in a plane? 

19. What type of support does it belong to if it imposes two ties on the body 

in the plane? 

20. How many reactions occur in a moving joint in a plane? 

21. What forces are called external? 

22. What is the difference between volume load and surface load? 

23. To what type of loads are gravitational interaction forces? 

24. Are the main vector of inertia forces a volume, surface or concentrated 

force? 
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25. 2What is the surface load intensity? 

26. Under what conditions can the surface load be reduced to linear? 

27. How do dynamic loads differ from static loads? 

28. Name the key stages of building a solid body strength reliability model. 

29. What is the design calculation scheme? 

30. Under what conditions can the spatial scheme of the structure be reduced 

to a plane one? 

31. What objects are called axisymmetric? Give examples and justify the 

grounds on which these objects can be considered axisymmetric. 

32. List the main hypotheses and principles of the mechanics of materials and 

structures. 

33. Reveal the essence of the hypothesis about the natural, unloaded state of 

the body. What is neglected when introducing this hypothesis? 

34. What materials are called homogeneous? 

35. When can a material be considered isotropic? Give examples of such ma-

terials and give reasons for their selection. 

36. In the framework of which general method of research can the hypothesis 

about the integrity of the medium be used when it comes to the material of a solid 

body? 

37. Formulate Hooke's law for a solid body. What body deformations does it 

apply to? 

38. Formulate the principle of independence of action of forces. What hypoth-

eses regarding the material of the body and its deformations are based on it? 

39. Formulate the Saint-Venant principle. Why is this principle classified as 

heuristic? 

40. What forces are called internal? 

41. Formulate the essence of the cross-section method for determining efforts? 

42. On what principles and hypotheses is the cross-section method based? For-

mulate these principles. 

43. List the components of the main vector and the main moment of internal 

forces in the cross section of the rod. 

44. What forces in the resistance of materials are called internal forces or 

forces? 

45. What is the essence of the method of sections when determining efforts? 

46. Which hypothesis of resistance of materials allows using the methods of 

theoretical mechanics when determining forces in a section? 
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47. List the components of the principal vector and the principal moment of 

internal forces in the cross section of the rod. 

48. List the simplest types of rod loading. By what signs are they classified? 

49. How many equilibrium equations should be written for a part of the body 

loaded by a spatial system of forces to determine the components of forces in the 

section? What is this equation? 

50.  How many equilibrium equations should be written for a straight rod 

loaded by a plane system of forces to determine the components of forces in the 

section? 

51. How to determine the moment of force relative to an arbitrary axis? 

52. How to find the arm of the force relative to some point of the plane? 

53. What is called the section of the rod when constructing the internal force 

graphs? 

54.  When is the longitudinal force N in the rod considered positive?  

55.  What is the maximum number of reactions occurring in the supports of 

each of the beams depicted in item 16 when they are loaded? 

56.  When is the task of determining support reactions considered statically 

deterministic? 

  



 

68 

 

 

2.  GEOMETRIC CHARACTERISTICS OF PLANE CROSS-SEC-

TIONS 

There is a proverb: "Where itôs thin, thatôs where it breaks." 

This folk saying concentrates the centuries-old experience of the use of various 

objects by our ancestors in everyday life, which we now call bodies, parts, elements, 

etc. It quite accurately reflects the fact that the strength and rigidity of these objects 

depends not least on the dimensions of their cross-sections. 

If we are talking about a rod as the most common body shape model in engi-

neering and construction, then its resistance to deformation often depends not only 

on the size of the cross-section, but also on the shape of this cross-section and its 

location relative to the applied loads. 

Let's consider the main geometric characteristics of the cross sections, which 

determine the resistance of the rod to one or another type of deformation. 

2.1. Static moments of area and centroid coordinates 

We take an arbitrary cross-section of a rod (see Fig. 2.1).  

  
Fig.2.1. Plane cross-section with centroid at 

point C 

Fig.2.2. Section composed of simple shapes 

 

We isolate an area element dA with coordinates y and z. The static moment of 

the area element relative to a given axis is calculated, similarly to a force moment, 

as the product of its area and the distance to this axis. For instance, for the OZ-axis, 

we have: 

zdS y dS= Ö. (2.1) 

Similarly for the axis OY 
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ydS z dS= Ö. (2.2) 

The static moments for the entire sectional area A relative to the OZ- and OY-

axes are: 

;z

F

S y dA= Öñ  y

F

S z dA= Öñ . (2.3) 

The unit of measurement for the static moment of an area relative to an axis is 

cubic length, e.g., mmį. 

If YC and ZC are the coordinates of the centroid of the cross-section, and A is its 

area, then the static moments can be computed as: 

;Z CS y A= Ö y CS z A= Ö. (2.4) 

By comparing the expressions (2.3) and (2.4), we derive formulas to find the 

coordinates of the centroid: 

;A
C

y dA

y
A

Ö

=
ñ

 A
C

z dA

z
A

Ö

=
ñ

. 

 

(2.5) 

If the cross-section consists of simple geometric shapes (see Fig. 2.2), the static 

moment of such a cross-section is the sum of the static moments of the individual 

areas relative to the chosen axis: 

1

;
n

z Ci

i

S y A
=

=ä  
1

n

y Ci

i

S z A
=

=ä . 
(2.6) 

The coordinates of the centroid for such a cross-section are found using the fol-

lowing relationships: 

1

1

;

n

Ci i

i
C n

i

i

y A

y

A

=

=

=
ä

ä
 

1

1

n

Ci i

i
C n

i

i

z A

z

A

=

=

=
ä

ä
. 

 

(2.7) 

Where 
1

n

i

i

A
=

ä - total cross-sectional area.  

Note. The coordinates of the centroids of the areas in formulas (2.7) are sub-

stituted with their respective signs according to the chosen coordinate system. 

Note. When the cross-section has a hole (see Fig. 2.2), its static moment, like 

its area, is considered negative. 

Often, the position of the centroid of a complex cross-section can be determined 

without additional calculations. For instance, for a cross-section that has two axes of 

symmetry (Fig. 2.3a), the centroid lies at their intersection. In a cross-section with 

one axis of symmetry (Fig. 2.3b), the centroid lies on this axis, and in this case, only 
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one coordinate of the centroid needs to be determined. In some cases, a cross-section 

may have no axes of symmetry, but it is symmetric relative to a certain point, which 

then serves as the centroid of the cross-section (Fig. 2.3c). 

Fig.2.3. Symmetrical cross-sections: a ï with two axes of symmetry, b ï with one axis of sym-

metry, c ï with a center of symmetry. 

 

2.2. Moments of inertia of plane figures 

We distinguish between axial, polar, and centrifugal moments of inertia for 

plane figures. 

2.2.1. Axial moments of inertia 

The axial moment of inertia of the area of a figure is defined as the integral 

of the products of the areas of elementary segments by the square of their distances 

from a given axis.  

Thus, the moments of inertia of the figure shown in Fig. 2.4 relative to the OZ 

and OY axes are calculated as follows: 
2 ;z

A

I y dA=ñ  
2

y

A

I z dA=ñ . (2.8) 

Example 2.1. Determine the moment of inertia of a rectangle about its central 

axes Y and Z, which are parallel to its sides (see Fig. 2.5). 

To determine the moment of inertia relative to the Z-axis, isolate an area ele-

ment dA in the form of a strip parallel to this axis. Then, according to formulas (2.8), 

we can write: 
/2 3

2 2

0

2 .
12

h

z

A

bh
I y dA y bdy= = =ñ ñ  

  
 

a) b) c) 
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Fig.2.4. Plane shape Fig.2.5. Rectangle 

 

Similarly, the moment of inertia relative to the Y-axis will be: 
3

12
y

hb
I = . 

Example 2.2. Find the moment of inertia of a triangle relative to the OZ-axis, 

which coincides with its base (see Fig. 2.6). 

We isolate an area element in the form of a strip parallel to the OZ-axis. Its 

area is: 

( )dA b y dy= . 

The width of the strip can be expressed based on the proportionality of the seg-

ments: 

( )dA b y dy= . 

Thus, 

( ) ( / )( )b y b h h y= - . 

Thus, using formula (2.8), we obtain: 
3

2 2 2

0 0

( / )( ) ( )
12

h h

z

A

b bh
I y dA y b h h y dy y h y dy

h
= = - = - =ñ ñ ñ . 

2.2.2. Polar moment of inertia 

The polar moment of inertia of an area relative to a certain point (pole) is 

defined as the integral of the products of the elemental areas and the squares of 

their distances from this point. 

Taking point O as the pole (see Fig. 2.4), we can write: 
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2 .
A

I dAr r=ñ  (2.9) 

Example 2.3. Determine the polar moment of inertia of a circle's area relative 

to its center (see Fig. 2.7). 

 
 

Fig.2.6. Triangle with an area element in the 

form of a strip 

Fig.2.7. Circle with an annular area element 

 

Let us isolate an area element in the form of a ring with radius ɟ. Its area is: 

2dA dpr r= . 

The polar moment of inertia of a circle relative to its center: 
4 4

2 3

0

2
2 32

r

A

r d
I dA dr

p p
r p r r= = = =ñ ñ . 

If the pole is the origin of the coordinate system ZOY (see Fig. 2.4), then con-

sidering that 
2 2 2z yr= + and taking into account the properties of the integral, we 

obtain: 
2 2 2 2( ) z y

A A A

I z y dA z dA y dA I Ir= + = + = +ñ ñ ñ . (2.10) 

The polar moment of the area of a figure relative to a certain point is equal to 

the sum of the moments of inertia of that figure with respect to any two mutually 

perpendicular axes that pass through the given point. 

Thus, for a circle, the moment of inertia relative to its diameter can be expressed 

as: 40,5 64z yI I I dr p+ = = . 

Note. Axial and polar moments of inertia can only be positive quantities. 
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2.2.3. Centrifugal moment of inertia 

The centrifugal moment of inertia of a figure is defined as the integral of the 

products of the areas of elemental areas and their distances from the coordinate 

axes. 

For the axes OZ and OY (see Fig. 2.4), we can express this as: 

yz

A

I yzdA=ñ . (2.11) 

Example 2.4. Determine the centrifugal moment of inertia of a rectangle's area 

relative to the coordinate axes OZ and OY (see Fig. 2.8). 

 

Let us isolate an area element in the 

form of a strip parallel to the OZ axis. The 

area of this strip is given by: 

dA bdy= . 

Now, using the formula (2.11), we can 

write: 
2 2 2

0 0

1

2 2 4

h h

yz

A

b b h
I yzdA y b bdy ydy= = Ö Ö = =ñ ñ ñ  

Fig.2.8. Rectangle with an area element 

in the form of a strip 

 

As mentioned, axial and polar moments of inertia are always positive. In con-

trast, the centrifugal moment of inertia, as indicated by expression (2.11), can take 

on positive, negative, or zero values, depending on the position of the axes relative 

to the figure. 

If the figure is located in the first quadrant, such as a rectangle shown in Fig. 2.8, 

the value of the centrifugal moment will be positive, as all area elements will have 

positive coordinates y and z. A positive value of Iyz will also occur when the figure is 

situated in the third quadrant, where both coordinates y and z are negative. 

If the figure spans two or more quadrants, the sign of the centrifugal moment 

will depend on the distribution of the area across those quadrants. 

A special case occurs when at least one of the axes is a symmetry axis of the 

figure. For example, consider a rectangle in the coordinate system y and z, where the 

y-axis is a line of symmetry (see Fig. 2.9). 
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For any area element dA taken with 

a positive y-coordinate, there corre-

sponds an identical element with the 

same y-coordinate but with a negative 

z - coordinate. Thus, the integral in ex-

pression (2.11) transforms into zero, as 

the products of the form yzdA cancel 

each other out. 

The centrifugal moment of inertia 

of the area of a figure relative to coor-

dinate axes, one of which is a line of 

symmetry, is equal to zero. Fig.2.9. Rectangle as a symmetrical figure 

 

If we again consider the examples shown in Fig. 2.3, the centrifugal moments 

relative to the y and z-axes for cross-sections a) and b) are zero. This is because, in 

both cases, at least one of the axes is a symmetry axis. However, this conclusion does 

not apply to cross-section c), where neither the y- nor the z-axis is a symmetry axis. 

2.3. Determination of moments of inertia relative to parallel 

axes 

The moments of inertia of a figure relative to arbitrary axes are related to the 

moments of inertia of the figure relative to parallel central axes, i.e., axes that pass 

through the centroid of the figure. This relationship is established by the theorem of 

parallel axis transfer. 

Let us assume that point C is the centroid of the figure (see Fig. 2.10). The 

moments of inertia of the area of this figure relative to the central axes Y and Z are 

known: 
2 ;y

A

I z dA=ñ  
2 ;z

A

I y dA=ñ  yz

A

I yzdA=ñ . (2.12) 

 



 

75 

 

 

 
Fig.2.10. Plane figure in coordinate systems with parallel axes 

 

Let's determine the moments of inertia relative to the axes Y1 and Z1, which are 

parallel to the central axes: 
2

1 1 ;y

A

I z dA=ñ  
2

1 1 ;z

A

I y dA=ñ  
1 1 1 1y z

A

I y z dA=ñ . (2.13) 

Considering that 1z z b= + and 1y y a= + (see Fig. 2.10), we substitute these 

into the expressions for the moments of inertia relative to the new axes Y1, Z1 and 

Y1Z1: 
2 2 2 2

1 1 ( ) 2y

A A A A A

I z dA z b dA z dA b zdA b dA= = + = + +ñ ñ ñ ñ ñ; (2.14) 

2 2 2 2

1 1 ( ) 2z

A A A A A

I y dA y a dA y dA a ydA a dA= = + = + +ñ ñ ñ ñ ñ; (2.15) 

1 1 1 1 ( )( )

.

y z

A A A A

A A

I y z dA y a z b dA yzdA b ydA

a zdA ab dA

= = + + = + +

+ +

ñ ñ ñ ñ

ñ ñ
 

 

(2.16) 

In these expressions, the integrals y

A

zdA S=ñ ; z

A

ydA S=ñ  - the static moments of 

the area are equal to zero. Therefore, the expressions (2.14) ï (2.16) simplify to: 
2

1y yI I b A= + ; (2.17) 

2

1z zI I a A= + ; (2.18) 
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1 1y z yzI I abA= + . (2.19) 

The moment of inertia of the area of a figure relative to any arbitrary axis is 

equal to the moment of inertia of the figure relative to a central axis, parallel to 

the given axis, plus the product of the square of the distance between these axes 

and the area of the figure. 

Similarly, the centrifugal moment of inertia of the area of a figure relative to 

any two mutually perpendicular axes is equal to the centrifugal moment of inertia 

of the figure relative to the central axes, parallel to the given axes, plus the product 

of the distances between these axes and the area of the figure. 

Note. The coordinates a and b in expressions (2.17) ï (2.19) should be substi-

tuted with their appropriate signs, depending on their relative positions in the chosen 

coordinate system. 

Note. According to expressions (2.17) and (2.18), the moments of inertia of a 

figure relative to its central axes are always smaller than the moments of inertia of 

that figure relative to any arbitrary axes parallel to the central axes. 

Regarding the polar moment of inertia of the figure relative to point O 

(see Fig. 2.10), using formula (2.10) and considering expressions (2.17) and (2.18), 

we can write: 

1 1

2 2 2 2( )O y z y z y zI I I I b A I a A I I a b Ar = + = + + + = + + +; 

or: 
2

O CI I r Ar r= + ; (2.20) 

where 
2 2 2r a b= +  is the square of the distance between the centers O and C. 

The polar moment of inertia of the area of a figure relative to any point lying 

in its plane is equal to the polar moment of inertia of that figure relative to its 

centroid plus the product of the square of the distance between these points and 

the area of the figure. 

The theorem of parallel axis transfer greatly simplifies the calculation of the 

moments of inertia for figures. Let us consider a few examples of such calculations. 

 

Example 2.5. Determine the axial 

moment of inertia of the area of a trian-

gle relative to the axis Z2, which passes 

through its vertex B and is parallel to 

the base (see Fig. 2.11), given that the 

moment of inertia relative to the base 

of the triangle is known. 
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Fig.2.11. Triangle with a system of parallel 

axes 
 

Since the axes Z1 and Z2 are not central axes, we cannot directly use the theorem 

of parallel axis transfer. First, we need to find the moment of inertia of the triangle 

relative to the central axis ZC. The position of this axis relative to the base is known, 

and the moment of inertia of the triangle relative to the base (as established in Ex-

ample 2.2) is also known. 

Using the parallel axis theorem, we can find the moment of inertia relative to 

the central axis ZC as follows: 

1

2

3
zC z

h
I I A

å õ
= -æ ö

ç ÷
. 

Then, 

2 1

2 2 2
2 2

3 3 3
z zC z

h h h
I I A I A A

å õ å õ å õ
= + = - +æ ö æ ö æ ö

ç ÷ ç ÷ ç ÷
. 

Considering that 
1

3 12zI bh= ,and 2F bh=  we obtain: 

2

2 2 33 2

12 3 2 3 2 4
z

bh h bh h bh bh
I

å õ å õ
= - + =æ ö æ ö

ç ÷ ç ÷
. 

By the way, the moment of inertia of the triangle relative to the central axis 
3 2 312 ( 3) 2 36zCI bh h bh bh= - = . 

Example 2.6. Determine the polar moment of inertia of the area of a circle rel-

ative to a point lying on its contour. 

Using the formula (2.20), we have: 
24 2 4

2 3

32 2 4 32
C

d d d d
I I r Ar r

p p på õå õ
= + = + =æ öæ ö

ç ÷ç ÷
. 

Example 2.7. Determine the centrifugal moment of inertia of the area of a rec-

tangle relative to the coordinate axes that coincide with its sides. 

This example can be solved through integration (see Example 2.4). However, it 

can also be easily solved using the theorem of parallel axis transfer: 

yz yCzCI I acA= + . 

Considering that for a rectangle, the central axes parallel to the sides are axes of 

symmetry, meaning 0yCzCI = , and the distances between the axes are 2a h= and 

2c b= , we can substitute these values into the equations for the moments of inertia: 

2 2

2 2 4
yz

h b b h
I bh= = . 
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2.4. Determination of moments of inertia relative to rotated 

axes 

It is evident that when the axes are rotated relative to the origin of the coordinate 

system, the axial and centrifugal moments of the figure change. We will establish the 

relationship between the moments of inertia of the figure when the coordinate system 

is rotated. 

Consider the original system of coordinate axes ὣ and ὤ, in which the axial and 

centrifugal moments of inertia of the figure shown in Fig. 2.12 are defined, 

2 ;y

A

I z dA=ñ  
2 ;z

A

I y dA=ñ  yz

A

I yzdA=ñ . (2.21) 

 

 
Fig.2.12. Plane figure with rotated coordinate system 

 

After rotating the axes by an angle Ŭ, the coordinates of the area element dA in 

the new coordinate system Y1 and Z1 will be given by the following transformations: 

1 cos sin ;z z ya a= +  1 cos siny y za a= - . 

The axial and centrifugal moments of inertia relative to the rotated axes Y1 and 

Z1 will be given by the following expressions: 

1

2
2

1

2 2 2 2

( cos sin )

cos 2cos sin sin

z

A A

A A A

I y dA y z dA

y dA zydA z dA

a a

a a a a

= = - =

= - +

ñ ñ

ñ ñ ñ
; 
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1

2
2

1

2 2 2 2

( cos sin )

cos 2cos sin sin

y

A A

A A A

I z dA z y dA

z dA zydA y dA

a a

a a a a

= = + =

= + +

ñ ñ

ñ ñ ñ
; 

1 1 1 1

2 2 2 2

( cos sin )( cos sin )

(cos sin ) sin cos s

y z

A A

A A A

I z y dA z y y z dA

zydA y dA z dA

a a a a

a a a a

= = + - =

å õ
= - + -æ ö

ç ÷

ñ ñ

ñ ñ ñ

. 

Taking into account equation (2.21), we have. 

1

2 2cos sin sin2 ;z z y zyI I I Ia a a= + -  

1

2 2sin cos sin2 ;y z y zyI I I Ia a a= + +  

 

(2.22) 

1 1

1
cos2 ( )sin2

2
z y zy y zI I I Ia a= - - . 

(2.23) 

Note. The angle Ŭ is considered positive when the axes are rotated counter-

clockwise. 

By combining the expressions for the axial moments of inertia (2.22), we ob-

tain: 

1 1z y z yI I I I I r+ = + -. (2.24) 

Therefore, the sum of the axial moments of inertia of the figure during the 

rotation of the coordinate system remains constant and is equal to the polar mo-

ment of inertia of this figure relative to the origin of the coordinate system. 

 

Example 2.8. Determine the axial 

and centrifugal moments of inertia of a 

square relative to the coordinate axes Y1 

and Z1, which are rotated 45Á counter-

clockwise from the original coordinate 

system Y and Z (see Fig. 2.13). 

Fig.2.13. Square with a rotated coordinate 

system 

 

The moments of inertia of the square relative to the axes Y and Z can be found 

as for a rectangle (see Example 2.1): 

- axial moments of inertia: 
4

12
z y

a
I I+ = ; 
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- centrifugal moment of inertia 0yzI = since the axes Y and Z are symmetry 

axes. 

Regarding the axes rotated by 45Á (Y1 and Z1), the axial moments of inertia, 

according to the formulas (2.22), can be expressed as: 

1 1

4

12
z y

a
I I+ = . 

This means that we have the same moments of inertia as for the axes Y and Z. 

Since z yI I= , and 0yzI = , according to (2.22), 
1 1

0y zI =  it is evident that the ro-

tated axes are also symmetry axes of the square. 

2.5. Principal axes of inertia of a figure 

If we rotate the axes Y and Z (see Fig. 2.12) by 90Á, the moments of inertia 

relative to the rotated axes Y1 and Z1, according to formulas (2.22) and (2.23), will 

be: 

1y zI I= ; 1z yI I= ; 
1 1z y zyI I=- . 

A particular interest lies in the third relationship, which states that when the 

axes are rotated by 90Á, the centrifugal moment of inertia changes sign. Since the 

change in moments of inertia occurs continuously with respect to the angle Ŭ\alphaŬ, 

there exists an intermediate position of the axes at which the centrifugal moment of 

inertia will equal zero. 

The axes with respect to which the centrifugal moment of inertia equals zero 

are called the principal axes of inertia of the figure. 

If, at the same time, the origin of the coordinate system coincides with the cen-

troid of the figure, we have the principal central axes of inertia. We will denote these 

axes by the letters u and v. 

Note. In the following, we will denote the axis u as the principal axis that forms 

an angle less than 45Á with the axis Z. 

It has been noted previously that the centrifugal moment of inertia equals zero 

if at least one of the coordinate axes is an axis of symmetry. From this, we conclude 

that if the figure is symmetrical, then its axis of symmetry and any other axis per-

pendicular to it form a system of principal axes of inertia. 

In the general case, a plane figure has only one pair of principal central axes of 

inertia. However, in certain specific cases, there may be multiple pairs of such axes. 

Example 2.9. Identify the positions of the principal central axes of inertia for 

the geometric figures shown in Fig. 2.14. 
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a) b) c) 

Fig.2.14. Principal central axes of inertia for symmetrical figures 

 

In the square (see Fig. 2.14a), there are two pairs of symmetry axes: those that 

are parallel to its sides and those that pass through the diagonals. Therefore, we 

have two pairs of principal central axes of inertia. This was also demonstrated in 

Example 2.8 when the centrifugal moments of the square relative to its diagonals 

were calculated. 

For a regular hexagon (see Fig. 2.14b), there are three pairs of principal cen-

tral axes of inertia, as all of them are also symmetry axes. 

For a circle, any two mutually perpendicular central axes are principal central 

axes of inertia. 

To demonstrate that the axial moments of inertia relative to the principal axes 

of a figure attain extreme values, we can differentiate one of the equations (2.22) 

with respect to Ŭ: 

1

1 1

sin 2 sin 2 2 cos2

2( cos2 sin 2 ) 2
2

z

y z zy

y z

zy z y

dI
I I I

d

I I
I I

a a a
a

a a

= - - =

-
=- - =-

. 

The condition for the extremity of a function is that the derivative of the function 

is equal to zero. From the obtained expression, it follows that the derivative of the 

axial moment of inertia with respect to the angle of rotation Ŭ becomes zero when 

1 1
0z yI =  which means that the axes are the principal axes of inertia. 

The moments of inertia of the figure relative to the principal axes are extreme 

in value: relative to one of these axes, the moment of inertia is the largest of all pos-

sible values that can be obtained when the coordinate system is rotated, while relative 

to the other axis, it is the smallest. 
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The moments of inertia relative to the principal axes of a figure are called 

principal moments of inertia, and if these axes are also central axes, they are re-

ferred to as principal central moments of inertia. Thus, the principal axes are those 

axes about which the moments of inertia attain maximum or minimum values, 

while the centrifugal moment of inertia equals zero.  

2.6. Determination of the position of the principal axes of in-

ertia of a figure and the magnitude of the principal mo-

ments of inertia 

Since the centrifugal moment of inertia relative to the principal axes equals zero, 

by substituting 
1 1

0z y uvI I= = into formula (2.23), we set as follows: 

1
cos2 ( )sin2 0

2
zy y zI I Ia a- - =. (2.25) 

By denoting 0a a=  is the angle that defines the position of the principal axes 

relative to the given axes Y and Z, we can rewrite the equation as follows: 

0

2
2

zy

y z

I
tg

I I
a=

-
. (2.26) 

From this expression, we obtain two values for the angles Ŭ, which differ by 

2p . These angles determine the positions of the principal axes u and v relative to 

the original axes Z and Y. Moreover, the smaller of these angles, in absolute value, 

does not exceed 4p . This angle will be the angle with which we operate in the 

following calculations. 

The angle 0a is the angle that, in absolute value, does not exceed 45 ʐand 

indicates the direction of the principal axis of inertia u relative to the axis z. A 

positive angle 0a will be measured counterclockwise from the z axis, while a neg-

ative angle will be measured clockwise. 

To find the magnitudes of the principal moments of inertia, we will derive the 

formulas based on equations (2.22). 
2 2

0 0 0cos sin sin2 ;u z y zyI I I Ia a a= + -  

2 2

0 0 0sin cos sin2 .v z y zyI I I Ia a a= + +  
(2.27) 

The obtained formulas can be made more convenient for use by eliminating the 

need to compute trigonometric functions. To do this, we can utilize the condition 

(2.24) and subtract the second equation from the first equation from (2.27): 
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;u v z yI I I I+ = + 

0 0( )cos2 2 sin2u v z y zyI I I I Ia a- = - - . 

Using formula (2.26), we can substitute into the last equation 

02 ( ) 2zy y zI I I tg a= - . After solving this system of equations, the formulas for the 

principal moments of inertia uI  and vI can be expressed as: 

( )( )

( )( )

0

0

1 1
;

2 cos2

1 1
;

2 cos2

u z y z y

v z y z y

I I I I I

I I I I I

a

a

è ø
= + + -é ù
ê ú

è ø
= + - -é ù
ê ú

 

 

(2.28) 

Letôs replace in these expressions, taking into account (2.26), the value 

( )

2

2

0 2

0

41
1 2 1

cos2

zy

z y

I
tg

I I
a

a
=° + =° +

-
 

Finally, 

( ) ( )

( ) ( )

2
2

2
2

1
4 ;

2

1
4 .

2

u z y z y zy

v z y z y zy

I I I I I I

I I I I I I

è ø
= + ° - +é ù
ê ú

è ø
= + - +é ù
ê ú

 

 

(2.29) 

Note. According to expressions (2.28), if IZ>I Y, then Iu>I v. This indicates that 

the principal moment of inertia Iu is greater than Iv when the moment of inertia about 

the Z axis exceeds that about the Y axis. 

Note. If IZ>I Y, then in formulas (2.29) before the square root, we take the posi-

tive signs. Conversely, if IZ<I Y, we take the negative signs.  

If the original axes are the principal axes of inertia, the formulas for transition-

ing to the rotated axes (2.22) and (2.23) take the following form: 

1

2 2cos sin ;z u vI I Ia a= +  

1

2 2sin cos ;y u vI I Ia a= +  

 

(2.30) 

1 1

1
( )sin2 .

2
z y u vI I I a= -  

(2.31) 
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Example 2.10. Determine the cen-

trifugal moment of inertia of an isosce-

les angle bracket (50 Ĭ 50 Ĭ 5) relative 

to the central axes XOY, which are par-

allel to its sides. 

Note. In Figure 2.15, the designa-

tions of the axes used are based on the 

conventions adopted in the steel rolling 

standards. 

Fig.2.15. Isosceles angle bracket 

 

According to Fig. 2.15, the axes X0OY0 are the principal central axes of inertia, 

as the axis X0 is a symmetry axis of the isosceles angle bracket. Based on the steel 

rolling standards for an isosceles angle bracket with dimensions 50Ĭ50Ĭ5, the prin-

cipal moments of inertia are provided 
0 0

4 417,8 ; 4,63u x v yI I sm I I sm= = = = . To de-

termine the centrifugal moment of inertia IXY relative to the axes XOY, we will use 

formula (2.31). Here, the angle 45a=- ¯, as the symmetry axis X0 of the angle 

bracket bisects the right angle of the bracket. The angle a is negative because it is 

measured clockwise from the axis X0. Thus, 

41 1
( )sin2 (17,8 4,63)( 1) 6,585

2 2
xy u vI I I sma= - = - - =- . 

2.7. Radii of inertia of a figure 

The moment of inertia has the dimensionality of length to the fourth power. 

Therefore, formally, we can consider the moment of inertia of a figure relative to any 

axis as the product of the area of the figure and the square of a certain quantity called 

the radius of inertia: 
2 2,z z y yI A i I A i= Ö = Ö. (2.32) 

Here, zi  and yi  are the radii of inertia relative to the Z - and Y -axes, respectively. 

From the expressions in (2.32), we can find the following formulas for the radii of 

inertia: 

; .
yz

z y

II
i i

A A
= =  (2.33) 
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If we are referring to the principal central axes of inertia, then we have the prin-

cipal radii of inertia, which are calculated as follows: 

; .u v
u v

I I
i i

A A
= =  (2.34) 

For a circle, the radius of inertia relative to any central axis is the same due to 

the radial symmetry of the circle. The formula for the radius of inertia rrr of a circle 

relative to any central axis is: 

4

2

64

4 4

z
z

I d d
i

A d

p

p
= = =. 

For a square, the principal radii of inertia can be calculated relative to its prin-

cipal axes: 

4

2

12

12
u v

a a
i i

a
= = = . 

For a rectangle, the principal radii of inertia can be calculated by formula: 

3 312 12
; .

12 12
z y

bh h hb b
i i

bh bh
= = = =  

2.8. Determination of geometric characteristics of composite 

sections 

In studying Topic 2.1, we have already dealt with composite sections, for which 

we determined the static moments of area and the coordinates of the centroids in the 

chosen coordinate system.  

Continuing this topic, we will consider the procedure for determining the posi-

tions of the principal central axes of inertia and the principal moments of inertia of 

composite sections. 

1. Decompose the section into simple components. Break down the compo-

site section into simple geometric shapes, such as circles, rectangles, triangles, etc., 

whose centroids, areas, and other geometric characteristics are known or easily com-

putable. This also applies to rolled profiles, for which all geometric characteristics 

are provided in standards. 

2. Establish a coordinate system. Set up a coordinate system in which we will 

determine the position of the centroid of the composite section using formulas (2.7). 

These axes can be arbitrary, for example, central axes for one of the components of 

the section. 
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3. Define the initial coordinate system. Draw the initial coordinate system 

through the found centroid of the composite section. We will determine the axial and 

centrifugal moments of inertia of the section relative to this system. To do this, we 

first determine the moments of inertia of the individual parts of the section relative 

to their own central axes, which are parallel to the axes of the initial system. Then, 

using the parallel axis transfer formulas (2.17) ï (2.19), we can express them relative 

to the initial axes. By summing these moments, we find the moments of inertia of the 

entire section relative to the initial axes. 

Note. If the section has a hole or a notch, then, like the area or the static mo-

ment, the moment of inertia of the absent part is considered negative. 

4. Determine the angles of inclination of the principal central axes of inertia. 

Using formula (2.26), we find the angles of inclination of the principal central axes 

of inertia relative to the initial axes. After calculating these angles, we will plot them 

and denote the principal axes according to the rule formulated earlier (see Topic 2.6). 

This involves measuring the angles counterclockwise from the original axes, ensur-

ing that the correct signs (positive or negative) are applied based on their orientation. 

5. Calculate the principal moments of inertia. Using formulas (2.29), we com-

pute the values of the principal moments of inertia for the composite section.  

 

Questions for self-testing 

1. What is the static moment of an area relative to an axis? 

2. When is the area of a figure and its static moment considered negative? 

3. When the figure represents a hole or a cutout in the section, the area and 

static moment are considered negative. 

4. How is the static moment of an area consisting of simple geometric shapes 

determined? 

5. What is the static moment of an area relative to the central axis? 

6. How do you find the centroid of a section composed of simple geometric 

shapes? 

7. Where is the centroid located for a section with at least two axes of sym-

metry? 

8. What is the axial moment of inertia of an area? 

9. What is the polar moment of inertia of an area? 

10. What is the centrifugal moment of inertia of an area? 

11. What is the moment of inertia of a semicircle relative to its diameter? 
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12. How are the moments of inertia of a figure relative to two mutually per-

pendicular axes related to the polar moment of inertia relative to the origin? 

13. Relative to which side is the moment of inertia of a right-angled triangle 

greater: the leg or the hypotenuse? 

14. How do you find the moment of inertia of a figure relative to an axis par-

allel to the central axis if the moment of inertia relative to the central axis is known? 

15. How do you find the moment of inertia of a figure relative to the central 

axis if the moment of inertia relative to a parallel axis is known? 

16. Does the polar moment of inertia of a section change when the coordinate 

axes are rotated around the origin by a certain angle? 

17. Which moments of inertia of a figure are called principal central moments? 

18. How many pairs of principal central axes does an equilateral triangle have? 

19. Relative to which axes is the centrifugal moment of inertia equal to zero? 

20. Relative to which axes do the moments of inertia have extreme values? 

21. Which direction of rotation of the coordinate axes around their origin is 

considered positive when determining moments of inertia? 

22. How do you calculate the radius of inertia of a figure relative to a specific 

axis? 
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3.  TENSION AND COMPRESSION OF RODS. MECHANICAL 

PROPERTIES OF MATERIALS UNDER PURE TENSION 

AND COMPRESSION  

3.1. Determination of stresses and strains under tension and 

compression 

Consider a straight rod of arbitrary constant section, loaded at the ends by two 

forces acting along its axis (Fig. 3.1). 

 
Fig.3.1. Rod in pure tension 

In the vicinity of a certain cross-

section point, we select the area dA. 

Since only longitudinal forces N act in 

the cross-sections of the rod, there is 

reason to believe that only normal 

stresses will occur in this area. 

Let's derive the formula for deter-

mining the stresses in the section. To do 

this, we will use the integral equilibrium 

equations for the rod, following the pro-

cedure that was described earlier. 

1. The static side of the problem.  

For pure tension we have: 

A

N dA= sñ . (3.1) 

2. The geometric side of the problem. 

The experiment shows: when a system of straight lines perpendicular to its axis 

is applied to the side surface of the rod, when the rod is stretched or compressed, 

these lines will move parallel to themselves. 

If this conclusion is applied to the entire section, then the hypothesis of plane 

sections will be correct. 

During tension-compression, the cross-sections of the rod, plane before the de-

formation, remain plane after it, moving forward along the axis of the rod. 

Let's select a longitudinal element of length l and cross-section dA in the rod 

(Fig. 3.1). It is called fiber. 

Note. We have already used the concept of fiber when constructing the frames 

for the rods during bending. 
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According to the hypothesis of plane cross-sections, all fibers in a given section 

of the rod are deformed in the same way. That is, their relative deformation is a con-

stant value and does not depend on the position of the platform dA, along which the 

fiber crosses with a section, in the system of coordinate axes y and z (Fig. 3.1): 

( ),y z Conste = . (3.2) 

This is the notation of the geometric equation for tension-compression. 

3. The physical side of the problem. 

Only normal stresses are acting in the area dA. In other directions, normal 

stresses do not act, because it is assumed that the lateral pressure between the fibers, 

with which these stresses can be associated, is absent. Shear stresses in the platform 

also do not act, since there are no transverse forces in the section. 

If the material of the rod is subject to Hooke's law, then there is a proportional 

relationship between stresses and strains, which can be written in the following form: 

Es= e. (3.3) 

4. Synthesis. 

Substitute (3.3) into (3.1): 

A A

N dA E dA= s = eñ ñ . 

Considering (3.2), we obtain the condition. Then From here 

N

EA
e= . 

(3.4) 

Therefore, under tension-compression, the stress in the cross-section is a con-

stant value (that is, there is a uniform state of stress) and is calculated by the formula: 

N

A
s= . 

(3.5)
 

Within the area where ConstN= , ConstE=  and ConstA= ï namely, the rod 

that we are considering corresponds to such conditions (Fig. 3.1), ï the relative elon-

gation of a unit of length is a constant value: 

N
Const

EA
e= = . 

(3.6) 

That is, the deformation of the rod, and its absolute elongation l le=D. Or, tak-

ing into account (3.6), 

Nl
l

EA
D = . 

(3.7) 

This expression is a notation of Hooke's law in absolute terms for tension-com-

pression. 
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Equation (3.7) represents Hooke's law for tension and compression in absolute 

values. The term EA in the denominator is called the axial rigidity of the rod, while 

the ratio EA/l is called the rod rigidity. Indeed, the larger this ratio, the smaller the 

absolute elongation of the rod under the same load. In other words, the rod will be 

stiffer. 

Using equation (3.7), it is possible to calculate the displacement of any cross-

section of the rod relative to a chosen reference point. For instance, the displacement 

of cross-section x relative to the left end of the rod (Fig. 3.1) will be: 

()
Nx

l x
EA

D = . 

As we can see, the largest displacement relative to the left end of the rod will 

be experienced by its right end. This displacement will be equal to the absolute elon-

gation of the rod l Nl EAD = . 

If the rod is subjected to a complex load and has a variable cross-section along 

its length, then equation (3.7) can only be used within a small section dx, where 

()N x  and ()A x  can be considered constant. Then:  

( )
()
()

N x dx
dx

EA x
D = . 

