Інженерно-хімічний факультет (ІХФ)
Постійне посилання на фонд
Переглянути
Перегляд Інженерно-хімічний факультет (ІХФ) за Автор "Anish, Khan"
Зараз показуємо 1 - 2 з 2
Результатів на сторінці
Налаштування сортування
Документ Відкритий доступ Classical Thermoset Epoxy Composites for Structural Purposes: Designing, Preparation, Properties and Applications(Materials Research Forum LLC, 2018) Kolosov, Aleksandr; Kolosova, Olena; Vanin, Volodymyr; Anish, KhanClassical thermosetting epoxy composites for structural purpose, along with nanocomposites, are now widely used in various industries. An epoxy matrix is considered as a dominant polymer matrix in the design of such composites due to its study, high performance and wide commercial use. The optimization of processes and design and technological parameters of the equipment for their molding and processing of polymer composite materials (PCMs), as well as the creation of PCMs with a predetermined set of properties, remains an urgent task nowadays. An equally important problems are the production of defect-free and monolithic structures of such composites with increasing the productivity of their molding. Particular attention is paid to low-frequency ultrasonic as a basic method of physical modification of liquid epoxy media and intensification the processes of capillary impregnation and "wet" winding.Документ Відкритий доступ Ultrasonic Тrеаtment in the Production of Classical Composites and Carbon Nanocomposites(Woodhead Publishing (imprint of Elsevier), 2019) Kolosov, Aleksandr; Kolosova, Olena; Vanin, Volodymyr; Anish, KhanLow-frequency ultrasonic treatment in the production of classical composites and carbon nanocomposites is one of the dominant methods used in the preparation of such kinds of composites. For example, ultrasonic is a basic method of physical modification of liquid epoxy media, as well as to a method that intensifies the processes of sonification of liquid epoxy media, capillary impregnation, "wet" winding and dosed application. This method also promotes the production of defect-free and monolithic structures of such reinforced composites. The influence of ultrasonic treatment regimes on the technological and operational properties of epoxy polymers is investigated, as well as the strengthening of reinforced composites based on them. Technical means of ultrasonic cavitation treatment for classical epoxy binders and polymer composite materials based on them are investigated. Ultrasonic dispersing of nanoparticles in solutions and liquid polymeric media is studied. Aspects of preparation of nanosuspensions for the production of polymeric nanocomposites with ultrasonic treatment as also the production of nanomodified epoxy compositions and prepregs based on them are described. Ultrasonic treatment in the production of graphene and graphene aerogels is analyzed. Epoxy composites based on graphene aerogels with exceptional operational properties are studied.