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УДК 518.58 

ADAPTATION OF OSCILLATORY SYSTEMS IN NETWORKS — 

A LEARNING SIGNAL APPROACH 

JULIO RODRIGUEZ 

We consider a network of coupled periodic stable signals (PSS) interacting through 

the gradient of a coupling potential. Each PSS has its own set of parameters k , 

characterizing the time scale of the signal and its shape. The k  are allowed to 

modify their values (i.e. to adapt) by introducing adaptive mechanisms on them. To-
gether with the state variable interactions, the adaptive mechanisms drive all PSS 
towards a consensual oscillatory state where they all have a common, constant set of 

parameters .c  Once reached, the consensual oscillatory state remains invariant to 

the interactions. This implies that if the interactions are removed, all PSS continue to 
deliver the consensual signal. This situation is to be contrasted with classical syn-
chronization problems where common dynamical patterns are attained and main-
tained thanks to the interactions. Hence, if the interactions are removed, all PSS 

converge back towards their individual behavior. The resulting value c  is ana-

lytically calculated. It does not depend on the network’s topology. However, the 
conditions for convergence do depend on the connectivity of the network and on the 
coupling potential. 

1. INTRODUCTION 

Producing stable oscillatory motion is of great importance for a device delivering 
stable periodic signals. Due to its stability mechanism, the apparatus sends out 
signals that are not drastically altered even if it is placed in a noisy environment. 
However, structural changes within the device may occur (e.g. the stability 
mechanism itself may be perturbed), and these create permanent discrepancies, 
thus lowering the quality of the output signal. To overcome this problem, a signal 
can be coupled to another of its like. As an example, consider two coupled signals 

)(1 tr   and )(2 tr  in the setup 
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
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 krr
r

V
rRr
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kkk   (1) 

with the gradient of a potential V  as coupling function. Here, the set of parame-
ters 10 21   due to a structural change. Synchronizing signals may 

enhance the overall quality in the sense that now, under suitable conditions, 
)()(lim , trtr Vkk 


 (for )2,1k  with signals )(, tr Vk  having the same perio-

dicity .Vt  

However, synchronized signals )(,1 tr V  and )(,2 tr V  only exist at the cost of 

maintaining the coupling — if coupling vanishes (i.e. )0V , the two individual 

signals return, respectively, towards the signals produced by the vector fields 
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,);( kR   .2,1k  Furthermore, ,)(, tr Vk  and consequently period ,Vt  is subject 

to any change in the coupling: if V  changes, the synchronized signals, as well as 
their periodic behavior, are perturbed. 

One way to tackle this problem is to construct systems that can synchronize 
and simultaneously “adapt” local characteristics (i.e. k ) in order to be: 

 closer to their likes (i.e. reduce the difference ;)11   

 less dependent on the coupling (i.e. find k


 such that  ),( 21


Z  

))(),((( 21 trtrV
  is minimum over a period and )(trk


 solves Equations (1)). 

An optimum solution for I and II is when there exists a consensual parameter 
set ,kc   2,1k  such that .0),(  ccZ  In this situation, if the coupling 

is removed, the devices continue to deliver the same signal. Furthermore, at this 
consensual state, any changes in the coupling does not affect the signals since 
they are now independent of it. 

Technically, for local parameters k  to adapt, they must become time-

dependent (i.e. )(tkk   and have their own dynamics. For n  coupled sig-

nals, having each an additional phase variable controlling their time scale, the 

general complex networks dynamics is 
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 


mechanismsadaptive

),( rAkk   

with ,),( 1 n   ),,( 1 nrrr   and coupling strengths .0kc  The local dy-

namics belong to the class of PR systems (i.e phase-radius systems): P and R gov-
ern the dynamics of the local oscillator’s phase and radius, respectively. Adapting 
parameters in complex systems has long been a busy field of research [1–10]. 
Whereas in other contributions adaptation occurs in the coupling strength [5] or 
directly in the connections [2], Equations (2) describe adaptation in the local sys-
tems. As mentioned in [6], for local systems’ parameter adaptation, there exist 
two types: flow parameters controlling the frequency or time scale on an attractor, 
and geometric parameters determining the shape of the attracting set. Frequency 
or time scale controlling parameters have, in general, a high propensity for adap-
tation and have been well studied in [3, 10, 1, 7]. However, not much has been 
accomplished for shaping local attractors, which, by nature, is a more delicate 
task — as stated in [8, 9]. 