From this, the total elongation of the rod is: 

()
()

0

.

l N x dx
l

EA x
D =ñ  

(3.8) 

In a special case, the rod may have a constant cross-section within certain sec-

tions (a so-called stepped rod), and the axial force may also be constant over a part 

of the rod length. If there are n such sections, then we obtain the sum: 

1

n
i i

ii

N l
l

EA=

D =ä . 
(3.9) 

Example 3.1. Construct the diagrams of axial forces and stresses in a rod arising 

under the action of its own weight (Fig. 3.2a). Construct a diagram of displacements 

of rod cross-sections relative to the fixed end and determine its elongation, if the rod 

length is 2l m= , the rod cross-sectional area is
4 24 10A mm= Ö , the specific gravity of 

the rod material is 4 37,85 10 N mg= Ö , and the modulus of elasticity is 

52 10E MPa= Ö . 
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a) b) c) d) 

Fig.3.2. For example, 3.1: a) ï calculation scheme of the rod; b) ï diagram of longitudinal forces; 

c) ï stress diagram; d) ïdiagram of deformations 

 

Let's build a graph of longitudinal forces. Since the rod is loaded only by its 

own weight, we have one section. In an arbitrary section at a distance x from the free 

end of the rod, we have: 

ɯ   0 ʭ l¢ ¢ 

()N x Ax=g . 

The maximum force acts in pinching and is equal to 
4 2

max 7,85 10 4 10 2 6280N N-= Ö Ö Ö Ö = .  

At ʭ=0 () 0N x = . 

We build a diagram of longitudinal forces (Fig. 3.2 b). 

Normal stress in an arbitrary section  

()N x A xs= =g. 

The stress graph is also limited by a straight line (Fig. 3.2 c), which passes 

through the ends of the ordinates:  

at ʭ=0 0s=;  

at x l=  
4 47,85 10 2 15,7 10 0,157l Pʘ MPʘs=g = Ö Ö = Ö = . 

To construct the diagram of displacements of rod cross-sections relative to the 

fixed end, we will find the displacement of an arbitrary cross-section located at a 

distance x from the free end. It will be equal to the elongation of the part of the rod 

above the cross-section under the action of its own weight. Since the weight force 

varies along the length of the rod, to determine the displacement, we will use formula 

(3.8), considering an element of the rod at a distance x from the free end: 
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()
() ( )2 2 2

2 2

l l
l

x
x x

N d A d
x l x

EA EA E E

x x g x x g g
l = = = x = -ñ ñ . 

As you can see, the deformation diagram is described by a square parabola. To 

build it, we will find the value of displacements of several sections: 

at ʭ=0 

2 4 2
5

11

7,85 10 2
0,0785 10 0,785

2 2 2 10

l
m mkm

E

-g Ö Ö
l= = = Ö =

Ö Ö
  ; 

at ʭ=0,5 m ( )
4

2 2 6

11

7,85 10
2 0,5 10 0,735

2 2 10
mkm

Ö
l= - Ö =

Ö Ö
; 

at ʭ=1 m ( )
4

2 2 6

11

7,85 10
2 1 10 0,590

2 2 10
mkm

Ö Ö
l= - Ö =

Ö Ö
 ; 

at ʭ=1,5 m ( )
4

2 2 6

11

7,85 10
2 1,5 10 0,345

2 2 10
mkm

Ö
l= - Ö =

Ö Ö
 ; 

at ʭ=2 m 0l=. 

The elongation of the rod is equal to the deformation of the free end relative to 

the clamp, therefore 0,785l mmD =  . 

Note. The elongation of the rod can also be found by replacing the distributed 

load with its equivalent load, which is equal to the weight of the rod. This force is 

applied at the center of gravity, which is located in the middle of the length of the 

rod. Then the elongation of the rod will be equal to the absolute deformation of the 

part of the rod located above the center of gravity. That is, 

4
6

11

0,5 7,85 10 2 0,5 2
10 0,785

2 10

Al l
l mkm

EA

g Ö Ö Ö Ö Ö
D = = =

Ö
 . 

 
Fig.3.3. To example 3.2 

 

Example 3.2. A stepped rod (Fig. 3.3) is 

loaded with forces F1 and F2 acting along its 

axis. The cross-sectional area of the rod in the 

AC section is 200 mm2, and in the OA section - 

400 mm2. Find the magnitude and direction of 

deformation of the points of application of 

forces relative to the support O, if the modulus 

of elasticity of the material is 
52 10E MPa= Ö . 

First, let's build a graph of longitudinal forces. 

We have two sections: ʉɺ ʽ ɺʆ. 
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Section ʉɺ: 0 0,2 x m¢ ¢  

() 1 10 N x F kN=- =- . 

Section ɺʆ: 0,2 0,8 m x m¢ ¢  

() 1 2 10 30 20N x F F kN=- + =- + =. 

Since the rod is stepped, we will use formula (3.9) to determine the deformations 

in it. 

The displacement of the point of force 1F  application ï point C ï is equal to the 

absolute deformation of the entire rod: 

( ) 3 3 3

5 5 5

10 10 200 20 10 200 20 10 400
0,15 .

2 10 200 2 10 200 2 10 400

CB CB AO AOBA BA
CO ʉɺ ɺɸ ɸʆ

CB BA AO

N l N lN l
l l l

EA EA EA

mm

l =D +D +D = + + =

- Ö Ö Ö Ö Ö Ö
= + + =

Ö Ö Ö Ö Ö Ö
       

 

The displacement of the point of application of the force 2F  ï point B ï is equal 

to the absolute deformation of the part of the OB rod: 

3 3

5 5

20 10 200 20 10 400
0,2 .

2 10 200 2 10 400

AO AOBA BA
ɺO ɺɸ ɸʆ

BA AO

N lN l
l l

EA EA

mm

l =D +D = + =

Ö Ö Ö Ö
= + =
Ö Ö Ö Ö

       

 

Both deformations turned out to be positive, that is, directed from the support 

in the direction of rod elongation. 

3.2. Potential strain energy of a rod under tension and com-

pression 

Consider an element of a rod dx (Fig. 3.4). Since the rod material obeys Hooke's 

law, there is a linear relationship between the force N and the absolute elongation of 

the element. The work done by the force N, which is external to the element, will be 

equal to the area under the graph of the dependence ( )N dx-D  (Fig. 3.4). 

 
Fig.3.4. Determination of the potential strain energy of a rod under tension-compression 
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Based on the fact that the work of external forces is converted without loss into 

the potential energy of deformation of the body, we can write: 

( )
1

2
pdA dU N dx= = D . 

Considering that according to Hooke's law ( )dx Ndx EAD = , for the entire rod 

we get: 

()
()

2

2
l

N x dx
U

EA x
=ñ . 

 

(3.10) 

Example 3.3. Find the potential energy stored in the elements of the rod system 

(Fig.  3.5) when it is deformed by a force 0,5F kN= , if 0,6l m= ; the cross-sec-

tional areas of the rods are 2
1 400A mm=  (rod AB) and 2

2 500A mm=  (rod AC). The 

material of rod AB is steel with an elastic modulus of 5
1 2 10E MPa= Ö , and the ma-

terial of rod AC is brass with an elastic modulus of 5
2 1 10E MPa= Ö . The hinge joints 

in the system are considered ideal. 

 
Fig.3.5. To example 3.3 

According to the principle of inde-

pendence of action of forces, the potential 

energy of deformation of the system can be 

found as the sum of the potential energies 

of deformation of each rod, in particular: 

AB ACU U U= + . 

 

It is necessary, first of all, to find the effort in the rods. It is obvious that when 

the joints are ideal, that is, there is no resistance to the rotation of the rods in the 

joints, only longitudinal forces will occur in the cross-sections of the rod (Fig. 6.5). 

We have a system of forces converging at one point. 

We will find the unknown forces from the equilibrium equations in the projec-

tions on the axis: 

1 2

1 2

sin30 sin 45 0;

cos30 cos45 0.

X N N

Y F N N

ä =- ¯+ ¯=

ä =- + ¯+ ¯=
 

From the first equation we have: 2 1 1

sin30 2

sin45 2
N N N

¯
= =

¯
. 

Substituting the obtained ratio into the second equation, we find: 
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1 1

3 2 2

2 2 2
N N F+ = . 

There 1 0,732 0,732 0,5 0,366N F kN= = Ö =  .  

Then 2 10,707 0,707 0,366 0,259N N kN= = Ö =  . 

Thus, according to the condition, for each of the rods we have constant cross-

section rigidity along the length (E1A1=Const and E2A2=Const) and constant longi-

tudinal forces N1 and N2. Then the expression for energy (3.10) takes the form: 
2 2
1 2

1 1 1 12 cos30 2 cos45

N l N l
U

E A E A
= +

¯ ¯
. 

Substituting the values, we get: 
2 6 2 6

11 6 11 6

4 4 4

0,366 10 0,6 0,259 10 0,6

2 2 10 400 10 0,866 2 1 10 500 10 0,707

5,8 10 5,7 10 11,5 10 .

U

J

- -

- - -

Ö Ö Ö Ö
= + =
Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö

= Ö + Ö = Ö 

 

3.3. Mechanical properties and mechanical characteristics of 

materials and methods of their determination 

Speaking about the stressed-deformed state of the body at a point, we under-

stand that it is also determined by the physical and mechanical properties of the ma-

terial. For example, when determining stresses and strains in rods, they rely on a 

certain functional dependence between stresses and deformations, namely, according 

to Hooke's law. The main characteristics of the material in this law are the modulus 

of elasticity E or G and Poisson's ratio m. These elastic steels are determined exper-

imentally, and these characteristics are different for different materials. 

For solving practical problems using strength conditions and rigidity, it is nec-

essary to know the characteristics of strength and plasticity of materials. In order to 

determine them, materials are tested for tension, compression, bending, torsion, 

shear, etc. To do this, samples, shapes, and sizes are tested, the manufacturing meth-

ods of which are regulated by special standards. It is often necessary to carry out so-

called field tests, when the finished product or structural element is subjected to such 

loads that will take place in real operating conditions. 

The nomenclature of testing materials to determine their mechanical properties 

is quite wide. And one of the main types of tests is a tensile test. They make it possi-

ble to establish the most important mechanical characteristics of structural materials. 
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3.3.1. Stress-strain diagram 

A stress-strain diagram is a graph of the relationship between the stresses that 

arise in a test specimen under tension and its deformation from the beginning of 

deformation to the complete destruction of the specimen. 

The methodology of tensile testing is regulated by state standards. 

Test samples. According to the standard, tests are carried out mainly on cylin-

drical (Fig. 3.6a) or, when testing sheet materials, on plane specimens (Fig. 3.6b). 

In cylindrical samples, certain ratios between the diameter d0 and the calculated 

length of the working part of the sample l0 must be maintained: for long samples 

0 010l d=  and - 0 05l d=  for short ones. Samples in which the diameter 0 10 d mm=

and estimated 0 100 l mm=  length or 50 mm. The standard allows the use of samples 

with a different diameter, but on the condition that the specified ratios of diameter 

and calculated length are observed. Such samples are called proportional. 

  

a) b) 

Fig.3.6. Samples for tensile tests: a ï cylindrical; b ï plane 

 

The calculated length can also be determined through the cross-sectional area 

of the sample. Given that 
2

0 0 4ɸ d=p , we get: 

- for long samples 
0 011,3l ɸ= ; 

- for short samples 
0 05,65l ɸ= . 

These ratios are also used when determining the dimensions of plane samples. 

Testing equipment. For tensile tests, special breaking machines are used, 

equipped with an electromechanical or hydraulic drive for loading the sample, grip-

pers for its fixation, as well as a system for measuring and recording experimental 

data. Modern breaking machines, as a rule, are equipped with a high-precision com-

puter system for collecting and processing information, means of visualizing exper-

imental results, and provide a wide range of loading modes. On Fig. 3.7 shows burst-

ing machines produced by leading companies in the field of development and man-

ufacture of test equipment. 
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ʘ) 

 
b) 

Fig.3.7. Tearing machines: a) INSTRON (USA); b) MTS (USA) 

 

In the process of tensile tests, the force applied to the sample at a given time 

and the corresponding absolute elongation of the sample are measured. 

For this purpose, breaking machines are equipped with special force-measuring 

devices - dynamometers - and means of measuring deformations. 

Methods of measuring deformations depend on the required accuracy of the ob-

tained results. The easiest way to determine the elongation of the sample is by the 

deformation of the movable gripper, but the accuracy of measuring the deformation 

in this way is not high, because the deformation of the movable gripper, in addition 

to the elongation of the working part of the sample with the initial length l0 (Fig. 3.6), 

also includes deformations of the transitional sections of the sample and the grippers 

themselves, displacement, related to the selection of gaps in connections, etc. To 

measure deformations with maximum accuracy, special devices are used - strain 

gauges or extensometers - which allow determining the elongation of only the work-

ing part of the sample (Fig. 3.8). 
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Fig.3.8. Hanging strain gauge man-

ufactured by INSTRON 

Fig.3.9. Low-carbon steel tensile diagram in absolute co-

ordinates 

 

The main mechanical properties of the material during tension. Based on 

the results of force measurements and the corresponding deformations of the sample, 

it is possible to construct an initial stress-strain diagram, on which the ordinate axis 

is place on a certain scale, the measured force, and along the abscissa axis ï the 

corresponding elongation of the working part of the sample. It should be noted that 

this diagram is built automatically by self-writing devices equipped with modern ma-

chines, or it is output on the computer display. 

In Fig. 3.9 shows the tensile diagram in absolute coordinates, typical for low-

carbon steels. 

On this diagram, you can highlight characteristic sections and points, which 

correspond to certain stages of sample deformation. 

The stage of proportional deformation, when the sample material is subject to 

Hooke's law, corresponds to the section OA (Fig. 3.9). Here prF   is the force at which 

Hooke's law stops working. 

Up to point B in the diagram, the sample material remains elastic. The force 

corresponds to this point. Therefore, the OB section of the diagram corresponds to 

the stage of elastic deformation of the sample. 

With further tension of the sample, the diagram rises to point C, after which the 

horizontal section CD begins. Deformation of the sample occurs under constant 

force, while residual or plastic deformations appear, which do not disappear after 

complete unloading of the sample. This state of the material is called fluidity. The 

CD section of the diagram is called the yield point. 
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Note. It should be noted that the presence of a yield point is not characteristic 

of all materials. It is absent from the tensile diagrams of, for example, alloy steels, 

titanium alloys, and many other materials. 

The stage of flow is followed by the stage of hardening, which corresponds to 

the section DE of the diagram. The sample material regains its ability to resist defor-

mation. Further deformation occurs when the force increases up to some maximum 

value maxF  (point E on the tensile diagram). 

Up to point E, the deformation of the working part of the sample was uniform. 

After reaching the forcemaxF , the deformation is localized on a small part of the 

working length of the sample, which leads to the formation of a local narrowing on 

the sample - a neck (Fig. 3.10). 

 

 

 
Fig.3.10. A sample with a neck 

Further deformation of the sample 

(section EK) is accompanied by a de-

crease in the force applied to the sample. 

Point K of the stress-strain diagram cor-

responds to the moment of complete de-

struction of the sample ( ʢF  ï the force at 

which the destruction occurred). 

Unloading and reloading. If we load the sample with a force of a certain mag-

nitude, without bringing it to destruction, and then completely unload it, then, de-

pending on the type of deformation acquired at the beginning of unloading, we will 

get different results. So, if the achieved force is less than prF  (see Fig. 3.9), that is, 

the load was stopped at the stage of proportional deformation, then the unloading 

will occur according to the same law as the load. On the stress-strain diagram, this 

process will be represented by a line that will practically coincide with the line OA. 

After complete unloading, we will return to point O of the diagram, which means 

that we will not detect any residual deformations of the sample, which is understand-

able, because the section OA of the stress-strain diagram corresponds to the stage of 

elastic proportional deformation of the material. 

A different picture will be observed when the force prF  exceeds, and plastic 

deformations will appear in the sample. So, if you load the sample to point M on the 

stress-strain diagram (Fig. 3.9), unloading will occur along the line ML, parallel to 

the rectilinear section OA, and not along the path taken - along the line MDCBAO. 

This is easily explained by the nature of the deformations that occurred in the sample 
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at the time of unloading. Full elongation MlD  of the working part of the sample in-

cludes both elastic elʄlD  and plastic plʄlD  deformations: 

el plM M Ml l lD =D +D. 

Plastic or residual deformations are acquired, non-disappearing deformations, 

while elastic deformations are disappearing deformations. Both at the stage of elastic 

proportional deformation and at any other stage, up to the complete destruction of 

the sample, elastic deformations are subject to Hooke's law. Therefore, unloading 

occurs according to the same law as at the stage of elastic proportional deformation. 

Based on the above, after the destruction of the sample, its residual absolute 

elongation plʄlD  will be less than the full elongation corresponding to the point K, by 

the value of the disappearing elastic deformation elʄlD . 

Let's return to the sample that was completely unloaded from point M. Reload-

ing it will take place practically along the same line LM as during unloading. More-

over, the stage of elastic proportional deformation will now correspond to the LM 

section of the repeated stress-strain diagram, and the subsequent deformation of the 

sample will be accurately described by the MEK section of the stress-strain diagram. 

A number of conclusions can be drawn from the above observations. First, dur-

ing repeated loading, when the sample was previously deformed plastically, the 

origin of the coordinates of the stress-strain diagram should be moved to point L. 

Second, the absolute residual deformation of the working part of such a sample will 

be smaller by plʄlD . Thirdly, the flow of the material will begin at a force that will 

be greater than the force obtained for a previously undeformed sample. That is, the 

material of the sample becomes stronger, but at the same time more fragile. This 

phenomenon is called slander, and it is the basis of a number of technological pro-

cesses of deformation strengthening of parts, playing a positive role here. However, 

in other cases, this phenomenon is undesirable, as it can cause a decrease in the re-

source of structural elements, and efforts are being made to reduce its impact. 

3.3.2. Stress-strain diagram in relative coordinates.  

Mechanical properties of materials. 

In order to exclude the influence of sample sizes on the obtained mechanical 

characteristics of the material, the tensile diagram in absolute coordinates  

(Fig. 3.9) is reconstructed in coordinates  (stress - linear deformation). For this, 

the force for any point of the diagram is divided by the initial cross-sectional area of 

F l-D

s-e
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the sample: 0F As= , and the corresponding absolute elongation of the working 

part of the sample is divided by the initial calculated length: . 

The stress-strain diagram in relative coordinates corresponding to the initial di-

agram (Fig. 3.9) is shown in Fig. 3.11. 

 
Fig.3.11. Conventional stress-strain diagram 

 

Since the initial cross-sectional area of the sample A0 and its calculated length 

 are constant values, the obtained tensile diagram in relative coordinates (Fig. 3.11) 

is similar to the initial diagram (Fig. 3.9), which means that all points and sections 

of this diagram have the same physical meaning. as well as the corresponding points 

and sections of the original diagram. This diagram determines the main mechanical 

characteristics of the material. 

Strength characteristics: 

- limit of proportionality 0pr prF As =
 
is the greatest stress up to which 

Hooke's law is fulfilled (point a on the stress-strain diagram); 

- limit of elasticity 0el elF As = is the stress up to which the residual defor-

mation during tension is not detected (point b on the stress-strain diagram); 

- yield strength 0ye yeF As = is the stress at which deformation of the sample 

occurs under constant stress (section c-d on the tensile diagram); 

- ultimate strength or temporary resistance of the material is the stress cor-

responding to the maximum force that the sample can withstand during 

tension: 0u uF As=  (point e on the stress-strain diagram). 

0l le=D

0l
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Some of the specified strength characteristics require some comments. First, the 

formulated definition for the yield point is valid only for materials whose tensile 

diagram has a yield point. If there is no yield point, then a conditional yield point is 

introduced  - a stress at which the residual deformation is 0,2% of the calculated 

length of the sample. The method of determining the conditional yield strength is 

illustrated by the diagram shown in Fig. 3.12. 

 

 

 
Fig.3.12. To the method of determining the con-

ditional yield strength of the material 

Secondly, since it is quite diffi-

cult to accurately establish the stress at 

which Hooke's law is violated (the 

limit of proportionality) or the stage of 

elastic-plastic deformation (the limit 

of elasticity) begins, the concept of the 

conditional limit of proportionality is 

introduced - the smallest stress at 

which the residual deformation is of 

the order of 0,002% from the calcu-

lated length of the sample, - and the 

conditional limit of elasticity - the 

smallest stress, at which the residual 

deformation is within 0,001 ï 0,05% 

of the calculated length of the sample. 

Characteristics of plasticity: 

- relative elongation after rupture  (see Fig. 3.11) is the ratio of the in-

crease in the estimated length of the sample after rupture to its initial 

length: 

. 
(3.11) 

Here  ï the essence is residual absolute elongation plKlD  (Fig. 3.9) 

- the relative narrowing of the sample  is the ratio of the absolute de-

crease in the cross-sectional area of the sample after breaking (in the neck) 

to its initial cross-sectional area: 

. 
(3.12) 

The plasticity of the material is judged by the plasticity characteristics. 

A material is considered ductile when the residual elongation after breaking 

is 5%d>  , and when 5%d<  the material is considered brittle. 

0.2s
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0
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100%
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l

D
d= Ö

0lD

,%Y

0

0

100%
A

A

D
Y= Ö



 

103 

 

 

Modulus of elasticity for tension. 

In the section Oa of the conventional stress-strain diagram, where Hooke's law 

is fulfilled, the relationship between stresses and strains is proportional. You can 

write that  (see Fig. 3.11). That is, 

. (3.13) 

The modulus of elasticity for tension is equal to the tangent of the angle of 

inclination of the rectilinear section of the stress-strain diagram, constructed in 

coordinates s e, to the abscissa axis. 

Diagram of real stresses. The conventional stress-strain diagram shown in 

Fig. 3.11, bears such a name quite justifiably. Its convention lies in the method of 

determining stresses, when the force in the sample that occurs at any stage of defor-

mation is divided by the initial cross-sectional area of the sample A0. But due to 

transverse deformation, the cross-sectional area of the sample will constantly de-

crease, and especially intensively after the formation of the neck. If the effort is di-

vided by the actual area of the sample, then we will get the actual stresses, and the 

diagram constructed based on these data will be significantly different from the con-

ventional stress-strain diagram (Fig. 3.13). 

 
Fig.3.13. Diagram of real stresses 

 

As we can see, there is no section falling after point e on the real stress diagram. 

The resistance of the material to the deformation of the sample increases up to the 

moment of its destruction. The effective strength limit of the material, which corre-

sponds to point k1 of the diagram, is much higher than the technical strength limit - 

temporary resistance us . 

However, the mechanical characteristics of the material are determined accord-

ing to the conventional tensile diagram. These data fully satisfy the needs of engi-

neering calculations. 

a=s etg

a=tg E
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It is much more difficult to construct a diagram of real stresses, and the data 

obtained with its help are used mainly for theoretical research. 

Logarithmic deformation.  As with stresses, the relative elongation and rela-

tive contraction of the specimen after rupture to a certain extent  are conditional 

values y. After all, they are determined by relating the increase in the length of the 

sample to its initial length, and the decrease in area to the initial cross-sectional area 

of the sample. In fact, the length of the working part of the sample, where plastic 

deformation occurs, constantly changes, as does its cross-sectional area. Therefore, 

it is more correct to consider the increase in the length l of the sample at this moment 

in time as an infinitesimally small value of dl, and the reduction of the cross-sectional 

area A as dA. Then the real relative elongation of the sample can be found as an 

integral 

. 
(3.14) 

where l0 and lK are its initial and final lengths, respectively. 

Since , and , we get the dependence: 

. 
(3.15) 

Similarly, true lateral contraction 

. 
(3.16) 

Since , and 0A Ay=D , we get 

. 
(3.17) 

At small values of relative elongation, conditional and real, or logarithmic, de-

formations practically coincide. So, with real elongation . 

As already indicated, tensile diagrams for different materials can differ signifi-

cantly. In Fig. 3.14 shows some examples of tensile diagrams for metal alloys com-

mon in mechanical engineering. Judging from the diagrams, they all belong to plastic 

materials, but their mechanical characteristics differ significantly. 

So, for manganese steel (diagram 1) tensile strength 916t MPas= , residual 

elongation after rupture 30%d= ; for nickel steel (diagram 2) 715t MPas= , 

d
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54%d= ; for carbon steel (diagram 3) 358t MPas= , 38%d= ; for bronze 

(diagram 4) 247t MPas= , 36%d= . 

 
Fig.3.14. Tensile diagrams for various materials 

 

 
Fig.3.15. Tensile diagram for brittle 

materials 

Samples of brittle materials are destroyed by 

tension without noticeable residual deformations 

and without the formation of a neck on the sample. 

Deformations in this case are determined by 

Hooke's law. Characteristic for many brittle materi-

als is, in fact, the absence of a rectilinear section on 

the tensile diagram (for example, for gray cast 

irons). The modulus of elasticity is then taken as the 

tangent of the angle of inclination of the straight line 

passing through the origin and the point on the dia-

gram corresponding to the stress at which the defor-

mation is determined. Such a modulus of elasticity 

is called a shear modulus of elasticityy (Fig. 3.15). 

3.3.3. Compression test 

These tests are carried out on universal machines or special presses, placing the 

sample between the parallel loading plates of the machine. Samples are made in the 

form of short cylinders, the height of which does not exceed three diameters, or cu-

bes. 

As with stretching, plastic and brittle materials lead to compression themselves 

in different ways. 

 



 

106 

 

 

 

 

 
Fig.3.16. Compression diagram of 

low-carbon steel 

In Fig. 3.16 shows a compression diagram 

typical of low-carbon steel. As the experiments 

show, the limits of proportionality, elasticity, 

fluidity, as well as the modulus of elasticity for 

compression are approximately the same as for 

tension. As for the strength limit, it is impossible 

to establish it, since the sample does not col-

lapse, turning into a disc, and the compressive 

strength is constantly increasing. For the same 

reason, it is impossible to establish the plasticity 

characteristics of the material. 

 

Therefore, compression tests for plastic materials are atypical. They are limited, 

as a rule, to tensile tests, from which all the necessary information for engineering 

calculations is obtained. 

Brittle materials behave in a completely different way when compressed. As 

already noted, the main characteristic for them is the strength limit. So, under tension 

and compression, the strength limits can be very different. For example, for cast 

irons, the temporary compressive strength exceeds the temporary tensile strength 

several times: 2,5...5c t

u us s= ; for ceramic materials this discrepancy is even greater: 

5...10c t

u us s= . There are materials that can take higher loads in tension than in com-

pression. These are materials with a fibrous structure: wood, some composites, from 

metals - magnesium. 

It follows from the above that, unlike plastic materials, compression tests are 

mandatory for brittle materials. 

Separately, we should dwell on the nature of destruction of samples from dif-

ferent materials under compression. In addition to the properties of the material of 

the test sample, the test method, as well as the shape of the sample itself, have a 

significant impact. 

During loading, friction occurs between the ends of the sample and the loading 

plates of the testing machine due to the transverse expansion of the sample. For plas-

tic materials, its influence is manifested in the acquisition of a barrel-shaped sample 

by the side surface of a pre-cylindrical sample (Fig. 3.17 a). The higher the coeffi-

cient of friction on the contact surface, the more intense it is there will be casks. 
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A cast-iron sample is destroyed during compression due to displacement along 

a plane inclined at an angle to the line of action of the force (Fig. 3.17 b). 

Stone samples, depending on the force of friction on the surface of contact with 

the slab, are destroyed in different ways: with a significant force of friction, the na-

ture of the destruction of the sample is as shown in Fig. 3.17 c, and when friction is 

reduced (for example, with the help of a layer of paraffin applied to the contact sur-

face), longitudinal cracks appear in the sample, which lead to its delamination 

(Fig. 3.17 d). 

    

a) b) c) d) 

Fig.3.17. Character of deformation and destruction of samples after compression depending on 

the material: a ï plastic material; b ï cast iron; c, d - stone 

3.3.4. Determination of surface hardness 

In the conditions of production, there is a constant need for operational control 

of the mechanical properties of parts that, for example, are subject to thermal, chem-

ical or mechanical treatment. It is often simply impossible to carry out standard tests 

related to the production of samples and the availability of special equipment. How-

ever, there is a method of indirectly determining the strength limit of the material 

based on the surface hardness number of the part. Determining the surface hardness 

of parts is a very common type of test. This characteristic also evaluates the ability 

of parts to resist wear and cyclic loads etc. As a rule, in the technical conditions, the 

required hardness value is indicated on the drawings of the parts. 

Hardness is the ability of a material to resist penetration into the body surface 

of other, more solid bodies. 

There are several methods of measuring hardness. 

The most common methods include the use of indenters: hardened ball (Brinell 

method); diamond cone (Rockwell method); diamond pyramid (Vickers method). 

According to Brinell, the hardness value is determined by the size of the im-

pression, that remains on the surface of the part after pressing the ball. The hardness 

number is expressed in kgf/mm2, but the unit is not indicated when writing. If the 

hardness is, for example, two hundred Brinell units, then it is written as 200 HV. 

45̄
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When the hardness is , the Brinell method cannot be used due to sig-

nificant deformation of the ball itself. In these cases, they use or by the Rockwell 

(HRC) or Vickers (HRV) method. 

The value of hardness for some structural materials is related with the strength 

limit. Yes, for low-carbon steel 0,36u HBsº , for gray cast iron ( )40 6u HBs= - . 

3.3.5. . The influence of various factors on the mechanical prop-

erties of materials 

The mechanical properties of materials, which are studied using standard sam-

ples on special equipment, actually depend on many technological and operational 

factors, such as the technology of obtaining the materials themselves, thermal and 

mechanical processing, temperature, the state of the environment, the nature of the 

load, etc. Next, we will stop briefly on some of the most important factors from the 

point of view of their influence on the mechanical properties of structural materials 

widely used in mechanical engineering. 

Effect of load speed. Standard tests on tension and compression occur at rela-

tively low loading rates, when the growth of deformation of the sample or the rate 

 of deformation is 
10,0002 ... 0,05s- . It was experimentally established that 

the higher the rate of deformation, the higher the stresses, the same deformations of 

the sample will be achieved. That is, the resistance of the material to its deformation 

with increasing speed, the load increases. 

The level of influence of loading speed is very material dependent. Amorphous 

materials, such as plastics, ceramics, concrete, and to a lesser extent low-melting 

metals (tin, lead), are very sensitive to changes in the rate of deformation. Thus, when 

compressing lead samples, the same relative deformation for the deformation 

 rate is 
11,25se -=  achieved under stresses, which are twice the stress for 

the strain rate 
10,003se -= . 

For steels, a noticeable influence of the loading speed is observed when it in-

creases by at least 3 orders of magnitude. For low-carbon steel at normal tempera-

tures, a thousand-fold increase in the loading speed leads to an increase in the yield 

strength by a third. In Fig. 3.18 shows the tensile diagrams of low-carbon steel ob-

tained for static and dynamic load. 

 

 

 

HB 450²

d dte= e

0,25e=
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Fig.3.18. The tensile diagram of low-

carbon steel: 1 ï static load; 2 ï dy-

namic load 

The following practically important con-

clusions can be drawn from these diagrams: 

- dynamic tension curve 2 is higher 

than static tension curve 1; 

- modulus of elasticity for steel does 

not change under static and dynamic 

loads; 

- strength characteristics - limits of 

proportionality, yield elasticity, 

strength - increase under dynamic 

load, and plasticity characteristics ï 

decrease  

Effect of temperature. It has been experimentally shown that all mechanical 

characteristics of materials significantly depend on temperature. In Fig. 3.19 shows 

the dependences of the main characteristics of strength, plasticity and modulus of 

elasticity for low-carbon steel in the temperature range . 

As can be seen from the given dependences, the modulus of elasticity E and the 

yield strength yes  decrease in the entire studied temperature range. Strength limit us  

and residual elongation d have a more complicated relationship. In the temperature 

range from 100 to 300 the strength limit increases noticeably, and the residual 

elongation decreases. In the specified temperature range, low-carbon steel becomes 

more brittle. This phenomenon is called blue brittleness of steel. 

When there is a sharp decrease 

in strength characteristics and the growth of 

plasticity, which makes it impossible to use 

low-carbon steels for the manufacture of parts 

that must be operated at such temperatures. 

On the other hand, this behavior of steel when 

heated is used in technological processes of 

processing metals by pressure: rolling, forg-

ing, stamping, etc. 

The influence of technological factors. 

The mechanical properties of materials with 

the same chemical composition may differ de-

pending on the method of their production and  

 
Fig.3.19. Graphs of dependence of me-

chanical characteristics of low-carbon 

steel on temperature 

0...500 C̄

300 Ct> ¯
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processing, for example, the mechanical characteristics of cast and rolled steel. 

If cast steel is an isotropic material, then rolled steel due to the acquired texture 

in the manufacturing process is already an anisotropic material, the properties of 

which are different in the direction of rolling and in the transverse direction. 

Plastic processing of steel in a cold state (for example, extrusion) leads to slan-

der - strain hardening, which was considered above. The surface layers of many parts 

are also riveted in order to increase their durability or contact strength. For this, parts 

are blown with meal, rolled with a roller. Even after normal turning, the machined 

surface is riveted. As a result, the mechanical properties of the material of the surface 

layers and the base metal differ significantly. 

Thermal and chemical-thermal treatment of parts also leads to a change in the 

mechanical characteristics of materials in the direction of increasing strength and 

hardness characteristics and decreasing plasticity. 

Therefore, when determining the mechanical characteristics of materials, it is 

necessary to take into account the initial state of the material from which the samples 

were made, so as not to make a mistake in choosing the limit state of the material 

and allowable stresses when calculating the strength and rigidity of machine parts 

and structural elements. 

Of course, the properties of structural materials are considered for tension and 

compression and the methods of their study, as well as the list of factors affecting 

them, do not exhaust all the necessary information about the behavior of these mate-

rials in the process of real operation of parts, which must be taken into account al-

ready at the stage of their design and manufacture. In the following sections, we will 

significantly supplement the information obtained regarding the physical and me-

chanical properties of materials depending on working conditions, loading methods, 

etc. 

3.4. Determination of allowable stresses 

Based on the concept of allowable stress (see chapter 1), it is necessary to de-

termine the limit or dangerous stress for the material. 

Since all structural materials can be conventionally divided into plastic and brit-

tle, at least under conditions of static loading and the linear stress state that occurs in 

the rod under tension-compression, it is from these positions that we will choose the 

limit state of one or another material. 
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Plastic materials. For plastic materials ( ), the limit state is the onset of 

yielding, because the occurrence of plastic deformations in the parts is generally con-

sidered inadmissible. Therefore, a dangerous tension is the yield strength yes  or 

 . Then the stress is permissible 

[] ye

yen

s
s= . 

(3.18) 

Here is the strength factor  

  

1,4...1,6yen = . 

Fragile materials. For brittle materials ( ), the limit state is destruction, 

and the dangerous stress is the limit of strength. Then the stress is permissible 

[] u

un

s
s= . (3.19) 

Strength factor  

2,5...3,0un = . 

Note. The indicated values of the safety margin coefficients are standardized 

for static load conditions. Their smaller values are taken in the case of materials with 

a homogeneous structure and in the case of the calculator's confidence in the cor-

rectness of the calculation schemes, the accuracy of the chosen calculation methods, 

and good knowledge of the material's properties. 

Example 3.4. Determine the allowable tension-compression stresses for the fol-

lowing materials: gray cast iron SCH 15, steel 20, aluminum bronze Brɸ5. 

Using the data given in the appendices [1], we will present the technical char-

acteristics of the specified materials in the form of a table. 
 

Table 3.1. Mechanical characteristics of materials (for example 3.4) 

Material 
Strength limit 

us , MPʘ 

Yield strength, 

yes , MPʘ 
Relative elongation 

, % 

SCH 15 
Tension Compression 

ï ï 
150 650 

Steel 20 420 250 25 

Brɸ5 
Soft condition 

Solid state 

380 

400 

160 

- 

65 

4 

 

5%d>

0.2s

5%d<

d
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Gray cast iron SCH 15 15 can be classified as brittle materials. It resists tension 

and compression in different ways. Taking into account that the coefficient of safety 

margin 2,5...3,0un =  , we will obtain the following values of permissible stresses:  

- for tension [] 150 3...150 2,5 50...60ut ut
n MPas s= = = ; 

- for compression [] 650 3...650 2,5 217...260uc uc
n MPas s= = = . 

Steel 20 is a plastic material ( ), so the yield point is a dangerous 

stress. The coefficient of safety margin for steels 1,5yen =  is accepted. Then  

[] 250 1,5 167ye yen MPas s= = = . 

BrA5 bronze is presented in two states. In the soft state, it is a plastic material 

(  ), the coefficient of safety margin is 1,4...1,6yen = . In the solid state, it 

is a brittle material (  ), the coefficient of safety margin 2,5...3,0un = . So, 

- for a soft state [] 160 1,6...160 1,4 100...114,3ye yen MPas s= = =  ; 

- for the solid state [] 400 3...400 2,5 133...160u un MPas s= = = . 

Note. The final selection of allowable stress values for gray cast iron and 

bronze should be made taking into account the recommendations formulated in the 

note. 

Questions for self-testing 

1. How is the tensile diagram obtained in relative coordinates? What is the 

difference between the conventional and the true tensile diagrams? 

2. Which of the following characteristics are strength characteristics? Elastic 

limit, elongation percentage, modulus of elasticity, conventional yield strength... 

3. What is meant by the conventional yield strength? Provide examples of 

materials for which it is determined. 

4. What is meant by the temporary resistance of a material? 

5. Name the main characteristics of the plasticity of materials. Based on what 

criterion are materials classified as brittle or ductile? 

6. Steels resist tension and compression equally. Please explain which 

property of steel underlies this statement. 

7. What is called the hardness of materials? Name the main methods for 

determining hardness and the limits of their application. 

8. List the main factors that can affect the mechanical properties of materials. 

9. What safety factors are used for ductile and brittle materials in general 

mechanical engineering?  

25% 5%d= >

65% 5%d= >

4% 5%d= <
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4.  CALCULATIONS FOR TENSILE AND COMPRESSIVE 

STRENGTH AND RIGIDITY OF RODS 

4.1. Strength and rigidity conditions of rods for tension and 

compression 

The tension and compression of the rod is the type of deformation under which 

the real rod and the sample for tensile or compression tests are under the same load 

conditions, which allows direct comparison of the current stresses in the rod with the 

allowable ones obtained from the results of the experiment. 

Using the formula to determine the stresses in the rod for tension or compression 

(3.5), the strength condition can be written in the form 

[]
N

A
s s= ¢ . (4.1) 

Let's consider the main types of calculations that can be carried out using the 

strength condition. 

