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Abstract. The paper describes the method for automatic metagraph 
visualization based on the principles of force-directed algorithms. The criteria 
under which the final image is understandable for users and corresponds to a 
predetermined metagraph are defined. This approach defines the set of the rules 
for forces between metagraph nodes depending on the types of the nodes 
between which the forces act. The analogue of Venn diagram is used to 
visualize the metagraph nodes. The method was tested on random metagraphs 
with up to 60 vertices and up to 25 metavertices. 

Keywords: metagraph, visualization, layout, metavertex, graphical 
representation, graph. 

1 Introduction 

Nowadays information visualization tools are actively developing. These tools are 
converting the data into a form that allows using an ability to analyze visual images. 
The methods of graphical analysis can increase efficiency in decision support process. 
To visualize the interrelated data it is better to use graphs. But there are a lot of cases 
when common graph theory cannot be used to visualize data correctly. For example, 
we cannot describe and visualize vertices, nested vertices and relation with them in 
graph terms. In these cases the metagraphs can be used. 

Metagraph is a graphical construct specified by its generating set and the set 
of edges defined on the generating set [4]. It can be used to model rule bases, data 
bases, model bases, business processes, etc.  

There are many visualization algorithms for small (up to 200 nodes) and 



large (thousands of nodes) graphs. Visualization algorithms for small size graphs 
based on the physical analogues or force-directed algorithms are the simplest. They 
can be used to draw graphs of any kind. Images created with these algorithms meet 
the requirements of aesthetics criteria: they contain few intersections of edges and 
symmetry [3]. This group includes force algorithms [6, 8], algorithms that use the 
action of gravity [7], magnetic forces [14], algorithms based on the minimization of 
energy [12] and others. Visualization of large graphs is more complex problem. To 
solve this problem other approaches are needed. Large graphs visualization requires 
algorithms that use graph clusterization, graph GC-filtration [10], forces 
approximation [3], multi-scale methods [9, 10, 15], topological feature-based method 
[1], etc. These approaches are effective for graphs, but are unsuitable for metagraph 
because of different structure. Unlike graph visualization there are no well-known 
algorithms for metagraph visualization. In this paper we propose the method for 
automatic metagraph visualization. 

2 State of the art and background  

As mentioned above metagraph is specified by its generating set and the set of edges 
defined on the generating set [4]. In [2], by analogy with the hypergraph theory two 
components such as metavertices set and metaedges set are added to metagraph 
description. To solve the problem of metagraph visualization we decide to extend the 
metagraph definition given in [4] through the vertices set and metavertices set 
consideration separately. The set of edges contains all metagraph edges, no matter 
what types of nodes they connect. Suggested metagraph definition is described below. 
Definition 1. Metagraph is a construct V,M,ES  , where  

 Vr ,N|rvV 1 - set of metagraph vertices, 

VN  - number of metagraph vertices;  

 Mq ,N|qmM 1  - set of metavertices, MN  - number of metavertices;  

 Eh ,N|heE 1  - set of edges, EN  - number of metagraph edges. 

Metavertex  
qmrrq ,NrV,|vvm 1  is a vertex which includes some 

other vertices which called inner vertices for this metavertex,
qmN is a number of 

vertices included in  qm . 

Metagraph node )( MVmv   is a vertex or a metavertex. 

Metagraph edge is oriented pair of vertices  inouth ,mvmve  , where outmv  - 

tail, inmv  - head. 

Graph visualization algorithms don’t have mechanism that allows including 
vertices in other vertices. If we apply these algorithms to metagraph there are layout 
problems. Suppose given metagraph 1S  (Figure 1): 
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where  321 ,vvm  ,  542 ,vvm  ,  9876533 ,v,v,v,v,vvm  ,  11104 ,vvm  , 

 111 ,vme  ,  122 ,vme  ,  353 ,vve  ,  264 ,vve  ,  6105 ,vve  ,  346 ,mme  , 

 797 ,vve  . 

Have a look at the ways to use graph visualization algorithm for metagraph. 
The first way is to interpret all metagraph nodes as graph vertices. In this case the 
metavertices positions and their inner vertices positions are computed independently. 
Therefore inner vertices of metavertex may be positioned at a significant distance 
from each other. This leads to a loss of the metavertex form.  

The second way is to take into account only vertices and then lead round 
inner vertices to visualize metavertex. In this case it isn’t guaranteed that only inner 
vertices are located in metavertex. Also incident to metavertex edges cannot be 
determined. Figure 2 shows the wrong location metagraph nodes when applied the 
algorithm for graph visualization. Wrong located nodes are marked grey. Also there 
are no edges between metavertices. 

 
Fig. 1. Correctly positioned metagraph 1S  

 

Fig. 2. Incorrectly positioned metagraph 1S  



3 Metagraph layout criteria 

Some basic requirements for graphical representation of the graph are described in 
[3, 6-8, 14]. They are the minimum number of edge crossings, approximately equal 
edges length, the display of symmetries existing in the graph, etc. These requirements 
are also valid for metagraph. But correct location of metavertices and their shape are 
more important for metagraph drawing. Proposed layout criteria are described below. 

