Матеріали конференцій, семінарів і т.п. (ММАД)
Постійне посилання зібрання
У зібранні розміщено матеріали, опубліковані у збірниках, що видані за результатами конференцій, семінарів, конгресів, круглих столів тощо.
Переглянути
Перегляд Матеріали конференцій, семінарів і т.п. (ММАД) за Автор "Drozd, Sofiia"
Зараз показуємо 1 - 2 з 2
Результатів на сторінці
Налаштування сортування
Документ Відкритий доступ Assessing Ukrainian Territory Suitability for Solar Power Station Placement Using Satellite Data on Climate and Topography(IEEE, 2023) Kussul, Nataliia; Drozd, SofiiaThis research aims to assess the suitability of Ukrainian territories for the placement of solar power stations using satellite data on climate and topographic characteristics. The suitability of the territories was determined using a weighted sum method, incorporating input parameters from climate maps sourced from ERA5- Land dataset, which included data on annual global horizontal solar irradiation (GHI), accumulated annual temperature above 25°C, average annual wind speed, and maps of accumulated annual precipitation. Additionally, topographic maps from the SRTM dataset were utilized, providing information on elevations, slopes, and terrain shading. Furthermore, data from Wikimapia on the locations of existing major solar power stations in Ukraine were used to verify the placement optimization. The results of the study revealed that the largest portion of the country (over 48%) exhibits moderate suitability scores (0.3-0.4). Favorable territories (suitability score above 0.3) outweigh unsuitable ones for solar power stations. The southern regions and the Crimean Peninsula offer the most favorable conditions for the placement of solar farms. Overall, all analyzed major solar power stations in Ukraine were located in optimal territories. Furthermore, it was found that certain regions such as Odessa, Poltava, Kharkiv, Zaporizhia, Dnipropetrovsk, Donetsk, and Luhansk demonstrate good suitability scores (0.3-0.4), yet they are not fully exploited. These regions hold significant potential for the future construction of powerful and productive solar power stations.Документ Відкритий доступ Fusion of very high and moderate spatial resolution satellite data for detection and mapping of damages in agricultural fields(IEEE, 2023) Kussul, Natallia; Drozd, Sofiia; Skakun, Sergii; Duncan, Erik; Becker-Reshef, InbalThe war in Ukraine has resulted in significant losses in the agricultural sector due to damages to farmlands posing a threat to global food security. To restore the prosperity of the agricultural sector it is essential to detect and assess damages in agricultural fields and monitor their evolution. Commercial satellite data at very high spatial resolution $(\lt3 \mathrm{m})$ such as sub-meter imagery acquired by Maxar’s WorldView and Planet Labs’ SkySat platforms allow detection and mapping of artillery craters at fine scale. However, the frequency of acquisition and geographical coverage of this type of data is limited and may be quite low, e.g., 1-2 scenes per agriculture season. With the aim to continuously monitor the state of the fields over large areas in Ukraine we must compliment the analysis with satellite data at lower spatial resolution, e.g., daily PlanetScope at $\sim 3-\mathrm{m}$ and 10-m Sentinel-2/MSI. Here, we propose a data fusion approach to monitor artillery craters in agricultural fields using combination of satellite images acquired at different spatial and temporal resolution. Specifically, we use a single-date SkySat image at 0.5-m resolution with crater detection using previously developed deep learning approach along with multi-temporal data acquired by PlanetScope and Sentinel-2 images. For the latter, we detect anomalies of refelecant signal in the blue and green spectral bands and the Normalized Difference Water Index (NDWI). This approach is applied to a test area of 8,800 ha in Donetsk oblast. We found that with PlanetScope images at 3-m we were able to identify 202 ha of craters, or 63% of those in SkySat imagery; with Sentinel-2 at 10-m we detected 165 ha (or 51%) of craters. Craters with an area smaller than $100 \mathrm{m}{2}$ were poorly detected. By analyzing anomalies in multi-temporal PlanetScope and Sentinel-2 images, we were able to identify craters that were not detected in SkySat data highlighting the importance of temporal component in the data. Furthermore, with daily PlanetScope data combined with Sentinel-2 data (3-5 days), we were able to estimate the dates of crater appearances and analyze the dynamics of craters and their evolution.