1. Based on the known dimensions of the part, check whether it can withstand 

the specified load by comparing the current stresses at the dangerous point 

with those permissible for the given material (validation calculation). 

2. Based on the known loads for the given material, the safe dimensions of 

the part are found (design calculation). In this case, the strength condition 

(4.1) takes the form: 

. (4.2) 

3. Based on the known dimensions, the material of the part and the load dia-

gram, find the permissible load value: 

. (4.3) 

In order to check the part for rigidity, i.e. to determine whether its deformation 

under the active load is within the permissible limits, use the condition of rigidity, 

which for tension and compression, taking into account formula (3.8), will have the 

following form: 

. 
(4.4) 

Here  is a change in the length of the part; is its permissible value. 

Using the rigidity condition (4.4), it is possible to carry out calculations similar 

to calculations using the strength condition. However, as already noted in chapter 1, 

[]
N

A²
s

[]N A¢ s

()
()

[ ]
0

l N x dx
l l

EA x
D = ¢ Dñ

lD []lD
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the rigidity calculation is, as a rule, verifiable. The main calculation is carried out 

according to the condition of strength. 

4.2. Calculations on the strength and rigidity of statically de-

terminate rods 

If the unknown forces from the system of forces applied to the body can be 

determined from the conditions of equilibrium, then such a system is called statically 

determined. 

We will consider the features of calculations of such systems for strength and 

rigidity using several examples. 

Example 4.1. Check the strength of the elements of the rod system (Fig. 4.1) 

when it is loaded with a force of 15F kN= , if the cross-sectional areas of the rods 
2

1 60A mm=  (rod AB) and 
2

2 80A mm=  (rod AC), and their lengths, respectively 

1 2 1l l m= = . The material of the AB rod is steel 45, and the AC rod is BrA5 bronze 

(solid state). Also determine the vertical and horizontal deformation of node A. The 

hinge joints in the system are assumed to be ideal. 

 
Fig. 4.1. For example 4.1 

Let's find the forces in the rods of the 

system. Since the hinges are ideal, only 

longitudinal forces and (Fig. 4.1) will oc-

cur in the sections of the rod. 

For a system of forces converging at 

one point, we have two equilibrium condi-

tions: 

 

1 2

1 2

sin30 sin30 0,

cos30 cos30 0.

X N N

Y F N N

=- ¯+ ¯=

=- + ¯+ ¯=

ä

ä
 

From the first equation we have:  

1 2N N= . 

Substituting the obtained ratio into the second equation, we find: 

12 cos30N F¯=. 

There
1 2 3 15 3 8,66N N F kN= = = = . 

Let's find the allowable stresses for the materials of the rods.  

For steel 45:( )16%d=  [] 360 1,5 240 ,ye yen MPas s= = = ; 
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for aluminum bronze in the solid state: ( )16%d= ,  

[] 400 2,5 160 .u un MPas s= = =  

We check the rods for strength: 

- rod AB  

[]1

1

8660
144,33 240

60

N
MPa MPa

A
s s= = = < = ; 

- rod ʉɺ 

[]2

2

8660
108,25 160

80

N
MPa MPa

A
s s= = = < = . 

Therefore, the strength conditions are fulfilled for both elements of the suspen-

sion. 

Let's determine the vertical and horizontal deformation of node A of the rod 

system. 

The increase in the length of each rod is 

1 1
1 5

1 1

8660 1000
0,722 ;

2 10 60

N l
l mm

E A

Ö
D = = =

Ö Ö
 

2 2
2 5

2 2

8660 1000
1,031 .

1 10 80

N l
l mm

E A

Ö
D = = =

Ö Ö
 

Let's depict the system in a deformed state (Fig. 4.2 a). Projections of the com-

plete deformation of node A (ŭ) on the axis of the rods (u1 and u2) due to the smallness 

of the deformations can be considered to be equal to the elongation of the rods: 

1 1u l=D and 2 uu l=D. 

 
Fig. 4.2. Rod system in a deformed state (a) and pattern of deformations (b) 

 

In Fig. 4.2 b shows the picture of deformations on a larger scale. The total 

displacement of node A can be found as a geometric sum of segments 
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2 2 2 2

1 1 2 2u ud n n= + = +. Segments 1n and 2n can be determined by projecting 

*AA d= , or rather its components, on the axis of the rods: 

1 2 2cos60 sin60u u n= ¯+ ¯; 

2 1 1cos60 sin60u u n= ¯+ ¯. 

There 1 0,774mmn= ; 2 0,238mmn= . 

Total displacement 2 20,722 0,774 1,058mmd= + = . 

To find the vertical displacement of node A, you need to project
*AA d=  the 

segment onto the vertical axis. The angle between them 

2

2

0,238
30 30 30 13 17

1,031
arctg arctg

u

n
g= ¯- = ¯- = ¯- ¯= ¯. 

So, cos17 1,058 0,956 1,012 .v mmdD = ¯= Ö =   

Accordingly, horizontal displacement cos17 1,058 0,292 0,309 .h mmdD = ¯= Ö =  

 
Fig. 4.3. To example 4.2 

Example 4.2. Determine the diameter 

of the steel rod BD (Fig. 4.3), which holds 

the absolutely rigid beam AC in a horizontal 

position, if the allowable stress of the rod 

material is []160MPas= , and the permissi-

ble lowering of point A of the beam under the 

action of the load is 2 5F kN mm= - . The 

dimensions of the beam are given: 

0,5ABl m=  , 1,0BCl m= . Hinged connec-

tions in the system are considered ideal. 

The force in the rod BD can be found from the condition of equilibrium of the 

moments relative to the hinge C (Fig. 4.4 a): 

 
Fig. 4.4. System load diagram (a) and deformation pattern (b) 
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0C DM F AC R CE= Ö - Ö =ä  

There 

1,5
2 6
1 sin30

D

AC
R F kN

CE
= = =

Ö ¯
. 

Rod BD is in pure compression. Longitudinal force 6BD DN R kN= = . Using the 

strength condition (4.2), we find: 

[]
26000

37,5
160

N
A mm
s

² = = . 

Let's find the amount of vertical displacement of point A of the beam. To do this, 

we will use the picture of system deformations, which is shown in Fig. 4.4 b (since 

the beam is absolutely rigid, it will turn relative to the hinge C without any changes 

in size and shape). For proportional segments, you can write: 

1 1AA BB

AC BC
=  or

1 1 1 1

1,5
1,5

1

AC
AA BB BB BB

BC
= = =  . 

From 1 2BB BD  we find that 2
1 22

sin30

BB
BB BB= =

¯
. The length 2BB  of the scale 

segment is equal to the absolute deformation of the rod BD (due to the small defor-

mations 1 2B B , we replaced the arc with a perpendicular). Given that the modulus of 

elasticity for steel is 
52 10E MPa= Ö , we find: 

5

2 6000 1000
0,92

cos30 2 10 37,5 3

BD BD BD BD
BD

N l N l
l mm

EA EA

Ö Ö
D = = = =

¯ Ö Ö Ö
. 

So, 1 2 0,92 1,84BB mm= Ö = . From here  1 1,5 1,84 2,76AA mm= Ö = . 

The found vertical displacement is less than the specified permissible value. 

Knowing the minimum allowable cross-sectional area of the rod, we determine 

the diameter of the rod: 

4 4 37,5 6,91d A mmp p= = Ö = . 
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Fig. 4.5. To example 4.3 

Example 4.3. What should be the maximum allow-

able forces F1 and F2 (Fig. 4.5) so that the rod is of uni-

form strength? The material of the rod is steel 20. Cross-

sectional areas 
2

1 30A mm= , 
2

2 40A mm= . Leaving the 

found force 1F  unchanged, determine at what force 
*

2F  

the displacement of the free end of the rod will be zero? 

Check whether the strength of the rod will be ensured in 

this case. 

Note. A rod of uniform strength or a rod of equal 

resistance is called a rod whose strength reserves are the 

same at dangerous points in any cross-section. 

The rod has two sections. Tensile stresses caused by force1F . Allowable stress 

for steel 20:[] 250 1,5 167ye yet
n MPas s= = º . 

The permissible value of the force 1F  can be found from the strength condition 

(4.3): 

[]1 1 167 30 5010CB t
F N A Ns= ¢ Ö = Ö =. 

Since the force 2F  acts on compression, the rod can be of uniform strength only 

under the condition that the stresses in the section BA will have the opposite sign in 

relation to the stresses in the section CB and will also be equal to the allowable ones. 

Steel, as is known, is equally resistant to tension and compression, that is, the number 

of allowable stresses is known:[] [] 167 .
c t

MPas s= =  So,  

[]1 2 2 25010 167 40 6680BA c
F F F N A Ns- = - = ¢ Ö =- Ö =-. 

There, 2 5010 6680 11690F N= + = . 

Let's determine what the force 
*

2F  should be so that the deformation of the free 

end of the rod is zero. Under this condition, the total elongation of the rod 0lD =, 

or, according to the scheme (Fig. 4.5), 

( )*1 21

1 2 1 2

0CB CB BA BA
CB BA

F F aN l N l Fa
l l l

EA EA EA EA

-
D =D +D = + = + =. 

There 

* 2
2 1

1

40
1 5010 1 11690

30

A
F F N

A

å õ å õ
= + = + =æ ö æ ö

ç ÷ç ÷
. 
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As we can see, the force 
*

2F  is the same as the force 2F  found under the condi-

tion of equal strength, that is, the strength will be ensured. 

Note. We obtained such a result only because the lengths of the sections of the 

rod are the same. Otherwise, the magnitudes of the forces 
*

2F  and 2F  will differ. 

4.3. Calculations of the strength and rigidity of statically  

indeterminate rods 

In statically indeterminate structures, the number of unknown forces exceeds 

the number of equilibrium equations from which they are determined. 

4.3.1. The concept of redundant joints 

Static uncertainty is associated with the presence of so-called "extra" or redun-

dant links in the system. 

In Fig. 4.6 shows a beam that is held with the help of hinge A and two elastic 

rods BC and BD. 

If the hinges are considered ideal, then four ties are imposed on the beam: two 

in a fixed hinge and two in the form of rods. Accordingly, four unknown reactions 

on the part of the indicated elms are to be determined. However, for a plane system 

of forces, we have only three equilibrium equations. Therefore, the problem is stati-

cally indeterminate. 

Obviously, to ensure the balance of the system, in addition to hinge A, one rod 

would be enough. Here, one redundant link is evident. 

 
 

Fig. 4.6. A once statically indeterminate 

system 

Fig. 4.7. Twice statically indeterminate system 

 

To characterize statically indeterminate systems, the concept of the degree of 

static uncertainty is introduced. It is found as the difference between the number of 

unknown forces and the number of equilibrium equations. Thus, the degree of static 

uncertainty depicted in Fig. 4.6 of the system is . In this case, the system 

is said to be statically indeterminate once.  

4 3 1n= - =
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The magnitude of the degree of static uncertainty coincides with the number 

of redundant links in the system. 

Another example of a statically indeterminate system is shown in Fig. 4.7. The 

central rod 1 is rigidly connected to the bracket 2 in cross-section C and fixed in 

supports A and B. The clamp, in turn, is fixed in support A. The support reactions, 

which in general are loads distributed in the support sections, are represented in the 

form of uniform forces reduced to the common central axis of the structure. That is, 

together with the force F, they form a linear system of forces for which there is only 

one equilibrium condition: the sum of all forces acting along one axis is zero. Given 

that there are three unknown forces 1AR , 2AR , BR  to be determined, and, the degree 

of static uncertainty is 3 1 2n= - =. We have a twice statically indeterminate system. 

And this means that there are two redundant links in the system. 

It should be noted that excess ties are "redundant" only from the point of view 

of static conditions: their removal will not lead to a disturbance of the system's equi-

librium. Their presence, as a rule, is associated with ensuring the strength and rigidity 

of the structure. From this point of view, excess ties, as a rule, are far from "extra". 

4.3.2. Procedure for solving statically indeterminate systems 

It should be recalled that we have already encountered the concept of static in-

determinacy when solving integral equilibrium equations for a rod. Then the general 

order of its disclosure was formulated, according to which the static, geometric and 

physical aspects of the problem should be consistently considered and carried out 

their synthesis. 

The disclosure of the static uncertainty of the rod systems is carried out in the 

same sequence, filling the three sides of the problem with the appropriate specific 

content. 

1. The static side of the problem. Make up the equilibrium equations of the 

cut-off part of the structure, which contain unknown loads or forces. 

2. The geometric side of the problem. Consider the system in a deformed 

form and establish the relationship between deformations or deformations 

of its individual elements. The resulting equations are called deformation 

compatibility equations. 

Note. In statically indeterminate structures, the deformation of some elements 

is impossible without the deformation of others, that is, the elements of the system 

are deformed together. Hence the name of the equations. 
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3. The physical side of the problem. Using Hooke's law, the deformations 

of the elements due to the required forces are expressed. In the case of a 

change in temperature, temperature or thermal deformations are added to 

the deformations caused by forces. 

4. Synthesis. Joint solution of the obtained system of equations 

Let us consider examples of solving statically indeterminate systems. 

 

 
Fig. 4.8. To example 4.4 

Example 4.4. The rod system (Fig. 4.8), 

loaded by the force F, is symmetrical about the 

vertical axis, that is, the side rods 1 and 3 have the 

same length and cross-sectional areas, are inclined 

at the same angles a to the vertical and are made 

of the same material, for example, copper. The 

middle rod 2 is steel. Find the forces N1, N2, N3 in 

the rods and select the allowable areas of their sec-

tions A1, A2, A3, considering the allowable stresses 

[]
c

s  for copper and []
s

s  for steel as given. 

Let's consider the hinges that connect the rods in the system to be ideal. Then, 

when the system is loaded with a vertical force F, only longitudinal forces will occur 

in them. To determine these forces, let's cut a part of the structure containing hinge 

A with an arbitrary section and consider the conditions of its equilibrium. The load 

diagram of node A is shown in Fig. 4.9. 

There are three unknown forces N1, N2 and N3. The number of equilibrium equa-

tions for a planar system of forces converging at one point is two. Therefore, we have 

a statically indeterminate system, the degree of uncertainty of which is 3 1 2n= - =. 

1. . The static side of the problem. Let's write down the equilibrium equation 

of node A: 

1 3

1 2 3

sin sin 0

cos cos 0

X N N

Y N N N F

a a

a a

=- + =

= + + - =

ä

ä
 

According to the first equation 1 3N N= . Then the second equation takes the 

form: 

1 22 cosN N Fa+ =. 
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Fig. 4.9. The diagram of the loading of node A Fig. 4.10. Pattern of deformations of node 

A 

 

2. Geometric side of the problem. Since there is geometric and force sym-

metry of the system (N1=N3), and also taking into account that the side rods are made 

of the same material, we conclude that these rods are deformed in the same way. As 

a result, only the vertical deformation of node A will take place. 

In Fig. 4.10 shows the system in a deformed state, when all rods are elongated. 

The increase in the length of rod 2 corresponds to the scale of segment ɸɸ1. The 

elongation of the side rods can be found if we draw arcs from points B and C with 

radii BA and CA through point A to the intersection with the axes of these rods after 

deformation. 

Using the hypothesis of small deformations, we introduce the following simpli-

fications: 

- replace the arcs with perpendiculars established from point A to the axes 

of rods 1 and 3 in the new position. Then their elongation will correspond 

in scale to segments A1A2 and A1A3; 

- we neglect the change of angles between the rods. 

Consider the right triangle ɸɸ1ɸ2. According to fig. 4.10 1 2 1 cosA A A A a= . That 

is, the equations of the compatibility of deformations will look like this: 

1 3 2cosl l l aD =D =D . 

3. The physical side of the problem. Let's express elongation due to effort, 

using Hooke's law in absolute values for tension: 

1 1
1

1c

N l
l

E A
D = ; 2 2

2

2s

N l
l

E A
D = . 

4. Synthesis. Substitute expressions (3) in (2): 

1 1 2 2

1 2

cos
c s

N l N l

E A E A
a= . 
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There 

21 2 1
1 2 2

2 1 2

cos cosc c

s s

E A l E A
N N N

E A l E A
a a= = . 

Solving (4) and (1) together, we find: 

21

2
1

31

2

2
31

2

cos

;

1 2 cos

.

1 2 cos

c

s

c

s

c

s

E A
F

E A
N

E A

E A

F
N

E A

E A

a

a

a

ë
î
=î

î +î
ì
î
=î

î +
îí

 

If the cross-sectional areas of the rods are known, it is not difficult to find the 

effort or perform a check calculation. When the design calculation is performed, the 

area ratio should be specified 1 2A A k= . This will allow you to find the forces N1 

and N2. And then one of the areas is found from the strength conditions, for example, 

[]
1

1

c

N
A

s
²  and the second is found from the ratio2 1A A k= . After that, be sure to 

check the strength of the second rod.

 

 If the strength condition is not met, then the 

calculation should be repeated: first, from the strength condition, determine the area 

of the second rod 
[]

2
2

s

N
A

s
² , and the area of the first from the ratio1 1A Ak= , at the 

same time, it is no longer necessary to check it for strength, because the area found 

will be guaranteed to be larger than the one found in the first attempt. 

 
Fig. 4.11. To example 4.5 

Example 4.5. For the rod AB, con-

struct the diagram of forces and stresses 

and determine the safety factor. Also con-

struct a diagram of the deformations of its 

cross-sections relative to support A (Fig. 

4.11), if the force is F=10 kN, the cross-

sectional area is 
2100A mm= , and the 

material of the rod is steel 30. The size of 

the gap is 0,1mmD= . 

First, let's compare the values of displacement of the end section of the rod Dl

under the action of the force F and the gap D in order to draw a conclusion about 
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the static determination of the problem. Given that there is a longitudinal force 

10ACN F kN= = in the AC section, we get: 

3

5

10 10 600
0,3

2 10 100

AC AC
D AC

N l
l mm

EA
l

Ö Ö
=D = = =

Ö Ö
. 

So, Dl>D. After closing the gap, reactions of both supports will act on the 

rod, and the problem becomes statically indeterminate. Degree of static uncertainty 

2 1 1n= - =. 

The calculation scheme of the rod is shown in fig. 4.12 a. 

1. The static side of the problem. Let's write the equilibrium equation: 

0A BX H F H=- + - =ä . 

2. Geometric side of the problem. The total elongation of the rod is equal to 

the size of the gap: 

AC CDl l lD =D +D =D. 

3. The physical side of the problem. According to Hooke's law, the elongation 

of sections is found as 

;

.

AC AC A AC
AC

CB CB B CB
CB

N l H l
l

EA EA

N l H l
l

EA EA

D = =

D = =

 

4. Synthesis. We substitute (3) in (2): 

.A AC B CBH l H l

EA EA
- =D 
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Fig. 4.12. Calculation scheme (a) and diagrams of forces (b), stresses (c) and displacements (g) 

for the rod 

Considering (1), we write: 

( )A AC A BCH l H F l EA+ - = D. 

There 
5 32 10 100 0,1 10 10 300

5555,56
900

CB
A

AB

EA Fl
H N

l

D+ Ö Ö Ö + Ö Ö
= = = ;

 

5555,56 10000 4444,44 .B AH H F kN=- + =- + =  

The diagram of longitudinal forces is shown in Fig. 4.12 b. 

Let's find the values of stresses in each section and construct a stress graph 

(Fig. 4.12c). 

5555,56
55,56 ;

100

4444,44
44,44 .

100

AC
AC

CB
CB

N
MPa

A

N
MPa

A

s

s

= = =

= = =

; 

Since the material of the rod is steel, which is equally resistant to tension and 

compression, the margin of strength will be determined by the maximum absolute 

stress 55,56AC MPas =  and yield strength. For steel 30: 300ye MPas = . Then the 
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strength factor of the rod is 
300

5,4
55,56

yen = = . Considering that for steel the stand-

ard stock factor is 1,5yenè ø=ê ú , we conclude that the rod is significantly underloaded. 

Let's construct a diagram of the deformations of the cross-sections of the rod 

relative to support A (Fig. 4.12 d). Given that these deformations are determined by 

the deformations of the corresponding sections of the rod, we write: 

Area ɸʉ ( )0 0,6x m< < : 

() AC
x A

N x
l x

EA
l- =D = . 

Deformation of section C relative to A 

5

5555,56 600
0,17

2 10 100

AC AC
C A

N l
mm

EA
l-

Ö
= = =

Ö Ö
 

Section CB ( )0 0,3x m< < : 

() CB
x A C A C A

N x
l x

EA
l l l- - -= +D = + . 

Deformation of section B relative to A 

5

4444,44 300
0,17 0,17 0,07 0,1

2 10 100

CB CB
B A C A

N l
mm

EA
l l- -

Ö
= + = - = - =

Ö Ö
 

As you can see, the deformation B Al-  is equal to the value of the specified gap 

D, which indicates the correctness of the calculations. 

We place the found displacements in the corresponding cross-sections of the 

rod in the form of ordinates from the base line of the diagram and connect their ends 

with straight lines, because the dependencies ()xl  are linear. 

4.3.3. Features of statically indeterminate systems 

4.3.3.1  Dependence of force values on rigidity ratios of system ele-

ments 

The distribution of forces in the elements of statically indeterminate systems 

depends on the ratio of their rigidity. By changing these ratios, it is possible to change 

the distribution of forces in the system elements in any way. 

As an illustration, consider a rod system (see example 4.4). Suppose that the 

area of the second rod is infinitely large in comparison with the areas of other rods: 

2A ­¤. Then, according to expressions  
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2
1

31

2

2
31

2

cos

;

1 2 cos

.

1 2 cos

c

s

c

s

c

s

E A
F

E A
N

E A

E A

F
N

E A
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a

a

a

ë
î
=î

î +î
ì
î
=î

î +
îí

 

for determining the forces 1 0N = , and 2N F= . When assuming that 1A­¤ 

and 3A ­¤ so 2 0N = , and 1 2cosN F a= .  

Forces in the rods of a statically indeterminate system are distributed in pro-

portion to their rigidity. 

4.3.3.2 . Response to temperature changes 

In statically defined systems, a change in temperature does not, of course, lead 

to the occurrence of additional efforts. So, the rod shown in Fig. 4.13, in the event of 

a change in temperature, it will increase in length due to thermal expansion, but no 

forces will arise in its sections. 

 
 

 
Fig. 4.13. Statically determined rod Fig. 4.14. Statically indeterminate rod 

 

By tightly pinching the rod from the right end (Fig. 4.14), we will get a statically 

indeterminate system. Suppose that the temperature of the rod has increased (  ). 

An attempt at thermal expansion will cause reactions from the supports. A longitu-

dinal compressive force occurs in the rod. Let's find stresses, which in this case are 

called temperature or thermal.  

1. The static side of the problem. Let's write down the condition of equilib-

rium of the rod: 

. 

There . 

2. Geometric side of the problem. Since the supports are absolutely rigid, the 

elongation of the rod . In other words, the thermal elongation of the rod is 

0t t>

0A BX H Hä = - =

A BH H H= =

0lD =
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compensated by the force deformation caused by the reactions of the supports. We 

write the deformation compatibility condition as follows: 

. 

3. The physical side of the problem. Force deformation according to Hooke's 

law  

, 

and thermal elongation 

. 

Here  ï is the coefficient of linear expansion of the rod material. 

4. Synthesis. Solving the jointly obtained equations, we find: 

, 

At the same time, tension 

. 
(4.5) 

Example 4.6. Find the stress in the rail in winter and summer at a temperature 

rang 30t C=° ,̄ if the track was laid in the off-season at temperatures 10t C= .̄ The 

modulus of elasticity 
52 10E MPa= Ö  of the rail material, and the coefficient of linear 

expansion 
7125 10a -= Ö . 

Using equation (4.5), we find the maximum stresses: 

- in summer ( )7 5125 10 2 10 30 10 50 ;MPas=- Ö Ö Ö - =- 

- in winter ( )7 5125 10 2 10 30 10 100MPas=- Ö Ö Ö - - =. 

4.3.3.3 . Sensitivity to manufacturing inaccuracy of system elements 

Inaccuracies are possible during the manufacture of conjugated structural ele-

ments. These inaccuracies in statically determined systems after their assembly 

do not lead to the occurrence of forces in the elements. This is easy to see on 

the example of a rod system (Fig. 4.15), where the dotted line shows the system after 

assembly, when the AC rod is manufactured with a deviation from the design length. 

The system is assembled without any deformations, and therefore without effort. The 

only negative consequence is the inconsistency of the obtained geometric shape of 

the design with the design (in the figure, the design shape is represented by solid 

lines). 

0H tl l lD =D +D =

N

Nl Hl
l

EA EA
D = =-

( )0tl l t tD =a -

a

( )0H EA t t=a -

( )0
N H

E t t
A A

s= =- =-a -
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The only negative consequence is the inconsistency of the obtained geometric 

shape of the design with the design (in the figure, the design shape is represented by 

solid lines). 

In statically indeterminate systems, in a 

similar situation, it is impossible to carry out 

assembly without subjecting the elements to 

deformations. As a result, forces arise in the 

elements, which are called assembly forces. 

Consider the example of a rod statically 

indeterminate system presented in Fig. 4.8  

(example 4.4), in which the central rod 2 is 

made shorter than the design length 

(Fig. 4.16). 

 
Fig. 4.15. Statically determined system 

after assembly 

 

 
Fig. 4.16. To example 4.7 

Example 4.7. Determine the installation 

forces and stresses in the rods of the system after 

assembly (Fig. 4.16), if the side rods 1 and 3 have 

the same length 1 3l l=  and cross-sectional areas 

1 3A A= , are inclined at the same angles a to the 

vertical and are made of the same material, for ex-

ample copper. The middle rod 2 is steel. Its cross-

sectional area is 2A , and its length is 2l . 

 

It is obvious that when the value d is insignificant, then, with some effort, we 

can make a system. At the same time, the side rods should be compressed, and the 

central rod should be stretched. After assembly, node A will occupy some intermedi-

ate position (Fig. 4.17), and residual assembly forces will act in the rods (Fig. 4.18). 

 

 

Fig. 4.17. System after assembly Fig. 4.18. Node load diagram 
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We have three unknown forces, and two equilibrium equations. Therefore, the 

degree of static uncertainty 3 2 1n= - =. 

1. The static side of the problem. Let's write the equilibrium equation:  

1 3

1 2 3

sin sin 0

cos cos 0

X N N

Y N N N

a a

a a

= - =

= - + =

ä

ä
 

There 

2
1 3

2cos

N
N N

a
= =  

2. Geometric side of the problem. According to Fig. 4.17 with 1 3AA AD  we 

have 1 3 1cosA A AA a= . Based on this ratio, taking into account the scale, we will 

write the equation of the compatibility of deformations:  

( )1 2 cosl ld aD = -D , 

or 

1
2

cos

l
ld

a

D
= +D 

3. The physical side of the problem. According to Hooke's law 

1 2 2 2
1 2

1 2

;
cosc s

N l N l
l l

E A E Aa
D = D =  

There is no "-" sign in the formula for 1lD , since the shortening of rod 1 is 

already taken into account in the drawing (see Fig. 4.17). 

4. Synthesis. We substitute 1 2 2 2
1 2

1 2

;
cosc s

N l N l
l l

E A E Aa
D = D =  in  

1
2

cos

l
ld

a

D
= +D : 

1 2 2 2

2

1 2cosc s

N l N l

E A E A
d

a
+ =. 

Taking into account 2
1 3

2cos

N
N N

a
= = , we get: 

2

2
3

2 1

2
1

1
;

1 1

2 cos

.
2cos

s c

N
l

E A E A

N
N

d

a

a

ë
=î

+î
ì
î
î =
í
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Knowing the forces and cross-sectional areas of the rods, we can easily find the 

stress: 

()1 1

1

;
N

A
s =  ()2 2

2

;
N

A
s =  

Note. Taking into account  

2

2
3

2 1

2
1

1
;

1 1

2 cos

.
2cos

s c

N
l

E A E A

N
N

d

a

a

ë
=î

+î
ì
î
î =
í

, 

 it can be stated that in the field of elastic deformations there is a direct propor-

tional relationship between the forces or stresses in the system and the amount of 

manufacturing inaccuracy of its elements. This phenomenon is often used to ad-

vantage in engineering: by intentionally creating residual stresses in an element of 

the opposite sign to those stresses that will arise during operation, we thereby create 

a reserve of strength and increase the load-bearing capacity of the element. 

Questions for self-testing 

1. What stresses are called permissible? 

2. The yield point of the material is 240ye MPas = , the strength limit is 

550u MPas= , the residual elongation after rupture is 18%d= . 

3. Write down the strength condition of the rod under tension and compres-

sion. 

4. List the main types of calculations that are carried out using the strength 

condition. 

5. Determine the real stock factor of the rod considered in point 5. 

6. Find the area for which the margin of strength of the rod (see point 5) 

would correspond to the standard for steel 410u MPas= . 

7. Write down the rigidity condition of the rod under tension and compres-

sion. 

8. List the main types of calculations that are carried out using the rigidity 

condition. 

9. What is the rigidity calculation in engineering practice, as a rule: design or 

verification? 

10. What system is called statically determined? 
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11. Which system is called statically indeterminate? 

12. What elms are called "extra" or surplus? 

13.  For what purpose are excess elms introduced into the structure? 

14. Which of the two systems is statically indeterminate. 

 
15. How is the degree of static uncertainty of the system calculated? 

16. The degree of static uncertainty of the structure. How many redundant 

elms are imposed on the system? 

17. Formulate the order in which the static uncertainty of the structure should 

be revealed? 

18. What is the static side of the problem when revealing static uncertainty? 

19. Reveal the essence of the geometric side of the problem? 

20. Why are geometric equations called deformation compatibility equations? 

21. What hypothesis of resistance of materials is used to write geometric equa-

tions? 

22. What quantities are connected by physical equations? What law are they 

based on? 

23. Based on the features of statically indeter-

minate systems, answer which of the supporting reactions is greater: NA or 

ʅɺ? 

24. What stresses are called thermal? 

25. Do thermal stresses occur in statically defined structures? 

26. What stresses are called installation stresses? 

27. Give examples of the use of assembly efforts in a structure with benefit for 

its operability. 

  

3ʧ=
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5.  FUNDAMENTALS OF THE THEORY OF STRESSED AND 

DEFORMED STATE 

5.1. Stress in a deformed solid body 

5.1.1. A tense state of the body at a point. The law of parity of 

shear stresses 

Suppose that there is some body loaded with an arbitrary system of forces 

(Fig. 5.1). We will assume that when moving from point to point, the stress state 

changes rather slowly, and it is always possible to choose such a small enough area 

around point A in which the stress state could be considered homogeneous. It is clear 

that such an approach is possible only within the previously accepted hypothesis 

about the integrity of the material (see topic 1.1.), which allows the transition to ex-

tremely small volumes. 

 
Fig.5.1. A rigid body loaded by an arbitrary system of forces 

 

We select a volume in the vicinity of point A in the form of an infinitely small 

parallelepiped (Fig. 5.2). 

 
Fig.5.2. Stresses on the faces of an elementary parallelepiped 
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In the limiting case, all the faces of the parallelepiped pass through point A and 

the stresses in the corresponding intersecting planes can be considered as stresses at 

the point. 

Note. The shape of the infinitesimal element depends on the selected coordinate 

system. So, in the Cartesian system, the element has the shape of a parallelepiped. 

For cylindrical or spherical coordinate systems, it is convenient to choose cylindrical 

or spherical elements. 

Let's decompose the total stresses arising on the faces of the elementary paral-

lelepiped into components along the axes. We obtain normal and shear stresses on 

each face (see Fig. 5.4). These stresses are marked in accordance with the previously 

accepted order: normal stresses s have indices corresponding to the axes X, Y, Z, to 

which these stresses are parallel; shear stress t is indicated by two indices: the first 

index corresponds to the axis perpendicular to the area of action of the shear stress; 

the second index corresponds to the axis to which this stress is parallel. 

Normal stresses are considered positive when they act in the tensile direction. 

The sign of the shear stresses is not specified. 

Consider the equilibrium conditions of an elementary parallelepiped (see 

Fig. 5.2). On its opposite faces, stresses equal in magnitude and opposite in direction 

act in pairs, because they act on faces that actually belong to the same plane. And it 

turns out that tension on one face, for example on the right, characterizes the action 

of the right part of the body on the left at point A, and tension on the left face - the 

action of the left part on the right at this same point. And action, as you know, equals 

counteraction. 

The forces acting on the faces of the parallelepiped form a spatial system of 

forces. The first three equations of equilibrium - the sum of the projections of the 

forces on the axis is zero - are carried out identically. That is, we have nine inde-

pendent stress components acting on three mutually perpendicular faces of the ele-

ment 

The other three equilibrium conditions are equal to zero of the sums of moments 

of all forces acting on the element relative to three mutually perpendicular axes. 

Namely, the X, Y, Z axes. 

Let's write down the expression for the moments, for example, relative to the X 

axis. Non-zero moments are created by the vectors  and . Other moments are 

created in pairs by the same forces acting on the same shoulders in opposite direc-

tions and are therefore mutually balanced. So, 

. 

zyt yzt

( ) ( ) 0yz zydxdz dy dxdy dzt - t =
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There 

yz zyt t= . 

Similarly for other axes. 

In this way, we obtained the law of parity of shear stresses: 

; ;xy yx xz zx yz zyt t t t t t= = = (5.1) 

On two mutually perpendicular platforms, shear stresses perpendicular to a 

common edge are equal in magnitude and directed either toward the edge or away 

from the edge. 

Taking into account this law, there are not nine, but only six independent stress 

components acting on the faces of the element (hereinafter referred to as platforms). 

Determination of stresses on three mutually perpendicular planes passing 

through a given point is the first step in solving problems related to strength calcula-

tions in the general case of a stressed state. 

5.1.2. Determination of stresses in common position pads. 

Stress tensor 

We will show that when six stress components in three mutually perpendicular 

platforms are known, namely  (see Fig. 5.2), then it is pos-

sible to determine the stresses in general in any area passing through this point. 

From the stressed body, we select an elementary volume in the vicinity of point 

A in the form of a tetrahedron - a tetrahedron whose three faces coincide with coor-

dinate planes, and the fourth is formed by the secant plane of the general position 

(Fig. 5.3). 

 
Fig.5.3. Stresses on the faces of an elementary tetrahedron 

 

,  ,  ,  , ,  x y z xy yz zxs s s t t t
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The orientation of this cutting plane in space is determined by the direction co-

sines of the normal n relative to the X, Y, Z axes: 

( )cos , ;l x= n ( )cos , ;m y= n ( )cos ,n z= n. (5.2) 

We consider the stress on the faces of an elementary tetrahedron as the stress at 

a point due to the smallness of its volume. 

Consider the conditions of equilibrium of the tetrahedron. The forces acting on 

the faces can be found as the product of the corresponding stress on the face area. 

Let us denote the area of the face ɺʉD ï the platform of the general position ï 

by A; the areas of the faces ADC, ADB and ABC - three mutually perpendicular sites 

- through Ax, Ay, Az, respectively. Then, from the condition that the sum of the pro-

jections of all forces on the X, Y, Z axis is equal to zero, we get: 

. 

 

(5.3) 

Here  ï are the components of the total stress p on the site of the 

general position of the BCD in the projections on the X, Y, Z axis. 

Considering the faces ADC, ADB and ABC as projections of the area of the gen-

eral position of ABC onto the corresponding coordinate planes, we can write: 

;  (5.4) 

Then equations (5.3) take the form 

. 

 

(5.5) 

Therefore, for any platform, the position of which is given, that is, the direction 

cosines of the normal to it are known, the total stress p can be found if the compo-

nents of the total stresses in three mutually perpendicular plat forms are known. 

Indeed, knowing px, py, pz, we will find 

Remembering that the set of total stresses for a set of platforms passing through 

a given point constitutes the stressed state of the body at this point, we conclude 

The stress state at a point of a deformed body is completely determined by six 

independent stress components in arbitrarily chosen three mutually perpendicular 

platforms passing through this point. 

x x x yx y zx z

y xy x y y zy z

z xz x yz y z z

p A A A A

p A A A A

p A A A A

ë =s +t +t
î

=t +s +tì
î

=t +t +sí

,  ,  x y zp p p

;xA Al= yA Am= zA An=

x x yx zx

y xy y zy

z xz yz z

p l m n

p l m n

p l m n

ë =s +t +t
î
=t +s +tì

î
=t +t +sí

. 
(5.6) 2 2 2

x y zp p p p= + +
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These components, recorded in a certain order, are presented in the form of a 

tensor - a square matrix: 

. 

 

(5.7) 

Therefore, it is also said that the stress state of the body at a point is completely 

determined by the stress tensor. 

Knowing the total stress p in the area of the general position, or rather the com-

ponents px, py, pz, it is possible to find its normal and shear components in this area, 

which is of considerable practical interest. Considering that we denoted the normal 

to the BCD site by n, the normal stress can be found as 

. (5.8) 

As for the shear component of the total stress, that is, the shear stress in this 

area, it is necessary to specify the direction in which it will be determined. Suppose 

we are interested in the shear stress in the direction m  (Fig. 5.4, a). Its direction in 

the BCD area is set by direction cosines in the selected coordinate system X, Y, Z 

marking them accordingly 

( )cos , ;l x¡= m ( )cos , ;m y¡= m ( )cos ,n z¡= m. 

  
a) b) 

Fig.5.4. Shear stresses on a plane of general orientation: a ï shear stress tnm in the direction ɛ ;  

b ï total shear stress tn 

 

Then 

. (5.9) 

x yx zx

xy y zy

xz yz z

Ts

s t t

= t s t

t t s

x y zp l p m p nns = + +

x y zp l p m p nnm ¡ ¡ ¡t = + +
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The total shear stress on plane ɺʉD  lies in the plane of the total stress p and 

the normal stress  (Fig. 5.4, b), and its magnitude is determined by the following 

relation. 

2 2.pn nt s= -  
(5.10) 

5.1.3. Principal axes and principal stresses. Types of stress 

state 

Let us express the normal stress on the platform of the general position in terms 

of stress components in three mutually perpendicular platforms, that is, the compo-

nents of the stress tensor at this point of the body. To do this, let's substitute equation 

(5.5) into expression (5.8). As a result of simple transformations, taking into account 

the law of parity of shear stresses, we obtain: 

 (5.11) 

Shear stresses in the area can be similarly expressed by substituting equation 

(5.5) into (5.9): 

( )

( ) ( )        

x y z xy

yz zx

ll mm nn lm ml

mn nm nl ln

nm
¡ ¡ ¡ ¡ ¡t =s +s +s +t + +

¡ ¡ ¡ ¡+t + +t +
 

(5.12) 

Here, the normal  and shear  stresses are functions of the direction cosines 

of the normal n to the platform of the general position. A change in the orientation 

of the site relative to the selected system of X, Y, Z axes will generally lead to a 

change in stresses in it. 