In this paper, we present new adaptive mechanisms for modifying the local 
system’s attractor. Whereas in [8, 9] the adaptive mechanisms implicitly depend 
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on the parameter set k  via a functional, ours solely depend on the state vari-

ables k  and .kr  Note that adaptive mechanisms should only depend on the state 
variables since, in practice, these are the only information available. In [8, 9], one 
needs to calculate or numerically compute an integral beforehand to know the 
sign of the function for the adaptive mechanism. Our approach is systematic for 
all parameters. 

This contribution is organized as follows: We present individually the com-
ponents of our network’s dynamical system in Section 2. In Section 3 we discuss 
the resulting dynamics and present two related alternatives to our system. Nu-
merical simulations are reported in Section 4, and we conclude in Section 5. 

2. NETWORKS OF PERIODIC STABLE SIGNALS WITH ADAPTIVE 

MECHANISMS 

Consider a n — vertex connected and undirected network with positive adjacency 
entries. To each node corresponds a local dynamical system defined in Sec-
tion 2.1. While the network topology (i.e. adjacency matrix) of the underlying 

network indicates if the thk  local system is connected to the thf  (and vice versa), 
it is the coupling dynamics discussed in Section 2.2 that describes how the 
neighboring local dynamics interact. Described in Section 2.3, supplementary in-
teractions directly acting on the local systems’ parameters will play the role of 
adaptive mechanisms. Let us now individually present each three dynamical com-
ponents. 

2.1. Local Dynamics 

The local systems belong to the class of PR systems. We here focus on Periodic 
Stable Signals (PSS), which we define as 

 kkkk wrP  );,(  

 ,)())(();,(

dynamicsyoscillatirdynamicsedissipativ
   kkkkkkkk wFFrrR    ,,,1 nk    (3) 

with 



q

m
kmkkmkkkk mvmuuF

1
,,0, )(sin)(cos)(  . The set of parameters is 

.},,,,,,{ ,,1,1,0, qkqkkkkkk vuvuuw   Parameter kw  controls the time scale of 

the phase, which here oscillates uniformly (i.e. .))( kkk twt     

The rest of the parameters determine the shape of the stable periodic signal 
produced by a PSS. Stable here means that if the system endures a perturbation, it 
will converge back to its oscillatory motion and continue to deliver the signal with 

its original shape given by the compact set .}0)(|),{( 1   kk Frr   

The convergence towards k  is discussed in Appendix A. It is the dissipative 

dynamics that is responsible for driving the orbits towards k . This term is the 

gradient (with respect to the variable )r  of the potential .))((
2

1 2kFr   It is seen as 
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an energy controller that takes in and/or gives out energy (depending on the 
system’s state) until it reaches its 
equilibrium state k . On k , the 
PSS’s dynamics is governed by the 
oscillatory dynamics and so )(trk  

,0)())((  ttF kkk    which is consis-
tence with Equation (3) when the dissi-
pative dynamics is zero. 

When ,)( 0,kkk uF   the PSS is 

a limit cycle oscillator with constant 
angular velocity and a circle of radius 

0,ku  as an attractor. As sketched in 

Fig. 1, PSS may form more complicated 
and interesting attractors. 

 

2.2. Coupling Dynamics 

The coupling dynamics is here given by the gradient of a positive semi-definite 
coupling potential 0),( rV   (see Section 1.1.2 in [6] for a precise definition). 

On ,V  we have the following assumptions 

 0),(,,1and1  rVzyzry    

with ,),,( 1 n   ),,( 1 nrrr   and .)1,,1(1   Bellow, we present two ex-
amples. 

