2023
ΠΠΎΡΡΡΠΉΠ½Π΅ ΠΏΠΎΡΠΈΠ»Π°Π½Π½Ρ Π½Π° ΡΠΎΠ½Π΄
ΠΠ΅ΡΠ΅Π³Π»ΡΠ½ΡΡΠΈ
ΠΠ΅ΡΠ΅Π³Π»ΡΠ΄ 2023 Π·Π° ΠΠ²ΡΠΎΡ "Frasinyuk, M."
ΠΠ°ΡΠ°Π· ΠΏΠΎΠΊΠ°Π·ΡΡΠΌΠΎ 1 - 1 Π· 1
Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡΠ² Π½Π° ΡΡΠΎΡΡΠ½ΡΡ
ΠΠ°Π»Π°ΡΡΡΠ²Π°Π½Π½Ρ ΡΠΎΡΡΡΠ²Π°Π½Π½Ρ
ΠΠΎΠΊΡΠΌΠ΅Π½Ρ ΠΡΠ΄ΠΊΡΠΈΡΠΈΠΉ Π΄ΠΎΡΡΡΠΏ Antibacterial activity of 1-dodecylpyridinium tetrafluoroborate and its inclusion complex with sulfobutyl ether-B-cyclodextrin against mdr acinetobacter baumannii strains(Igor Sikorsky Kyiv Polytechnic Institute, 2023) Rogalsky, S.; Hodyna, D.; Semenyuta, I.; Frasinyuk, M.; Tarasyuk, O.; Riabov, S.; Kobrina, L.; Tetko, I.; Metelytsia, L.Background.The bacterial pathogen Acinetobacter baumanniiis one of the most dangerous multi-drug-resistant (MDR) microorganisms, which causes numerous bacterial infections. Nowadays, there is an urgent need for new broad-spectrum antibacterial agents with specific molecular mechanisms of action. Long-chain 1-alkylpyridinium salts are efficient cationic biocides which can inhibit enzymes involved in the biosynthesis of bacterial fatty acids.Incorporating these compounds into inclusion complexes with cyclic oligosaccharide B-cyclodextrin can reduce their relatively high acute toxicity.Objective. The aim of this research was to develop new anti-A.baumanniiagents based on hydrophobic 1-alkylpyridinium salt and its inclusion complex with sulfobutyl ether B-cyclodextrin (SBECD). Methods. Hydrophobiccationic biocide 1-dodecylpyridinium tetrafluoroborate (PyrC12-BF4) and its inclu-sion complex with SBECD have been synthesized. The structure of the SBECD/PyrC12-BF4complex was characterized by 1H Nuclear Magnetic Resonance spectroscopy, as well as UV spectroscopy. In vitroanti-bacterial activity of the synthesized compounds was estimated against MDR clinical isolates of A. baumanniiusing standard disc diffusion method. Acute toxicity studies were performed on Daphnia magnamodel hydro-biont.Molecular docking was performed using the crystal structure of the A.baumannii3-oxoacyl-[acyl-carrier-protein] reductase(FabG).