Of practical interest is the determination of the largest and smallest normal and 

shear stresses from their possible values at a given point and the position of the plat-

forms in which they act. 

Before proceeding to the solution of this problem, let's resort to a somewhat 

formalized, but very visual presentation of the geometric image of the stressed state. 

In equation (5.11), we present the direction cosines as the ratio of the coordi-

nates of the end of some segment s, which in direction coincides with the normal n 

to the site, to the length of this segment (Fig. 5.5): 

;   ;   . (5.13) 

nt

ns

2 2 2 2 2 2x y z xy yz zxl m n lm mn nlns =s +s +s + t + t + t

ns vmt

l x s= m y s= n n s=
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Fig.5.5. Coordinates of segment s 

 

Then, 

. (5.14) 

Accepting formally, , get 

. (5.15) 

This is the equation of the central surface of the second order, in which the 

stresses on three mutually perpendicular platforms are coefficients, and the accepted 

value k is an arbitrary constant that determines the scale of construction. 

It is known from the course of analytical geometry that by turning the axes X, 

Y, Z relative to the origin of the coordinates, it is possible to achieve such a position 

that the terms containing pairwise products of coordinates disappear in the equation 

of the surface (5.15). This can be interpreted as the fact that the coefficients of these 

terms become zero. Since the coefficients are the shear stresses on three mutually 

perpendicular platforms, we conclude that three mutually perpendicular platforms 

without shear stresses , ,xy yz zxt t t can always be drawn through this point. 

Three mutually perpendicular platforms passing through a given point, in 

which there are no shear stresses, are called the main platforms, the axes perpen-

dicular to them are called the main stress axes, and the normal stresses acting in 

these platforms are the main stresses. 

The main stresses are usually denoted by . 

The rule for arranging indices for the main stresses: 

1 2 3s s s> > . (5.16) 

and the inequality here has an algebraic meaning. 

Example 5.1. Mark the main stresses, acting on the faces of the elemental par-

allelepiped (Fig. 5.6). 

2 2 2 2 2 2 2x y z xy yz zxs x y z xy yz zxns =s +s +s + t + t + t

2s k n= s

2 2 2 2 2 2x y z xy yz zxx y z xy yz zx ks +s +s + t + t + t =

1 2 3,  ,  s s s
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Fig.5.6. Main stresses (for example 5.1) 

According to the index placement rule 

(5.16), taking into account the rule of signs for 

normal stresses in the site, namely, that tensile 

stresses are considered positive, and compres-

sive stresses are considered negative, we will 

have the following main stresses: 

1 2 330 ; 0; 80 .MPa MPas s s= = =-  

 

Let us now assume that the mutually perpendicular faces of the elementary tet-

rahedron are the main sites (Fig. 5.7).  

 
Fig.5.7. A tetrahedron, the three faces of which are the main sites. 

 

Then the equilibrium equations of the tetrahedron (5.5) take the form: 

. 

 

(5.17) 

Taking into account that for the direction cosines of the normal n the condition 

is valid 

; (5.18) 

get 

. 

(5.19) 

1
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Here  can be considered as the coordinates of the end of the full stress 

vector p on the site of the general position BCD in the selected system of coordinate 

axes X, Y, Z (see Fig. 5.7). We draw a conclusion about the geometric image of the 

stress state at a point. 

The geometric location of the ends of the full stress vector at this point is an 

ellipsoid, the main semi-axes of which are the main stresses 1 2 3, ,s s s (Fig. 5.8). 

It is called the stress ellipsoid. 

 
Fig.5.8. Stress ellipsoid 

 

Based on this geometric image, an important property of the main stresses is 

obvious - the property of extremity: 

The largest of the principal stresses is simultaneously the largest of the possi-

ble values of the total stress for a set of platforms passing through a given point. 

At the same time, the smallest of the principal stresses is the smallest of the possible 

values of the total stress. 

Indeed, if the platform passing through point A (see Fig. 5.8) is turned so that it 

fits, for example, with the coordinate plane 23, then it becomes the main platform in 

which the full stress . 

For the main sites, the stress tensor takes the form: 

. 

 

(5.20) 

In the case when all the main stresses are the same in magnitude and sign: 
 , then the ellipsoid turns into a sphere. This type of stress state is 

called comprehensive uniform tension or compression. Of course, in this case, any 

platform passing through point A will be the main one, and the stressed state will be 

characterized by the so-called spherical tensor 

,  ,  x y zp p p

p=s1
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. 

 

(5.21) 

In general, there are three main stresses at a point. However, in some cases, 

some of the main stresses may be absent. 

According to the number of acting principal stresses, the following types of 

stress state are distinguished. 

1. The volumetric or triaxial stress state of a body occurs at a point when all 

three principal stresses are non-zero. 

2. A plane or biaxial stress state of a body occurs at a point when two prin-

cipal stresses are different from zero. 

3. The linear or uniaxial stress state of the body at a point occurs when one 

of the main stresses is different from zero. 

Examples of some possible variants of stress states at a body point are shown in 

Fig. 5.9. 

  

 

 

or 

  
a) b) c) 

Fig.5.9. Types of tense states of the body at a point: a ï three-dimensional or three-dimensional;  

b ï plane or biaxial; c ï linear or uniaxial 

 

Any stress state that is different from linear (volumetric or planar) is called a 

complex stress state. 

5.1.4. Determination of the magnitude and direction of principal 

stresses 

To solve the inverse problem of the stress state, assume that the BCD face of 

the elementary tetrahedron is the main site (Fig. 5.10). The normal stress in it, also 

called the total stress, is the principal stress directed along the normal n. It is denoted 

by s. 

0

0

0

0

0 0

0 0

0 0

Ts

s

= s

s



 

143 

 

 

 
Fig.5.10. The face of an elementary tetrahedron as a main site  

 

Considering that  

; ; . (5.22) 

the equilibrium equations of the tetrahedron (5.5) take the form: 

; 

 

(5.23) 

or 

. 

 

(5.24) 

Considering the obtained equations as a system of homogeneous equations with 

respect to the guiding cosines  of the normal n, we conclude that it has a non-

zero solution, since the condition is satisfied . That is, the principal 

determinant of this system is zero: 

. 

 

(5.25) 

Expand the determinant and, grouping the terms containing s with the same 

degree, write the following cubic equation: 

. (5.26) 
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Here 

; (5.27) 

; (5.28) 

. 

 

(5.29) 

Three material roots of the cubic equation (5.26) give three values of principal 

stresses . 

The directions of the principal axes can be easily found by substituting into the 

equations of the system (5.24) alternately instead of s values of principal stresses 

and solving them with respect to the directing cosines of the normal to the corre-

sponding principal sites. 

Since the principal stresses are determined by the nature of the stress state of 

the body at a point and do not depend on the choice of coordinate system X, Y, Z, 

then and the coefficients in equation (5.26) do not depend on the choice of coordinate 

system. In other words, they remain invariant when the coordinate axes are rotated. 

Therefore, they are called stress state invariants or stress tensor invariants. 

If the principal axes 1, 2, and 3 were selected as the initial ones, the invariants 

will be written through the principal stresses: 

; (5.30) 

; (5.31) 

. 

 

(5.32) 

It is obvious that in a plane stress state, when one of the principal stresses is 

absent, the third invariant . And in a linear stress state, when there are no two 

principal stresses at once, the second and third invariants will be zero. That is 

. 
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Fig.5.11. To example 5.2 

Example 5.2. Determine the magnitude and 

direction of the principal stresses and determine 

the type of stress state at a point where all stress 

components are equal in magnitude on three mu-

tually perpendicular platforms passing through it 

(Fig. 5.11). 

Subject to . 

Then the stress state invariants, according to 

(5.27) -(5.29), ; . Substituting 

these values into equation (5.26), we obtain 

. 

Hence, the roots of the equation, also known as principal stresses ,

. 

Thus, the stress state at the point is linear. 

To find the direction of the principal stress relative to the given axes (normal to 

the initial sites), we substitute the values of the corresponding stresses into the equa-

tion of system (5.24).  

2 0

2 0 .

2 0

s sm sn

sl sm sn

sl sm sn

- + + =ë
î
- + =ì

î + - =í

 

From here we get l m n= =. So, the axis 1 (normal to the site of action ) is 

equally inclined to the original sites. Taking into account the condition 
2 2 2 1l m n= = = , we have . 

5.1.5. Determination of stresses at non-principal pads 

In the direct problem of stress, three mutually perpendicular pads are the prin-

cipal pads. Using formula (5.11), we obtain expressions for the normal stress on the 

pad, whose orientation relative to the principal axes is given by the guide cosines 

l m n= = of the normal n (Fig. 5.7): 

, (5.33) 

Shear stress in this area in some direction m, according to ʟ (5.12): 

, (5.34) 

Total stress, according to (5.6), taking into account (5.17): 

x y z xy yz zx ss =s =s =t =t =t =
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. (5.35) 

Thus, the analysis of the stress state at the point of the deformed body allowed 

us to identify three mutually perpendicular sites, called the main sites, which have 

the following crucial features: they have no shear stresses, and the normal stresses, 

called the principal stresses, are extreme (see Section 5.1.3). 

However, at the point of a deformed body, there are some other sites that are of 

considerable practical interest. These are, in particular, octahedral sites and sites of 

maximum total shear stresses. The definition of their position and stresses in them 

will be discussed in the following paragraphs. 

 
Fig.5.12. To example 5.3 

Example 5.3. Determine the total, normal, 

and total shear stresses on the site (Fig. 5.12), nor-

mal n to which the axes 1, 2 and 3 make angles 

60 , 45 , 60a b g= ¯ = ¯ = ¯ accordingly. 

Directional cosines are normal n 

cos cos60 0,5;l a= = ¯=  

cos cos45 1 2;m b= = ¯=  

cos cos60 0,5.n g= = ¯= 

 

The total stress on the inclined platform is found by formula (5.35): 

 MPa. 

Normal stress, according to formula (5.33), taking into account the signs of 

principal stresses 

 MPa. 

The value of the total shear stress is calculated by formula (5.10): 

 MPa. 

5.1.6. Octahedral sites and octahedral stresses 

An octahedral area is an area whoôs normal is equally inclined to the main 

axes. 

This site got its name from the octahedron, an octahedron that can be obtained 

from an elementary parallelepiped (Fig. 5.13). In each of the eight quadrants of the 

coordinate axis system 1, 2, 3 (the main axes of the stress state) can be an equidistant 

platform. Their combination forms an octahedron. 

2 2 2 2 2 2
1 2 3p l m n= s +s +s

2 2 2 2 2 2
1 2 3 2500 0,25 900 0,5 6400 0,25 51,72 p l m n ʄʇʘ= s +s +s = Ö + Ö + Ö =

2 2 2
1 2 3 50 0,25 30 0,5 80 0,25 7,5 l m n ʄʇʘns =s +s +s = Ö + Ö - Ö =

2 2 2 251,72 7,5 51,17 p ʄʇʘn nt = -s = - =
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Fig.5.13. Octahedral platforms 

For an octahedral platform, the following condi-

tion holds: 

. 

Considering that , we will get: 

. 

Then, using formula (5.33), we obtain the expres-

sion for the normal stress in the octahedral pad: 

 

1 2 3.
3

okt

s s s
s

+ +
=  

(5.36) 

The total shear stress in the octahedral pad is found by formula (5.10), taking 

into account (5.35) and (5.36): 

( ) ( ) ( )
2 22

1 2 2 3 3 1

1

3
oktt s s s s s s= - + - + - 

(5.37) 

This is called octahedral pressure. 

As we can see, the octahedral normal tension octs  is equal to the average value 

of the principal stresses at a given point - the so-called average stress . 

Octahedral tangent loading octt  related to the intensity of stresses  ï is a cal-

culated value used to solve problems in the theory of plasticity: 

 (5.38) 

So, 

3

2
i octs t=  (5.39) 

 

 

 
 

a) b) 

Fig.5.14. For example 5.4: a - option 1;  

b - option 2 

Example 5.4. Find the octahedral nor-

mal and shear stresses at the point where 

normal stresses act on the faces of the 

elementary parallelepiped (Fig. 5.14 a) 

40x MPas = , 30y MPas =  

20z MPas = . How will the octahedral 

stresses change if the direction of action 

ys  is reversed (Fig. 5.14 b)? 

 

l m n= =
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Since the faces of an elementary parallelepiped are not subject to shear stresses, 

they are the principal sites. According to the rule for placing indices at principal 

stresses for the first variant of the stress state (Fig. 5.14 a), we have 

1 40x MPas s= = ; 2 30y MPas s= = ; 3 20z MPas s= =- . 

Octahedral normal stresses, according to (5.36), 

1 2 3 40 30 20
16,67 .

3 3
oct MPa
s s s

s
+ + + -

= = =  

The octahedral shear stress, according to (5.37), 

( ) ( ) ( )

( ) ( ) ( )

2 22

1 2 2 3 3 1

2 2 2

1

3

1
40 30 30 20 20 40 26,25

3

oct

MPa

t s s s s s s= - + - + - =

- + - + - - =

 

If we reverse the direction of the stress ys  (see Fig. 5.14 b), we will have the 

following principal stresses: 1 40x MPas s= = ; 2 20z MPas s= =-

3 30y MPas s= =- . We obtain the following values of octahedral stresses: 

1 2 3 40 20 30
3,33 .

3 3
oct MPa
s s s

s
+ + - -

= = =-  

( ) ( ) ( )
2 2 21

40 20 20 30 30 40 30,91
3

oct MPat = + + - + + - - =  

As you can see, the octahedral stresses have changed their magnitude, and the 

normal octahedral normal stress has also changed direction, becoming compressive. 

5.1.7. Maximum shear stresses 

Let's determine the value of the maximum shear stress at a point of the deformed 

body and the position of the platform in which it acts. Of course, we are talking about 

the total shear stress in the pad. 

We write, according to (5.10) 

. 

Here  ï total shear stress on the pad with a normal n;  

ʨ,  ï are the total and normal stresses in this area, respectively. 

If the initial axes are principal, then, taking into account (5.33) and (5.35), we 

obtain 

. 

2 2 2pn nt = -s
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Using the condition (5.18), let's express one of the guiding cosines, for example, 

n, in terms of the other two: . Then 

( ) ( )

( ) ( ) ( ) ( )

2
2 2 2 2 2 2 2 2 2 2 2 2

1 2 3 1 2 3

2 2 2 2 2 2 2 2 2

3 1 3 2 3 3 1 3 2 3

1 1

.

l m l m l m l m

l m l m

nt s s s s s s

s s s s s s s s s s

è ø= + + - - - + + - - =
ê ú

è ø= + - + - - + - + -ê ú

 

 

(5.40) 

Let's define the angles of the normal n relative to the axis 1 through a, and 

relative to the axis 2 through b. Then the guiding cosines are written as  and 

. According to the rule for determining the extremum of a function, we 

differentiate the expression (5.40) by angles a and b and equate the derivatives to 

zero: 

 
(5.41) 

 
(5.42) 

Let's analyze the conditions for the obtained inequalities. There can be three 

such conditions. 

1. . But in this case . That is, the normal n coincides with the 

axis 3, and the site is, accordingly, the main site where there is no shear stress. That 

is, we have the condition of minimum total shear stress . 

2. Fulfillment of the second condition  is impossible, because in 

this case, i.e., this guiding cosine will be an irrational number. 

3. Let us analyze the third condition by transforming the expressions in curly 

brackets to the form 

; 

. 

The conditions of zero equality of the obtained expressions are possible when 

 and . But this means that , that is, we have the case of 

all-round uniform tension or compression, when all the sites passing through the 

point are the main ones (see Section 5.1.3). This means that the shear stresses in any 

site will be zero. 

Another condition for the equality of the resulting expressions is the equality of 

the expressions in curly brackets. It is easy to show that the second expression turns 

to zero if, when , and . In this case, the expression in curly brackets in the 

2 2 21n l m= - -

cosl = a

cosm= b

( ) ( ) ( ){ }2 2 2 2 2 2
1 3 3 1 3 2 3 1 32 1 2 0l l l mè ø- - s -s - s + s -s + s -s s -s =

ê ú

( ) ( ) ( ){ }2 2 2 2 2 2
2 3 3 1 3 2 3 2 32 1 2 0m m l mè ø- - s -s - s + s -s + s -s s -s =

ê ú
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0nt =
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first equation will not be zero, but the condition of zero for the entire expression 

(5.41) is met. 

As a result of simple transformations, we get 

  or . 

From here. , and the angle . 

Thus, under this condition, the maximum shear stresses will act  

at the sites, the directional cosines of the normal for which 

. This is the area parallel to the principal axis 1 and 

equally inclined to the other two principal axes 2 and 3. 

The value of the total shear stress in this pad is obtained by substituting the 

found values for the directional cosines of its normal into expression (5.40). 

 
(5.43) 

So, . 

If we assume that , and , we will similarly obtain the guiding cosines 

of the normal to the area parallel to the principal axis 2: 

, in which the maximum shear stresses will act 

. 

For the third pad, which will be parallel to axis 3, the guide cosines are normal, 

by analogy with the previous cases, ,  

and the value of the largest shear stress . 

The obtained results allow us to conclude on the value of the maximum total 

shear stress at a point from all possible values. The largest of the obtained values of 

maximum shear stresses will be the one for which the difference between the princi-

pal stresses in absolute value will be the largest. 

Taking into account the rule of placing indices at principal stresses (5.16), we 

come to the final conclusion that  

1 3
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s s
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(5.44) 
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The maximum shear stress at a point of a deformed body acts in the area 

equally inclined to the directions of the largest s1 and the smallest s3 of the prin-

cipal stresses (Fig. 5.15) and is equal to half the difference in the values of these 

stresses. 

 
Fig.5.15. Area of action of the largest shear stress at the point of a deformed body 

 

Example 5.5. Find the largest shear stresses at a point in the two cases of stress 

(see Example 5.4, Fig. 5.14). Indicate the areas in which they will act. What is the 

effect on the value of the largest shear stress of changing the direction sz in the sec-

ond variant of the stress state (Fig. 5.14 b)? 

Under the first variant of the stress state (Fig. 5.14 a), the largest shear stress, 

according to (5.44), 

MPa 

This stress acts in the area parallel to the Y-axis and equally inclined to the X 

and Z-axes. 

According to the second option  

MPa 

This stress acts in a plane parallel to the Z axis and equally inclined to the X 

and Y axes. 

If in the second variant of the stress state (Fig. 5.14 b), the direction of the sz 

on the contrary, this will not have any consequences for the maximum shear stress, 

because although it will change its sign, it will remain the average principal stress 

s2 which does not affect the value of . 
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5.1.8. Plain stress state 

In the plane stress state, the equations of the direct and inverse problems are 

obtained from the general relations for the bulk stress state.  

All transformations here are associated with the rotation of the coordinate sys-

tems (sites) in the plane. 

5.1.8.1  Direct problem of plane stress state 

Let's assume that only two of the three main tensions are valid: s1 and s2. The 

third main tension s3=0. Let's draw the element as a rectangle, as shown in Fig. 5.16. 

Let us determine the stresses in mutually perpendicular platforms inclined to 

the principal axes at angles a (let us call it platform a) and b (let us call it plat-

form  b). 

Let's use formulas (5.33) and (5.34). In our case, they will take the form 

, 

. 

 
Fig.5.16. Planar stress state: direct problem 

 

For the site a 

 

Here ,  ï are the directional cosines of the x-

normal with respect to the principal axes 1 and 2. Then 

. 

For the site b 

2 2
1 2l mns =s +s

1 2ll mmnm ¡ ¡t =s +s

2 2
1 1 2 1x l ms =s +s

1 cosl = a ( )1 cos 90 sinm = ¯-a = a

2 2
1 2cos sinxs =s a+s a
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. 

Here ,  ï are the directional cosines of the 

normal with respect to the principal axes 1 and 2. Then 

. 

Shear stresses on the site a, 

 

Here ,   

(see Fig. 5.16) - directional cosines of the direction of action . Then. 

. 

According to the law of parity of shear stresses . 

Considering that , we finally obtain the following relations for the 

direct problem of a plane stress state: 
2 2

1 2cos sinxs s a s a= +  (5.45) 

2 2

1 2sin cosys s a s a= +  (5.46) 

1 2 sin2
2

xy

s s
t a

-
=  (5.47) 

Note. The stresses on the right-hand side of equations (5.45) - (5.47) can be 

with any combination of indices.  
 

Note The principal stresses in equations (5.45) - (5.47) should be substituted 

with due regard for their sign. 
 

Note. If the result of calculating the normal stress is with a plus sign, then this 

stress acts in the direction of tension, and if with a minus sign then in the direction 

of compression. 
 

Note. Shear stress is considered positive if it tries to rotate the element clock-

wise. 

5.1.8.2  Inverse problem of plane stress state 

As already noted in Section 5.1.4, the third invariant of the stress tensor in the 

plane stress state . Then the cubic equation (5.26) takes the form: 

. 

2 2
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One root of this equation is zero, which is understandable, since we have a plane 

stress state. The other two roots can be found from the quadratic equation: 

. 

Let us determine the magnitudes and directions of the principal stresses for the 

case of a plane stress state, the diagram of which is shown in Fig. 5.17. 

 

 
Fig.5.17. Plane stress state: inverse 

problem. 

Let's write down the stress state invariants 

for this case: 

; 

. 

Substituting these expressions into the 

quadratic equation, we get 

. 

The roots of this equation are: 

. 

 

To find the directions of the principal stresses, it is not necessary to solve the 

system of equations (5.24) with respect to the directional cosines. It is more conven-

ient to use formulas (5.45) - (5.47). 

Subtract equation (5.46) from (5.45): 

. 

On the other hand 

. 

Dividing the equations, we get 

. 

Finally, in the general case, we obtain the following relations for the inverse 

problem of the plane stress state: 
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Note. The stresses on the right side of equations (5.48), (5.49) should be sub-

stituted taking into account their sign. 
 

Note. The indices for principal stresses are placed after determining their mag-

nitude and sign in accordance with the rule of index placement (5.16). 
 

 

Note. When determining the direction of the principal stresses, formula (5.49) 

is written in the form: 

2
tg2

xy

x y

- t
a=
s -s

. 

Then the angle found is plotted from the x-axis counterclockwise if the angle 

found is positive, or clockwise if the angle is negative. The axis drawn in this way 

will be the principal axis along which the algebraically larger of the principal 

stresses found acts. 

 
Fig.5.18. Example 5.6 

Example 5.6. Find the stresses on the 

mutually perpendicular planes with normal 

x1 and y1 (see Fig. 5.18), if the stresses at the 

initial sites with normal x and y 

100x MPas= , 60y MPas= , 80xy MPat =
 

The angle between the normal lines x and x1 

30j= .̄ 

 

The problem will be solved by considering the inverse and direct problems of 

the stress state sequentially. That is, as an intermediate step in the solution, we will 

find the principal stresses and the orientation of the principal sites. 

1. Find the magnitude and direction of the principal stresses. 

Using formulas (5.48), we find the magnitudes of the principal stresses: 

( ) ( )

( )

2 22 2

max

min

1 1
4 100 60 100 60 4 80

2 2

1
40 226,27

2

x y x y xy

MPa

s s s s s t
è ø è ø= + ° - + = - ° + + Ö =é ù é ùê úê ú

= °

 

From here 1 max 133,135MPas s= = , 2 0s= , 3 min 93,135MPas s= =-  

We verify the correctness of the calculations by finding the first invariants of 

the stress state for the non-main and main sites: 
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1 1 2 3;

100 60 133,135 93,137.

x yIs s s s s s= + = + +

- = -
 

So, 40 40MPa MPa= , which means that the calculations are correct. 

Let's find the position of the main sites. According to formula (5.49), taking into 

account the remark about the sign in the numerator of this formula (see note 5.8): 

2 2 80
2 1.

100 60

xy

x y

tg
t

a
s s

- - Ö
= = =-
- +

 

From here 22,5a= .̄ 

Let's depict the main sites on the diagram (Fig. 5.19), taking into account the 

comments made in notes 5.8. 

 
Fig.5.19. Principal and non-principal sites for a plane stress state (see example 5.6) 

 

2. Let's solve the direct problem: knowing the principal stresses, find the 

stresses at the sites with normal x1 and y1. To do this, we determine the angle between 

the x1 normal and the 1 axis: 

1 30 22,5 52,5a= ¯+ ¯= ¯. 

Then by the formulas (5.45) ï (5.47)  
2 2

1 1 1 3 1cos sin 133,135 0,3706 93,135 0,6294 9,28x MPas s a s a= + = Ö - Ö =-; 

2 2

1 1 1 3 1sin cos 133,135 0,6294 93,135 0,3706 49,28y MPas s a s a= + = Ö - Ö = . 

Check: 1 1 19,28 49,28x y MPa Iss s+ =- + =. 
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1 2 133,135 93,135
sin2 sin105 113,135 0,9659 109,28

2 2
xy MPa
s s

t a
- +

= = ¯= Ö = . 

The shear stress on the site with normal x1 is positive, so we direct it  

in a clockwise direction. 

5.1.9. Linear stress state 

In a linear stress state, the principal stresses can act in tensile, when  

(Fig. 5.20, a) or compressive, when  (Fig. 5.20, b). 

  

 
a) b) 

Fig.5.20. Linear stress state: a - tension;  

b - compression 

Fig.5.21. Linear stress state: main and non-

main sites 

 

Using the equations obtained for the plane stress state, it is easy to calculate the 

stress at any site inclined to the principal stress. For example, for the scheme shown 

in Fig. 5.21, using equations (5.45) - (5.47), we obtain the following relations: 

; ; . (5.50) 

This is a direct problem. The inverse problem can be solved in the same way. 
 

Note. In the inverse task, both for linear and plane stress states, the stresses on 

the non-main sites can in general constitute a spatial system, i.e., act in three mutu-

ally perpendicular sites instead of one or two. In this case, it is difficult to immedi-

ately assess what kind of stress state is actually occurring. In any case, the task 

should be solved using the relations obtained for the bulk stress state. A vivid illus-

tration of the above is Example 5.2. 
 

 

Example 5.7. Find the octahedral normal and shear stresses at the point where 

the stress state is linear (Fig. 5.22). 

1 0s ¸

3 0s ¸

2
1cosxs =s a

2
1sinys =s a 1 sin2

2
xy

s
t = a



 

158 

 

 

 
Fig.5.22. Example 5.7 

We have the following stresses on an octahedral site: 

- octahedral normal stresses 

1 3okts s= ; 

- octahedral shear stresses 

1

2

3
oktt s= . 

Note. If we compare the results obtained with the data given 

in Example 5.2, it becomes obvious that the three mutually per-

pendicular sites, the original ones in this example, are octahedral 

sites. 

First, the values of the octahedral normal stress and the normal stress in the 

initial site (Example 5.2) coincide, since 1 3s s= .  

Second, the octahedral shear stress is the total shear stress in the octahedral 

pad. At the same time, the total shear stress in the original pad (Example 5.2) 

. That is, their values also coincide.  

Third, in a linear stress state, any axis perpendicular to the axis of action , is 

the main site, which means that any site with a directing cosine of the normal to 

which relative to the axis 1 is equal to , is an octahedral platform. These sites, 

in turn, can be and mutually perpendicular, as in Example 5.2. 

 
Fig.5.23. Example 5.8 

Example 5.8. Find the largest shear stresses at point 

(Fig. 5.23). Compare them with the octahedral shear 

stresses at this point 

We have the following main tensions: 

. 

Then the largest shear stresses, according to (5.44) 

. 

 

If we compare the octahedral shear stress at this point (see Example 5.7), whose 

value is 
1 12 3 0,471oktt s s= º , with the found maximum shear stress, it is 0.943 of 

the maximum shear stresses. 

Note. As in the case of the octahedral pad, under linear stress, any pad at a 

given point of the deformed body that is inclined to the direction of the principal axis 

1 in tension or 3 in compression at an angle of  is the site of the greatest shear 

stress. 

2 2
1

2
2

3
x xy xz st = t +t = = s

1s

1 3

1 2 3;  0s =s s =s =

max 10,5t = s

45̄
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5.2. Strains and deformed state of the body  

5.2.1. Relationship between deformations and strains (Cauchy 

equation) 

As already noted, the displacements of points of a deformed body cannot serve 

as an unambiguous characterization of the deformation, since they can be caused not 

only by the deformation of the body at a given point, but also by its rigid displace-

ments associated with deformations of other parts of the body. 

An important task is to establish a connection between the relative deformations 

of a body at a point and the known components of its displacements. 

Note. It should be noted that the displacements of points can be found, for ex-

ample, empirically. For example, when tension a straight rod, we can easily find the 

displacement of any point on its surface relative to a pre-selected reference point by 

simple measurement. This means that we can also establish functional relationships 

between the displacements of these points and their positions in a given coordinate 

system. 

Cut out an elementary parallelepiped with edge length . After defor-

mation of the body, this volume changes both in size and shape. Figure 5.24(a) shows 

a parallelepiped before deformation (ABCDEFGJ) and after deformation 

(A1B1C1D1E1F1G1J1) without changing its shape, i.e. without changing the right an-

gles between its edges. 

  

a) b) 

Fig.5.24. Deformation of the faces of an elementary parallelepiped: a - in space; b - in the projec-

tion on the coordinate plane x-z 

 

Fig. 5.24, b shows the projection of the ABFE face onto the XAZ coordinate 

plane (A1B1F1E1 is the position of the face after deformation). Point A along the x-

axis received a displacement ʠ, and along the z-w-axis. The displacements of the 

, ,  dx dy dz
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point F along these axes are respectively equal to  and . It is 

obvious that the absolute deformation of this face along the x-axis (increase in its 

length) is , and along the z-axis - . Then the relative lin-

ear deformation of the edge AB along the x-axis, according to (1.15), is equal to the 

ratio  

. 

For the other two axes, we get:  ʽ . 

Consider the angular deformation of the element. Fig. 5.25 shows the change in 

the previously straight angles of the ABFE face. The relative displacement between 

the x and z axes, according to (1.16),  

. 

Since the angles are very small, you can replace them with tangents: 

; 

 
Fig.5.25. Angular deformation of a face of an 

elementary parallelepiped 

. 

Thus, the angular deformation in 

the XAZ plane 

. 

Similarly, we can show that 

 ʽ . 

 

Let's write down the expressions for the six components of relative linear and 

angular deformations: 

u
u dx

x

µ
+
µ

w
w dz

z

µ
+
µ

( )
u

dx dx
x

µ
D =

µ
( )

w
dz dz

z

µ
D =

µ

x

u
dx

ux

dx x

µ
µµe = =
µ

y

v

y

µ
e =

µ
z

w

z

µ
e =
µ

1 1 1 1
2

xz B AE BAB EAE
p

g = -Ï =Ï +Ï

1
1

w
dx

BB wxBAB
BA dx x

µ
µµÏ º = =
µ

1
1

u
dz

EE uzEAE
EA dz z

µ
µµÏ º = =
µ

xz

w u

x z

µ µ
g = +

µ µ

xy

v u

x y

µ µ
g = +

µ µ
yz

w v

y z

µ µ
g = +

µ µ



 

161 

 

 

; ; ;

; ; .

x y x

xy yz zx

u v w

x y z

v u w w u w

x y y z z x

e e e

g g g

µ µ µ
= = =
µ µ µ

µ µ µ µ µ µ
= + = + = +
µ µ µ µ µ µ

 

 

 

(5.51) 

The resulting relations are called the Cauchy equations. 

5.2.2. Strain state of a body at a point. Strain tensor 

By analogy with the stress state, the following definition of the deformed state 

can be given. 

The set of deformations for the set of directions passing through a given point 

forms the deformed state of the body at the point. 

We show that the six components of deformation  for 

three arbitrarily chosen mutually perpendicular directions x, y, z passing through a 

given point, completely determine the deformed state at that point. In other words, 

we will show that, knowing these six independent strain components, we can find the 

linear strain at a given point in any direction, as well as the relative displacement 

between any two mutually perpendicular directions. 

So, let's find the linear deformation in a certain direction  (Fig. 5.26, a). Here 

 ï is the displacement vector of point A; u, v, w ï its projections on the x, y, z axes.  

  
a) b) 

Fig.5.26. Before determining the deformations at point A: a - linear deformation in the direction 

of ; b - the relative shift between the directions  ʽ  

 

 

 

, , , , ,     x y z xy yz zxe e e g g g

r

U

r 1r 2r
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Let  denote the projection of the displacement vector  onto the direction . 

We can write that 

. 

Here l, m, and n are the directional cosines of the  relative to the x, y, z axes, 

respectively. 

Then the linear strain in the direction of , according to the Cauchy equations 

(5.51) 

. 

Applying the formula for differentiating complex functions, for our case we ob-

tain 

. 

Then 

 

The result is this: 

 (5.52) 

In the same way, we find the relative displacement between mutually perpen-

dicular directions  ʽ  (Fig. 5.26, b). Let us denote the projections of the displace-

ment vector  to the specified destinations via  and 

. There l1, m1, n1 ï directional cosines of the direction ; l2, m2, 

n2 - are the guiding cosines of the  direction. The relative shift between these di-

rections, according to the Cauchy equations, 

 

After simple transformations, we get: 

 
(5.53) 

d U r

ul vm wnd= + +

r

r

r
r

µd
e =
µ

dx dy dz
l m n

r x dr y dr z dr x y z

µ µ µ µ µ µ µ
= + + = + +

µ µ µ µ µ µ µ

( )

2 2 2

.

      

      

r

u u u v v v
ul vm wn l m n l l m n m

r x y z x y z

w w w u v w v u
l m n n l m n lm
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w v u w
mn nl

y z z x

å õ å õµ µ µ µ µ µ µ
e = + + = + + + + + +æ ö æ ö
µ µ µ µ µ µ µç ÷ ç ÷

å õ å õµ µ µ µ µ µ µ µ
+ + + = + + + + +æ ö æ ö
µ µ µ µ µ µ µ µç ÷ ç ÷
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2 2 2 .r x y z xy yz zxl m n lm mn nle =e +e +e +g +g +g

1r 2r
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It should be noted that the deformed state of a body at a point has the same 

properties as the stressed state. 

For example, among the set of directions passing through a given point, there 

are three mutually perpendicular axes in the system with no angular deformations. 

Three mutually perpendicular axes passing through a given point, in whose 

system there are no relative displacements are called the principal axes of the de-

formed state, and the linear deformations that occur in their directions are called 

principal strains. 

Principal deformations are designated by analogy with principal stresses, 

. They are found from the cubic equation 

. (5.54) 

whose coefficients are invariants of the deformed state: 

. (5.55) 

. 
(5.56) 

. 

 

 

(5.57) 

Comparing expressions (5.57) and (5.29), we note that they are structurally sim-

ilar: the analog of normal stresses in expression (5.29) is the linear deformation in 

expression (5.57), and the analog of shear stresses is half the angle of displacement 

in the corresponding plane. 

Since the third invariant of the stress state is the stress tensor , then the third 

invariant of the deformed state is the strain tensor . Due to the main deformations, 

it will be written in the form 

. 

 

(5.58) 

The formula for determining the linear strain in an arbitrary direction, (5.52), 

through the principal strains will take the form: 

. (5.59) 

 

1 2 3, ,  e e e

3 2
1 2 3 0I I Ie e ee - e + e- =

1 x y zIe=e +e +e

2

1 1 1

4 4 4
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and the formula (5.53) for determining the displacement between two mutually 

perpendicular directions will take the form: 

. (5.60) 

5.2.3. Volume deformation 

In addition to linear and angular deformations, in the mechanics of a deformed 

solid, it is also necessary to determine the volume strain, i.e., the relative change in 

volume at a point. 

If an elementary parallelepiped had volume (Fig. 5.24), then after deformation 

its volume will be 

. 

According to the Cauchy equations (5.51), we write 

 

Neglecting in this expression the products of deformations as quantities of 

higher order of smallness, we obtain 

. 

Volume deformation of a body at a point is the ratio of the increase in the 

volume of an element due to deformation to its initial volume. 

So, 

. 

. (5.61) 

That is, the volume strain is equal to the sum of the linear strains at a point. In 

other words, it is the first invariant of the strain tensor. 

Example 5.9. A parallelepiped with dimensions is loaded, as a result of which 

the relative linear deformations in the direction of its edges are respectively 

0,06xe=  , 0,02ye=- ; 0,03ze= . Determine the volume of the parallelepiped after 

deformation. 

The relative volumetric deformation of the parallelepiped is found by formula 

(5.61): 

1 2 1 1 2 2 1 2 3 1 22 2 2r r l l m m n ng = e + e + e

1 1 1
u v w u v w

dV dx dx dy dy dz dz dxdydz
x y z x y z

å õ å õµ µ µ µ µ µå õ å õ å õ å õ
= + + + = + + +æ ö æ ö æ ö æ öæ ö æ ö

d d d d d dç ÷ ç ÷ ç ÷ ç ÷ç ÷ ç ÷

( )( )( )

( )

0

0 .

1 1 1

1     

x y z

x y z x y y z z x x y z

dV dV

dV

= +e +e +e =

= +e +e +e +e e +e e +e e +e e e

( )0 1 x y zdV dV= +e +e +e

( )0 00

0 0

1 x y z

V

dV dVdV dV

dV dV

+e +e +e --
e = =

1 2 3V x y ze =e +e +e =e +e +e
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. 

Because. , where V ï where V is the volume of the parallelepi-

ped acquired as a result of deformation, and V0 ï is its initial volume, then hence 

. 

The initial volume of the parallelepiped 
3 3

0 20 30 40 24 10V mm= Ö Ö = Ö. So 

( )3 3 324 10 1 0,07 25,68 10V mm= Ö + = Ö . 

5.3. Generalized Hooke's law 

So far, we have considered the stress and strain states separately. However, it is 

clear that stresses and strains are interrelated quantities, and there are certain depend-

encies between the components of the stress and strain states. 

According to the hypotheses formulated earlier, the material of a deformed body 

is considered as a continuous homogeneous isotropic medium. On this basis, it can 

be argued that: 

- by the property of homogeneity, the dependence between stresses  

and strains will be the same at all points of the body; 

- by the property of isotropy, they will not depend on the choice of coordi-

nate system, and, most importantly, the main axes of stresses and strains 

will coincide; 

- since the medium is continuous, then, treating it as a continuous mathe-

matical space, the dependencies between stresses and strains will be con-

tinuous functions. 