Example 1. Laplacian Potential 

Define V  as 
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with ),,( 1 n   and ,),,( 1 nrrr   and where the matrix rLcos  has entries 

)(cos, jkjjk rl    with L  being the corresponding Laplacian matrix ,( ADL   

where D  is the diagonal matrix with 



n

j
jkkk ad

1
,, ). Matrix rLcos  is positive 

semi-definite since, by Гершгорин’s circle theorem [4], all its eigenvalues are 
positive (i.e. nonnegative). Explicitly, the coupling dynamics for this potential is 
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where 0kc  are coupling strengths. 

Fig. 1. Sketch of an attractor for a PSS.
The dynamics evolves at a constant angular
velocity twt kk )(  on the black thick curve
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Example 2. B  Potential 

Define V  as 

 0))()((
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with edge weights ,0 ,kjkj aa   and where functions jkB ,  satisfy ,0)(, xB jk  

,00)(,  xxB jk  )()( ,, xBxB jkjk   (i.e. even function) and )0(0 , jkB . We 

here impose kjjk BB ,,  . For the functions ,, jkB  one may take one of the cases 

)(
2

1
)( 2

, xxB jk 





  Diffusion 1)(cosh)(,  xxB jk  

)(cos1)(, xxB jk   Kuramoto-type ))((coshlog)(, xxB jk   
. 

 

Explicitly, the coupling dynamics for this potential is 
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with coupling strengths .0kc  

2.3. Adaptive Mechanisms 

Here, adaptive mechanisms are additional interactions that modify the values of 
the local parameters. For this, the fixed and constant parameters k  are now 
time-dependent (i.e. 

  },,,,,,{ ,,1,1,0, qkqkkkkkk vuvuuw   

 ,)())(),(,),(),(),(),(( ,,1,1,0, ttvttvtttw kqkqkkkkk     

for nk ,,1 ) and each have their own dynamics depending only on state vari-

ables   and ,r  that is, for all ,k  0



k

kA
 with 0  a q22  dimensional vector 

of .0  

Time scale Adaptive Mechanisms 

For adaptation on ,k  we apply the same idea as developed in [8, 6] and so the 
explicit dynamics is 
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k k



 





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where 0
k

s  are susceptibility constants, technically playing the role of cou-

pling strengths but with the following interpretation: the smaller the value of 
k

s , 
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the easier it is for the PSS to modify the value of its ,k  and vice versa — the 

larger the value of ,
k

s  the harder it is for the PSS to modify the value of its .k  

Amplitude Adaptive Mechanisms 

Inspired by attractor-shaping mechanisms studied in [8, 6] we propose, for the 
PSS’s mkk ,0, ,  and mkv , , the following new adaptive mechanisms 
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where jkl ,  are the entries of L  and strictly positive ,
0,k

s  ,
,mk

s  and 
mkvs

,
 are 

susceptibility constants. 

3. NETWORK’S DYNAMICAL SYSTEM WITH TIME SCALE AND 

AMPLITUDE ADAPTATION 

Combining the individual components discussed in Section 2 yields the global 
dynamical system 
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Equations (4) describe the dynamics of n  PSS (i.e. local dynamics) coupled 
by the gradient of a coupling potential V  (i.e. coupling dynamics) with frequency 
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adaptation (i.e. time scale adaptive mechanisms) and attractor shaping (i.e. ampli-
tude adaptive mechanisms). For Equations (4), we have 1q  constants of motion, 
the existence of a consensual oscillatory state and the convergence towards it. 

12 q  Constants of Motion 

The functions 
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with ,),,( 0,0,10 n   ),,( ,,1 mnmm   , and ),,( ,,1 mnmm vvv   are constants 

of motion. Indeed, if ,)(0 t  ,)(tm  )(tvm  for qm ,,1  are orbits of Equa-

tions (4), then 
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by Lemma D.2 in [6]. If we further suppose that ),(
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(and this is true for both types of coupling potentials in Example 1), then Equa-

tions (4) admit another constant of motion, namely 
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Existence of a Consensual Oscillatory State 

Equations (4) admit a consensual oscillatory state. Indeed, for given common 
constants ,,,,,,,( ,,1,1,0, qcqcccccc vv    

