Матеріали конференцій, семінарів і т.п. (ММАД)
Постійне посилання зібрання
У зібранні розміщено матеріали, опубліковані у збірниках, що видані за результатами конференцій, семінарів, конгресів, круглих столів тощо.
Переглянути
Перегляд Матеріали конференцій, семінарів і т.п. (ММАД) за Автор "Drozd, Sofiia"
Зараз показуємо 1 - 4 з 4
Результатів на сторінці
Налаштування сортування
Документ Відкритий доступ Assessing Ukraine`s solar power potential: a comprehensive analysis using satellite data and fuzzy logic(Assembled by Conference Management Services, Inc., 2024) Drozd, Sofiia; Kussul, NataliiaThis study evaluates the land suitability for the placement of solar power stations in Ukraine, utilizing satellite data on climate factors (Global Horizontal Irradiance, temperature, precipitation, wind speed), topography (elevation, slope), and land use. Fuzzy logic, pairwise comparisons, and weighted linear combination methods were utilized to develop a high-resolution (100 m) land suitability map for the installation of solar power plants. The results show that more than half (54.5%) of Ukraine’s territory has a high suitability score (exceeding 0.65) for solar power stations, particularly in the southern and eastern regions, such as Odessa, Kherson, Mykolaiv, Zaporizhia, Donetsk, and Crimea. Only 10.68% of the land has a suitability score less than 0.6, and 18.18% is deemed absolutely unsuitable (with a score of 0, due to land cover), primarily located in the western and northern parts of the country. This indicates that Ukraine has significant potential for green energy production. The study provides an effective and useful tool for decision-making on the optimal location of solar power facilities in Ukraine.Документ Відкритий доступ Assessing Ukrainian Territory Suitability for Solar Power Station Placement Using Satellite Data on Climate and Topography(IEEE, 2023) Kussul, Nataliia; Drozd, SofiiaThis research aims to assess the suitability of Ukrainian territories for the placement of solar power stations using satellite data on climate and topographic characteristics. The suitability of the territories was determined using a weighted sum method, incorporating input parameters from climate maps sourced from ERA5- Land dataset, which included data on annual global horizontal solar irradiation (GHI), accumulated annual temperature above 25°C, average annual wind speed, and maps of accumulated annual precipitation. Additionally, topographic maps from the SRTM dataset were utilized, providing information on elevations, slopes, and terrain shading. Furthermore, data from Wikimapia on the locations of existing major solar power stations in Ukraine were used to verify the placement optimization. The results of the study revealed that the largest portion of the country (over 48%) exhibits moderate suitability scores (0.3-0.4). Favorable territories (suitability score above 0.3) outweigh unsuitable ones for solar power stations. The southern regions and the Crimean Peninsula offer the most favorable conditions for the placement of solar farms. Overall, all analyzed major solar power stations in Ukraine were located in optimal territories. Furthermore, it was found that certain regions such as Odessa, Poltava, Kharkiv, Zaporizhia, Dnipropetrovsk, Donetsk, and Luhansk demonstrate good suitability scores (0.3-0.4), yet they are not fully exploited. These regions hold significant potential for the future construction of powerful and productive solar power stations.Документ Відкритий доступ Detection of War-Caused Agricultural Field Damages Using Sentinel-2 Satellite Data with Machine Learning and Anomaly Detection(ACM Special Interested Group on Applied Computing (SIGAPP), 2024) Drozd, SofiiaThis research aims to detect war-caused damages on agricultural fields in Ukraine using Sentinel-2 satellite data. To achieve this, a Random Forest-based classification and an anomaly detection method deployed in the GEE cloud environment are applied. Two spectral bands - blue (B2) and green (B3) and two vegetation indices - NDVI and GCI - were used as input parameters. According to the results, the f1-score of classification reach 0.9. Using the developed methodology, more than 1.5 millions ha of fields were identified as damaged during the period of 2022--2023.Документ Відкритий доступ Fusion of very high and moderate spatial resolution satellite data for detection and mapping of damages in agricultural fields(IEEE, 2023) Kussul, Natallia; Drozd, Sofiia; Skakun, Sergii; Duncan, Erik; Becker-Reshef, InbalThe war in Ukraine has resulted in significant losses in the agricultural sector due to damages to farmlands posing a threat to global food security. To restore the prosperity of the agricultural sector it is essential to detect and assess damages in agricultural fields and monitor their evolution. Commercial satellite data at very high spatial resolution $(\lt3 \mathrm{m})$ such as sub-meter imagery acquired by Maxar’s WorldView and Planet Labs’ SkySat platforms allow detection and mapping of artillery craters at fine scale. However, the frequency of acquisition and geographical coverage of this type of data is limited and may be quite low, e.g., 1-2 scenes per agriculture season. With the aim to continuously monitor the state of the fields over large areas in Ukraine we must compliment the analysis with satellite data at lower spatial resolution, e.g., daily PlanetScope at $\sim 3-\mathrm{m}$ and 10-m Sentinel-2/MSI. Here, we propose a data fusion approach to monitor artillery craters in agricultural fields using combination of satellite images acquired at different spatial and temporal resolution. Specifically, we use a single-date SkySat image at 0.5-m resolution with crater detection using previously developed deep learning approach along with multi-temporal data acquired by PlanetScope and Sentinel-2 images. For the latter, we detect anomalies of refelecant signal in the blue and green spectral bands and the Normalized Difference Water Index (NDWI). This approach is applied to a test area of 8,800 ha in Donetsk oblast. We found that with PlanetScope images at 3-m we were able to identify 202 ha of craters, or 63% of those in SkySat imagery; with Sentinel-2 at 10-m we detected 165 ha (or 51%) of craters. Craters with an area smaller than $100 \mathrm{m}{2}$ were poorly detected. By analyzing anomalies in multi-temporal PlanetScope and Sentinel-2 images, we were able to identify craters that were not detected in SkySat data highlighting the importance of temporal component in the data. Furthermore, with daily PlanetScope data combined with Sentinel-2 data (3-5 days), we were able to estimate the dates of crater appearances and analyze the dynamics of craters and their evolution.