(КПІ ім. Ігоря Сікорського, 2025) Антонов, Данііл Дмитрович; Кот, Анатолій Тарасович
Дипломна робота: 84 с., 10 рис., 9 табл., 14 посилань.
У дипломній роботі досліджено методи й архітектури систем автоматичного розпізнавання мовлення (ASR), які дозволяють здійснювати точне перетворення аудіоінформації у текстовий формат. Проведено порівняльний аналіз класичних (HMM, GMM) і сучасних (RNN, Transformer, CTC) підходів. Описано принципи екстракції ознак (MFCC, лог-мел-спектрограми), оцінено вплив шумів і мовних варіацій на точність розпізнавання. Реалізовано прототип системи на базі моделей Whisper та Wav2Vec2, проведено тестування на реальних аудіоданих з використанням метрик WER та CER. Зроблено функціонально-вартісний аналіз і обґрунтовано вибір оптимального рішення для практичної інтеграції.