5.3.1. Hooke's law for the principal axes of stress and strain 

In general, the functional relationships between stresses and strains can be rep-

resented as shown below: 

; ;  (5.62) 

It has been experimentally established that in the elastic region, the relationship 

between stresses and strains for most structural materials can be assumed to be linear. 

This was first shown by Robert Hooke for tension and compression. Therefore, the 

law of elastic proportional deformation is called Hooke's law. 

So, taking into account Hooke's law, the functions (5.62) are linear. Let's write 

them in the general form: 

0,06 0,02 0,03 0,07V x y ze =e +e +e = - + =

( )0 0V V V Ve = -

( )0 1 VV V= +e

( )1 1 1 2 3, ,fe = s s s ( )2 2 1 2 3, ,fe = s s s ( )3 3 1 2 3, ,fe = s s s
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(5.63) 

Based on the principle of independence of the action of stress and strain forces 

in an elastic body caused by a certain force are independent of other forces applied 

to the body. As a result, the stresses or strains in a body caused by a group of forces 

can be found as the sum of the stresses or strains caused by each force in particular. 

According to this principle, each of the principal strains can be represented as the 

sum of three components. For example, 

 (5.64) 

Here, on the right-hand side of the equation, the first index indicates the direc-

tion of deformation, and the second index indicates the factor that causes this defor-

mation. That is 

-  ï is the relative linear deformation in the direction of , caused by the 

action of only ;  

-  ï is the relative linear deformation in the direction of , caused by 

the action of only ; 

-  ï is the relative linear deformation in the direction of , caused by 

the action of only . 
Since the stresses ů1, ů2, ů3 are orthogonal, in ratio to ů1, the deformation Ů11 is 

longitudinal, while the deformations Ů12 and Ů13 are transverse.  

 

 
Fig.5.27. Longitudinal and transverse de-

formation of an element 

Numerous experiments have shown 

that the longitudinal and transverse defor-

mations caused by this stress have oppo-

site signs. Thus, under tension in the di-

rection of  , and  and 

 (Fig. 5.27). 

Here the longitudinal deformation is 

; 

transverse deformation . 
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The absolute value of the transverse strain is always less than the absolute 

value of the longitudinal strain, and the value of their ratio for a given material 

and test conditions does not depend on the amount of strain up to a certain load 

level and is called the Poisson's ratio or transverse strain coefficient. 

1trans

long

e
m
e

= < or . 
(5.65) 

If we compare equation (5.63) with equation (5.64), it is obvious that the longi-

tudinal and transverse deformations are equal: 

 (5.66) 

 (5.67) 

For an isotropic material, the transverse strain caused by a given stress is con-

stant in any direction. That is . It is also obvious that the 

same stresses  will cause the same longitudinal and transverse defor-

mations: ; . Considering (5.66) and 

(5.67), we can write that ; . 

The coefficients  and  are called the elastic constants of the material. 

Consider a linear stress state: . The equations of the system 

(5.63) take the form: 

; 

. 

The coefficient at longitudinal deformation is usually denoted as 

, 

where E is the tensile modulus of elasticity or Young's modulus, which is de-

termined from a tensile test. 

From (5.65)  or . That is. , and from here  . 

So, for an isotropic homogeneous material, we have two independent elastic 

constants: the modulus of elasticity and the Poisson's ratio. 

Taking into account the sign of the transverse strain, we finally write equation 

(5.63) in the form: 

1
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(5.68) 

The resulting equations (5.68) are a record of the generalized Hooke's law for 

an isotropic material. 

 
Fig.5.28. To example 5.10 

Example 5.10. The element (Fig. 5.28) is lo-

cated in a plane stress state. Find the magnitude and 

direction of the principal deformations if the stresses 

on its faces 80x MPas= , 40y MPas= , 60xy MPat =

. Element material - gray cast iron with elastic mod-

ulus 
51,15 10E MPa= Ö  and the Poisson's ratio 

0,23m= . 

 

Let us find the principal stresses using the relations for the inverse task of the 

plane stress state (5.48): 

( ) ( )

( )

2 22 2

max

min

1 1
4 80 40 80 40 4 60

2 2

1
120 126,5 .

2

x y x y xy

MPa

s s s s s t
è ø è ø= + ° - + = + ° - + Ö =é ù é ùê úê ú

= °

 

From here MPa; ; MPa 

The main deformations are found by Hooke's law (5.68): 

 
Assuming the material is isotropic, the directions of the principal axes of defor-

mation are found by formula (5.49), since for isotropic material the principal defor-

mation axes coincide with the principal stress axes: 

( )2 2 60
tg2 3

80 40

xy

x y

- t - Ö -
a= = =
s -s -

. 

1 max 123,25 ʄʇʘs =s = 2 0s = 3 min 3,25 ʄʇʘs =s =-
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1 1
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From here. . 

The principal stress and strain axes of the element are shown in Fig. 5.29. 

 
Fig.5.29. Main stress and strain axes 

 

 
Fig.5.30. Example 5.11 

Example 5.11. Cylindrical element made of 

homogeneous isotropic material, inserted without a 

gap in the hole in an absolutely rigid plate 

(Fig. 5.30), is compressed in the longitudinal direc-

tion. The normal stress in this direction is 

100x MPas=- . Find what is the octahedral normal 

stress in the element, if the Poisson's ratio of the 

material 0,33m= . Friction on the surface of the el-

ement to be neglected. 

When compressed, the element should deform in the transverse direction, i.e., 

expand. However, due to the absolute rigidity of the slab, there will be no defor-

mation in this direction. That is, the element will be subjected to a pressure evenly 

distributed over the surface from the walls. Taking into account the axial symmetry 

of the task, it can be argued that any two mutually perpendicular sites parallel to the 

x-axis of the element will have the same compressive normal stresses. 

Since there is no friction on the contact surfaces of the element, there are no 

shear stresses on them. Therefore, the normal stresses  are the principal 

tensions. 

Stresses  ʽ  is found from the condition that there are no deformations in 

the transverse direction. Using Hooke's law, write down the condition: 

. 

Considering that , we get: 

35,78a= ¯

,  ,  x y zs s s

ys zs

( )
1

0y y z x
E
è øe = s -m s +s =ê ú

y zs =s
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MPa 

We have these principal tensions: ;MPa, MPa. Then 

the octahedral normal stress is 

1 2 3 49,25 49,25 100
66,17

3 3
okt MPa
s s s

s
+ + + +

= =- º-  

5.3.2. Hooke's law for non-major stress and strain axes 

Let's move on to the minor stress and strain axes x, y and z. 

Let us assume that the guiding cosines of the x-axis in the system of principal 

deformation axes are l1, m1, n1. Then, according to (5.59), 

 
(5.69) 

Let's rewrite equation (5.68) by adding and subtracting on the right-hand side 

of the first equation , second equation ï , third equation ï . Then Hooke's 

law will take the form: 

 

 

 

(5.70) 

 

Here  ï is the first invariant of the stress ten-

sor. 

According to (5.59),  
2 2 2

1 2 3x l m ne =e +e +e. 

Substituting equation (5.70) into this expression, we obtain: 

. 

Given (5.33), Lecture 11, and the fact that , We will finally have 

it: 

. 

For the relative displacement , according to (5.60),  

0,33
100 49,25 

1 1 0,33
y z x ʄʇʘ

m
s =s = s =- º-

-m -

1 2 49,25 ʄʇʘs =s =- 3 100 ʄʇʘs =-

2 22
1 1 2 1 3 1x l m ne =e +e +e

1ms 2ms 3ms
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( )
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1 1 1

2 2 1

3 3 1
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1
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e = +m s -mè øê ú
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E
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. 

Here l2, m2, n2 ï are the directional cosines of the y-axis in the system of prin-

cipal deformation axes. Substituting (5.70), we obtain: 

. 

Considering (5.34), and the fact that the sum of the products of the directional 

cosines of the perpendicular segments , Let's write it down: 

. 

Here, the inverse of the coefficient at , is usually denoted by G: 

( )2 1

E
G

m
=

+
 

 

(5.71) 

and is called the shear modulus. 

Thus, formula (5.71) establishes the relationship between the elastic constants 

of a material. 

Finally, we obtain a generalized Hooke's law for the non-major stress and strain 

axes: 

( )

( )

( )

1
; ;

1
; ;

1
; .

xy

x x y z xy

yz

y y z x yz

zx
z z x y zx

E G

E G

E G

t
e s m s s g

t
e s m s s g

t
e s m s s g

è ø= - + =
ê ú

è ø= - + =ê ú

è ø= - + =
ê ú

 

 

 

(5.72) 

Note. In equations (5.72), when , so . This confirms the conclusion 

made above that the principal stress and strain axes for an isotropic material coin-

cide. 

 
Fig.5.31. Example 5.12 

Example 5.12. Find the linear defor-

mations of the mutually perpendicular seg-

ments AB and DC of the element (Fig. 5.31), 

which is in a plane stress state, and the rela-

tive displacement between them, if the 

stresses on its faces 1 50MPas= , 

2 30MPas= . Modulus of elasticity of the 

1 1 2 2 1 2 3 1 22 2 2xy l l m m n ng = e + e + e

( )( ) ( )1 1 2 2 1 2 3 1 2 1 1 2 1 2 1 2

2
1xy l l m m n n I l l m m n n

E
sè øg = +m s +s +s -m + +ê ú

1 2 1 2 1 2 0l l m m n n+ + =

( )2 1
xy xy

E

+m
g = t

xyt

0ijt = 0ijg =
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element material 
52,1 10E MPa= Ö  and the 

Poisson's ratio 0,28m= . 

From the task condition, it follows that the faces of the element are the principal 

areas. Therefore, we will determine the deformations for non-principal directions. 

The task has two solutions. 

Option 1. According to Hooke's law (5.68), we first find the principal defor-

mations: 

 

By formula (5.59), we find the linear deformations  ʽ  segments AB and 

DC, respectively. 

. 

Here  ï is the directional cosine of the x-axis relative to the 

principal axis 1;  ï is the directional cosine of the x-axis relative 

to the principal axis 2;  ï is the directional cosine of the x-axis relative 

to the principal axis 3. 

. 

, 

Where , ,y y yl m n  ï by directing the axis cosines in relation to the principal 

axes, which are respectively equal to cos120 0,5;yl = ¯=- cos30 0,866;ym = ¯=  

cos90 0.yn = ¯= So 

. 

The relative displacement between the directions of segments AB and DC, ac-

cording to formula (5.60), is equal to 

 

The "-" sign indicates that the angle between the x and y directions will in-

crease. 

( ) ( )

( ) ( )

( ) ( )

5
1 1 2 5

5
2 2 1 5

5
3 1 2 5

1 1
50 0,28 30 19,8 10 ;

2,1 10

1 1
30 0,28 50 7,6 10 ;

2,1 10

0,28
50 30 10,7 10 .

2,1 10

E

E

E
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-

-

e = s -ms = - Ö = Ö
Ö

e = s -ms = - Ö = Ö
Ö

m
e =- s +s =- + =- Ö
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xe ye

2 2 2

1 2 3x x x xl m ne =e +e +e

cos30 0,866xl = ¯=

cos( 60 ) 0,5xm = - ¯ =

cos90 0xn = ¯=

5 2 5 2 5 519,8 10 0,866 7,6 10 0,5 10,7 10 0 16,8 10x
- - - -e = Ö Ö + Ö Ö - Ö Ö = Ö

2 2 2

1 2 3y y y yl m ne =e +e +e
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( )5 5
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Option 2.  First, let's find the stresses in the areas perpendicular to the x and y 

directions. That is, we solve the direct problem of the plane stress state. We will use 

formulas (5.45) - (5.47). 
2 2 2 2

1 2cos sin 50cos 30 30sin 30 50 0,75 30 0,25 45x MPas s a s a= + = ¯+ ¯= Ö + Ö = 

2 2 2 2

1 2sin cos 50sin 30 30cos 30 50 0,25 30 0,75 35y MPas s a s a= + = ¯+ ¯= Ö + Ö = 

1 2 50 30
sin2 0,866 8,66

2 2
xy MPa
s s

t a
- -

= = = . 

According to Hooke's law (5.72), we find the linear deformations in the given 

directions. 

 

To find the relative displacement between the x- and y-axes, we determine the 

modulus of the  

of the material shear: 

( ) ( )

5
52,1 10

0,82 10
2 1 2 1 0,28

E
G MPa

m

Ö
= = = Ö

+ +
. 

So 

. 

Note. In the first solution, unlike the second one, we were able to find not only 

the magnitude of the relative displacement between the x and y directions, but also 

its sign. However, for engineering calculations, the sign of the displacement is not 

really important. 

5.3.3. Hooke's law for volume deformation 

Let's write equation (5.68). After some transformations, we get: 

. 
(5.73) 

This equation establishes the relationship between the first invariants of the 

strain tensor and the stress tensor. Since the first invariant of the strain tensor is equal 

to the volume strain, then, taking into account (5.61), we can write Hooke's law for 

the volume strain: 

( ) ( )

( ) ( )
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( )
( )1 2 3

1 2
V

E

m
e s s s

-
= + + . 

(5.74) 

Of considerable interest is a special case of the volumetric stress state - all-round 

uniform compression, which was discussed in Section 5.1.3, when compressive prin-

cipal stresses of equal magnitude act at a point. 

Similar conditions can be realized by immersing a ball in a liquid to a certain 

depth. According to Pascal's law, the pressure on its surface will be uniform. The 

stresses in all directions will be the same, i.e., the principal stresses will be the same. 

They will be equal to the amount of pressure on the surface of the ball, which is 

called hydrostatic pressure:  

. (5.75) 

For this case, equation (5.74) will take the form: 

. 
(5.76) 

K is the modulus of bulk deformation: 

. 
(5.77) 

According to formula (5.74), for materials with Poisson's ratio , volume 

deformation . That is, when loaded, the volume of the body does not change. 

Such materials are called incompressible. An example of an almost incompressible 

material is rubber, for which the Poisson's ratio is . 

Example 5.13. Using the results of solving the task (see Example 5.11), calcu-

late the value of the relative volume strain of the cylindrical element (Fig. 5.30). 

What will be the value of the volume strain if the element is inserted into a hole in 

the slab with a guaranteed gap? Modulus of elasticity of a material 
51,1 10E MPa= Ö  . 

When an element is inserted into a hole without a gap, a volumetric stress state 

occurs. The volumetric deformation is equal to: 

. 

If the element is inserted into a hole with a gap, then when the hole walls are 

loaded, no pressure is applied to its side surface. So, only compressive stress will act 

on the element MPa. That is, there is a linear stress state and the volume 

strain is equal to 

. 

1 2 3 ps =s =s =-

( )3 1 2
V

p
p

E K

- m
e =- =-
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5.4. Potential strain energy in the general case of a stress 

state 

When a body is loaded, the forces acting on it perform work on the displace-

ments associated with the deformations of the body. It can be assumed that this work 

is completely converted into potential energy accumulated by the elastic body during 

its deformation. Minor energy losses, mainly in the form of heat, accompanying the 

deformation process are negligible. That is, the condition is the condition 

. (5.78) 

ɸʨ ï work of external forces; U ï potential strain energy. 

 
Fig.5.32. Element in a volume stress 

state 

Thanks to the stored energy, the elastic body 

returns to its to its original state after the load is 

removed. the load is removed from it. Let's recall 

how an ordinary spring behaves under these con-

ditions. 

Let's find the specific potential energy of 

deformation, i.e., the energy accumulated per 

unit volume. To do this, consider a body element 

in a bulk stressed state (Fig. 5.32), whose faces 

are the principal areas. 

The potential energy accumulated during the deformation of this element will 

be equal to the sum of the work of the forces distributed along its faces. 

 

 

 
Fig.5.33. Graph of force versus strain 

Strength.  performs work on the de-

formation of the face to which it is applied, 

namely on the deformation of . At the 

same time, based on the linear law of defor-

mation - Hooke's law - this work will be equal to 

the area of the triangle on the force-strain graph 

(Fig. 5.33). 

This force does not perform any work on the 

displacements of the other faces, since it is per-

pendicular to their directions. The work of other 

forces applied to the element is determined in a 

similar way. 

Then, taking into account condition (5.78), based on the principle of independ-

ence of forces, we find the potential strain energy accumulated in the element: 

pA U=

1dydzs

( )dxD
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Since the principal stress and strain axes coincide, that is 

, We can write it down: 

. 

Then the specific potential strain energy 

. 
(5.79) 

Taking into account Hooke's law (5.68), we have:  

. 
(5.80) 

The potential strain energy of the whole body can be found by taking the integral 

over its volume 

. 

When a body is deformed, both its volume and shape change.  

From a practical point of view, it is important to know what part of the energy 

goes to changing the volume, and what part of the energy is spent on changing the 

shape. Again, based on the principle of independence of forces, we can formally di-

vide energy into two components: 

v fu u u= + . (5.81) 

Here vu  - is the specific potential energy of volume change; fu  ï specific po-

tential energy of deformation. 

Let's find first vu . To do this, let us represent each of the principal stresses in 

the form of a sum: 

;  ;  . (5.82) 

In other words, we decompose the stress state of the element into two stress 

states (Fig. 5.34). The first is an all-round uniform tension (or compression). The 

second one supplements it to the specified stress state. 
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Fig.5.34. Two components of the stress state: 

ball and deviator 

Since the stress state of a body at a 

point is characterized by a stress tensor, 

we can write it down: 

 

 

. (5.83) 

ʊʦ ï ball tensor (5.21), Ds ïstress deviator. The hydrostatic pressure p is selected 

in such a way that no change in volume in the additional stress state does not occur. 

That is, the components of the ball tensor - hydrostatic pressure p - cause a change 

in the volume of the element, and the components of the stress deviator  ï 

change in its shape (hence its name: from the English deviation). Since there is no 

change in volume in the additional stress state, according to Hooke's law for volu-

metric deformation, 

. 
(5.84) 

Since in the general case 0,5m¸ , we get the condition: 

. (5.85) 

That is, the first invariant of the stress deviator is zero. 

Adding expressions (5.82), taking into account (5.85), we find 

. 

So, 

. 
(5.86) 

As we can see, for the formulated conditions for dividing the stress state into 

two components, the hydrostatic pressure is equal in magnitude to the octahedral 

normal stress at a given point. 

To find the specific potential energy of volume change, we use formula (5.80), 

substituting the components of the ball tensor instead of the principal stresses: 

; 

and taking into account (5.86), we get: 
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(5.87) 

The specific potential energy of volume change is proportional to the square 

of the octahedral normal stress at the point. 
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We find the energy of shape change as a difference 

f vu u u= - . 

That is, we subtract expression (5.87) from expression (5.80). After some sim-

ple transformations, we get: 

( ) ( ) ( )
2 22

1 2 2 3 3 1

1 2

6
fu

E

m
s s s s s s

- è ø= - + - + -
ê ú

. (5.88) 

The specific potential energy of deformation is proportional to the square of 

the octahedral shear stress at a point. 

Example 5.14. A steel plate is subjected to a plane stress state under load. At 

some point O, relative linear strains in three directions were found using strain 

gauges S1, S2, S3 (Fig. 5.35): 
1

42 10Se
-= Ö , 

2

41 10Se
-=- Ö , 

3

44 10Se
-= Ö . Determine the 

specific potential strain energy at point O, if the modulus of elasticity of the material 
52 10E MPa= Ö , Poisson's ratio 0,25m= . 

 

 

 
Fig.5.35. Example 5.14 

In order to determine the specific potential 

strain energy at point O, it is necessary to first find 

the principal stresses that occur at this point (see 

formula (5.80). 

We know linear deformations in three direc-

tions S1, S2 and S3, given by the guide cosines rela-

tive to the coordinate axes x and y (Fig. 5.35). By 

formula (5.52), to determine the linear defor-

mation in an arbitrary direction, we express the 

given deformations through the linear and shear 

deformations in the x and y axes system: 

. 

Substituting the given values, we obtain a system of equations for the defor-

mations in the x- and y-axis directions: 
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Using Hooke's law, let's find the stress components in the areas perpendicular 

to the directions of these axes. To do this, we write the formulas for linear defor-

mations from system (5.72) with respect to stresses. In our case, we obtain: 

( ) ( )

( ) ( )
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Solving the inverse problem of the plane stress state, we find: 
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From here.  MPa, , MPa 

Then the specific potential strain energy at point O 
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Note. In this example, the method of determining the principal stresses in struc-

tural elements under plane stress conditions, which is widely used in practice, was 

considered. 

Questions for self-testing 

1. What is a numerical measure of internal effort? 

2. What is called stress? 

3. What units are used to measure stress? 

4. What should be understood by the concept of "stressed state of a body at a 

point"? 

5. In what coordinate system is an infinitesimal volume chosen to be in the 

shape of a ball? 

1 84,125s =  ʄʇʘ 2 0s = 3 16,665s =-  ʄʇʘ
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6. How many independent stress components act on the faces of an elemen-

tary parallelepiped? Justify your answer by referring to the relevant hypotheses and 

laws of resistance of materials. 

7. What determines the stress state of a body at a point? 

8. What stress is called the total shear stress in a pad? 

9. What are the principal stress axes? 

10. The stresses at the principal sites have the following values: -10 MPa; -10 

MPa; -100 MPa. Label these stresses with the appropriate indexes. Show how these 

stresses act on the edge of the element. 

11. What is the property of extremality of principal stresses? 

12. What should be the principal stresses at a point of a deformed body for the 

stress ellipsoid to be a surface of rotation? 

13. Under what conditions does all-round uniform tension occur at a point of 

a deformed body? What type of stress state occurs under these conditions? 

14. What is the difference between the linear stress state of a body at a point 

and the bulk state? 

15. What axis should the element be rotated about (see p. 14) so that all its 

faces become principal platforms? 

16. Why are the coefficients  in the cubic equation for the inverse 

stress task called invariants? At the point of the deformed body, the principal stresses 

are 100 MPa, 60 MPa, and 10 MPa. Find the normal and total stresses on the site, 

the directional cosines of the normal to which with axes 1 and 2, respectively  ʽ 

0,5. 

17. What is the octahedral shear stress under conditions of all-round uniform 

tension? 

18. What is the octahedral normal stress under conditions of all-round uniform 

compression? 

19. The principal stresses at the point are respectively: 50 MPa, 50 MPa, and 

0. In which area is the maximum shear stress and what is its magnitude? 

20. When is the shear stress in a pad considered positive in plane stress prob-

lems? 

  

1 2 3,  ,  I I Is s s

1 3
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6.  STRENGTH CRITERIA 

The simplicity of assessing the strength reliability of rods in pure tension-com-

pression is due to the same loading conditions of the real rod and the prototype 

(which, incidentally, is also a rod) used to study the material properties. However, 

the most important thing is that both the real rod and, in the sample, the same stress 

state is realized - linear. 

Under other types of loading, it is possible to check the strength of the rod by 

simply comparing the stresses acting in it with the permissible values obtained in 

tension or compression, provided that a linear stress state is also realized at the dan-

gerous points of the rod. 

Under nonlinear stress conditions, the situation is much more complicated. 

Strength reliability is associated with the conditions for the material to reach the ul-

timate state, which, in turn, is determined by the stress state of the body at a point. In 

other words, it is determined by all the principal stresses in force. It is unproductive, 

or rather unrealistic, to establish experimentally the limit values of these stresses at 

an arbitrary combination of them, due to the significant methodological complexity 

of such experiments. 

Therefore, from the very beginning of the formation of deformable solid me-

chanics as a science, scientists have taken a different path - the path of searching for 

strength criteria, that would allow the results of simple experiments, such as pure 

tension or compression, to be used in calculations of strength under complex stress 

conditions. 

6.1. The concept of the strength criterion 

The strength criterion is understood as a certain physical quantity that, under 

the conditions of the material's limit state at a given point of the deformed body, 

acquires the same value, regardless of the ratio of the principal stresses. 

The problem of rational selection of the criterion is reduced to determining a 

certain function of the components of the stress tensor of the form 

. (6.1) 

Here  ð material constants, which are determined from the simplest tests.  

Function (6.1) at stresses that correspond to the material's ultimate state retains 

its value equal to K, regardless of the type of stress state. In this sense, it gives us the 

right to compare linear and complex stress states. That is, K is the strength criterion. 

( )1 2 3, , , iK f m= s s s

im
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The strength criterion has a very specific physical interpretation: maximum nor-

mal stress, maximum deformation energy, etc. 

Condition (6.1) in coordinates  can be represented by a surface that 

limits the region of safe stresses (Fig. 6.1). This surface is called the boundary. 

 

 
Fig.6.1. Boundary surface 

Fracture boundary surface is the geometric lo-

cation of points whose coordinates are equal to the 

strength limits, and the points lying on the yield 

strength surface correspond to the yield strength of 

the material at different stress states. In the figure, 

the boundary stresses are denoted by 

1 2 3, ,s s ss s s. 

In a plane stress state, the surface degenerates 

into a plane curve, which in this case will be called 

the fracture curve or yield curve. 

In strength calculations, ultimate or dangerous stresses are limited by the intro-

duction of a strength factor. In the general case of a stressed state, the strength factor 

is the number n, which indicates how many times all the components of the stress 

tensor should be increased simultaneously to make the material's state at the danger-

ous point the ultimate state: 

1 1 2 2 3 3, ,s s sn n ns s s s s s= Ö = Ö = Ö. (6.2) 

The first hypotheses about the conditions for the onset of a material's ultimate 

state were made at the beginning of the development of strength science. At the end 

of the of the nineteenth century, the fundamentals of classical limit state theories 

were already known. Today, there are several hundred strength theories that allow 

predicting the strength reliability of a wide range of structural materials under a wide 

variety of operating conditions. Five classical strength theories are mainly used in 

the resistance of materials, which will be discussed below. 

6.2. Classical theories of strength 

6.2.1. Fracture criterion 

They are used when the ultimate state of the material is fracture, which occurs 

by tearing caused by the action of normal stresses or elongations. This limit state is 

typical for brittle materials. 

( )1 2 3, ,s s s
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6.2.1.1  Criterion of the greatest normal stress (first theory of strength) 

This theory dates back to Galileo Galilei, and its formal justification can be 

found in the works of Lam®, Klebsch, and Rankine. 

Failure with crack formation is believed to occur in the general case of a 

stressed state when the largest principal stress in absolute terms reaches a danger-

ous value. 

As you know, the tensile strength is the dangerous stress for brittle materials. 

Then the condition for the onset of the limit state, or in this case, the fracture condi-

tion, according to this theory, can be written as follows: 

1 tUs s=  or 
3 cUs s= . (6.3) 

Here
 tUs  and 

cUs  ï tensile and compressive strengths of the material, respec-

tively. 

We obtain the strength conditions in the following form: 

[]1 t
s s¢ ; []3 c

s s¢ . (6.4) 

Thus, the first classical theory of strength of the three principal stresses takes 

into account only one - the maximum stress, considering that the other two have no 

effect on strength do not affect the strength 

Experience has shown that the criterion of the highest normal stresses is only 

suitable for very brittle materials, such as stone, brick, glass, concrete, and ceramics. 

But it is completely unsuitable for ductile materials. 

6.2.1.2  Criterion of the greatest linear strain (second theory of strength) 

The idea of choosing the maximum linear deformation as a strength criterion 

was developed by Marriott. It is generalized in the works of Poselier, Grasgoff, and 

Navier. 

It is believed that material fracture under a complex stress state occurs when 

the largest linear strain in absolute value maxe  reaches a dangerous value 
se, 

which is determined from the experiment for tensile or compressive strength. 

That is, the condition for the transition to the limit state is as follows: 

max

se e= . (6.5) 

Let 

 

In pure tension (linear stress state) 

( )max 1 1 2 3

1

E
è øe =e = s -m s +sê ú
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; 

and in the limit state 
s

s

E

s
e= . 

Thus, the condition for the onset of the limit state is fracture when 
s

Us s= , is 

taking shape: 

( )1 2 3 Us m s s s- + =; (6.6) 

condition of strength: 

. (6.7) 

This criterion, as we can see, allows to take into account all three principal 

stresses, but it is rarely used due to significant discrepancies with the results of its 

experimental verification for a wide range of materials. There are a number of obvi-

ous internal contradictions in the theory of maximum linear deformation, which we 

will not dwell on. 

This theory is presented here solely as a tribute to the history of the development 

of strength science, and it is not recommended for practical use. 

6.2.2. Yield criterion 

The onset of yielding in the resistance of materials is considered to be the limit 

state for plastic materials. Hence the name of this group of strength criteria. This type 

of fracture is accompanied by residual deformation and is associated with with irre-

versible shifts in the crystallographic planes caused by the action of shear stresses. 

6.2.2.1 Criterion of the greatest shear stress (third theory of strength) 

This theory was proposed by Coulomb in 1773. It became known thanks to the 

works of Tresca and Saint-Venant. 

If the maximum shear stress in the material reaches a dangerous value, the 

material reaches a limit state - material flow, regardless of the type of stress state.   

Since we are talking about the fluidity of the material, the dangerous stress cor-

responds to the yield strength yet . Then the condition for the onset of the material's 

limit state, or yield condition, will be as follows: 

max yet t= . (6.8) 

Since , and in pure tension , condition (6.8) takes the 

form: 

1
1

E

s
e =

( )[]1 2 3s -m s +s ¢ s

1 3
max

2

s -s
t = 1

max
2

s
t =
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1 3 yes s s- = ; (6.9) 

and the strength condition 

. (6.10) 

This criterion has been well tested experimentally and is confirmed for plastic 

materials that resist tension and compression equally. However, it has a significant 

drawback: it does not take into account the average principal stress . 

6.2.2.2  Criterion of specific potential energy of deformation (fourth the-

ory of strength) 

It was first proposed by Maxwell in 1856. It was developed in the works of 

Huber, Mises, and Genka. 

The limit state - material flow - begins when the potential energy of defor-

mation of a deformed body reaches its limit value, regardless of the type of stress 

state. 
s

f fu u= . (6.11) 

In the general case of a stressed state 

( ) ( ) ( )
2 22

1 2 2 3 3 1

1

6
fu

E

m
s s s s s s

+ è ø= - + - + -
ê ú

. 
(6.12) 

In pure tension 

2

1

1

3
fu

E

m
s

+
= . 

(6.13) 

Fluidity occurs when 1 yes s= . Then the yield condition (6.11) takes the form: 

( ) ( ) ( )
2 22

1 2 2 3 3 1

1

2
yes s s s s s s- + - + - =. 

(6.14) 

and the strength condition 

. 
(6.15) 

For plastic materials that resist tension and compression equally and compres-

sion, condition (6.14) coincides with the experiment by 90%. 

6.2.3. Mohr's criterion 

None of the above criteria is perfect. Most importantly, none of them of them 

covers the limit states under all types of stress conditions. What is meant by this? 

We have conditionally divided materials into brittle and ductile. However, it has 

been established that the properties of materials depend on the stress state. Under 

[]1 3s -s ¢ s

2s

( ) ( ) ( ) []
2 22

1 2 2 3 3 1

1

2
s -s + s -s + s -s ¢ s
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some principal stress ratios, a material can be brittle, while under others it can be 

ductile. For example, a brittle material, such as granite, acquires the ability to deform 

plastically at high levels of hydrostatic pressure (all-round uniform compression). On 

the contrary, materials that are ductile under normal conditions, such as steel, become 

brittle under all-round uniform tension. 

Therefore, the application of a particular strength theory in each case must be 

consistent with the nature of the stress state. 

Creating a single criterion for all cases of stress states is an extremely difficult 

task. One of the first attempts to solve it was made by Otto Mohr, who was based on 

the assumption that strength in the general case of a stress state is determined by the 

magnitude and sign of the largest  and the smallest  of the principal stresses, 

and the influence of the average stress  can be neglected. His judgments were 

based on the experimentally established fact that the material resistance increases 

when moving from the tensile zone ( ) to the compression zone 

( ) 

The theoretical justification of the criterion can be found in the literature [1]. 

Here we present it without proof. 

The condition of the limit state according to Mohr's theory takes the form: 

1 3
T

C

ye s

T

ye

s
s s s
s
- = . (6.16) 

or 

1 3
T

C

u s

T

u

s
s s s
s
- = . (6.17) 

From here 
Tyes , 

Cyes  and 
Tus , 

Cus  ï yield strength and ultimate strength, for 

tension and compression, respectively. 

Let's take steel as an example. If steel is in conditions close to all-round uniform 

tension, it behaves like a brittle material when the yield strength  0
Tyes = . Then con-

dition (6.16) is transformed into a fracture condition according to the theory of max-

imum normal stresses: 
1 t

s

t Us s s= = . 

Under normal conditions, steel is a plastic material that resists tension and com-

pression equally. That is, 
T Cye yes s= . Then condition (6.16) is transformed into a 

yield condition according to the theory of maximum shear stresses: 1 3 yes s s- = . 

But this is from the field of theory. Unfortunately, Mohr's criterion has not be-

come a universal criterion due to significant methodological difficulties in its 

1s 3s

2s

1 30; 0s > s >

1 30; 0s < s <
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application, on the one hand, and because of the failure to take into account the av-

erage principal stress  on the other. 

However, Mohr's criterion is widely used in strength calculations for structural 

elements made of so-called semi-brittle materials, for which tensile and compressive 

strengths differ (cast iron, high-strength steels, etc.). In this case, either the fracture 

condition (6.17) or the strength condition is used 

[]
[]

[]1 3
t

t

c

s
s s s

s
- ¢ . 

 

(6.18) 

 

Example 6.1. Three cubes made 

of steel 45, bronze BrOF10-1 in solid 

state and gray cast iron SCH 12, are 

loaded with the same compressive 

force F=20 kN (the first loading op-

tion in Fig. 6.2). Find the sides of the 

cubes from the condition of their 

equal strength. Also check how much 

the safety margins of the cubes will 

change when they are placed without 

a gap in a hole in a completely rigid 

slab flush with its surface (the second 

loading option in Fig. 6.2), and 

loadthem with the same force 

F=20 kN.  

a) 

 
b) 

Fig.6.2. For example 6.1, a - first load option,  

b - second loading option 

 

The first load option.  

The dimensions of the sides of the cube for the specified materials are found 

from the compressive strength condition, having previously determined the permis-

sible stresses using the reference data from [1]. 

Dangerous stresses for steel 45 360ye MPas = , and allowable stress ï 

[] 360 1,5 120ye ye
n MPas s= = = . 

For bronze BrOF10-1 in the solid state ( ) dangerous stress 

300u MPas= , allowable stress - [] 300 2,5 120u u
n MPas s= = =  

2s

3%d=
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For gray cast iron SCH 12 in compression 500
Cu MPas = ,

 
allowable stress - 

[] 500 3 167
CuC u

n MPas s= = = . 

From the condition of strength []
c

F

A
s s= ¢  find the dimensions of the sides 

of the cubes.  

For steel cube 
220000 240 83,33sA mm² = . Hence the side of the cube 

83,33 9,13s sa A mm² = = . Assume 9,2sa mm=  

For bronze cube 
220000 120 166,67BrA mm² = . Hence the side of the cube 

166,67 12,909Br Bra A mm² = = . Assume 12,9Bra mm=  

For cast iron cube 
220000 167 120SchA mm² º . Hence the cube side 

120 10,954Sch Scha A mm² = = . Assume 11,0Scha mm=  

The second loading option.  

Since the slab is absolutely rigid, the transverse deformation of the cubes when 

they are compressed by a force F will cause compressive loads on the sides of the 

slab walls. This means that compressive stresses will act in these directions  and 

, and the cubes will be in a volumetric stress state (Fig. 6.2). 

Tension . The other two principal stresses are found from the condition 

of no deformation in the wall direction: 

 

Assuming that the materials of the cubes are isotropic, we obtain the stress re-

lations: 

. 

So, taking into account the sign of the force, we have the following principal 

stresses. 

For a cube of steel 45 (Poisson's ratio ): 

MPa,  MPa. 

That is. MPa, MPa. 

For a bronze cube BrOF10-1 (Poisson's ratio ): 

sy

sz

s =x
F

A

( )

( )

1
0;

1
0.

ë è øe = s -m s +s =î ê úî
ì
î è øe = s -m s +s =

ê úîí

y y z x

z z x y

E

E

1

m
s =s = s

-m
y z x

0,25m=

2

20000
236,29 ʄʇʘ

9,2
s =- =-x

0,25
236,29 91,37 ʄʇʘ

1 0,25
s =s =- =-

-
y z

1 2 91,37 ʄʇʘs =s =- 3 236,29 ʄʇʘs =-

0,35m=
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MP, MPa. 

That is. MPa,  MPa. 

For a gray cast iron cube SʉH 12 (Poisson's ratio ): 

MP,  MPa. 

That is MPa, MPa. 

Note. When performing calculations using strength theories, the concept of de-

sign or equivalent stress is used, which allows the strength condition to be repre-

sented in the classical sense: []i

ts s¢ . Here, i is the index corresponding to a par-

ticular strength theory. 

Let's determine the design stresses according to the relevant strength theories 

for each material and determine how the strength factors will change compared to 

pure compression. To do this, we will compare the values of the calculated stresses 

with the permissible stresses for the material, since the dimensions of the sides of the 

cubes were chosen for stresses equal to the permissible stresses (not taking into ac-

count the rounding of the results to the first decimal place) 

A cube made of steel 45. 

Since steel 45 is a ductile material, we will use the criterion of the greatest shear 

stress (the third theory of strength) and the criterion of the specific potential energy 

of deformation (the fourth theory of strength): 

1 3 91,37 236,29 144,92III

t MPas s s= - =- + = . 

( ) ( ) ( )

( ) ( ) ( )

2 22

1 2 2 3 3 1

2 2 2

1

2

1
91,37 91,37 91,37 236,29 236,29 91,37

2

144,92 .

IV

t

MPa

s s s s s s s= - + - + - =

= - + + - - + - - =

=

 

Thus, for a given loading scheme of a cube, the calculated stresses according 

to the third and fourth theories of strength coincide (in fact, provided that , 

the expression for the calculated stress according to the fourth theory of strength 

coincides with the expression for the third theory of strength, which is easy to verify). 

Then [] [] 240 144,92 1,65III IV

t ts s s s= = = , which means that the safety margin 

has increased by 1.65 times. 

Bronze cube BrOF10-1. 