 ),),(,())(),(),(( ccckkk tFtttrt    nk ,,1   (7) 

is a consensual orbit of Equations (4), with here cF  taking the value .c  Indeed, 

since points given by Equations (7) are extrema of the ,V  then the coupling dy-

namics and the adaptive time scale mechanisms are zero. Hence, )(tk  is a con-

stant taking value c  for all ,k  and ))(,())(),(( tFttrt cckk    solves each local 

dynamics and cancels all amplitude adaptive mechanisms for all .k  Therefore 
))(),(,),(),((),(( ,,1,1,0, tvttvtt qkqkkkk    are constants taking, respectively, 

common values ,,,,,,( ,,1,1,0, qcqcccc vv    for all .k  
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Convergence Towards a Consensual Oscillatory State 

If perturbations are introduced in Equations (7), we say that System (4) converges 
towards a consensual oscillatory state if we have the following limit 

 ktFtttrt ccckkk
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with constant .c  This limit raises two problems: determining the limit values 

c  and finding the conditions for convergence. 

Limit Values. If the constant of motion in Equation (6) exists and if Limit 

(8) holds, then, thanks to all the other constants of motion in Equations (5), we have 
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for .,,1 qm   Hence, the consensual values of c  are analytically expressed as 
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Convergence Conditions. To prove the convergence in Limit (8), one can 
linearize Equations (4) around a consensual oscillatory state. In general, the re-
sulting )24()24( qnqn   Jacobian depends explicitly on time (since evaluated 

on a consensual oscillatory state) and therefore Floquet exponents have to be 
computed. Note that for certain coupling potentials V  and assumptions on the 
coupling strengths and susceptibility constants, the Jacobian can be diagonalized 
in order to reduce the computation of Floquet exponents to n  systems, each of 
size .)24()24( qq   

We emphasize that numerous numerical simulations show that Limit (8) 
holds — and this for different topologies, coupling potential and values of coupling 
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strengths and susceptibility constants. For these numerical experiments, the cou-
pling strengths were set around one and susceptibility constants around .1.0  

REMARK: ADAPTATION 

Here, adaptation is to be interpreted as an asymptotic stability problem, which is 
directly related to the study of Limit (8). Indeed, for initially different PSS, if 
Limit (8) holds, then the adaptive mechanisms, with the help of the coupling dy-
namics, drive all local systems towards a consensual oscillatory state as defined in 
Equations (7). Once this state is reached, the coupling dynamics, as well as the 
adaptive mechanisms, may be removed — and all PSS will still continue to de-
liver the same signal with the same time scale (i.e. local system are no longer de-
pendent on their environment to produce common dynamical patterns). This is 
because the values k  have been permanently modified (i.e. .))(lim ck

t
t 


 If 

the adaptive mechanisms are not switched on initially, dynamical patterns may 
occur (due to the coupling dynamics) — but these are maintained because of the 
network interactions. If the interactions are removed, all PSS converge back to-
wards their own shape, which is determined by k  and their own time scale, 

given by .kw  

3.1. Miscellaneous Remark: Time Scale or Amplitude Adaptation Only 

We present here two alternatives of System (4). One alternative concerns ampli-
tude kr  adaptation only (Section 3.1.1), whereas the other deals with time scale 

k  adaptation only (Section 3.1.2). 

3.1.1. Amplitude Adaptation Only 

Consider Equations (4) with no phases k  (and hence no time scale adaptive 

mechanisms), and for each local PSS, let ttk )(  for all .k  The system becomes 

 ,)()())((

dynamicscoupling
dynamicslocal 

  
 r

r

V
ctFtFrr

k
kkkkk 


  

 ,
1

,0, 0, 



n

j
jjkk rls

k   ,,,1 nk   

 ),()(cos
,, r

r

V
mts

k
mk mk 


    ,,,1 nk   

 ,)()(sin

mechanismsadaptiveamplitude

, ,

  
 r

r

V
mtsv

k
vmk mk 


   .,,1 qm    (10) 

with .)(sin)(cos)(
1

,,0, 



q

m
mkmkkk mtvmttF   Note that for Equations (10) 

we still have 1q  constants of motion (as given in Equations (5)), the existence 
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of a consensual oscillatory state )),(())(),(( cckk tFttr   for ,,,1 nk   and 

the convergence towards it (i.e. 0})),(())(),(({lim 


cckk
t

tFttr  for all )k  as 

observed by numerous numerical simulations. 
A priori, Equations (10) describe a system where adaptation only occurs on 

the shape of the local attractors. However, by adequately setting the value of one 
or several constants of motion in Equations (5), one can cancel the asymptotic 
values of the corresponding coefficients. Thus, by changing the shape of the sig-
nal, one can change its frequency. 

