Шелестов, Андрій ЮрійовичКолесник, Андрій Миколайович2025-06-102025-06-102025Колесник, А. М. Методи глибоко навчання та стереозору для детектування БПЛА : магістерська дис. : 113 Прикладна математика / Колесник Андрій Миколайович. – Київ, 2025. – 97 с.https://ela.kpi.ua/handle/123456789/74163Магістерська дисертація містить 97 сторінки, 6 рисунків, 1 таблицю, 1 додаткок, 71 джерела. Зв’язок роботи з науковими програмами, планами, темами. Дисертацію виконано відповідно до плану науково-дослідних робіт кафедри математичного моделювання та аналізу даних Національного технічного університету України «Київський політехнічний інститут імені Ігоря Сікорського». Мета і задачі дослідження. Метою роботи є створення апаратнопрограмної системи для автоматичного виявлення БПЛА та визначення їхнього положення в просторі шляхом інтеграції алгоритмів об’єктної детекції та методів стереозору. Для досягнення мети було поставлено такі завдання: - провести огляд існуючих методів детекції дронів; - сформувати датасет, придатний для навчання детектора; - реалізувати модуль глибокої детекції на основі YOLOv8; - розробити стереосистему для оцінки глибини; - провести тестування системи на синтетичних і реальних даних; - оцінити ефективність роботи системи порівняно з існуючими відкритими реалізаціями; - апробувати систему на конференціях. Об’єкт дослідження – процес виявлення безпілотних літальних апаратів у повітряному просторі. Предмет дослідження – методи поєднання глибокого навчання та стереозору для детектування БПЛА та визначення їхнього просторового положення. Методи дослідження. В роботі застосовано методи машинного навчання, згорткові нейронні мережі (YOLOv8), геометричні методи триангуляції для розрахунку глибини, обробку зображень, а також експериментальні методи оцінки якості моделі. Наукова новизна одержаних результатів. Вперше реалізовано інтегровану систему, що поєднує глибоку нейронну детекцію з класичним стереозоровим вимірюванням для тривимірної локалізації дронів. Запропонований підхід забезпечує точне позиціонування цілі в просторі на основі лише пасивного відеопотоку без використання активних сенсорів. Практичне значення одержаних результатів. Розроблена система може бути впроваджена в охоронних, військових або промислових рішеннях для моніторингу повітряного простору. Попереднє тестування на полігоні засвідчило її ефективність при відстанях до 100 метрів. Програма реалізована на Python, придатна для запуску на стандартному комп’ютері з GPU. Апробація результатів. Результати дослідження були апробовані у вигляді наукової доповіді на XXIII Всеукраїнській науково-практичній конференції студентів, аспірантів та молодих вчених. Публікації. Опубліковано 1 наукову статтю в матеріалах конференції. У процесі підготовки – стаття у фаховому науковому журналі.97 с.ukглибоке навчанняоб’єктна детекціястереозірyolov8комп’ютерний зірбпладиспаритеттриангуляціядетектор дронівсистема спостереженняdeep learningobject detectionstereo visionyolov8computer visionuavdisparitytriangulationdrone detectormonitoring systemМетоди глибоко навчання та стереозору для детектування БПЛАMaster Thesis004.93