2

20000
120,18 ʄʇʘ

12,9
s =- =-x

0,35
120,18 64,71 ʄʇʘ

1 0,35
s =s =- =-

-
y z

1 2 64,71 ʄʇʘs =s =- 3 120,18 ʄʇʘs =-

0,25m=

2

20000
165,29 ʄʇʘ

11
xs =- =-

0,25
165,29 55,10 ʄʇʘ

1 0,25
y zs =s =- =-

-

1 2 55,1 ʄʇʘs =s =- 3 165,29 ʄʇʘs =-

1 2s =s
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Bronze in its solid state is a brittle material. Let's use the first theory of strength 

to calculate it: 

3 120,18I

t MPas s= = . 

Then , that is, the safety margin has not changed. 

A cube of gray cast iron SʉH 12. 

Gray cast iron has different tensile and compressive strengths, so we will use 

Mohr's theory: 

. 

Let's find the allowable stress for pure tension. 

For gray cast iron SʉH 12 in tension MPa; allowable stress 

MPa. 

Then 

40
56,11 168,33 15,79

167

M

t MPas =- + =- . 

The result requires comment. The calculated stresses are significantly positive 

values The minus sign at the calculated stress indicates that the material is in a safer 

state, even compared to the unloaded state, when 0
M

ts = . Despite the paradoxical 

nature of this statement, it has a right to exist. Such a result is associated with certain 

inaccuracies given by Mohr's criterion in the area of comprehensive compression, 

but these inaccuracies are, as we can see, included in the safety margin. Therefore, 

in practice, a negative result should be interpreted as zero. That is, in our case 

0M

ts =  and the strength factor increased to infinity, because we obtained a stressed 

state equivalent to the unstressed state. 

Questions for self-testing 

1. What do you need to know to characterize the stress state of a body at a 

point? 

2.  What types of stress state do you know? 

3. Under what conditions of operation of a structural element, its strength test 

does not require the use of strength criteria: 

a) in pure tension - compression; 

b) under linear stress; 

[] 1s s ºɯ
ʨ

[]

[]1 3

s
s =s - s

s
ʩʪ

ʨʄ
ʨ

ɺ 120 ʄʇʘs =
ʨ

[]
ɺ

ɺ

120
40 ʄʇʘ

3

s
s = = =

ʨ

ʨ n
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c) in a volumetric stress state; 

4. What types of limit states can be achieved in static tension of a sample 

from mild steel? 

5. What kind of limit state is characteristic of standard gray cast iron speci-

mens in compression? 

6. What is called the strength criterion? 

7. In what coordinates is the boundary surface constructed? 

8. What is called the boundary surface of fracture? 

9. What is called the boundary surface of fluidity? 

10. For what type of stress state is the fracture or yield curve constructed? 

11. What is meant by the strength factor in a complex stress state? 

12. What are the criteria of destruction you know? 

13. What physical quantity is the criterion for the first classical theory of 

strength? 

14. Which criterion is used as the largest shear stress at a point: fracture or 

yield? 

15. What physical quantity is the criterion for the fourth classical theory of 

strength? 

16. For what materials is Mohr's theory used in strength calculations? 

17. What is the principal disadvantage of the third theory of strength? 

18. The plastic material is under conditions of all-round uniform compression: 

MPa. What is the calculated stress according to the third 

and fourth theories of strength? 

19. What limit state is characteristic of structural materials under conditions of 

all-round uniform tension? 

20. The tension state at some point of the body is as follows: MPa 

MPa MPa. Find the design stress if the permissible com-

pressive and tensile stresses for the material are in the ratio [] []4
c t

s s= . 

  

1 2 3 400 ʄʇʘs =s =s =-

1 120 ʄʇʘs =

2 20 ʄʇʘs = 3 80 ʄʇʘs =-
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7.  STRENGTH CALCULATIONS OF RODS UNDER SHEAR 

AND BEARING 

7.1. Determining shear stress in a rod 

A rod experiences shear when, out of the six components of the principal inter-

nal force vector and moment, only the transverse forces Qy and Qz are non-zero. This 

type of loading can be approximated when equal and opposite forces are applied to 

the rod perpendicularly to its axis from opposite sides, with their lines of action pass-

ing at a relatively short distance from each other (Fig. 7.1a). 

 
 

 

 

 

 

a) b) a) b) 

Fig.7.1. Shear of a rod: a ï cutting a rod 

with scissors; b ï shear accompanied by 

bending 

Fig.7.2. Shear of a rod: a ï loading scheme,  

b ï stress distribution in the cross-section 

 

This type of loading is exemplified by cutting a rod with scissors. However, in 

practice, it is difficult to achieve pure shear, as it is usually accompanied by other 

types of deformation, most commonly bending (Fig. 7.1b).  

In shear calculations, to simplify the process, an idealized scheme is used, as-

suming that no deformations other than shear occur.  

Using the integral equilibrium equations for a rod (1.10) or (1.11), we can derive 

a formula for determining stress in the rod.  

In cross-section ab, the transverse force . From this point onward, omit-

ting the indices, we can write: 

 (7.1) 

Shear deformation can be visualized as the displacement of one part of the rod 

relative to another in the transverse plane (Fig. 7.2a), as if these parts were perfectly 

rigid. This concept of shear deformation leads to the assumption that the shear stress 

is uniformly distributed across the section: .  

yQ F=

A

Q dA= tñ

( ),y z Constt =
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Thus,  

. (7.2) 

And hence 

. 
(7.3) 

Although the assumption of uniform shear stress distribution across the section 

is a rough approximation, it allows for simple and reasonably accurate strength cal-

culations for many structural elements and machine parts, such as riveted, screw, bolt 

joints, keys, welded welds, and similar components.  

7.2.  Practical Calculations for Shear and Bearing 

7.2.1. Strength Calculations for Shear 

The strength condition for shear can be expressed as: 

[ ]max
max sh

Q

A
t t= ¢ . 

(7.4) 

Where [ ]sht  ï is the allowable shear stress. 

Unlike pure tension or compression, the allowable shear stress [ ]sht  depends 

not only on the material but also on the design features of the elements subjected to 

shear, or, for example, on the technology used to create a welded joint. For instance, 

in the case of rivets made from the same steel, different allowable shear stresses are 

applied depending on how the hole for the rivet is made by drilling or punching. 

Letôs explore the features of shear calculations by examining an example. 

Example 7.1. Determine the minimum number of rivets needed to ensure that 

the joint connecting two sheets can withstand a given load F=45 kN (see Fig. 7.3). 

Given: d=10 mm, [ ]sht =100 MPa. 

Q F A= =t

F

A
t=
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Fig.7.3. For example 7.1 

Under the action of forces F, which 

cause the sheets to shift relative to each other 

in the m-m (see Fig. 7.3), the rivet shafts are 

subjected to shear. 

We will assume that these forces are 

evenly distributed among all the rivets, and 

the transverse force in the shear plane of each 

rivet is: 

, 

where ʧ ï is the number of rivets. Then, 

the condition for shear strength takes the 

form: 

 [ ]sh

F

nA
t t= ¢  

From here 

[ ]

3

2 2

4 4 45 10
5,7

10 100sh

F
n

dp t p

Ö Ö
² = =

Ö Ö
 

We accept finally 6n= . 

7.2.2. Strength calculations for bearing 

It should be noted that the loads applied to elements interacting during operation 

not only cause shear but also induce bearing on the contacting surfaces. Bearing re-

fers to the plastic deformation of these surfaces. 

In Fig. 7.4 a, the pressure distribution diagram on the contact surface under the 

force F is shown. 

 
  

 a) b) 

Fig.7.4. Loading scheme in the contact zone: a ï pressure distribu-

tion diagram on the contact surface; b ï proportional law of pres-

sure distribution 

Fig.7.5. Diagram for deter-

mining the bearing area 

 

In reality, determining the stress-strain state of a body in the contact zone is a 

complex problem in the theory of plasticity. However, with sufficient accuracy 

=Q F n
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within acceptable safety margins, the magnitude of the maximum stress on the con-

tact surface, or the maximum bearing stress brs  , can be found quite simply, based 

on certain assumptions. Specifically, it can be assumed, first, that according to the 

boundary force conditions on the contact surface, maxbr qs =  (see Fig. 7.4b). Second, 

the pressure on the contact surface changes proportionally to the change in the pro-

jection of the area dA of the lateral surface onto the diametral plane: 

. 
(7.5) 

Thus, . 

The force F can be expressed through the pressure on the contact surface as: 

max maxi i br br br

A A

F q dA q dA q A As= = = =ñ ñ . (7.6) 

 

Then,  

br

br

F

A
s = . (7.7) 

 

Here, ɸbr is the bearing area, which equals the projection of the contact surface 

onto the diametral plane (Fig. 7.5). For the given example: brA dd=  

The strength condition for bearing is: 

[ ]br br

br

F

A
s s= ¢ . (7.8) 

 

The allowable bearing stress is related to the allowable compressive stress as 

follows: 

[ ]( )[]2 ...2,5br c
s s= . 

 
Fig.7.6. For example 7.2 

Example 7.2. Using the conditions from  

Example 7.1, determine the minimum number of 

rivets based on the strength condition for bearing, 

given that the thickness of the sheets is 8mmd=  , 

the allowable bearing stress for the rivet material 

is [ ] 350br r
MPas = , and the allowable bearing 

stress for the sheet material is [ ] 420br s
MPas =   

 

The loading scheme and the stress distribution diagrams in the cross-section of 

the rivet are shown in Fig. 7.6. 

max

i iq dA

q dA
=

maxi iq dA q dA Const= =
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Since the bearing areas for both the rivets and the sheet are the same and equal 

to: 
210 8 80brA d mmd= = Ö = . 

Thus, the minimum allowable number of rivets will be determined based on the 

strength condition for the rivet, as the weaker element in the connection with the 

lower allowable bearing stress. Therefore: 

[ ]br br r
br

F

A
s s= ¢ . 

Here,  ï is the force acting on a single rivet. 

Then, 

[ ]

345 10
1,6

80 350br br r

F
n

A s

Ö
² = =

Ö
. 

Letôs assume  

Note. Calculations for shear and bearing are complementary calculations. 

When performing the design calculation, the safe dimensions of the elements or their 

minimum quantity are determined based on the strength conditions for both shear 

and bearing. The larger dimension (or number of elements) from the results found 

should be chosen. 

Therefore, by comparing the results of the shear and bearing calculations in our 

examples, we accept the minimum number of rivets as . 

7.2.3. Strength calculations of welded joints 

In modern mechanical engineering, welded joints are extremely common due 

to high manufacturability and economy, compared to the same riveted joints. How-

ever, they are not inferior to them in strength and reliability. 

There are many types of welded joints and methods of obtaining them. The most 

common are connections using butt and corner, or roller, welds. Calculations for their 

strength have certain features and are highlighted in special literature. However, 

within the framework of the resistance of the materials, one can fairly accurately 

calculate the strength, in particular of the corner welds, assuming, with a certain de-

gree of convention, that they work in shear. 

In Fig. 7.7 shows examples of welded joints using corner welds. 

F F n¡=

2n=

6n=



 

197 

 

 

 

 

 

a) b) c) 

Fig.7.7. Types of corner welds: a and b ï lap welds; c ïtee weld 

 

If the direction of the corner weld is perpendicular to the direction of the force, 

then such a weld is called a frontal or end weld (Fig. 7.7 a). And if its direction is 

parallel to the acting force, then the weld is called a flank or side weld (Fig. 7.7 b). 

 

 

 
Fig.7.8. Geometry of corner weld 

Consider the corner weld (Fig. 7.8). If we 

do not take into account the inflows, then in 

cross-section the corner weld can be consid-

ered as an isosceles right triangle ABC. The cut 

of the weld will take place in the minimum sec-

tion passing through the height of the triangle 

CD.  

 

Given that the height of the triangle , we will find the cal-

culated cross-sectional area of the weld as , where lʪ is the calcu-

lated weld length. It is taken 10 mm shorter than the actual length of the weld, taking 

into account the so-called "failures" at the beginning and end of the weld, where the 

material is of poor quality and has low strength. That is, . 

Considering that the shear stresses in the shear plane are uniformly distributed, 

and considering that two welds work in the joint (see Fig. 7.8), the strength condition 

will have the form: 

. 
(7.9) 

Permissible tension are found from the tables, depending on the technology 

of obtaining the weld, the type of electrode, etc. The e index indicates that the weld 

was obtained by electric arc welding. 

The strength condition (7.10) is valid for both frontal and flank welds. 

It should be noted that the frontal welds are rigid, their destruction is not ac-

companied by noticeable residual deformations. Therefore, they do not resist 

cos45 0,7h=d ¯º d

ʪ ʪ0,7eA hl l= = d

ʪ 10l l= -

( )
[]

1,4 10
e

e

F F

A l
t= = ¢ t

d -

[]et
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dynamic loads. Flank welds belong to the so-called viscous welds, because they 

break with significant residual deformations. They resist dynamic loads better than 

frontal welds and are therefore more common in practice. 

 
Fig.7.9. For example 9.3 

Example 7.3. From the condition of 

shear strength, find the required length l 

of the weld (Fig. 7.9), if the strength 

30F kN= , and the permissible shear 

stress [] 80e MPat = . 

 

 

The shear strength condition of three welds has the form 

. 

Here; 1 1 50 10 40m ml l mm= = - = , 3 10ml l mm= - . 

From the strength condition, we find: 

[]

3

3 1 2

30 10
80 27,2

cos45 5 0,7 80
m m m

e

F
l l l mm

d t

Ö
= - - = - º

¯ Ö Ö
. 

From here 

3 10 27,2 10 37,2ml l mm= + = + = . 

7.3. Pure shear 

7.3.1. Pure shear as a special case of a plain stress state 

Let's analyze the stress state at an arbitrary point of the cross-section of the rod 

under shear conditions. Within the accepted assumptions that no deformations, ex-

cept for shear, occur in the load zone, only shear stresses act in the cross-section of 

the rod. Neglecting the lateral pressure between the fibers and using the law of parity 

of shear stresses, we will obtain such a state of stress as shown in Fig. 7.10. Of course, 

this scheme of element loading, according to the Saint-Venant principle, is valid only 

for points far enough deep into the rod from the point on the surface where the force 

is applied. 

As can be seen from the figure, the element is in a plane stress state. 

A special case of a plane stress state, when only shear stresses act on four 

mutually perpendicular faces of the element, is called pure shear. 

( )
[]

ʪ1 ʪ2 ʪ3cos45
ʝ

F

l l l
t= ¢ t

+ + d ¯
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Fig.7.10. Stress state in the shear zone of the 

rod 

Pure shear is quite often imple-

mented in practice. In addition to the 

case of shearing of the rod, this type of 

plane stress state also occurs in other 

types of deformation of rods, which we 

will study in the following sections of 

the course, for example, in case of pure 

torsion, in case of transverse bending 

of rods in certain of its fibers. 

Let's depict the element in a plane (Fig. 7.11) and determine the magnitudes and 

directions of the principal stresses. To do this, we will use the equations for the in-

verse plane stress state problem. 

Because , , , 

then by formula (5.48) we obtain: 

; . 

That is, 

; ; . 

The direction of the principal stresses can 

be found using the formula (5.49): 
 

Fig.7.11. Pure shear 

2( )
tg2

xy

x y

- -t
a= =¤
s -s

. 

From here . 

We direct the principal axis 1 by measuring the angle Ŭ counterclockwise from 

the x-axis, as shown in Fig. 7.11. The stresses ů1 and ů3 are oriented relative to the 

principal planes, taking their signs into account. 

Hooke's law for pure shear, according to formulas (5.72), can be written in the 

form:  

G

t
g=  or Gt g=  

(7.10) 

Specific potential energy under pure shear: 

 

 

(7.11) 

0x ys =s = xyt =-tyxt =t

maxs =tmins =-t
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Or, taking into account the relation (5.71) 

 
(7.12) 

The first invariant of the stress tensor under pure shear 

. 

Therefore, all physical quantities are proportional 1Is , are also zero: 

- octahedral normal stress: 1 2 3 0
3

okt

s s s
s

+ +
= =; 

- volume deformation: ; 

- specific potential energy of volume change: 

( )1 2 3

1 2

6
Vu

E

m
s s s

-
= + +  

Thus, with pure displacement, the volume of the body does not change, and all 

the energy goes to changing its shape. That is, according to formulas (7.11) and 

(7.12), the energy of the shape change is also calculated. 

7.3.2. Verification of strength and allowable stresses under pure 

shear conditions 

Under pure shear, the strength condition can be written as: 

 (7.13) 

Here  ï allowable shear stresses, which can be determined, like the allowable 

tensile stresses, from the experiment. Below we will get acquainted with the meth-

odology of shear tests. However, we immediately note that these tests are methodo-

logically more difficult than tensile tests and, for this reason, are not so common. 

In practice, to determine the allowable shear stresses, strength theories are most 

often used, expressing these stresses in terms of the allowable tensile stresses. 

Second theory of strength. The strength condition (6.7) for pure shear condi-

tions takes the form:
 

 

From here,  which means: 

 
(7.14) 

At  . 

2

2
u

G

t
=

1 1 2 3 0Is=s +s +s =t-t=
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Third theory of strength. Strength condition (6.10) for pure shear conditions: 

 or . 

From here: 

. (7.15) 

Fourth theory of strength. Strength condition (6.15) for pure shear conditions: 

or . 

From here, which means. 

Questions for self-testing 

1. What type of deformation of a rod is called pure shear or displacement? 

2. Write the integral equation of equilibrium for a rod under conditions of 

pure shear. 

3. Provide examples of practical implementations of pure shear conditions. 

4. What type of deformation often accompanies the shear of a rod, leading to 

the idea of pure shear with a certain degree of conventionality? 

5. What stresses arise in the cross-section of a rod during pure shear? What 

is the distribution law of these stresses across the section? 

6. Write the strength condition for a rod under pure shear. 

7. The allowable shear stress is determined solely by the material of the rod: 

Ǐ yes; Ǐ no. Choose the correct answer. 

8. What deformations occur in the contact surfaces of elements working un-

der shear? 

9. What is the law of pressure distribution on the contact surface during crum-

pling in material resistance? 

10. Write the strength condition for crumpling. 

11. What is the area of crumpling? 

12. Which welds are called frontal or butt welds, and which are called side or 

fillet welds? 

13. Write the strength conditions for fillet and butt welds. 

14. Why is the design length of a weld taken 10 mm less than the actual length? 

15. What distinguishes rigid welds from ductile welds? 

16. Are butt welds classified as rigid or ductile? 

17. Which welds better resist dynamic loads: butt welds or fillet welds? Justify 

your answer. 

[]1 3s -s ¢ s []2t¢ s

[] []0,5t = s

( ) []
22 2

1 3 3 1

1

2
s +s + s -s ¢ s []2 2 21

4
2
t +t + t ¢ s

[] []0,6t = s
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18. When does pure shear at a point in a body occur? To what type of stress 

state does pure shear belong? 

19. Provide practical examples of pure shear. 

20. Are the shear stresses in the planes of pure shear simultaneously the max-

imum shear stresses at that point in the deformed body? Justify your answer. 

21. Write Hookeôs law for pure shear. 

22. What is the volumetric deformation under pure shear conditions? 
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8.  STRENGTH AND RIGIDITY CALCULATIONS OF RODS IN 

PURE TORSION 

The torsion of the rod occurs when, of the six components of the internal forces 

in the section, only the torque is different from zero. 

This type of deformation is caused by pairs of forces whose plane of action is 

perpendicular to the axis of the rod. Torsions, helical springs, etc. work for torsion. 

8.1. Torsion of a round rod 

8.1.1. Determination of stresses and strains. Conditions of 

strength and rigidity 

Consider a cylindrical rod that is rigidly clamped at one end, and a pair of forces 

M is applied to the other end (Fig. 8.1, a). Only torques will occur in its sections 

(Fig. 8.1, b) 

   

a) b) c) 

Fig.8.1. Torsion of a round rod: a ï load scheme; b ï rod element; c ï cross-sectional stress 

 

Determine the stress and displacement in the rod during twisting. To do this, we 

will use the scheme for solving the integral equations of equilibrium for the rod. 

1. The static side of the problem. 

Of the six integral equilibrium equations (1.9) ï (1.14), only the torque equation 

will remain, which in our case, in accordance with the scheme (Fig. 8.1, c), will be 

written as follows: 

tor

A

M dAtr= Öñ  (8.1) 

2. Geometric side of the problem. 
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Fig.8.2. Geometric picture of rod defor-

mation during twisting 

Experimental verification confirmed the 

validity of the hypothesis of plane sections, 

which was discussed in the case of tension-

compression, and for the case of torsion of a 

cylindrical rod. Based on this hypothesis, we 

will make several assumptions. 

- creating a cylindrical side surface af-

ter twisting the rod to an angle j turn into spi-

ral lines (Fig. 8.2); 

- the radii drawn in the end sections re-

main rectilinear, that is, they are not curved; 

- the distances between adjacent sec-

tions do not change. 

Let's formulate the hypothesis of plane cross-sections during torsion. 

The cross-sections of the rod, plane before deformation, remain plane when 

the round rod is twisted, turning relative to each other by a certain angle of twist ű. 

Let's consider the rod element with length dx (Fig. 8.1, b) on a larger scale 

(Fig. 8.3). 

 

  

 

a) b) c) 

Fig.8.3. Rod element: a ï geometric pattern of deformation of the element; b ï cross-section of 

the rod; c - stress state at the point of the rod 

 

Let's draw two generators a0b0 and c0d0 on the surface of the rod. 

After twisting, the right section relative to the left will turn at an angle, and 

the generators will turn into helical lines a0b1 and c0d1 with an elevation angle

(Fig. 8.3, a). 

With 1abbD we get the following ratio: 

dj

g



 

205 

 

 

. (8.2) 

For an element highlighted by an arbitrary cylindrical surface at a distance 

from the axis (Fig. 8.3, b): 

. (8.3) 

Here  ï relative or linear angle of rotation, which is denoted by a letter : 

. (8.4) 

Then 

. (8.5) 

3. The physical side of the problem. 

Considering the deformation of the element abcd of infinitesimal thickness, se-

lected on the surface of arbitrary radius  (Fig. 8.3, c), neglecting the change in the 

linear dimensions of the sides due to their smallness, we can assume that the element 

is in pure shear conditions, since its deformation consists only in the change of pre-

viously straight angles to an angle. 

For pure shear, Hooke's law can be written in the form: 

. (8.6) 

or 

. (8.7) 

4. Synthesis. 

Substitute (8.7) into (8.1): 

2

tor

A

M G dAqr=ñ . 

Here . Then 
2

tor p

A

M G dA G Iq r q= =ñ . (8.8) 

where ɯʨ is the polar moment of inertia of the cross section of the rod. 

From here we get the formulas for determining the relative angle of twist of the 

rod and the shear stress in the section: 

tor

p

M

GI
q=  (8.9) 

0 1

0 0

b b rd

a b dx

j
gº =

r

d

dx
r

j
g =r

d

dx

j
q

d

dx

j
q=

rg =rq

r

rg

Gr rt = g

Grt = qr
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tor

p

M

I
rt r=  (8.10) 

As follows from formula (8.10), shear stresses in the section are distributed ac-

cording to a linear law. When  (on the rod axis), . They acquire the greatest 

value on the contour of the section when  (Fig. 8.4): 

 
Fig.8.4. Diagrams of shear stresses 

max
tor

p

M
r

I
t = .  

Let's mark 

, (8.11) 

where Wp is the polar moment of cross-sectional 

resistance. 

The polar moment of resistance is called the ratio of the polar moment of 

inertia to the distance from the pole to the farthest point of the section. 

So, 

max
tor

p

M

W
t = . (8.12) 

For a solid rod: 

; . 

For a hollow rod: 

; . 

Here ind

d
a= , where ï outer diameter of the rod, and ind  is its inner diameter. 

Let's define displacement during rotation. If we are interested in the mutual 

twisting angle between two arbitrary sections, the distance between which is l, then, 

using expressions (8.4) and (8.9), we obtain: 

0 0

l l

tor

p

M dx
dx

GI
j q= =ñ ñ . 

0r= 0t=
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If the rigidity of the cross-section is within the cylindrical section of the rod

 and torque torM Const= , then, by analogy with tension-compression, a 

uniform deformation takes place. For this case, we obtain Hooke's law in absolute 

values during torsion: 

tor

p

M l
l

GI
j q= = . (8.13) 

Torsional strength condition: 

[]max
tor

p

M

W
t t= ¢ . (8.14) 

Rigidity condition: 

[]max ,tor

p

M rad

GI m
q q= ¢ ; (8.15) 

or 

[]max

180 deg
,tor

p

M

GI m
q q

p
= Ö ¢ . (8.16) 

Note. Permissible linear twisting angles depend on the nature of the active load. 

So, for steel shafts under static load [] 0,3degmq= ; with cyclic loading

[] 0,25degmq= , and under impact load [] 0,15degmq= . 

Example 8.1. Compare the maximum stresses and weights of solid and hollow 

shafts, which have the same external diameters, the same length, are made of the 

same material and perceive torques of the same magnitude. Ratio of diameters for a 

hollow shaft 0,5a= . 

Maximum shear stresses for a solid shaft during torsion 
max 3

16 torM

d
t

p
¡= , and for 

hollow -
( )max 3 4

16

1

torM

d
t

p a
¡¡=

-
. Then 

. 

Weights are referred to as cross-sectional areas of shafts: 

. 

So, hollow shaft is 25% lighter than a solid shaft, while the maximum stresses 

in it exceed the maximum stresses in a solid shaft by only 6%. That is, from the point 

pGI Const=

max

max

1
1,06

1 0,0625

¡¡t
= =

¡t -

( )2 2

2

2

4 1
1 1 0,25 0,75

4
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of view of saving material, reducing the weight of the structure, a hollow shaft is 

definitely more rational. 

Example 8.2. Check the strength of the stepped rod (Fig. 8.5), rigidly pinched 

in the supports A and B, and loaded with a moment in the section C 120KM N m= Ö. 

Also find the angle by which the section C will turn relative to the supports. The 

material of the rod is steel 45. All the necessary dimensions are indicated in the 

Fig.8.5. 

 
Fig.8.5. For example 8.2 

It is obvious that this rod is statically 

indeterminate: we have one equilibrium 

condition - the sum of moments relative to 

the axis of the rod is zero. And the two re-

active moments MA and MB arising in the 

resistances are unknown. 

1. The static side of the problem. The 

equilibrium equation has the form: 

 

2. Geometric side of the problem. 

Since the ends of the rod are tightly 

clamped, the angle of rotation of section A 

relative to section B is zero: 

. 

3. The physical side of the problem. Using formula (8.13), we obtain: 

; . 

4. Synthesis. Substituting expressions (3) into equation (2), we will have: 

. 

From here 
4 4

2 1 2 1

4 4 4 4

1 2 2 1 1 2 2 1

120 0,4 20
106,23 .

0,4 12 0,4 20

K p K
A

p p

M l I M l d
M N m

l I l I l d l d

Ö Ö
= = = = Ö

+ + Ö + Ö
 

Then 

120 106,23 13,77B K AM M M N m= - = - = Ö. 

The torque diagram is shown in Fig.8.5. 

The maximum shear stresses on the AC and CB sections: 

0ʭ ɸ ɺ ʂʄ ʄ ʄ ʄä = + - =

0ɸ ɺ ɸ ʉ ʉ ɺ- - -j =j +j =

1

1

ɸ
ɸ ʉ
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ɸ ʂ
C B

p

ʄ M l

GI
-

-
j =

( )21

1 2

0ɸ ʂɸ

p p

ʄ M lʄ l
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3

max1 3 3

1

16 16 106,23 10
67,63 ;

20

AM
MPa

d
t

p p

Ö Ö
= = =

Ö
 

3

max 2 3 3

2

16 16 13,77 10
40,58 .

12

BM
MPa

d
t

p p

Ö Ö
= = =

Ö
 

Let's determine the allowable stresses for the material of the rod. For steel 45 

we get: 

[] []
360

0,5 0,5 0,5 120 .
1,5

ye

ye

MPa
n

s
t s= = = =  

Let's see what , that is, the rod strength condition is fulfilled. 

Determine the angle of rotation of section C relative to the supports. 

; 

. 

As we can see that is, a geometric condition (2) holds, which indicates the cor-

rectness of the static uncertainty disclosure. 

Based on the obtained data, we build a graph of the increase in the angles of 

twisting the rod  (Fig.8.5). 

8.1.2. The nature of the rod's fracture under torsion 

Therefore, a net shift occurs at any point of the round rod during torsion 

(Fig. 8.3, c). The maximum shear stresses act at points on the contour of the cross 

section. According to the law of parity of shear stresses, the same stresses arise in 

the longitudinal sections of the rod (Fig. 8.6). 

Under pure shear, the largest normal stresses are the principal stresses  and

 - operate in sites inclined at an angle  to the sites of action . In Fig. 8.6, 

the lines of action of these stresses are depicted by helical lines with an angle of 

elevation . 
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Fig.8.6. Stress state in a rod during torsion 

Depending on the properties of the 

material, all these stresses can be dan-

gerous. 

If the material is brittle, it does not 

resist normal stresses well. The destruc-

tion of rods made of such materials is 

accompanied by the formation of cracks 

directed along helical lines (Fig. 8.7, a). 

The destruction of rods made of plastic materials is associated with shifts in the 

areas of action of maximum shear stresses. Therefore, for example, steel shafts are 

destroyed in the cross section (Fig. 8.7, b). And wood does not resist shearing along 

the fibers well, and cracks appear precisely in this direction (Fig. 8.7, c). 

   
a) b) c) 

Fig.8.7. Types of rod failure during torsion: a ï brittle material; b ï plastic material; c ï wood 

with fibers along the axis of the rod 

 

8.2. Torsion of non-circular cross-section rods 

Determination of stresses in rods with a non-circular section during torsion is a 

rather difficult problem that cannot be solved by the methods of resistance of mate-

rials. The reason is that for such rods the hypothesis of plane sections does not hold, 

which greatly simplifies this problem for a round rod. Cross-sections in a twisted 

non-circular rod are significantly distorted (deplaned), and the law of stress distribu-

tion in the cross-section becomes complicated. Stresses become functions of more 

than one variable - the radius ɟ, as in the case of with a circular cross-section, and 

already two coordinates of the cross-section point. When determining the shear an-

gles, it is necessary to take into account not only the mutual rotation of the cross-

sections, but also the local skew associated with the curvature of the cross-section. 

8.2.1. Features of the shear stress distribution in non-circular 

sections of the rod under torsion 

Let's make some general remarks about the laws of stress distribution in the 

section. 

Shear stresses near the contour of the section are directed shear to the contour. 
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This is easy to verify if we assume that this statement is false. Then tension

should be directed at an angle to the contour (see Fig. 8.8). 

 

 
Fig.8.8. Shear stresses on the contour of the sec-

tion 

Fig.8.9. Shear stresses in the outer corners 

of the section 

 

Let's decompose this tension into two components: along the tangent to the con-

tour  and along the normal . According to the law of parity of shear stresses 

stress must act on the orthogonal face . But this face belongs to the side sur-

face of the rod, which is free of load, and therefore stress 

there are none on it. So . 

That is, the shear stress near the contour is directed shear to the contour, which 

had to be proved. 

In the case when the cross-section has external corners, there are no shear 

stresses in them. 

This statement, as in the previous case, will be proved from the opposite. As-

sume that there is a stress near the corner point of the section(Fig. 8.9). Let's dis-

tribute this stress on the sides of the corner. According to the law of parity of shear 

stresses, stresses also act on the faces of the element that belong to the side surface 

of the rod  and . Since the lateral surface of the rod is free 

from load, then tension , which means and . 

That is, there are no shear stresses near the outer corner in the cross section, 

which had to be proved. 

t
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8.2.2. Torsion of a rod of rectangular cross-section 

Taking into account the peculiarities of stress distribution in non-circular sec-

tions of the rod during torsion, it is quite simple to depict a qualitative picture of such 

distribution both along the perimeter and along the principal central axes of inertia 

(Fig. 8.10). 

 
Fig.8.10. Diagrams of distribution of shear 

stresses in a rod of rectangular section dur-

ing twisting 

At points A and B there are maximum 

shear stresses  and  in accordance. 

In strength calculations and rigidity of 

rods with a non-circular cross-section use 

ready-made formulas obtained by the methods 

of the theory of elasticity. 

For a rod with a rectangular cross-section, 

these formulas are similar to those used to cal-

culate round rods: 

 

 

max
tor

tor

M

W
t = . (8.17) 

tor

tor

M

GI
q= . (8.18) 

Here torI  and torW - geometric characteristics, which are conventionally called 

moments of inertia during torsion and moments of resistance during torsion. Their 

dimensions are mm4 and mm3, respectively. 

For a rectangular section 
4;torI mbb=  (8.19) 

3;torW mba=  (8.20) 

 (8.21) 

Rod strength condition: 

[]max 3
.torM

mb
t t

a
= ¢  

(8.22) 

Rigidity condition: 

[]max 4

180
.torM

G mb
q q

b p
= Ö ¢  

(8.23) 

maxt max¡t

max max¡t =ht



 

213 

 

 

Here are the coefficients , ,  depend on the ratio  and are cited in 

reference books on the resistance of materials. 

At  these coefficients can be found using the formula: 

. 

For narrow rectangular sections, when , . 

Then the geometric characteristics are found as 
3

;
3

tor

hb
I =  

(8.24) 

2

.
3

tor

hb
W =  

(8.25) 

Example 8.3. Find the dimensions of the rectangular cross-section of the rod in 

which the torque acts under the condition of strength if the ratio of its sides

2m h b= =. Also find the relative angle of rotation of the rod, assuming that the 

torque along the length is constant. The material of the rod is steel35. Strength factor 

1,5.yen =  

Let's find the permissible stress. For steel 35, 190 .ye MPat =  

Then, []
190

127 .
1,5

ye

ye

MPa
n

t
t= = =  

For a given aspect ratio of a rectangular section coefficients and 

. 

From the condition of strength (8.22) we find: 

[]

3

33
200 10

14,74 .
0,246 2 127

torM
b mm

ma t

Ö
² = =

Ö Ö
. 

Then 2 14,74 29,48 .h mb mm= = Ö =  

The relative twist angle of the rod, according to the formula (8.23), 
3

3

max 4 4 4

200 10
0,116 10 .

8 10 0,229 2 14,74

torM

G mb
q

b

-Ö
= = = Ö

Ö Ö Ö Ö
 

a b h
h

m
b
=

4m²

0,63

3

m-
a=b=

10m>
1

3
a=b=

0,246a=

0,229b=
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8.2.3. Torsion of complex non-closed profiles 

Consider some open section consisting of several simple elements for which it 

is easy to define 
itorI  and 

itorW  (Fig. 8.11). 

 
Fig.8.11. Complex open section 

For the entire section: 

1 2

1

...
n i

n

tor tor tor tor tor

i

I I I I I
=

= + + + =ä  (8.26) 

Suppose that some i-th part of the Mtor acts on every i-th element. Then 

1 2

1

...
n i

n

tor tor tor tor tor

i

M M M M M
=

= + + + =ä  (8.27) 

And the twisting angle for the entire section and its individual elements is the 

same: 

 

Let's express it  by torM : 

1 2

1 2

... .n

n

tortor tortor

tor tor tor tor

MM MM

GI GI GI GI
= = = =  (8.28) 

From here 

1 2

1 2
; ; ...; .n

n

tortor tor

tor tor tor tor tor tor

tor tor tor

II I
M M M M M M

I I I
= = =  

As you can see, the torque in the section is distributed between the constituent 

elements in proportion to their rigidity. 

The largest shear stress for each i-th element: 

1

max .i i

i

i i i

tor tortortor tor

tor tor tor tor tor

M IIM M

W W I W I
t

å õå õ
= = = æ öæ ö æ ö

ç ÷ ç ÷
 

The maximum shear stress will occur in the element for which the relation 

 acquires the greatest importance: 

max

max

.i

i

tortor

tor tor

IM

I W
t

å õ
= æ ö

æ ö
ç ÷

 

 

(8.29) 

1 2 ... nq=q =q = =q

q

ʽ ʽʢ ʢI W
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Fig.8.12. For example 8.4 

Example 8.4. Determine the largest shear 

stresses and the relative twist angle of the cross sec-

tion of the steel rod (Fig.8.12) under the action of 

torque 200torM N m= Ö. Set, whether the method of 

dividing the section into elements affects the result of 

calculations. 

 

 

Maximum shear stresses in the section: 

max ;tor torM Wt =  

were 

( )
max

.

i i

tor
tor

tor tor

I
W

I W
=  

And, according to (8.26), 

1

.
i

n

tor tor

i

I I
=

=ä  

Let's divide the section into components in two ways (Fig.8.13). 

Option 1. (Fig. 8.13, a).  

For element I we have: 1 30 ;h mm= 1 5 ;b mm= 1 1 6.h b=  According to table 

13 [1] 1 0,299;a= 1 0,299.b=  

Then 
1

2 2 3

1 1 1 0,299 30 5 224,25 ;torW hb mma= = Ö Ö =  

1

3 3 4

1 1 1 0,299 30 5 1121,25 ;torI hb mmb= = Ö Ö =  

 
Fig.8.13. Splitting the section into components: 

a method 1 (a) and method 2 (b) 

1

1

1121,25
5 .

224,25

tor

tor

I
mm

W
= =  

For element II we have: 2 30 ;h mm=

2 10 ;b mm=  2 2 3;h b =  1 0,267;a=

1 0,263.b=  

Then 

2

2 2 3

2 2 2 0,267 30 10 801 ;torW h b mma= = Ö Ö =  

2

3 3 4

2 2 2 0,263 30 10 7890 ;torI h b mmb= = Ö Ö =  
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2

2

7890
9,85 .

801

tor

tor

I
mm

W
= =  

So, 
1 2

41121,25 7890 9011,25 .tor tor torI I I mm= + = + =  

Correlation 
i itor torI W  more for element II, which means that the greatest stress 

will occur in the middle of its longer sides: 

3

max

max

200 10
9,85 218,6 .

9011,25

i

i

tortor

tor tor

IM
MPa

I W
t

å õ Ö
= = =æ ö

æ ö
ç ÷

 

Relative twist angle 
3

4

4

200 10
2,77 10 .

8 10 9011,25

tor

tor

M

GI
q -Ö
= = = Ö

Ö Ö
 

Option 2. 