3.1.2. Time scale Adaptation Only 

We here remark that PSS (i.e. belonging to the class of PR System) can be 
slightly modified in order to be seen as Ortho-Gradient (OG) systems. For a pre-
cise definition and examples, see Section 1.1.1 in [6]. Briefly, OG systems are 
characterized by dissipative dynamics that are orthogonal to their canonical — or 
here, oscillatory-dynamics. Let us consider the following network of PSS that are 
also OG systems, and where there is only time scale adaptation 

 ,)()())((

dynamicscoupling


 



k

kkkkkk
V

cFFr



  

 ,))(()(

dynamicslocal
   kkkkkk FrFr     ,,,1 nk    (11) 

 .)(

mechanismsadaptivescaletime


 


 
k

k
V

s
k 


  

As shown in Lemma 1.1 in [6], each local dynamics in Equations (11), taken 
individually, possesses its own attractor given by .� Networks of OG systems 
with adapting angular velocities have been studied. For the particular type of cou-
pling dynamics and time scale adaptive mechanisms (i.e. only on variables k ), 
one can directly apply Proposition 2.2 in [6] to show that System (11) converges 
towards a consensual oscillatory state with consensual value c  as in Equations 

(9). For this convergence, one needs to suppose that )(|1 V  for all   and to 

make a technical hypothesis on .V  

4. NUMERICAL SIMULATIONS 

We report two sets of numerical simulations, one with time scale and amplitude 
adaptation (refer to Section 4.1.) and one with amplitude adaptation only (refer to 
Section 4.2.). 

4.1. Time Scale and Amplitude Adaptation 

We consider 39 PSS as in Equations (4) with network topology as in Fig. 2,a). 

Here, each PSS is given by 



3

1
,,0, )(sin)(cos)(

m
mkmkkk mvmF   for 
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.39,,1k  The coupling strengths and susceptibility constants are ,1kc  

1.0
,,0,


mkmkkk vssss   for 39,,1k  and .3,2,1m  A Laplacian po-

tential, as in Example 1, is used for the coupling dynamics. The initial conditions 
))0(),0(),0(),0(),0(),0(),0(),0(),0(( 3,3,2,2,1,1,0, kkkkkkkkk vvv   are randomly 

uniformly drawn from  3][5,5][2,2][1,1][,] hhhhhhhh  

[5,5][7,7][3, hhhhhh   with .225.0h  These initial con-

ditions determine ,)0(kF  and finally, the initial conditions )0(kr  are randomly 

uniformly drawn from .[)0(,)0(] hFhF kk   

The resulting dynamics for the variables ,kr  k  and 2,kv  is shown in Fig. 3. 

Note that the variables kr  converge quickly towards a common signal, whereas 

Fig. 2. Two 39-vertex Network Topologies, “Manhattan” 2,a and Metro of Kyiv 2,b 

a b

Fig. 3. Time evolution of kr  (Fig. 3,a), ωk (Fig. 3,b) and 2,kv  (Fig. 3,c) for 39 PSS, 

interacting through the network in (Fig. 2,a) 

rk ωk

a b

State variables rk State variables ωk

vk,2 

c

State variables vk,2
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the variables k  and 2,kv  take more time to converge towards their asymptotic 

values. This is due to a relatively strong coupling strength compared to the sus-
ceptibility constants. For this setup, we have always observed convergence to-
wards a consensual oscillatory state. With the same setup, but with a network as 
in Fig. 2,b, convergence was not observed for all numerical experiments — as we 
report in Fig. 4,a–c. However, for the exact same initial conditions as in Fig. 4, 
if all adaptive mechanisms are switched off (i.e. all susceptibility constants are 
zero), the network is still able to synchronize as shown in Fig. 4,d. 

