Кафедра системного програмування і спеціалізованих комп'ютерних систем (СПСКС)
Постійне посилання на фонд
Переглянути
Перегляд Кафедра системного програмування і спеціалізованих комп'ютерних систем (СПСКС) за Автор "Абдураімов, Таір Заірович"
Зараз показуємо 1 - 2 з 2
Результатів на сторінці
Налаштування сортування
Документ Відкритий доступ Алгоритм глибинного аналізу даних для задачі класифікації на основі штучного бджолиного рою(КПІ ім. Ігоря Сікорського, 2020-12) Абдураімов, Таір Заірович; Зорін, ЮрійАктуальність теми. Оскільки розмір цифрової інформації зростає в геометричній прогресії, потрібно витягувати великі обсяги необроблених даних. На сьогоднішній день існує кілька методів налаштування та обробки даних відповідно до наших потреб. Найбільш поширеним методом є використання інтелектуального аналізу даних (Data Mining). Data Mining застосовується для вилучення неявних, дійсних та потенційно корисних знань із великих обсягів необроблених даних. Видобуті знання повинні бути точними, читабельними та легкими для розуміння. Крім того, процес видобутку даних також називають процесом виявлення знань, який використовувався в більшості нових міждисциплінарних областей, таких як бази даних, статистика штучного інтелекту, візуалізація, паралельні обчислення та інші галузі. Одним із нових і надзвичайно потужних алгоритмів, що використовуються в Data Mining, є еволюційні алгоритми та підходи, що базуються на рії, такі як мурашиний алгоритм та оптимізація рою частинок. В даній роботі запропоновано використати для інтелектуального аналізу даних досить нову ідею алгоритма бджолиного рою для широко розповсюдженої задачі класифікації. Мета роботи: покращення результатів класифікації даних в сенсі в точності і сталості за допомогою алгоритму інтелектуального аналізу даних на основі алгоритму бджолиного рою. Об’єктом дослідження є процес інтелектуального аналізу даних для задачі класифікації. Предметом дослідження є використання алгоритму бджолиного рою для інтелектуального аналізу даних. Методи дослідження. Використовуються методи параметричного дослідження евристичних алгоритмів, а також методи порівняльного аналізу для алгоритмів інтелектуального аналізу даних. Наукова новизна одержаних результатів роботи полягає в тому, що після проведеного аналізу існуючих рішень, запропоновано використати алгоритм бджолиного рою для задачі класифікації, точність і сталість якого перевищує показники існуючих класифікаторів. Практичне значення одержаних результатів полягає в тому, що розроблений алгоритм показує кращі результати в сенсі точності і сталості в порівнянні з іншими алгоритмами інтелектуального аналізу даних. Тобто адаптація бджолиного алгоритму може розглядатися як корисне та точне рішення для такої важливої проблеми, як задача класифікації даних. Апробація роботи. Основні положення й результати роботи були представлені та обговорювались на науковій конференції магістрантів та аспірантів «Прикладна математика та комп’ютинг» ПМК-2019 (Київ, 2019 р.), а також на науковій конференції магістрантів та аспірантів «Прикладна математика та комп’ютинг» ПМК-2020 (Київ, 2020 р.). Структура та обсяг роботи. Магістерська дисертація складається з вступу, чотирьох розділів, висновків та додатків. У вступі надано загальну характеристику роботи, виконано оцінку сучасного стану проблеми, обґрунтовано актуальність напрямку досліджень, сформульовано мету і задачі досліджень, показано наукову новизну отриманих результатів і практичну цінність роботи, наведено відомості про апробацію результатів і їх впровадження. У першому розділі розглянуто алгоритми інтелектуального аналізу даних, які використовуються для задачі класифікації. Обґрунтовано можливість використання евристичних алгоритмів, а саме алгоритму бджолиного рою для цієї задачі. У другому розділі детально розглянуто алгоритм бджолиного рою та принципи його роботи, також описано запропоновану методику його застосування для інтелектуального аналізу даних, а саме для задачі класифікації. У третьому розділі описано розроблений алгоритм та програмний додаток, в якому він реалізований. У четвертому розділі приведена оцінка ефективності запропонованого алгоритм, на основі тестування алгоритму, а також порівняльного аналізу між розробленим алгоритмом та вже існуючими. У висновках представлені результати магістерської дисертації. Робота виконана на 81 аркуші, містить посилання на список використаних літературних джерел з 18 найменувань. У роботі наведено 38 рисунків та 5 додатків.Документ Відкритий доступ Мурашиний алгоритм з метафорою агрегації феромонів для глобальної оптимізації(КПІ ім. Ігоря Сікорського, 2019-06) Абдураімов, Таір Заірович; Зорін, Юрій МихайловичКваліфікаційна робота включає пояснювальну записку (56 с., 14 рис. 21 табл., 2 додатки). Об’єкт розробки – процес оптимізації дійсної функції багатьох змінних в неперервному просторі. Метою роботи є розробка алгоритму оптимізації мурашиної колонії з метафорою агрегації феромонів для пошуку екстремумів дійсної функції. Запропоновано модифікацію мурашиного алгоритму оптимізації в неперервному просторі у вигляді системи агрегації феромонів з метою покращення точності й сталості результатів. Виконано порівняльний аналіз алгоритму з класичним мурашиним а також з іншими евристичними алгоритмами, які оптимізовані для розв’язку задач в неперервному просторі. Проведена імплементація розробленого алгоритму для деяких відомих тестових функцій. Здійснена на мові програмування C++. Були визначені параметри алгоритму, знайдені оптимальні їх значення. На основі аналізу розробленого алгоритму зроблені висновки, визначені його основні переваги і недоліки.