For element I we have: 1 40 ;h mm= 1 5 ;b mm= 1 1 8;h b= 1 0,307;a= 1 0,307.b=  

Then 
1

2 2 3

1 1 1 0,307 40 5 307 ;torW hb mma= = Ö Ö =  

1

3 3 4

1 1 1 0,307 40 5 1535 .torI hb mmb= = Ö Ö =  

For element II we have: 2 25 ;h mm= 2 10 ;b mm=  2 2 2,5;h b =  1 0,256;a=

1 0,249.b=  

Then 
2

2 2 3

2 2 2 0,256 25 10 640 ;torW h b mma= = Ö Ö =  

2

3 3 4

2 2 2 0,249 25 10 6225 .torI h b mmb= = Ö Ö =  

Moment of inertia of the section 
1 2

41535 6225 7760 .tor tor torI I I mm= + = + =  

We have the following ratios: 1

1

1535
5

307

tor

tor

I
mm

W
= = , 2

2

6225
9,73 .

640

tor

tor

I
mm

W
= =  

Correlation 
i itor torI W  again, it is more for element II, which means that the 

greatest stresses will act here: 

3

max

max

200 10
9,73 250,8 .

7760

i

i

tortor

tor tor

IM
MPa

I W
t

å õ Ö
= = =æ ö

æ ö
ç ÷

 

Relative twist angle 
3

4

4

200 10
3,22 10 .

8 10 7760

tor

tor

M

GI
q -Ö
= = = Ö

Ö Ö
 

As you can see, the method of dividing the section into components affects the 

results of the calculations. These differences include: 
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- for moments of inertia: 
()

()

1

2

9011,25
1,16;

7760

tor

tor

I

I
= =  

- for stresses 
()

()

1

max

2

max

218,6
0,816;

250,8

t

t
= =  

- for relative twist angles 
()

()

1 4

42

2,77 10
0,86.

3,22 10

q

q

-

-

Ö
= =

Ö
 

The obtained result indicates the imperfection of the method of calculating the 

rod of a complex open profile for torsion within the framework of material resistance. 

Therefore, when there is a need for a more accurate analysis of the stress-strain state 

of such rods, the methods of the theory of elasticity should be used. 

Note. It should be noted that even with the low accuracy of stress and strain 

calculations, the presented method can be considered quite acceptable for strength 

assessment within the limits of strength reserves accepted in the support materials. 

Note. Satisfactory accuracy of the calculation of stresses and strains can be 

obtained by the considered method for cross-sections consisting of thin-walled ele-

ments. 

8.2.4. Torsion of thin-walled profiles 

Thin-walled profiles include profiles in which the wall thickness of any of the 

elements that make up this profile is much smaller than other characteristic sizes of 

these elements. In mechanical engineering, aircraft and shipbuilding, mining, con-

struction, and other branches of technology and industry, such profiles have become 

widespread and must be counted on for strength and rigidity, including during tor-

sion. 

There are open and closed thin-walled profiles, the calculation methods of 

which differ in terms of strength and rigidity. 

8.2.4.1  Open profiles 

Open or open thin-walled profiles include, for example, rolling profiles: angles, 

channels, beams, double beams, etc. 
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Fig.8.14. Open thin-walled profile 

Consider an arbitrary thin-walled open 

profile (Fig. 8.14). It consists of rectangles. As 

a rule, for rectangular elements of thin-walled 

profiles, the ratio of their sides . And 

that means the coefficients for them

. Denoting the wall thickness with 

a Greek letter  , according to formulas (8.24), 

(8.25), we obtain: 

 

3 2

; .
3 3i i

i i i i
tor tor

h h
I W

d d
= =  

Then ,i

i

tor

i

tor

I

W
d=  formula (8.29) for maximum shear stresses takes the form: 

max max
tor

tor

M

I
t d= . (8.30) 

Here 3

1

1
.

3

n

tor i i

i

I hd
=

=ä  

According to formula (8.30), the largest shear stresses in open thin-walled pro-

files occur in the element with the largest wall thickness. 

The relative twist angle is found by formula (8.18). 

Now consider an example in which the rod from example 8.4 will have a thin-

walled profile (Fig. 8.15). 

 
Fig.8.15. For example 8.5 

Example 8.5. See condition for exam-

ple 8.4. 

Let's divide the section into compo-

nents in two ways (Fig.8.16). It should be 

noted that in this case the method of division 

will affect only the magnitude of the moment 

of inertia of the section torI . 

Option 1 (Fig. 8.16 a). 

For element I we have: 1 38 ;h mm=

1 3 ;mmd= 1 1 12,67;h d= 1 1 1 3;a b= =  

Then 
1

3
3 4

1 1 1

38 3
342 .

3
torI h mmb d

Ö
= = =  

10h b>

1 3a=b=

d
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For element II we have: 2 30 ;h mm=

2 2 ;mmd= 2 2 15;h d= 2 2 1 3.a b= =  

Then 
2

3
3 4

2 2 2

30 2
80 .

3
torI h mmb d

Ö
= = =  

Finally, 

1 2

4342 80 422 .tor tor torI I I mm= + = + =  

Option 2. 

For element I we have: ;

; ;. . 

Then;
 

. 

a) b) 

Fig.8.16. Splitting the section into components: 

a method1 (a) and method 2 (b) 

For element II we have: 2 27 ;h mm= 2 2 ;mmd= 2 2 13,5;h d= 2 2 1 3.a b= =  

Then 
2

3
3 4

2 2 2

27 2
72 .

3
torI h mmb d

Ö
= = =  

Moment of inertia of the section 
1 2

4360 72 432 .tor tor torI I I mm= + = + =  

The maximum shear stresses for the 1st and 2nd methods of splitting are, re-

spectively, equal to: 

I

I

3

max max

200 10
3 1421,8 ;

422

tor

tor

M
MPa

I
t d

Ö
= = = ; 

II

II

3

max max

200 10
3 1388,9 .

432

tor

tor

M
MPa

I
t d

Ö
= = =  

Relative twist angle 

I

3
4

I 4

200 10
59,2 10 ;

8 10 422

tor

tor

M

GI
q -Ö
= = = Ö

Ö Ö
 

II

3
4

II 4

200 10
57,8 10 .

8 10 432

tor

tor

M

GI
q -Ö
= = = Ö

Ö Ö
 

So, we have the following differences: 

- for moments of inertia 
()

()

1

2

422
0,98;

432

tor

tor

I

I
= =  

- for stresses 

1 40 h ʤʤ=

1 3 ʤʤd = 1 1 13,33h d = 1 1 1 3a =b =

1

3
3 4

1 1 1
40 3

360 
3

ʢI h ʤʤ
Ö

=b d = =
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()

()

1

max

2

max

1421,8
1,02;

1388,9

t

t
= =  

for relative twist angles 
()

()

1 4

42

59,2 10
1,02.

57,8 10

q

q

-

-

Ö
= =

Ö
 

As we can see, in comparison with example 8.4. the differences in the results 

are quite insignificant. 

 
Fig.8.17. For example 8.6 

Example 8.6. Determine maximum 

shear stresses and the absolute twist angle be-

tween the ends of a thin-walled steel pipe with 

a length of 0,5 m, cut along the generator 

(Fig. 8.17), under the action of torque 

M tor=60Nm, if the outer diameter of the pipe 

dex=100mm, and the internal din=94mm. 

 

The moment of inertia of the section of the cut pipe during twisting can be found 

as for its sweep, that is, a rectangle, taking into account that the thickness of the pipe 

is constant: 

31
.

3
torI sd= . 

Here s is the length of the middle line of the pipe: 

mm. 

Then 
3

4304,73 3
2742,61 .

3
torI mm

Ö
= =  

The maximum shear stresses can be found using the formula (8.30): 
3

max max

60 10 3
65,63 .

2742,61

tor

tor

M
MPa

I
t d

Ö Ö
= = =  

Let's find by the formula (8.18) the relative angle of twisting of the pipe, taking 

the shear modulus for steel : 
3

4

4

60 10
2,73 10 .

8 10 2742,61

tor

tor

M rad

GI mm
q -Ö
= = = Ö

Ö Ö
 

( ) ( )0,5 0,5 100 94 304,73 ʟ ʚs d d ʤʤ= p + = p + =

48 10  G ʄʇʘ= Ö
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Then the absolute twist angle between the end sections of the pipe is

rad or  

8.2.4.2 Closed profiles 

Consider a rod of an arbitrary closed profile (Fig. 8.18, a), which is twisted by 

a moment Mtor. Since the thickness of its wall is small, it can be assumed that the 

shear stresses are evenly distributed throughout the thickness. 

 
 

a) b) 

Fig.8.18. Closed profile: a) load scheme; b) stress state of the rod element 

 

Let's cut the rod element with two adjacent planes at a distance dx and two more 

planes along the generator, and let's depict it in an enlarged form (Fig. 8.18, b). On 

the faces of the element belonging to the cross-sections, there are variable shear 

stresses along the perimeter  and . On horizontal faces, in accordance with the 

law of parity of shear stresses, stresses will act accordingly  and . Un-

der the condition of equilibrium . That is, 

 (8.31) 

Or 

 (8.32) 

Now consider the cross section of the rod (Fig. 8.19). 

The middle line of the profile wall is marked with a dash-dotted line, which is 

the locus of points that lie at the same distance from the outer and inner surfaces of 

the profile. A force applied at some point of the midline of the profile creates a mo-

ment about the axis of the member 

.tordM ds rtd= Ö 

42,73 10 500 0,137 ʨʘʜl -j=qÖ = Ö Ö =
180 0,137

7,85
Ö

j= = ¯
p

1t 2t

*
1 1t =t *

2 2t =t

0Xä =

* *
1 1 2 2 0dz dztd -t d =

* *
1 1 2 2 Consttd =t d =td=
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Fig.8.19. Cross section of the rod 

Here r is the distance from the rod axis to a 

point on the midline. 

Consider the triangle OAB. Its area

. 

Then 

2 .tordM dtd w=  

Integrating, we find: 

2 ,torM tdw=  

 

where ï the area of the figure bounded by the middle line of the profile. 

From here 

.
2

torM
t

dw
=  

The maximum stresses in a closed profile will occur where the profile has the 

smallest thickness (here it should be recalled that for non-closed profiles the highest 

stresses occur in the place where the thickness of the profile is the greatest). 

Therefore, the strength condition for a closed thin-walled profile is: 

[]max

min

.
2

torM
t t

wd
= ¢  (8.33) 

Let's determine the absolute angle of rotation of the rod. To do this, we will use 

the relationship for the potential energy of deformation of the rod. Since a pure shear 

occurs at the points of the rod during pure torsion, then, according to formula (7.13), 

for an element with a volume of  we have 

; 

and for the entire rod 

 

Taking into account that 
2

torM
td

w
= , we will get 

2

2
.

8

torM l ds
U

Gw d
= ñ  (8.34) 

On the other hand 

1

2
d ds rw= Ö

w

dV dx ds= d
2

2
dU dx ds

G

t
= d

( )
( )

2
22

2 2 2

ll l ds ds
U ds

G G G

td
= t d = td =

d dñ ñ ñ
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.
2

torM
U

j
=  (8.35) 

Equating the right-hand sides of the obtained expressions, we find 

2
.

4

torM l ds

G
j

w d
= ñ  (8.36) 

and the relative twist angle 

2
.

4

torM ds

G
q

w d
= ñ  (8.37) 

For a cylindrical thin-walled rod, when  and, , ,

, the stresses will be equal to: 

2
.

2

torM

r
t

p d
=  (8.38) 

Relative twist angle 

3
.

2

torM

r G
q

p d
=  (8.39) 

Example 8.7. Using the data of example 8.6, find the largest shear stresses and 

the relative twist angle of a continuous thin-walled pipe (without a longitudinal sec-

tion) and compare the obtained results. 

The shear stresses in the pipe wall can be found using the formula (8.38). The 

average radius of the pipe 
( )

( )0,5 0,25 100 94 48,5 ,
2

ex ind d
r mm

+
= = + =  and the 

wall thickness 3mmd= . Then 
3

2 2

60 10
1,35 .

2 2 48,5 3

torM
MPa

r
t

p d p

Ö
= = =

Ö
 

The relative twist angle, according to the formula (8.39), is 
3

7

3 3 4

60 10
3,49 10 .

2 2 48,5 3 8 10

torM rad

r G mm
q

p d p

-Ö
= = = Ö

Ö Ö Ö Ö
 

We compare the values of stress and deformation in a continuous pipe and in a 

pipe cut along the generating line: 

;  

As you can see, the stresses in the cut pipe exceed the stresses in the solid pipe 

by almost 50 times, and the relative twist angle is three orders of magnitude higher. 

r Const= Constd= 2rw=p

2ds r= pñ

65,63
48,61

1,35

¡t
= =
¡¡t

4
3

7

2,73 10
0,78 10

3,49 10

-

-

¡q Ö
= = Ö
¡¡q Ö
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8.3. Potential energy of rod deformation under torsion 

Expression (8.35) for the potential energy of deformation during pure twisting 

is valid under the condition that the work of the torque on the angles of twisting of 

the rod, represented by the right-hand side of this equation, is completely transformed 

into the potential energy of its deformation. For a rod element of length dx, we get: 

.
2

torM d
dU

j
=  (8.40) 

According to Hooke's law, in absolute values for a round rod (8.13) for a rod 

element of length dx, we can write: 

;tor

p

M dx
d

GI
j=  (8.41) 

then 
2

;
2

tor

p

M dx
dU

GI
=  and for the entire rod 

2

.
2

tor

pl

M dx
U

GI
=ñ  (8.42) 

For a rod of non-circular cross-section 
2

.
2

tor

torl

M dx
U

GI
=ñ  (8.43) 

8.4. Calculation of helical cylindrical springs with a small 

pitch 

Helical cylindrical springs are one of the most common types of elastic elements 

in engineering, which are subjected to compressive or tensile loads. Most often, they 

are wound from round wire with a constant angle of inclination of the turns. 

Consider a helical cylindrical spring with an average coil radius R, which is 

stretched by a force F (Fig. 8.20). 
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a) b) 

Fig.8.20. Scheme of loading the coil of the 

spring 

Fig.8.21. Stressed state in the cross-section of the 

coil of the spring: a ï from the cut; b - from torsion 

 

As can be seen from the figure, the wire from which the spring is wound works 

in shear and at the same time in torsion. Here  and torM FR= . In fact, the wire 

also bends. However, at small angles of inclination of the coil, i.e. for springs with a 

small step, bending can be neglected. 

Therefore, two groups of shear stresses act in the cross-section of the wire: from 

the cut  and from torsion (Fig. 8.21). 

From the section, the shear stresses are distributed uniformly in the section. 

Their value can be determined by the formula 

 (8.44) 

The maximum shear stresses during torsion occur on the contour of the section: 

 (8.45) 

Based on the law of the distribution of shear stresses in the cross-section 

(Fig. 8.21), we conclude that the point on the inner radius of the spring coil - point 

A, where the shear stresses for both groups coincide in direction, is a dangerous point. 

Therefore, the largest shear stress in the cross-section can be found as the sum: 

 

or 

 (8.46) 

In springs of a large average radius, wound from a thin wire, for which the ratio 

is correct 4 1d R<<, tension  from torsion are much greater than from shear 

Q F=

¡t ¡¡t

2

4Q F

A d
¡t = =

p

2

4Q F

A d
¡t = =

p

max max 2 3

4 16F FR

d d
¡ ¡¡t =t +t = +

p p

max 3

16
1

4

FR d

Rd

å õ
t = +æ ö

p ç ÷

¡¡t
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stresses . Therefore, such springs count only on the torsion of the wire, neglecting 

the cut: 

 (8.47) 

The axial deformation of the spring is determined, also taking into account only 

the torsional deformation of the coil. Let's separate the coil element of length ds from 

the spring (Fig. 8.22). Considering the cross-section of the coil A to be fixed, we 

determine the angle by which the cross-section B will turn relative to it under the 

action of the torque: 

.tor

p

M ds
d

GI
j=  

As a result of the rotation of segments BO will return to the same angle dű, 

taking a position BO . Segment OO  characterizes the axial deformation of the spring 

due to the twisting of the coil element ds: 

 
Fig.8.22. Scheme of the deformation of the 

spring coil element 

. 

The deformation of the lower end of 

the spring relative to the upper end, which 

is determined by the value of the twist an-

gle of the entire rod from which the spring 

is wound, is found as 

.tor tor

p ps s s

M ds M R
Rd R ds

GI GI
l j= = =ñ ñ ñ 

The total length of all coils of the 

spring: ; 

where n is the number of turns of the spring. Then 

2 .tor

p

M R
Rn

GI
l p=  

Taking into account that torM FR= , a , we finally find: 

 
(8.48) 

 

¡t

max 3

16FR

d
t º

p

O O d Rd¡ ¡¡= lº j

2

s

ds Rn= pñ

4

32
p

d
I
p
=

3

4

64FR n

Gd
l=
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Fig.8.23. For example 8.8 

Example 8.8. Determine what force  

F should be applied to an absolutely rigid plate 

(Fig. 8.23) so that the distance between it and the 

support is 35 mm. Also determine the largest 

shear stresses that will occur in both springs. The 

diameters of the wires from which the springs are 

wound are d1=1,5 mm and d2=3 mm, and the num-

ber of their turns, respectively n1=10 and n2=8. 

The material of the springs is steel. 

 

Based on the load scheme, we conclude that the deformation of the plate asso-

ciated with the deformation of the springs can be considered in two stages: first, only 

spring 1 is deformed, and then both springs are deformed simultaneously. The total 

displacement of the plate, according to the condition of the problem, is 

45ï 35=10 mm. 

At the first stage, when the first spring is compressed on 5 mm, a force arises in 

it, which, according to formula (8.48), will be equal to 

 N. 

At the second stage, the deformation of the springs should be 5 mm. Since in 

this case the system becomes statically indeterminate, let's consider its static, geo-

metric and physical aspects. 

 
Fig.8.24. For example 8.8 

1. The static side of the problem. The equilib-

rium equation, according to the scheme (Fig. 8.24), 

has the form: 

. 

Here is the power F1 is the additional force aris-

ing in the first spring during its deformation at the 

second stage together with the spring 2. 

2. Geometric side of the problem. The defor-

mation of the springs is the same, therefore 

mm. 

3. The physical side of the problem. According to formula (8.48) 

, . 
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4. Synthesis. 

N. 

N. 

Then N. 

The maximum shear stresses in the springs can be found by the formula (8.47).

  

 MPa. 

MPa. 

Questions for self-testing 

1. When does pure torsion of the rod take place? 

2. Write the integral equation of equilibrium of the rod for conditions of pure 

torsion. 

3. What hypothesis is used when compiling geometric equations for a round 

rod under conditions of pure torsion? Formulate this hypothesis. 

4. Does the length of a round rod change during pure twisting? 

5. What type of stress state is realized in the rod during pure torsion? 

6. Where is the dangerous cross-section point of a round rod during twisting? 

7. Write down the condition of strength of a round rod during torsion. 

8. The yield point of the material , the strength limit is 

, the residual elongation after rupture is . What is the permissi-

ble shear stress? 

9. Modulus of elasticity of the material for tension 
52 10E MPa= Ö , the coef-

ficient of transverse deformation . Find the shear modulus G of the material. 

10. Why are the largest normal stresses in this rod equal? 

11. Write down the expression for Hooke's law in absolute terms for pure tor-

sion of the rod. 

12. Write down the rigidity condition of a round rod during torsion. 

13. How are the stresses directed on the cross-sectional contour of the rod dur-

ing twisting? 
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14. According to which law can you justify the direction of stresses on the 

contour of the section during torsion: Hooke's law, the law of parity of shear stresses 

or Newton's third law? 

15. What is the moment of inertia when twisting a rectangular rod? 

16. At which points of a thin-walled open profile are the maximum shear 

stresses during torsion? 

17. Where are the maximum shear stresses in a closed thin-walled profile dur-

ing torsion? 

18. Write down the formulas for determining the shear stresses and the relative 

twist angle in a thin-walled cylindrical tube during twisting. 

19. Where are the dangerous points in a cylindrical helical spring when it is 

stretched or compressed? 

20. Write down the strength and rigidity conditions for a cylindrical helical 

spring with a small pitch.  
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9.  STRENGTH AND RIGIDITY CALCULATIONS OF RODS IN 

PLANE BENDING 

As you know, the bend is clean and transverse. When the bending moment is 

the only force factor in the cross-section of the rod, the bending is called clean. When, 

together with the bending moment, transverse forces also act in the section, then the 

bending is called transverse. 

9.1. Stress in a straight rod during pure bending 

In Fig. 9.1 gives examples of practical implementation of pure bending condi-

tions. 

 

In Fig. 9.1 a show a two-support beam, 

which is acted upon by moments of the same 

magnitude and opposite directions. That is, the 

given system of forces is in equilibrium, which 

means that there are no supporting reactions. As 

a result, there are no transverse forces in the 

cross-sections, and only bending moments act. 

Pure bending of a part of the rod can be 

obtained by applying to it two identical concen-

trated forces at the same distance from the sup-

ports (see Fig. 9.1 b). This is the scheme of the 

so-called four-point fold. It is easy to make sure 

that the reactions in the resistances will be equal 

in magnitude to the acting forces: . 

Under such conditions, only the bending 

moment will act on the central section of the 

beam between the points of application of 

forces. 

In order to determine the stress in a certain 

section of the rod during pure bending, we will 

solve the corresponding integral equation of 

equilibrium according to the adopted algorithm. 

a) 

 
b) 

Fig. 9.1. Schemes of implementation of 

pure bending conditions: a ï with the 

help of two moments; b - with the help of 

two forces 

 

1. The static side of the problem. 

A BR R F= =
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Of the six integral equilibrium equations (1.9) - (1.14), only the equation for the 

bending moment will remain. Assuming that the bending occurs relative to the z axis 

(that is, the z axis is perpendicular to the plane of the drawing), we write the equation 

as follows: 

 (9.1) 

2. Geometric side of the problem. 

In order to investigate the nature of the deformation of the rod during bending, 

a simple experiment can be conducted, where an elastic model, for example, a rubber 

model, is used as a rod, which allows obtaining quite significant deformations. 

 

A rectangular grid of longitudinal and 

transverse lines is preliminarily applied to the 

side surface of the rod (Fig. 9.2 a). After bend-

ing the rod, the following is observed: 

- longitudinal lines become arcs of a cir-

cle; 

- transverse lines as cross-sectional con-

tours remain plane; 

- contour lines return, remaining normal 

to the longitudinal fibers; 

- the ends of the rod, plane before defor-

mation, remain plane even after deformation. 

a) 

 
b) 

Fig. 9.2. Deformation of the rod under con-

ditions of pure bending: a ï rod before de-

formation; b ï rod after deformation 

 

All of the above confirms the fulfillment of the hypothesis of plane sections for 

the case of pure bending of the rod. 

From the given picture of deformation of the rod during bending, it is clear that 

not all fibers are deformed in the same way. In our case (Fig. 9.2), the upper fibers 

are shortened, and the lower fibers are lengthened (by the way, when constructing 

the bending moment graphs, we also distinguished compressed and stretched fibers). 

Therefore, there must be fibers that do not change length when the rod is bent. 

A set of fibers that do not change their length when the rod is bent is called a 

neutral layer. 

The neutral layer of the rod intersects with its cross-section along a straight 

line, which is called the neutral line of the rod cross-section. 

z

ɸ

ʄ ydA= sñ
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Under plane bending conditions, the neutral layer will always be perpendicular 

to the force plane, and therefore the neutral line will always be perpendicular to the 

force line in the section. 

Let's highlight the rod element with length dx (Fig. 9.3). Let us assume that the 

x-axis belongs to the neutral layer. 

 
Fig. 9.3. Rod element: a ï before deformation;  

b ï after deformation 

After bending, previously parallel 

sections I and II will turn to an angle dű, 

remaining plane. 

A piece of fiber a0b0, which be-

longs to the neutral layer, does not 

change its length: 

 or . 

Relative deformation of the fiber 

segment ab, which is at a distance y 

from the neutral layer, we find as 

 

So, 

 (9.2) 

3. The physical side of the problem. 

Since, according to the integral equation of equilibrium (9.1), at an arbitrary 

point of the cross-section of the rod during pure bending, only the normal stress acts, 

and the lateral pressure between the fibers is neglected, it can be concluded that the 

fibers are in a linear stress state. Hooke's law for a linear stress state: 

 (9.3) 

4. Synthesis. 

 (9.4) 
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Here  is the moment of inertia relative to the z axis. Then the curva-

ture of the neutral layer of the rod 

 (9.5) 

Considering the curvature of the neutral layer as a measure of the deformation 

of the rod during bending, expression (9.5) can be interpreted as Hooke's law in ab-

solute values for pure bending. Product  is called the bending rigidity of the rod 

section. 

Substituting (9.5) into (9.4), we get 

z

z

M
y

I
s=  (9.6) 

This formula, which was first derived by the French scientist K. Navier, allows 

you to determine the normal stresses at any point of the section during bending. As 

you can see, the law of their distribution along the cross-section height is linear. It 

remains to determine the location of the z axis, that is, the position of the neutral line 

in the section. To do this, consider those of the integral equilibrium equations (1.9) - 

(1.14), which contain , and which were not used in this solution. Namely: 

 and . 

Since in pure bending relative to the z axis N=0 and My=0, then, taking into 

account (9.6), we have the following conditions:  

; , 

where  is the static moment of the cross-sectional area relative to the z axis, 

and  is the centrifugal moment of inertia of the section. 

Because , then 

 (9.7) 

 (9.8) 

The static moment of the area is zero relative to the axis passing through the 

center of gravity of the section, and the centrifugal moment is zero relative to the 

main axes. Thus, the y and z axes (Fig. 9.3) are the principal central axes of inertia 

of the rod section. 
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Finally, we conclude that during plane bending, the force and neutral lines in 

the section are mutually perpendicular and coincide with the corresponding principal 

central axes of inertia. In our case, the neutral line coincides with the z axis, and the 

power line with the y axis. 

Using Navier's formula, let's construct a diagram of the distribution of normal 

stresses in a cross-section of arbitrary shape (Fig. 9.4), considering the axes indicated 

in the figure as its principal central axes of inertia. 

 
Fig. 9.4. The diagram of the distribution of 

normal stresses along the height of the rod sec-

tion 

As can be judged from the stress dia-

gram, the greatest normal stress acts at 

point A, that is, at the point farthest from the 

neutral line (z-axis). The sign of this stress 

is consistent with the direction of the bend-

ing moment Mz in the figure. In this direc-

tion, the upper fibers of the rod are 

stretched, and the lower fibers are com-

pressed. Then the largest normal stress, ac-

cording to formula (9.6), 

. 

Let's mark 

 (9.9) 

where Wz is the moment of resistance of the section relative to the z axis. 

The axial moment of resistance is the ratio of the axial moment of inertia of the 

section to the distance to the farthest point of the section from this axis. 

Then the greatest absolute value of stress in the section is found by the formula: 

 (9.10) 

For our example, this is tensile stress. To determine the greatest compressive 

stress acting at point B, formula (9.6) should be used, since this point is not the far-

thest from the neutral line: 
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Example 9.1. Compare the strength re-

serves of the beam in two variants of the loca-

tion of its cross-section relative to the power 

line (Fig.9.5), if the bending moment in the 

beam Mz=2kNm. The material of the beam is 

steel 20. The cross-section of the beam is a 

square with a side a=50 mm. 

Option 1 Option 2 

Fig. 9.5. For example 9.1 

 

In both versions, the location of the cross section, the y and z axes are the prin-

cipal central axes of inertia as the axes of symmetry. At the same time, the y axes 

coincide with the power lines, and the z axes coincide with the neutral cross-section 

lines. 

The maximum stresses act in the points of the cross-sections farthest from the z 

axis, which for the first variant of the location belong to the sides AB and CD, and 

for the second - these are points A and D. The moments of inertia relative to the z 

axis are the same for both variants, because they are the principal moments of the 

same section: . The moments of resistance will differ, since the dis-

tances to the points farthest from the z axis are different: 

; , 

which means 

; . 

According to the formula (9.10) the maximum stresses in sections 

MPa;  MPa. 

For steel 20 yield point 250ye MPas = . Then the strength reserves of the beam: 
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Therefore, the margin of strength of the beam according to the first variant of 

the location of the section relative to the power line exceeds the margin of strength 

according to the second variant of the location by almost 1.5 times. 

9.2. Shear stresses in the rod under plane transverse bend-

ing 

During transverse bending, in addition to bending moments, transverse forces 

with which shear stresses are associated act in the cross-sections of the rod. To derive 

the formula for their determination, consider a cantilever beam of rectangular section 

loaded with a concentrated force at the free end (Fig. 9.6). 

 
Fig. 9.6. Beam under transverse bending 

conditions 

Let's cut the beam element dx with two ad-

jacent planes. In both cross-sections I and II, 

transverse forces of the same magnitude act, ac-

cording to the diagram Q. The bending moments 

in these sections are different: M and M+dM, re-

spectively (see Fig. 9.7 a). Under the action of 

the specified forces, normal and shear stresses 

occur in the sections. 

 

The normal stresses in sections I and II are found using Navier's formula (9.6). 

These stresses for an arbitrary layer of fibers will be equal to: 

; . (9.11) 

 
  

a) b) c) 

Fig. 9.7. To determine the shear stresses during bending: a ï loading diagram of the beam ele-

ment; b ï diagram of selection of a part of the beam element; c ï loading diagram of part of the 

beam element 

 

The diagram of normal stresses is presented in Fig. 9.7, a. 
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To find the shear stresses, we formulate some assumptions about the nature of 

their distribution in the cross section. 

1. Shear stresses  in the section parallel to the transverse force Q. 

2. In this layer of fibers at a distance y from the neutral layer, the shear 

stresses are the same in magnitude across the entire cross-section width. 

Note. These assumptions are valid only for sections with aspect ratios , 

when the transverse force is parallel to side h. 

Next, in a plane parallel to the neutral layer of the beam, at a distance y from it, 

we will cut off a part of the rod element (Fig. 9.7, b). Consider the equilibrium con-

ditions of the elementary parallelepiped A1A2B1B2C1C2D1D2. To do this, let's first 

analyze what forces act in its faces. 

Faces A1A2B1B2, C1C2D1D2 and A1A2C1C2 belong to the lateral surface of the 

rod, which is free of load, so no forces act here. 

In the A1B1C1D1 face, there are normal ones and tangents  tension. Let's 

find the equivalent normal stresses . Here is an elementary playground

 is at a distancefrom the neutral cross-section line (Fig. 9.7, b). Then  

. 

Here  is the static moment of the area of the face A1B1C1D1 rela-

tive to the z axis, that is, the part of the cross-sectional area located between the layer 

of fibers at the level y and the edge of the beam. So 

 (9.12) 

Similarly, we find the equivalent N2 on the face A2B2C2D2: 

 (9.13) 

Now consider the face ɺ1ɺ2D1D2. The normal stresses on this face, which arise 

due to the lateral pressure between the fibers during bending of the beam, are ne-

glected due to their smallness. Shear stresses  here arise according to the law of 

parities of shear stresses, since shear stresses are acting on orthogonal faces 

(Fig. 9.7, c). Due to the smallness of the face ɺ1ɺ2D1D2 (one of its dimensions dx) 

we will consider stress  evenly distributed, and their equivalent 
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Let's write the equilibrium equation of the element, projecting the forces on the 

X axis: 

, 

or 

. 

From here 

. 

Taking into account that , we finally get: 

()z

z

QS y

bI
t=  (9.14) 

This formula was first derived by D.I. Zhuravsky, a famous engineer of Ukrain-

ian origin, whose name this formula bears. 

Static moment for a rectangular section 

 

Then, taking into account that for a rectangle , we get: 

 (9.15) 

It follows from the given formula that the relationship between the shear stresses 

in the section during transverse bending and the position of the layer of fibers relative 

to the neutral line is parabolic. At the extreme points of the section at , . 

The largest shear stresses will occur in the neutral layer when y=0: 

 (9.16) 

The diagram of the distribution of shear stresses along the height of a rectangu-

lar cross-section is shown in Fig. 9.8. 
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Fig. 9.8. Diagram of shear stresses for a 

rectangular section 

Although Zhuravskii's formula was de-

rived for rectangular sections with the ratio

, however, in practice it can be used for 

sections of any shape, except for narrow rec-

tangles located so that the line of force is par-

allel to the smaller side b. We will consider 

such sections later. 

So, for an arbitrary section, Zhuravskyi's 

formula can be written in the following form: 

 

 (9.17) 

Here b(y) is the width of the section at the level where the shear stresses are 

determined, and which for an arbitrary section will be a variable value. 

Example 9.2. Using the example data 9.1, compare the largest shear stresses in 

the cross-sections for two variants of their location (Fig. 9.5), assuming that in addi-

tion to the bending moments in the cross-section of the beam, the force Q will also 

act. 

Option 1. The largest shear stress can be found using the formula (9.16) for a 

rectangle: 

. 

Option 2. The largest shear stress that occurs in the neutral layer can be found 

using the formula (9.17). For our section .  

Here - the area of the triangle ABC, which is equal to half the area of the 

square (Fig.9.5), a  is the distance from the center of gravity of this triangle to the 

z axis. Then 

. 

so , that is, the shear stresses according to the first variant of the 

location of the section are one and a half times higher than the stresses according to 

the second variant of the arrangement. 
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9.3. Analysis of the stress state of the rod along the height of 

the cross-section under plane transverse bending. 

Strength conditions 

Based on the nature of the distribution of stresses acting during transverse bend-

ing, we conclude that the stress state in the cross-sections of the rods is heterogene-

ous, and this should be taken into account in strength calculations. 

Consider a hinged two-support beam (Fig. 9.9). 

  

a) b) 

Fig. 9.9. To the analysis of the stressed state of the beam during transverse bending: a ï diagram 

of beam loading and force graph; b ï stress state at points along the cross-section height of the 

beam 

 

In an arbitrary cross-section of the beam, in addition to the supporting cross-

sections A and B, transverse forces and bending moments act at the same time, the 

graphs of which are presented in Fig. 9. 9, a. In Fig. 9.9, b shows the graphs of the 

distribution of normal and shear stresses along the cross-section height. Let's choose 

a number of points in the cross-section of the rod and analyze the stress state in them. 

Point 1. This is the farthest point from the neutral layer. Here ;

. 

We have a linear stress state, and the strength condition for this point is written 

as follows: 

 (9.18) 

Point 2. Here 

; . 

max

M

W
s=s =

0t=

[]max

M

W
s = ¢ s

z

M
y

I
s=

()
()

z

z

QS y

b y I
t=



 

241 

 

 

There is a plane stress state. To check point 2 for strength, you should use the 

appropriate strength criterion, depending on the material of the beam. 

Let's determine the principal stresses at this point. According to formula (5.48)  

; ; . 

If the material of the beam is brittle, then the criterion of the largest normal 

stresses (the first theory of strength) should be used. The strength condition accord-

ing to this theory 

 
(9.19) 

If the material of the beam is plastic, then we use the criterion of the largest 

shear stresses (the third theory of strength) or the criterion of the greatest potential 

energy of a change in shape (the fourth theory of strength). According to these theo-

ries, the calculated stresses are equal to: 

; 

. 

Substituting the found expressions for the principal stresses, we obtain the 

strength conditions in the following form: 

 (9.20) 

 (9.21) 

If the material of the beam resists tension and compression in different ways, 

then you should use Mohr's criterion (the fifth theory of strength): 
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 (9.22) 

Point 3. This point belongs to the neutral layer, where ; . 

Strength condition: 

 (9.23) 
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Point 4. Here the strength conditions are similar to the strength conditions for 

point 2. 

Point 5. As in point 1, there is a linear stress state. If the distance from the neutral 

layer to point 5 is the same as to point 1, that is, the section is symmetrical about the 

z axis, then the strength condition for point 5 is written similarly to condition (9.18). 

Since in our example compressive stresses are acting at this point, we obtain the 

following strength condition: 

 
(9.24) 

If this point is closer to the neutral layer than point 1, then the strength condition 

should be written as: 

 
(9.25) 

Here ï stresses at point 5, and they are the largest compressive stresses in 

the section; is the distance from the neutral layer to point 5. 

Note. If the material of the rod is equally resistant to tension and compression, 

then only points 1, 2 and 3 should be checked. 

 
Fig. 9.10. For example 9.3 

Example 9.3. Determine the safety margins in the po-

tentially dangerous points of the beam shown in Fig. 9.9, 

and, having accepted F=700kN, l=1m. The cross section of 

the beam is shown in Fig.9.10. The material of the beam is 

steel with a yield strength 250ye MPas = . 

According to the diagrams of efforts (Fig.9.9, a), the 

dangerous cross-section is in the middle of the beam, where 

the maximum bending moment acts

 and transverse force

. 

1. Let's find the principal central moment of inertia of 

the section. 

2. Since the section has two axes of symmetry, these 

axes are the principal central axes of inertia. 

 

To find the moments of inertia relative to the z axis, let's divide the section into 

components: rectangle I and two identical squares II and III (Fig. 9.11). Then 

[]max ʩʪ

M

W
s = ¢ s

() []5
max ʩʪ

z

M
y

I
¡s = ¢ s

max¡s

()5
y

max 0,5 0,5 700 1 350 M Fl ʢʅ ʤ= = Ö Ö = Ö

0,5 0,5 700 350 Q F ʢʅ= = Ö =
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Fig. 9.11. For example 9.3 

 

Section resistance moment: 

mm3 

3. Let's build stress distribution graphs along the 

height of the beam section. 

3.1 Diagram of normal stresses. 

Let's find the value of the maximum normal stress: 

MPa. 

On the neutral section line (z axis) . 

Based on these values, we build a normal stress diagram (Fig.9.12). Taking into 

account that, according to the load scheme (Fig. 9.9, a), the upper fibers of the beam 

are stretched, the normal stresses in these fibers will be positive. 

 
Fig. 9.12. Diagrams of stresses in the cross-section of the beam during transverse bending 

 

3.2 To construct the diagram of shear stresses, we calculate their values at the 

points indicated in Fig.9.12. 

Point 1. There are no shear stresses: . 

Point 2. Static moment of the area located above the level of the point 2, that is, 

square II 

mm3. 
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To determine the shear stresses for this level relative to the neutral line, there 

are actually two points to consider:2* belonging to the side of the square II, and 2** 

belonging to the side of the rectangle I, since the width of the section b(y) at these 

points is different. 

For a point 2* 

MPa. 

For a point 2**  

MPa. 

Point 3. Static moment of the area of half the section relative to the z axis 

mm3. 

Then 

MPa. 

4. Let's find the strength reserves of the beam at the specified points. 

Point 1. Here . Margin of durability 

1

max

250
1,74.

143,84

ye
n
s

s
= = =  

Point 2** . Here 
 

 MPa;  MPa. 

