Павлов, Володимир АнатолійовичУманець, Віталій Сергійович2018-07-022018-07-022018Уманець, В. С. Створення та порівняльний аналіз кластеризаційних алгоритмів розпізнавання статистичних залежностей : магістерська дис. : 122 Комп’ютерні науки та іінформаційні технологіі / Уманець Віталій Сергійович. – Київ, 2018. – 127 с.https://ela.kpi.ua/handle/123456789/23716Обсяг магістерської дисертації становить 127 сторінок, 72 ілюстрації, 5 таблиць та 50 джерел за переліком посилань. Задача визначення функціонального зв'язку між біофізичними показниками є складовою частиною актуального завдання пошуку оптимальних впливів на біологічний об'єкт і не вирішена в повній мірі на сьогоднішній день. При цьому найбільш цікавими є результати, що адекватно представляють розбиття простору на області (кластери) які відносяться до різних функціональних співвідношень, що зв'язують біофізичні показники, що розглядуються в даній області. Такі кластери логічно називати функціональними, а їх форма в загальному випадку може бути довільною. Для адекватного поділу вихідної сукупності на такі однорідні групи необхідне застосування нових інформаційних технологій. Метою дослідження є розробка алгоритму кластерного аналізу, що дозволяє формувати кластери довільної форми та оцінювати динаміку змін характеристик біологічних об’єктів. У відповідності до мети сформовано наступні задачі: Провести аналіз сучасних алгоритмів кластеризації. Розробити алгоритм нечітких k-середніх з обмеженою масою робочої області. Спроектувати та реалізувати програмний засіб для побудови розбиття множини об'єктів на кластери за допомогою розробленого алгоритму. Оцінити ефективність алгоритму на практичній задачі. Об’єктом дослідження є технології Data Mining. Предметом дослідження виступає кластерний аналіз. Розробка була здійснена засобами мов програмування Java та Scala в середовищі розробки IntelliJ IDEA. Публікації за темою магістерської дисертації: 1) Настенко Є.А., Уманець В.С. Аналіз станів системи кровообігу студентів у просторі параметрів залежності артеріальний тиск-пульс / Є.А. Настенко, Г.Л. Бойко, В.А Павлов, В.С. Уманець// Вісник університету "Україна". – Серія "Інформатика, обчислювальна техніка та кібернетика". – Київ. – 2018. – № 1(21). – 6 с. 2) Настенко Є.А., Уманець В.С. Метод нечітких k-середніх з обмеженою масою робочої області формування кластерів довільної форми // Біомедична інженерія і технологія. – Київ. – 2018. – 7 с. 3) Уманець В.С. Модифицированный алгоритм С-средних для функционально связных кластеров // Теорія і практика наукових знань (частина IV): матеріали II Міжнародної науково-практичної конференції. – Київ. – 28-29 грудня 2017 р. – С. 48-49. Магістерська дисертація виконана на замовлення кафедри фізичного виховання «КПІ ім. Ігоря Сікорського». Одержані результати дослідження впроваджені в діяльність кафедри фізичного виховання «КПІ ім. Ігоря Сікорського» (акт впровадження від 03.05.2018).ukкластеризаціяclusteringміра належностіmembership functionоцінка кількості кластерівcluster number estimationнечітка кластеризаціяfuzzy clusteringСтворення та порівняльний аналіз кластеризаційних алгоритмів розпізнавання статистичних залежностейMaster Thesis127 с.004.021