Each vertex rv  and metavertex qm  has a 

position  
rrr vvv ,yxp  ,  

qqq mmm ,yxp  .  
VNvvvV p,,ppP 

21
  is the vector of 

vertices positions,  
MNmmmM p,,ppP 

21
  is the vector of metavertices positions. 

These vectors fully determine the locations of nodes for visualization. The distance 

between nodes is calculated as distance between points: 
jih mvmve ppl  , where 

imvp , jmvp  are the designation of the i-th and j-th nodes coordinates 

correspondently. 
Definition 2. Graphical representation of the metavertex is the geometric 

figure qmF , with position 
qmp  that corresponds to the center of the figure. 

 Definition 3. Graphical representation of the edge is the curve 
heF  defined 

between the coordinates of the head and tail node. 
Definition 4. Graphical representation of the metagraph is the set 

EMVS ,F,FPW  , where  qmM FF   is the set of metavertex figures,  
heE FF   

is the set of edges curves. 
We consider graphical representation is correct, if mapping SWS   is 

isomorphic. We propose metagraph layout criteria, which consists of three 
requirements: 

1. Coordinates of vertices are not equal: 
ji vv ppjj:ii,  . Metavertices 

coordinates can be equal in the presence of common inner vertices. 
2. The only inner vertices coordinates are located in metavertex figure 

qmF  

Metavertex figure 
qmF contains the only inner vertices of the metavertex qm :  

qr mvqr:r Fpmvv  , 
qr mvqrr Fpm:vv  . 

3. Metavertices figures without the common vertices do not intersect: 


kj mmkj FFmmkj :, . 

4 The method for visualization 

Problem statement for metagraph visualization.  
 



Given: 

1. Metagraph V,M,ES  . 

2. VP , MP  - start location of vertices and metavertices. 

3. Metagraph layout criteria. 
4. Rectangular region U. The result image should be placed in U. 

Find: SW . 

To solve this problem it is necessary to determine: the placement of nodes that belong 
to metavertices and do not belong to them, location of metavertices that contain 
common vertices, relative position of vertices in metavertex figure, metavertex 
figures and curves 

heF .  

The proposed method is based on the Fruchterman and Reingold 
visualization algorithm [8]. Metagraph is represented as a system of objects, 
connected by springs according to certain rules. Each spring acts on the pair of nodes 
with the force of attraction or repulsion. Vertices move under the influence of the sum 
of these forces. The algorithm stops when the system reaches a point of equilibrium. 
The nodes are placed inside the rectangular area U.  

With each iteration nodes move at a distance )(t  in the direction of the total 

force acting on the node. Function )(t  depends on the temperature and decreases. 

Repulsive force acts between each pair of nodes, except pairs metavertex and its 
internal vertex. 

 The attraction force acts between: 

─ adjacent nodes; 
─ metavertices and their inner vertices (this force provides the location of inner 

vertices in metavertex shape and vertices movement for the metavertex); 
─ all vertices in metavertex (this force provides a smaller area of the metavertex 

figure). 

Then, the repulsive force induced by imv and acting on jmv  is defined as: 

   
ji

ji

p
pp

l
Krjif

mvmv

ijrep 0

2

,


  , (1) 

if ji  ,   0, jifrep . 

Vector 
ji

p0  is the direction vector from 
jmvp  to 

imvp . The optimal length l  

for an edge of metagraph is calculated as a function of allocation area and number of 
nodes: 

 
MV NN

Uarea
l




)(
. (2) 

 The attraction force induced by imv  and acting on jmv  is defined as:  



   
ij

ji
p

l

pp
Kajif

mvmv

ijattr 0

2

,


 , (3) 

if ji  , 0ijattrf . 

Also the force of gravity attracts every node to the center of metagraph 
similar to the algorithm [7]. 

    
Bp

Bp
K

mv
iF

i

i

mv

mv
grav

i
gr














2

deg
1 , (4) 

where 
 mv

MV
p

NN
B

1
 - metagraph center, 

 imvdeg  - node degree or the number of edges connected to it,  

 Bp
imv   - the direction to the center of the metagraph.  

Force of gravity keeps weakly connected nodes closer to whole metagraph. 
Its value depends on the node degree, so the nodes with many incoming or outgoing 
edges are located closer to the center. The presence of the force of gravity makes the 
overall arrangement more circular. 

Then the total force acting on the node imv  is calculated by the following 

formula: 

       iFjifjifiF gr
j

attr
j

repspring   ,, . 