 MPa. 

2**

250
2,46.

101,71

ye

III

p

n
s

s
= = =  

Point 3. Here max 39,55MPat = . Having put 0,5 0,5 250 125 ;ye ye MPat s= = Ö =  

we find that 

3

max

125
3,16.

39,55

ye
n

t

t
= = =  

From the obtained results, we conclude that we have the smallest safety margin 

at the point 1 section. Therefore, the extreme points of the section of the beam in 

question are dangerous. 
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9.4. Strength calculations in plane transverse bending 

9.4.1. The principal condition of strength 

In practice, in most cases of transverse bending, the most distant points from 

the neutral line of the cross-section of the rod are dangerous. This, in particular, is 

shown in example 9.3. In such cases, the strength calculations are limited only to the 

study of the maximum normal stresses in the dangerous section using the strength 

condition (9.18), which is called the basic condition of bending strength: 

[]max
max .

M

W
s s= ¢  (9.26) 

The verification calculation is carried out in the following sequence: 

1. Diagrams of internal forces in the rod are built and a dangerous section is 

found in which the maximum bending moment Mmax acts in absolute terms. 

2. Calculate or find from reference books the moment of resistance of the 

section W relative to the neutral line. 

3. Using condition (9.26), check the strength of the rod. 

When the design calculation is performed according to the principal condition 

of strength, the necessary moment of resistance of the cross-section is found 

; (9.30) 

and then find all the necessary cross-section dimensions. 

 
Fig. 9.13. .For example 9.4 

Example 9.4. Check the strength of the cast iron 

beam (Fig.9.13), having previously arranged its sec-

tion in the form of an equilateral triangle relative to the 

neutral line in the most optimal way. The side of the 

triangle b=50 mm. Permissible compressive stresses of 

the beam material [] 160
c

MPas = ; for tension -

[] 40
t

MPas = . 

 

The largest normal stresses in the cross-section act at the point farthest from 

the neutral line. For a triangle, this point is its vertex. Since the cast iron, from which 

the beam is made, better resists compression, it will be correct to place the section 

relative to the z axis (neutral line) in such a way that the top is in the zone of action 

of compressive stresses. According to the load scheme in the beam, the lower fibers 

are compressed during bending. Therefore, the section should be placed with the top 

down, as shown in Fig. 9.14. 

[]
maxM

W²
s
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Fig. 9.14. Beam section 

The dangerous cross-section of the beam is in the 

jam, where the maximum bending moment acts 

max 0,25M kN m= Ö. To determine the stresses at danger-

ous points, it is necessary to calculate the magnitude of 

the principal central moment of inertia of the section. 

For a triangle . According to the condition 

50 ; cos30 50 0,866 43,3 .b mm h b mm= = ¯= Ö =  

Then 
3 450 43,3 36 112763,72 .zI mm= Ö =  

Distances to the extreme points of the section: 

2 3 2 43,3 3 28,87 ;Ay h mm= = Ö =
 

3 43,3 3 14,43 .BCy h mm= = =  

Let's check the strength of point A: 

[]
5

max 2,5 10
28,87 64,01 160 .

112763,72
A c

z

M
y MPa MPa

I
s s

Ö
= = = < =  

Let's check the strength of the point of the BC side: 

[]
5

max 2,5 10
14,43 32,00 40 .

112763,72
BC t

z

M
y MPa MPa

I
s s

Ö
= = = < =  

As you can see, the principal condition of strength for the beam both in terms 

of tensile and compressive stresses is fulfilled. 

Note. From the obtained results, it can be seen that if point A of the cross-

section were in the zone of action of tensile stresses, that is, if the cross-section were 

oriented with the top up in relation to the neutral line, then the condition of strength 

would not be fulfilled: 

[]
5

max 2,5 10
28,87 64,01 40 .

112763,72
A t

z

M
y MPa MPa

I
s s

Ö
= = = > =  

9.4.2. Full verification of rods for transverse bending strength 

In practice, there are cases when it is impossible to ignore the effect of trans-

verse forces in strength calculations. This applies to beams with thin high cross-sec-

tions, for example, I-beams, T-beams, etc., in which large bending moments and 

transverse forces occur at the same time. There are other cases, in particular when a 

relatively short beam bends. Then significant transverse forces can occur in it at small 

bending moments, and points belonging to the neutral layer can become dangerous. 

For such cases, a full-strength check of the rod is required according to the 

method described in clause 9.3. 

3 36zI bh=
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As for the design calculation, it is carried out according to the basic strength 

condition for normal stresses (9.27), but it is necessary to perform a full check of the 

designed rod for strength in all its potentially dangerous points. 

 
Fig. 9.15. For example9.5 

Example 9.5. Select the I-beam sec-

tion of the steel beam (Fig. 9.15) with per-

missible stresses; []160MPas= , 

[]100MPat=  and perform a full -strength 

check of the beam. 

According to the principal strength 

condition (9.27) we will find the moment of 

resistance of the section:

  

[]

6
3 3max 6 10

37500 37,5 .
160

M
W mm sm

s

Ö
² = = =  

According to the application1 [1], the nearest larger moment of resistance, 

compared to the one found, has I-beam No. 10. Let's write out some of its geometric 

characteristics from the assortment tables for further use during a full check of the 

beam for strength; 

- axial moment of inertia of the section 
4198 ;zI sm=  

- axial moment of section resistance 
339,7 ;zW sm=  

- static moment of half the cross-sectional area relative to the z axis
323,0 .zS sm=  

In order to carry out a full-strength check, let's draw an I-beam section to scale 

(Fig.9.15, a) and diagram the distribution of normal and shear stresses along the 

cross-section height, having previously calculated the values of these stresses at sev-

eral characteristic points. 

To simplify the calculations, we will present the I-beam shelf in the form of a 

rectangle with the dimensions of the sides 55b mm=  and 7,2h t mm= =  (Fig.9.15, 

b). Due to the small thickness of the shelf t, such a replacement will not significantly 

affect the results of stress state calculations in the area adjacent to the I-beam shelf. 
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Fig. 9.16. I-beam cross-section (a) and (b) and graphs of stress distribution along its height (c) 

 

Point 1. ()
6

1 6 10
151,13 ;

39700

M
MPa

W
s

Ö
= = = 0.t=  

Point 2. This point belongs to the I-beam shelf. 
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6 10
42,8 129,7 .
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M
y MPa

I
s

Ö
= = =

Ö
 

Let's calculate the shear stresses at this point. 

Note. The I-beam shelf refers to sections for which the assumptions regarding 

the distribution of shear stresses formulated by Zhuravskiy are not fulfilled, since 

here 7,2 55 0,13 2h b= = <<. However, we will ignore this caveat and calculate the 

shear stress according to the specified formula in order to evaluate only a qualitative 

picture of the distribution of shear stresses along the height of the I-beam shelf. As 

will be shown later, point 2 is not considered potentially dangerous. 

Static moment of the area located above the level of the point 2, i.e. shelves, 

 mm3. 

Then 

 MPa. 

Point 3. This point belongs to the riser of the I-beam. 
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According to the obtained results, we build the graphs of the stress distribution 

along the height of the I-beam (Fig.9.15, c). 

We will check the strength of the beam at potentially dangerous cross-section 

points. According to the stress diagrams, these are points 1, 3 and 4. 

Point 1. ()1
151,13 160 ; 0.MPa MPas t= < = The strength condition is fulfilled. 

Point 3. () ()2 3
129,7 ; 61,87 .MPa MPas t= =  Calculated stress according to the 

fourth theory of strength: 

2 2 2 23 129,7 3 61,87 168,24 160 .IV

p MPa MPas s t= + = + Ö = >  

The strength condition is not met. 

Point 4. ; 
()4

77,44 100 .MPa MPat = <  

As you can see, the point 3 is dangerous here. 

Note. When analyzing the strength reliability of structures, overloading of their 

elements is allowed, but not more than 5% of the allowable stress value. It is worth 

reminding here that the margin of safety implies a reduction of the ultimate stresses 

to the value permissible for plastic materials by 50% (nye=1,5), and for fragile ones 

ï on 150 - 200% (nu=2,5õ3). 

Point overload 3 is , which is unacceptable. 

Therefore, the design calculation carried out according to the principal condition of 

strength is not final. In practice, they follow the path of successive selection of pro-

files with larger dimensions, until the strength condition at the dangerous point is 

fulfilled. 

We choose the double-beam No12 with the following geometric characteristics: 

- axial moment of inertia of the section ; 

- height h=120mm; 

- shelf width b=64mm; 

- shelf thickness t=7,3mm; 

- riser thickness d=4,8 mm. 

Then for the point 3 we have: 

MPa; 

MPa. 

(4) 0s =
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100% 5,15% 5%
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-
= >

4350 zI ʩʤ=

6
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350 10z
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2 290,34 3 47,01 121,62 160 .IV

p MPa MPas = + Ö = <  

The strength condition is fulfilled. 

9.4.1. The choice of a rational shape of the cross-section of the 

rod under bending 

In the design calculations, using the strength condition (9.27), the required mo-

ment of cross-section resistance is found. At the same time, the shape of the section 

can be any. Using the data and the solution of example 9.5, we will determine the 

dimensions of the rectangular and round sections of the beam (Fig. 9.17). 

 
Fig. 9.17. For example 9.6 

Example 9.6. Choose a rectangular 

one, with a ratio of sides , and round 

sections (Fig. 9.17) of a steel beam (Fig. 

9.15), and compare the weights of these 

beams with the weight of a beam with an I-

beam section. 

 

For a rectangular section mm3. From here
 

 mm;  mm. 

For round section  mm3. From here 

 mm. 

It is obvious that three sections with the same moment of resistance relative to 

the z axis have different areas, which means that the beams will have different 

weights: the weights of one linear meter of each beam are considered as the areas of 

their cross sections. We have the following cross-sectional areas: 

- I-beam No. 12 ï 
21470 ;IA mm=  

- rectangle - 
238,31 76,62 2935,31 ;rA bh mm= = Ö =  

- circle - 
2 2

272,56
4135,08 .

4 4
c

d
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p pÖ
= = =  
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As you can see, in the considered example, the weight of a beam with a rectan-

gular cross-section is twice that of an I-beam, and with a round cross-section, almost 

three times. This difference would be even greater if we were to consider a beam 

with an I-beam section ̄ 10, which, according to the solution for Example 9.5, 

turned out to be overloaded by only 5.15%. The difference in the weight of I-beam 

and round beams can reach four times. 

So, we conclude that, from the point of view of material capacity, the most ra-

tional cross-section of the rod under bending conditions is the I-beam. Other forms 

of sections are used based on other considerations. For example, axes working for 

bending have round sections, and this shape is the most rational from the point of 

view of the features of their design, manufacturing technology and working condi-

tions. 

However, the formulated conclusions make sense only for rods made of plastic 

materials. The fact is that in the considered examples we were talking about symmet-

rical sections relative to the neutral line. Since the plastic material is equally resistant 

to tension and compression, it is important that the extreme points of the cross-sec-

tion have the same stress modulus, which will ensure its minimum dimensions. This 

is typical for symmetrical sections. 

It is another matter when the material of the rod is fragile and has different re-

sistance to tension and compression. Then half of the symmetrical section will be 

significantly underloaded. And such a cross-section cannot be considered rational. 

We have already touched on this feature, considering a beam with a cross-section in 

the form of an equilateral triangle (see example 9.4). It can be argued that a cross-

section asymmetrical with respect to the neutral line would be rational for beams 

made of such materials. Moreover, the cross-section point further away from the neu-

tral line should be in the field of action of the stresses of that sign, the resistance of 

the material is greater. For example, instead of an I-shaped section, a T-shaped sec-

tion should be used. 

Example 9.7. The beam is made of gray cast iron with permissible compressive 

stresses [] 120
c

MPas = , for tension - [] 30
t

MPas = . Bending moment in the danger-

ous section of the beam max 0,6M kN m= Ö. Select the T-shaped section of the beam 

with the size ratio 5h b=  (Fig.9.18, a). Determine the required height of the riser of 

the I-beam section H (Fig. 9.18, b), which will ensure the specified load capacity of 

the beam. The dimensions of the shelves and the thickness of the I-beam riser are the 

same as those of the I-beam section. Compare the weight of one linear meter of 

beams. 
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a) b) 

Fig. 9.18. Beam (a) and two-beam (b) cross-sections and diagrams of stress distribution along 

their height 

 

Place the cross-section in such a way that the maximum stresses are compres-

sive (Fig.9.18, b), because the material of the beam better resists compression. 

1. Determine the geometric dimensions of the cross-section. To do this, first 

determine the coordinate of the center of gravity of the brand along the y axis. 

Let's divide the section into two rectangles (Fig. 9.19). We will look for the po-

sition of the center of gravity in the auxiliary system of coordinate axes z1ʆʫ1. 

 
Fig. 9.19. Brand cross-section 

. 

The moment of inertia relative to the zC axis: 

 

Let's find the size b from the strength condition for the 

farthest cross-section point belonging to the riser, and 

where the compressive stresses are acting. 
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s

² = =  

Let's check the strength of the second extreme point of the cross-section, which 

belongs to the shelf and in which the tensile stresses are acting: 
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Since the strength condition is not fulfilled, we will repeat the calculation of the 

size b, based on the allowable tensile stress: 

[]3

36000
.

tb
s¢  

From here 
[]

33

36000 36000
10,63

30
t

b mm
s

² = =  and, accordingly 

5 10,63 53,15 .h mm= Ö =  

2. Determine the height of the riser H of the I-beam section. 

According to the principal strength condition (9.27) the required moment of 

resistance of the I-beam section 

[]

6
4 3max 0,6 10

2 10 .
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t

M
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s

Ö
² = = Ö  

On the other hand 

23 3
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1 5
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z
z

I bH hb H b
W W hb
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+ ç ÷é ùîî ê úýí
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+ ç ÷é ùî îê úí ý

 

After the necessary transformations, we obtain a cubic equation with respect to 

H: 

. 

Note. For the convenience of calculations, the dimension of the length was con-

verted to centimeters, and the coefficients and the free term were rounded to whole 

numbers. 

The positive root of this equation is the desired riser height: 
3,06 30,6 .H sm mm= =  

4. We compare the weight of one linear meter of a cantilever and a cantilever 

beam. The cross-sectional area is 
22 2 10,63 53,15 1129,97 .tA bh mm= = Ö Ö =  I-beam 

cross-section - 
22 2 10,63 53,15 10,63 30,6 1455,25 .IA bh bH mm= + = Ö Ö + Ö =  

Then : : 1129,97:1455,25 1:1,29.T I T IG G A A= = =  

As you can see, a beam with an I-beam cross-section with the same load capac-

ity on 30% heavier than a beam with a T-shaped section. 

However, in the problem of choosing a rational cross-section, not everything is 

so clear-cut. For example, the same I-beam considered in the previous example can 

3 232 45 191 0H H H+ - - =
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be designed by imposing another condition: the ratio of the sides of the shelves and 

the riser of the I-beam are the same as in the beam - , and it is necessary to 

find these dimensions from the condition of strength of the I-beam. Let's do the fol-

lowing calculation. 

1. Let's determine the geometric dimensions of the I-beam section, based on the 

new condition for their selection. 

Since in this case the height of the riser is related to its thickness, the expression 

for the moment of resistance will have the following form: 

 

Therefore, based on the strength condition of the I-beam, 
 

mm. 

Then mm. 

Let's now compare the weights of the beams. The area of the I-beam section is
23 3 8,84 44,2 1172,18 .IA bh mm= = Ö Ö =  Then 

: : 1129,97:1172,18 1:1,04.T I T IG G A A= = =  

That is, the difference in weight is all 4% 

Note. The difference between the first and second options is that we initially set 

as a mandatory condition the same dimensions of the shelves and the thickness of the 

risers of the brand and the gable, and in the second version we designed the gable 

with the same ratio of the sides of the shelves and the riser as in the brand, not con-

necting their sizes themselves by no condition. And it turns out that according to the 

first option, the brand is definitely a more rational cross-section for the beam, and 

according to the second option, there is no special difference between the two cross-

sections, from the point of view of the load capacity and material capacity of the 

beam. The analysis of the advantages and disadvantages of the obtained cross-sec-

tions can be continued if one of the criteria for evaluating their rationality is, for 

example, the overall dimensions of the cross-sections. 

From the given example, it is clear how wide the scope for choosing optimal 

solutions is for the designer when solving practical problems. And only after him, 

making the right technical decision, which is possible only with deep knowledge, 

broad erudition and healthy intuition based on experience. 
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9.5. Bending of thin-walled profiles 

9.5.1. Shear stresses in thin-walled profiles 

Examples of thin-walled profiles can be rolled profiles: I-beams, beams, chan-

nels, etc. Most of them have risers and shelves. And when it comes to the distribution 

of shear stresses, it has already been noted that in risers or walls - thin high rectangles 

- they are distributed in accordance with the assumptions formulated by Zhuravskyi 

(see item 9.2). In the shelves, this distribution has a completely different character. 

To analyze the law of distribution of shear stresses in shelves, consider the beam 

shown in Fig. 9.6, which has a T-shaped section. Let's highlight the beam element dx 

with two adjacent sections I and II (Fig. 9.20, a). According to diagram Q (Fig. 9.6), 

transverse forces of equal magnitude and different bending moments act in both sec-

tions: M (section I) and M+dM (section II). 

 
Fig. 9.20. To determine the shear stresses in the shelves of thin-walled profiles: a ï diagram of 

beam element loading; b ï loading scheme of the shelf element; c ï shear stresses in the faces of 

the shelf element 

 

Select the element a1c1d1e1a2c2d2e2 from the shelf, as shown in Fig. 9.20, a, and 

consider the condition of its equilibrium, projecting all the forces acting in its faces 

onto the x axis. 

Let's analyze the forces acting on the faces of the selected element. First, the 

faces of the element belonging to the side surface of the shelf are free of load and no 

forces arise here. Secondly, in the faces a1c1d1e1 and a2c2d2e2 there are longitudinal 

forces associated with normal stresses that arise here during bending. However, due 

to the increase in moment, these forces are different in magnitude: in the face  

a1c1d1e1 , and in the face a2c2d2e2 . To balance these forces, a 

force must act in the face d1e1d2e2 in the direction of the x-axis, that is, shear to the 

1N N= 2N N dN= +
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face. Denoting this force by dʊ, we write the equilibrium condition in the following 

form: 

. 

From here 

 (9.28) 

Because , where N1 and N2 are determined by formulas (9.12) and 

(9.13) obtained in section 9.2, then 

 (9.29) 

Here  is the static moment of the area a1c1d1e1 relative to the neutral sec-

tion line and is a function of the z coordinate (see Fig. 9.20, a). For our example

. 

On the other hand, the force dT is related to shear stresses  , acting in this 

face (Fig. 9.20, b). Assuming that due to the small thickness of the shelf, the stresses 

are uniformly distributed, we write: 

 (9.30) 

Equating the right-hand sides of expressions (9.29) and (9.30), we obtain: 

. 

From here . 

According to the law of parity of shear stresses, shear stresses  of the same 

magnitude and directed to the common edge d1e1 act in the face a a1c1d1e1 

(Fig.9.20, c). 

Thus, the shear stresses in the shelf on the line d1e1, located at a distance z from 

the principal central axis of inertia of the section y, are calculated by the formula: 

 (9.31) 

Here it is taken into account that . 

Therefore, we can finally formulate assumptions about the nature of the distri-

bution of shear stresses in the shelves: 

1. There are shear stresses at all points of the shelf  parallel to the middle 

line of the shelf, that is, directed perpendicular to the direction of the transverse force 

Q in the section. 
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2. At all points of the arbitrary line d1e1, the shear stresses are the same, i.e., 

constant throughout the thickness of the shelf, and depend only on the distance z to 

the principal central axis of inertia of the section. 

Note. Of course, shear stresses also act in the shelves in the direction parallel 

to the transverse force Q, but their value is negligibly small, as we have already 

verified by solving example 9.5. 

Shear stresses  in shelves always form a single flow with stresses  in risers 

(walls) of a thin-walled profile (Fig. 9.21). 

 
Fig. 9.21. Distribution of shear stresses in shelves and risers of thin-walled profiles during trans-

verse bending 

 

Having established the nature of the distribution of shear stresses in the shelves 

and obtained the calculation formulas for their calculation, we can now return to ex-

ample 9.5 and clarify the stress state of the I-beam in the dangerous section. 

According to the results of the design and verification calculations, the girder 

was selected No. 12, while the point 3 of the riser in the city of its connection with 

the shelf turned out to be a dangerous point. Let's depict the specified profile in a 

schematic form on a scale (Fig. 9.22). 

 
Fig. 9.22. I-beam cross-section and diagram of stress distribution along its height 

 

ʧt t
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Since the stresses at all specified points along the height of the girder were not 

calculated for this section, we will do it now.  

Point 1. . 

The shear stresses at this point can be found using the formula (9.31), bearing 

in mind that they are unchanged by the thickness of the shelf. 

For an arbitrary point of the shelf at a distance z from the vertical axis 

(Fig.9.22) we get: 

. 

As we can see, shear stresses  along the length of the shelves change accord-

ing to a linear law. At the extreme points of the shelf, when , . The max-

imum shear stresses act in the middle of the shelf at : 

. The graphs of the stress distribution in the shelves are 

shown in Fig.9.22. 

So, to the point 1 there is a plane stress state. Calculated stress according to 

the fourth theory of strength 

. 

Point 2. This point belongs to the I-beam shelf. Shear stresses here are the 

same as in the point1. Normal stresses , smaller 

than at the point1, which means that the calculated stresses will be smaller. That is, 

there is no point in checking this point for strength. 

Point 3. This point belongs to the I-beam riser and all the necessary calcula-

tions for it, as a dangerous cross-section point, have already been carried out. For 

comparison, we present the previously found stress values at this point: 

; ; . 

Point 4. ; . 

As you can see, the strength conditions are fulfilled for all potentially dangerous 

cross-section points. 

Separately, it should be noted that even after a refined calculation of the shear 

stresses in the shelf (points1 and 2) point 3 remained the dangerous intersection 

point. 
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9.5.1. Concept of shear center 

In thin-walled non-closed profiles during transverse bending, shear stresses, 

forming a continuous flow in cross-sectional elements (Fig. 9.21), can affect the char-

acter of beam deformation. To find out exactly how this influence manifests itself, 

consider cantilever rigidly clamped beams of I-beam and channel cross-sections, 

shown in Fig. 9.23. 

Sections of beams with shear stresses acting on them are shown in fig. 9.24. 

Having replaced the shear stresses with the corresponding forces Q and T, we see 

that in the I-beam section (Fig. 9.24, a), which has two axes of symmetry, the forces 

T are mutually balanced in the shelves. The transverse force Q, reduced to the prin-

cipal central axis y, balances the external force F, and, as a result, the beam is in 

plane transverse bending. 

  

a) b) 

Fig. 9.23. Cantilever rigidly pinched beams of I-beam (a) and channel (b) sections 

 

  

a) b) 
Fig. 9.24. Sections of I-beam (a) and channel (b) beams with forces acting on them 

 

In the channel, the forces in the shelves form a couple of forces, the moment of 

which is nothing but a torque in the section. That is, the channel beam, in addition to 

bending, will also perceive torsional deformation. Thus, the previously formulated 

condition for the occurrence of plane transverse bending of the rod, according to 

which the line of force in the cross-section must coincide with one of the principal 

central axes of inertia, in the case of thin-walled profiles, is valid only for cross-



 

260 

 

 

sections with two axes of symmetry, for example, for an I-beam cross-section. Oth-

erwise, bending will be accompanied by torsion. 

In Fig. 9.25 shows I-beam and channel beams (Fig. 9.23) in a deformed state. 

In the case of the channel, the essence of the problem is to choose the point of 

concentration of internal forces in the cross-section of the beam. At one time, the 

center of gravity of the section was chosen as such a point. But at the same time, as 

we can see, an unbalanced moment of shear forces may arise. 

In order to avoid torsion during bending of thin-walled beams, you should 

choose another cross-section point for the summation of forces, relative to which the 

moment of shear forces will be zero. And it is through this point that the plane of 

action of the load must pass. This point is called the bending center. 

  

a) b) 

Fig. 9.25. I-beam (a) and channel (b) beams in a deformed state 

 

In sections with two axes of symmetry, the center of bending coincides with the 

center of gravity of the section. As for sections with one axis of symmetry, the posi-

tion of the bending center is easy to find from the condition that ʄtor=0. 

Consider a channel section, the forces in which are represented by the transverse 

force Q and the moment of the pair of shear forces in the shelves  

(Fig. 9.26, a). Here T is the force in the shelf (Fig. 9.24, b). 

 

 

( )TM T h t= -
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a) b) 

Fig. 9.26. Initial (a) and reduced (b) system of forces in cross-section 

 

Assume that point C is the bending center. Then, according to the definition 

. 

From here 

. (9.32) 

An elementary shear force act on the shelf element dz. From here 

. 

The tension in the shelf, according to (9.31), 

. 

Here, the static moment of the part of the channel shelf, located to the left of the 

line nn, relative to the z axis (Fig. 9.26, a) will be equal to: 

. 

Then 

. 

Substituting the obtained expression in (9.32), we find: 

. 
(9.33) 
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Thus, the channel beam will be in 

plane bending conditions if the forces act-

ing on it lie in the plane that passes through 

the found bending center C parallel to the 

y axis. Otherwise, its bending will be ac-

companied by twisting. In fig. 9.27 shows 

one of the possible methods of practical re-

alization of the load of the channel beam in 

the center of bending, when a supporting 

platform is welded to the wall of the chan-

nel. 

 
Fig.9.27. Load diagram of a channel beam in the 

center of bending 

Example 9.8. Find the position of the bending center of the profile in the form 

of an equilateral angle loaded with a transverse force Q (Fig.9.28, a). 

  
a) b) 

Fig. 9.28. For example 9.8 

 

The y and z axes are the principal central axes of inertia of the section. The 

shear stresses in the shelves at a distance s from the edge are 

. 

Here, the static moment of a part of the shelf of length s relative to the z axis, 

given that it is inclined to this axis at an angle 45ę, 

. 

Moment of inertia of an equilateral angle . 
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From the obtained expression, we see that the shear stresses are a quadratic 

function of the distance s and reach their maximum value at : 

. 

The total transverse force in each shelf (Fig.9.28, b) is equal to 

. 

Having projected the forces T on the y axis, we see that the sum of their projec-

tions is equal to Q. That is, the transverse force Q in the section is equivalent to the 

shear forces T in the shelves of the equilateral corner: 

. 

Moreover, it, as a total vector, passes through the point of intersection of the 

lines of action of two forces T, relative to which these forces do not create a moment. 

From this it follows that the bending center lies at the intersection of the shelves, that 

is, at point C. 

9.6. Calculations for bending rigidity 

9.6.1. Deformation of rods during bending 

We considered the calculations of the rods for bending strength. Now let's focus 

on rigidity calculations. 

During plane bending, the axis of the rod is bent, remaining a plane curve. At 

one time, when solving the problem of determining the normal stresses in the rod 

during bending, the curvature of the neutral layer was chosen as a measure of defor-

mation . But from a practical point of view, such a measure is quite inconvenient, 

because it is quite difficult to measure the curvature. To assess the deformation of 

the rods, such displacements are used, which are easy to both measure and determine 

analytically. 

Consider a straight rod - a cantilever beam - the load scheme of which is shown 

in Fig. 9.29. Its axis is distorted, while the centers of gravity of the cross-sections are 

moved (recall that the axis of the rod is the geometric location of the centers of grav-

ity of the cross-sections). 
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Fig. 9.29. Linear deformations in beams during bend-

ing  

An arbitrary point C on the axis 

of the rod moves along the trajectory 

CC1. The projection of this defor-

mation on the y-axis is denoted by w, 

and on the x-axis by u. 

Deflection is called the displace-

ment of the center of gravity of the 

cross section of the rod in the direc-

tion perpendicular to its axis. 

Axial deformation is called deformation along the axis of the rod. 

In fact, these two deformations are incommensurable. So, for a cantilever beam, 

their maximum values refer to the length as  and . 

Due to the smallness of the axial deformation, we neglect it and consider that 

the centers of gravity of the sections move only in the direction perpendicular to the 

initial axis of the rod (Fig. 9.30, a). 

Due to the curvature of the rod, its cross sections, remaining plane, turn and, 

according to the hypothesis of plane sections, coincide with the normal to the axis of 

the rod (Fig. 9.30, b.) 

The angle q of the rotated section in relation to its initial position is called the 

angle of rotation. 

 

Deflection w will be considered 

positive when the deformation of the 

corresponding point is upward, that is, 

in the direction of the w axis. The ro-

tation angle will be considered posi-

tive when the section is rotated coun-

terclockwise. 

The curved axis of the rod is 

called the bent axis or elastic line. 

Since the bent axis shown in 

Fig. 9.30, is nothing but a graph of the 

function w(x), and the angle is formed 

by the tangent to the bent axis at this 

point, then 

a) 

 
b) 

Fig. 9.30. Deflections (a) and angles of rotation of sec-

tions (b) in the beam during bending 
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(9.34) 

Due to the smallness of q 

 (9.35) 

We obtained a differential dependence between the angle of rotation and the 

deflection of the rod. 

9.6.2. Differential equation of the elastic line of the rod 

So, in order to determine the deformation of the rod in its arbitrary cross-section, 

first of all it is necessary to obtain the equation of the elastic line  

. 

Based on the physical nature of the bent axis of the rod, it should be a continuous 

and smooth curve (without breaks and breaks). This means that its first derivative 

must be continuous and smooth. 

Let's establish the relationship between the curvature of the axis as a measure 

of the deformation of the rod and the deformations of its sections during bending. 

For plane transverse bending, we obtained the following formula for curvature: 

 (9.36) 

From analytic geometry, the curvature equation of a plane curve is known: 

 

 

(9.37) 

Taking (9.36) into account, we obtain the exact differential equation of the bent 

axis (elastic line) of the rod 
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In the resulting equation, the signs should be matched. With the chosen direc-

tion of the coordinate axes w and x (Fig. 9.30), the curvature, as is known, is consid-

ered positive if we have concavity on the graph of the function. Comparing the sign 

of the bending moment, taken for horizontal rods, with the sign of curvature 

(Fig. 9.31), we see that they coincide with the chosen direction of the coordinate 

axes. 

  
a) b) 

Fig. 9.31. Deflections (a) and angles of rotation of sections (b) in the beam during bending 

 

Taking into account that  is the value of the second order of small-

ness, we finally get: 
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(9.39) 

This is the basic differential equation of an elastic line. 

Integrating, we get: 

 (9.40) 

 (9.41) 

The constants of integration in the obtained equations are determined from the 

conditions of fixing the rod. Thus, in the case of a rigidly pinched cantilever beam 

(Fig. 9.30), for which there are no deformations in the fastening, we have: 

- at , which means C=0; 

- at , then D=0. 
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Fig. 9.32. For example9.9 

Example 9.9. Construct the graphs Q, 

M, w and q for a two-support hinged beam 

(Fig.9. 32). 

The supporting reactions are equal 

. Let's write down the expressions 

for the transverse force and bending moment 

in an arbitrary section of the beam: 

ɯ.  

()
2

A

ql
Q x R qx qx= - = -; 

()
2 2

2 2 2
A

qx ql qx
M x R x x= - = -. 

The differential equation of the elastic 

line will look like this:  

 

Integrating, we get 

; 

. 

Constants of integration can be found from the boundary conditions: 

at , hence D=0; 

at , so . From here . 

So, 

; 

. 

Based on the obtained equations, we build the corresponding graphs (Fig.9.32). 

Therefore, by integrating the differential equation of the elastic line of the rod, 

we can calculate the displacements q and w of any section. However, this method 

becomes extremely cumbersome when the number of rod sections is greater than 2, 

since the number of constants of integration to be determined increases dramatically.  
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Consider a two-support beam loaded at point C by a concentrated force 

(Fig. 9.33). 

 
Fig. 9.33. Deformation in a two-support hinged 

beam during bending 

Here we have two sections. Let's 

consider each of them. 

Area of the AC: 

; 

; 

 

CB section: 

; 

; 

. 

Two elastic steels are to be determined in each section: CI, DI, and CIɯ, DIɯ. To 

determine them, in addition to two conditions on the supports (  and 

), one should use the condition of smooth and continuous conjugation of the 

adjacent sections AC and CB at point C. The condition consists in the equality of 

deflections and angles of rotation of section C for both sections:
 

and . 

Therefore, for a rod with one section (Fig. 9.32), two constants of integration 

are to be determined. For a rod with two sections (Fig. 9.33), it is necessary to deter-

mine already four constants. If the number of sections is n, then the integration of 

differential equations for all sections gives 2n constants. That is, it is necessary to 

solve a system of 2n equations, of which two equations are the boundary conditions 

on the supports, and also  the equation is the condition of continuous and 

smooth conjugation of all sections of the elastic line of the rod. 

However, the time-consuming process of calculating integration constants using 

a certain algorithm can be greatly simplified by reducing the calculation to the defi-

nition of actually only two constants, regardless of the number of sections. We will 

consider the method of determining deformations in beams, which is based on such 

an algorithm. 

() AI
M x R x=

() ()
21

2

A
II

R x
x M x dx C

EI EI
q = = +ñ

()
3

6

A
I II

R x
w x C x D

EI
= + +

() ( )A ACII
M x R x F x l= - -

() ()
( )

221

2 2

ACA
IIII

F x lR x
x M x dx C

EI EI EI

-
q = = - +ñ

()
( )

33

6 6

ACA
II IIII

F x lR x
w x C x D

EI EI

-
= - + +

()0 0w =

() 0w l =

( ) ( )AC ACI II
l lq =q

( ) ( )AC ACI II
w l w l=

( )2 1n-



 

269 

 

 

9.6.3. Method of initial parameters 

We will show that these two constants are the angle of rotation and the deflec-

tion of the beam at the origin of the coordinates. 

Consider a beam on which the main types of loads that we operate act. The 

direction of the loads is chosen so that the bending moments in the cross sections of 

the beam are positive (Fig. 9.34, a). 

  

a) b) 

Fig. 9.34. Beam load scheme (a) and calculation scheme for the method of initial parameters (b) 

 

To reduce the number of constants of integration to two, it is necessary that the 

constants in all sections of the beam when integrating the equation of the elastic line 

are the same. This is possible under the condition that on each section the expressions 

for bending moments will contain all the terms that were part of the expressions on 

the previous section, and the additional terms that appeared on this section will dis-

appear on the common boundary with the previous one. Such conditions can be en-

sured by writing the differential equations of the elastic line of the beam, following 

a certain algorithm: 

1. The origin of the coordinates is always placed in the leftmost cross-section 

on the axis of the beam, and in this system expressions for bending moments in each 

section are made. 

2. Expressions for bending moments are always obtained from equilibrium 

conditions for the left part of the beam. That is, these expressions should include the 

loads applied to the beam to the left of the section. 

3. If a concentrated moment M acts on the left part of the beam, then it should 

be represented in the equation as a product , where . Here a is 

the abscissa of the point of application of the moment M (see Fig. 9.34). 
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4. When the distributed load does not reach the end of the beam, it should be 

continued by applying a compensating distributed load of the opposite sign on this 

area. These additional distributed loads in Fig. 9.34, b is depicted by dashed lines. 

5. Integrate the obtained differential equations of the elastic line on the sec-

tions of the beam without opening the brackets. 

Consider a part of the beam of length l, limited by sections D and E 

(Fig. 9.34, b). Let's place the origin of coordinates at point D and add expressions for 

bending moments at each section. 

Section I: 

. 

Section II:  

. 

Section III: 

. 

Section IV: 

. 

Section V: 

. 

By comparing the obtained expressions, we see that the expressions for the mo-

ments at each section can be obtained from the expression at the next section, dis-

carding the members that contain the loads appearing at this next section. At the same 

time, the expressions for the moments at the boundaries of each given and the next 

section will be the same. For example, at the border of sections II and III (x=b),  we 

get . 

Let's write the differential equations of the elastic line on each section, starting 

from the first. 

Section I: 

 
(9.42) 

Integrating the resulting equation twice, we get: 

 
(9.43) 
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(9.44) 

Section II:  
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Section III: 

 
(9.48) 
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(9.50) 

Section IV: 
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Section V: 

 
(9.54) 
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(9.55) 

 

(9.56) 

Having imposed the condition of equality of angles of rotation of cross sections 

and deflections at the boundaries for adjacent sections, for sections IV and V we 

obtain x=d: 

 

We will get from here 

 (9.57) 

Hence, taking into account (9.57), 

 

 (9.58) 

Having carried out similar operations for the boundaries of other sections, we 

make sure that the corresponding arbitrary constants of integration are equal in all 

sections: 

 (9.59) 

 (9.60) 
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The constants C and D can be found from equations (9.43) and (9.44) by putting

: 

,       
(9.61) 

That is, the constants of integration C and D are proportional to the angle of 

rotation and deflection at the origin. 

In the general case, the equations for deflections and angles of rotation can be 

written in the following form: 
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(9.62) 
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(9.63) 

Equation (9.62) is called the universal equation of the elastic line, and equation 

(9.63) is the universal equation of the angles of rotation of sections. 

Bending moment  and transverse force , which act in the cross-section of 

the beam that coincides with the origin of the coordinates, are called static initial 

parameters, and the deflection and angle of rotation  in this section - geometric 

initial parameters. 

Let's consider several examples of determining displacements in beams using 

the method of initial parameters. Let's start with a beam on two supports, loaded with 

a uniformly distributed force, which was considered in example 9.9, and compare the 

obtained results. 
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q =q = 00x
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w w
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Fig. 9.35. For example 9.10 

Example 9.10. For a two-support 

hinged beam (Fig.9. 35) determine the angles 

of rotation of support sections A and B and 

find the deflection in the middle between the 

supports. 

Let's write down the universal equation 

of the elastic line for this beam: 

. 

Here , since the origin of the coordinates coincides with the support. Ini-

tial angle of rotation  we find from the condition that the deflection at support B is 

also zero: 

. 

From here . The universal equation of the elastic line takes the form: 

. 

Deflection in the middle of the beam 

. 

Let's calculate the values of the angles of rotation of the support sections 

The angle of rotation of section A of the beam is the already found geometric 

initial parameter: . 

The angle of rotation of section B can be found using the universal equation of 

angles of rotation of beam sections: 

. 

So . 

As you can see, the displacement values are obtained  completely 

coincide with the results of calculations carried out using the basic differential equa-

tion of an elastic line (example 9.9). 












































