Магістерські роботи (ФЕС)
Постійне посилання зібрання
Переглянути
Перегляд Магістерські роботи (ФЕС) за Автор "Сафронова, Олена Олегівна"
Зараз показуємо 1 - 1 з 1
Результатів на сторінці
Налаштування сортування
Документ Відкритий доступ Теплогідравлічні характеристики парогенератора ядерної енергетичної установки ГТ-МГР для виробництва електроенергії та водню(2018) Сафронова, Олена Олегівна; Доник, Тетяна ВасилівнаМагістерська дисертація складається зі вступу, трьох розділів, висновків. Загальний об’єм дисертації становить 101 сторінку, з них 88 сторінок основного тексту, 31 рисунок, 4 таблиці, список джерел з 37 найменувань. Актуальність теми. Розвиток ядерної енергетики в даний час направлено на створення АЕС на базі екологічно чистих реакторів 4-го покоління. Однією з можливих концепцій таких реакторів є модульний гелієвий реактор, в якому в якості теплоносія використовується гелій. В даний час розробляються перспективні проекти створення газоохолоджувальних ЯЕУ 4-го покоління, які поєднують в собі виробництво електроенергії та водню методом високотемпературного електролізу пари, що здійснюється в високотемпературних парогенераторах. Найбільший інтерес у питанні моделювання парогенератора ЯЕУ представляє собою течія киплячої рідини в вертикальному каналі довільної форми. Тому пошук максимально можливої компактності конструкції при достатньому рівні міцності та високих теплогідравлічних характеристиках є актуальною проблемою. Зв'язок роботи з науковими програмами, планами, темами. Науково-дослідна робота по темі дисертації проводилася по програмі спільних робіт з «Відділенням Цільової Підготовки «КПІ ім. Ігоря Сікорського» для НАНУ за напрямком №1.7.1.АХ.2 «Термогазодинаміка турбулентних потоків в обертових каналах високотемпературних енергетичних установок» від 02.01.2018 р., реєстраційний номер 0118Г000006. Мета даної роботи − дослідження теплогідравлічних та геометричних параметрів парогенератора ГТ-МГР для виробництва електроенергії та водню, а також моделювання процесу теплообміну при кипінні рідини в вертикальній трубі. Досягнення мети передбачає виконання таких завдань: – Розробити математичну модель високотемпературного парогенератора ЯЕУ четвертого покоління з використанням гелію в якості первинного теплоносія з гвинтовими закрученими (змієвиковими) трубами. – Змоделювати процес теплообміну при кипінні рідини. – Дослідити структуру потоку та характерні режими теплообміну в вертикальній трубі. – Реалізувати п'ять різних методів розрахунку теплообміну при кипінні у вертикальній трубі, заснованих на експериментальних кореляційних залежностях. Об’єктом дослідження є теплогідравлічні процеси в парогенераторі ядерної енергетичної установки ГТ-МГР з гелієвим реактором для виробництва електроенергії та водню. Предметом дослідження є закономірності та показники впливу на теплообмін і гідродинаміку від температури і тиску при кипінні рідини в теплообмінному елементі парогенератора. Методи дослідження: При досліджуванні використовувався метод математичного моделювання за допомогою спеціалізованої програми «STEAMG» для теплового та гідравлічного розрахунку парогенератора. Наукова новизна одержаних автором результатів полягає у наступному: 1. За допомогою спеціалізованої програми «STEAMG» було змодельовано процес теплообміну при кипінні рідини в вертикальній трубі. 2. Було визначено найбільш коректний з фізичної точки зору метод Чена для розрахунку теплообміну при русі двофазного потоку в каналі довільної форми. 3. Було отримано, що з ростом діаметра зовнішнього кожуха парогенератора в діапазоні D = 2,2…3,6 м відносні втрати тиску в холодному тракті парогенератора зростають на 7 % і знижуються зі збільшенням числа труб в трубному пучку на 11 %. 4. Відносні втрати тиску в гарячому тракті парогенератора невеликі і зменшуються з ростом діаметра зовнішнього кожуха і збільшенням числа труб в трубному пучку на 5 %. 5. З ростом діаметра зовнішнього кожуха парогенератора маса і об’єм теплопередавальних поверхонь парогенератора зростають на 10 % через зниження середньої швидкості первинного теплоносія, зниження значень коефіцієнта тепловіддачі і зростання потрібної довжини труб парогенератора. 6. В гарячому тракті значення коефіцієнта тепловіддачі при ηT = 0,925 на 15 % вище, ніж при ηT = 0,85. Практичне значення даної роботи полягає в отриманні початкових даних для створення компактних високотемпературних теплообмінників ядерної енергетичної установки з гелієвим реактором по виробництву електроенергії та водню. Апробація результатів роботи. Основні положення і результати роботи доповідались і обговорювались на конференції: – ХVІ Науково практична конференція студентів аспірантів та молодих вчених «Теоретичні і прикладні проблеми фізики, математики та інформатики.», м. Київ, 2018 р