4.2. Amplitude Adaptation Only 

Two PSS with amplitude adaptation only as in Equations (10) are considered, 

with here 



3

1
,,0, )(sin)(cos)(

m
mkmkkk mtvmttF   for .2,1k  The coup-

ling strengths and susceptibility constants are ,2kc  
mkmkk vsss

,,0,   

5.0  for .2,1k  and .3,2,1m  The coupling potential is .)(
2

1
)( 2

21 rrrV   

State variables rk State variables ωk 
rk 

ωk

a b

State variables vk,2 State variables rk 
vk,2 

c d

Fig. 4. Time evolution of kr  (Fig. 4,a), k  (Fig. 4,b) and 2,kv  (Fig. 4,d) for 39 PSS, interact-

ing through the network in (Fig. 2,b). Time evolution of kr for 39 PSS with all their adaptive 
mechanisms switched off (i.e. all susceptibility constants are zero), interacting through the 
network in (Fig. 2,d) 
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The initial conditions ))0(),0()0(),0(),0(),0(( 3,23,23,13,10,20,1 vv   are ran-

domly uniformly drawn from ,8.4][2.5,8.4][2.3,8.2][2.1,8.0][2.1,8.0]   

,[8.6,2.7][2.5   and the others given by ))0(),0(),0(),0(( 2,12,11,11,1 vv   

)1,1,2,2(   and .)1,1,2,2())0(),0(),0(),0(( 2,22,21,21,2 vv   These initial 

conditions determine ,)0(kF  and finally, the initial conditions )0(kr  are randomly 

uniformly drawn from [2.0)0(,2.0)0(] 11  kFkF  for .2,1k  

The resulting dynamics for variables kr  and 1,k  is shown in Fig. 5. For 

]15,0[t , the coupling dynamics and the adaptive mechanisms are switched off 

and so each PSS generates its individual signal. Because of the choice of the ini-
tial conditions ))0(),0(( ,, mkmk v  ,2,1, mk  the asymptotic values are 

)0,0())0(),0()][( ,, mcmc v  for ,2,1m  and so both amplitudes )(1 tr  and )(2 tr  

converge towards )3(sin)3(cos)( 3,3, tvttF ccc    (i.e. Fourier series with mode 

)3(cos t  and )3(sin t  only). As a consequence, )(tFc  has a higher frequency than 

any of the two signals before interactions are switched on. This is observed in 
Fig. 5,a where the two signals have a larger period in the interval ]15,0[  than 

when they are close to .)(tFc  

5. CONCLUSION 

PSS form a suitable class of systems to investigate the interaction of multi-signal 
dynamics. Whereas adapting the time scale is a fairly straightforward procedure, 
shaping the attractor is more complicated. Nevertheless, our dynamical systems 
show that this can be implemented in a robust manner. The adaptive mechanisms 
depend solely on the state variables, and no pre-calculations or information on the 
curvature of the attractor is needed. 

Fig. 5. Time evolution of kr  (Fig. 5,a) and 1,k  (Fig. 5,b) for two PSS. Coupling dy-

namics and adaptive mechanisms are switched on a 15t  (black solid line). 

State variables rk 
rk

a b

State variables µk,1 
µk,1
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The asymptotic values from the resulting dynamics are analytically calcula-
ble. The network’s topology and the nature of the coupling potential itself directly 
influence the conditions for attaining a consensual oscillatory state. Determining 
basins of attraction with respect to connectivity and coupling functions remains an 
open question. 

Apart from investigating the resulting dynamics for directed network 
connections with time-dependent edges, prospective works would also include 
merging two adapting PSS communities — one belonging to the class of systems 
given by Equations (4), and the other described by Systems (10). 

APPENDIX A: CONVERGENCE TOWARDS COMPACT SET   

The convergence towards the compact set }0)(|),{( 1   Frrk   fol-

lows from Lyapunov’s second method with Lyapunov function 

2))((
2

1
),(  FrrL  . By construction, we have that  rr |),{( 1    

.}0)(  L  Computing the time derivative 

 ),(|),( rrL   rFrFFr  ))(()())((   

 ))())((())(()())(( wFFrFrwFFr   = .))(( 2Fr   

Hence, ),(|),( rrL   for all  \)(),( 1 r . 
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