Рогоза, Валерій СтаніславовичДзиговський, Владислав Ігорович2024-04-262024-04-262024Дзиговський, В. І. Методика редукції обсягу інформації в системах обробки великих даних : магістерська дис. : 122 Комп’ютерні науки / Дзиговський Владислав Ігорович. – Київ, 2024. – 97 с.https://ela.kpi.ua/handle/123456789/66513Робота виконана на 97 сторінках, містить 58 ілюстрацій, 22 таблиць. При підготовці використовувалась література з 28 джерел. Актуальність теми. Актуальність запропонованих методів виникає із необхідності ефективної редукції обсягу інформації в системах обробки великих даних. В сучасному світі об'єми інформації швидко зростають, і важливо мати засоби для точного відбору, стиснення та аналізу цих даних. Ці методики мають значення як у сферах бізнесу, де необхідно оптимізувати ресурси та приймати рішення на основі обмеженого обсягу інформації, так і у наукових дослідженнях, де зменшення шуму та видалення надлишкових даних дозволяють виявити суттєві зв'язки. Ці методи можуть знайти своє застосування у багатьох галузях, сприяючи оптимізації ресурсів та поліпшенню аналізу даних. Мета та задачі дослідження. Метою даної магістерської дисертації є дослідження методів редукції у задачах побудови рекомендаційних систем, кластеризації текстових документів, кодуванні та декодуванні зображень. Об’єкт досліджень. Основним об'єктом дослідження є аналітичні методи обробки великих даних для їх застосування в побудові рекомендаційних систем, кластеризації текстових документів, кодуванні та декодуванні зображень. Предмет досліджень. Предметом досліджень є методи зниження розмірностей інформації. Методи досліджень. У роботі застосовувалися аналіз літературних джерел, порівняльний аналіз, моделювання, комп’ютерне моделювання. Наукова новизна. Наукова новизна роботи полягає у тому, що було проведено дослідження та аналіз роботи методів редукції у задачах побудови рекомендаційних систем, кластеризації текстових документів, кодуванні та декодуванні зображень. Було розроблено програмні реалізації для проведення дослідження. В результаті дослідження отримано графічні та чисельні дані робити методів редукції у кожній задачі. За результатами було проведено аналіз та побудована порівняльна характеристика роботи кожного методу у визначених задачах. Потенційні застосування та практична цінність результатів магістерської дисертації: 1. Покращення алгоритмів рекомендаційних систем при роботі з великими даними. 2. Розвиток пошуку спільних тем у наборі текстових документів через методи редукції. 3. Пошук нових способів кодування та декодування з використанням методів редукції. Публікації 1. Системні науки та інформатика: збірник доповідей ІІ науково-практичної конференції «Системні науки та інформатика», 4–8 грудня 2023 року, Київ. – К., НН ІПСА КПІ ім. Ігоря Сікорського, 2023. – с. 273-278.97 c.ukМетодика редукції обсягу інформації в системах обробки великих данихMaster Thesis004.67