Хайдуров, ВладиславЯйлимов, БогданШелестов, Андрій2023-11-152023-11-152023Хайдуров, В. В. Модель оцінки якості повітря за супутниковими даними на основі методу групового урахування аргументів / В. В. Хайдуров, Б. Я. Яйлимов, А. Ю. Шелестов // Проблеми керування та інформатики. - 68(5). - С. 93-106.https://ela.kpi.ua/handle/123456789/62214У роботі представлено математичну модель на основі методу групового урахування аргументів (МГУА) для оцінки даних про якість повітря на рівні землі за допомогою супутникових спостережень. Забруднення повітря є серйозною екологічною проблемою, яка має значний вплив на екосистеми, здоров’я людини та зміну клімату. Наземні мережі моніторингу якості повітря забезпечують прямі вимірювання рівня забруднення, але у багатьох регіонах світу обмежені кількістю станцій. Супутникове дистанційне зондування пропонує нові можливості для послідовного та детального моніторингу якості повітря як доповнення до наземних спостережень. Однак існують певні обмеження, включно з низьким просторовим розрізненням супутникових даних, невизначеностями вимірювань і низькою частотою зйомки. У цьому дослідженні розроблено модифіковану модель МГУА для співставлення даних супутникових спостережень з наземними даними про якість повітря для дрібних твердих частинок (PM2,5) і твердих частинок розміром менше 10 мк (PM10) у місті Києві, Україна. Модель оптимально реконструює нелінійні функціональні залежності між часовими рядами супутникових і наземних змінних, одночасно оптимізуючи загальну складність моделі. Проведено кілька обчислювальних експериментів на реальних наборах даних. Результати показали сильну кореляцію між прогнозованими та емпірично спостережуваними значеннями на незалежному 25 %-му тестовому зразку (досягнуто 0,8889 для PM2,5). Для оптимізованої моделі МГУА вимагалось у 2–3 рази менше параметрів, ніж для порівнюваної архітектури нейронної мережі, щоб досягти того самого рівня точності. Це демонструє здатність запропонованого підходу точно оцінювати концентрації забруднення на рівні землі з високою роздільною здатністю на основі супутникових даних, використовуючи МГУА-моделювання. Розроблена модель надає більш повну просторово-часову картину розподілу забруднення для значного покращення можливостей моніторингу навколишнього середовища, інформування громадськості та підтримки науково обґрунтованих політичних рішень щодо стратегій пом’якшення впливу забруднення на довкілля. У дослідженні підкреслюється, що злиття супутникових і наземних даних за допомогою моделювання МГУА дозволяє значно удосконалити можливості оцінки якості повітря, щоб краще зрозуміти дрібномасштабну динаміку забруднення, захистити населення та розробити ефективні рішення для захисту навколишнього середовища.ukматематичні моделіегресійна модельполіном Колмогорова–Габораметод групового урахування данихякість повітрясупутникові данікореляційний аналізМодель оцінки якості повітря за супутниковими даними на основі методу групового урахування аргументівArticleС. 93–106https://doi.org/1028-0979-2023-5-80000-0002-4805-88800000-0002-2635-98420000-0001-9256-4097