The heuristics coefficients. The forces values depend on the coefficients 

ijKr  and ijKa . The coefficients depend on the type of each node and their 

relationship in a pair imv and jmv . They can be presented in two matrices: the 

attraction coefficient matrix and the repulsion coefficient matrix. 
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Rows and columns of both matrices correspond to metagraph nodes. There 
are no repulsion force between pairs metavertex and inner vertex, so 0uvKr . 

Pairs qji mmvmv ,  (inner vertex and inner vertex) have coefficient of 

repulsion:  

innerAvgKr  . 



innerAvg  is the average number of inner vertices in metavertices. The 

distances between inner vertices in metavertex should be approximately equal. 
Other pairs have repulsion coefficient: 

2
ji mvmv

ij

WW
Kr


  , 

where 
imvW  is the weight coefficient  











MmmvN

Vmv
W

qim

i

mv
q

i ,

,1

. 

Thus, if some vertices imv and jmv  do not belong to any metavertex, then 

1ijKr . If imv or jmv  is the metavertex, repulsion force depends on its metavertex 

weight coefficient. Metavertex weight coefficient is a number of vertices included in 
it. If imv and jmv  are metavertices repulsion force depends on the average value of 

weight coefficients. Distance between metavertices with big number of inner vertices 
is larger.  

If Mmv j   is the metavertex qm  and qi mmv   then attraction coefficient 

is defined by the formula: 

 
 
2

deg
1

1deg

i

qm

ij mv

mN
Ka q




 . 

If qji mmvmv ,  is the inner vertices for metavertex qm : 

 
2

deg
1 i

inner
ij mv

Avg
Ka


 . 

If the some other nodes imv and jmv are connected by an edge: 

 i

mvmv

ij mv

WW
Ka ji

deg2 




. 

If there is no edge between other nodes imv and jmv : 0ijKa . 

Nodes with high degree move slower because of the expression 
  2/deg1 imv  is in the denominator. 

Coefficients matrices are normalized relative to the maximum value. 



Therefore, elements in matrices less than or equal to one. 
The algorithm of the method realization. The parameter   is the accuracy 

of finding the equilibrium point; stop – the boolean parameter for determining the end 
of the algorithm, it is set as true in first iteration. 

The proposed method for metagraph visualization consists of the following 
steps: 
Step 1: Calculate the optimal edge length using the formula (2). 
Step 2: Set the temperature t as maximum temperature. 
Step 3: Calculate repulsion matrix and attraction matrix. 
Step 4: Do steps 4.1 - 4.2 for each pair of nodes imv and jmv  

Step 4.1: Calculate the sum of attraction forces (1), repulsion forces (3) and gravity 
force (4). 

Step 4.2: If )(uFspring or reached the maximum iterations number, stop = false. 

Step 5: If stop = true go to step 9. 
Step 6: Do steps 6.1 - 6.4 for each node. 

Step 6.1: Calculate new node position  
)(

)(

uF

uF
tδpp

spring

spring
mvmv  . 

Step 6.2: Prevent mvp  from being displaced outside frame U. 

Step 7: Reduce the temperature. 
Step 8: stop = true, go to step 4. 
Step 9: Find 

qmF  for each metavertex and set the metavertex position as the center of 

qmF . 

Step 10: Find 
heF  for each edge. 

In the suggested method the minimum convex hull was chosen as an optimal 
metavertices figure. To find convex hull Jarvis, Graham and Chan algorithms [5] can 
be used. The edges can be set as straight line connecting node shapes. In this case 
there are multiple intersections of edges and intersections metavertex figures. 
Therefore, it is necessary to calculate the shape of the edges as Bézier curve or B-
spline [11, 13]. 

5 Experiment and results 

The proposed method was tested on random metagraphs with up to 60 
vertices and up to 25 metavertices and each metavertex had less than five 
intersections for any of its vertex. The tests were made on PC with Intel(R) Core(TM) 
i3 CPU 2x2.4 GHz, 3 Gb RAM.  

It was observed that depending on the initial location of the nodes the result 
image was different. The time required to obtain a satisfactory image depends on the 
metavertices number and the number of inner vertices. The time is reduced with the 
improvement of the initial location of the nodes. Figure 3 illustrates the average time 
needed for random metagraph visualization.  



 

Fig. 3. Average time needed for random metagraph visualization 

Visualization results for random metagraphs are presented in Figures 4, 5. 

 

Fig. 4. Metagraph 13,10,20  EMVS  is drawn in 1.9s 

 

Fig. 5. Metagraph 34,20,50  EMVS  is drawn in 10.3s 



6 Conclusion 

The proposed method allows visualizing medium size metagraphs. Also there is a 
limit on the number of metavertices intersections. This can be explained by the fact 
that the Venn diagram analogue has been used. It could be difficult to discern 
metavertices if some of them are included in other and intersect. There were 
conducted several experiments that showed the usability of the proposed method.  

In future revision of the method it is planned to work on the number of edges 
intersections minimization, a new model of multiple metavertex intersections 
determination, the occupation area minimization.  
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