Кафедра електромеханіки (ЕМ)
Постійне посилання на фонд
Переглянути
Перегляд Кафедра електромеханіки (ЕМ) за Автор "Oksana Tymoshchuk"
Зараз показуємо 1 - 1 з 1
Результатів на сторінці
Налаштування сортування
Документ Відкритий доступ Research of high-frequency remagnetization model in laminated magnetic cores of electromechanical and electromagnetic energy converters(Eastern-European Journal of Enterprise Technologies, 2023) Vadim Chumack; Oksana Tymoshchuk; Mykhailo Kovalenko; Volodymyr Bazenov; Yevhen Ihnatiuk; Andrii StulishenkoThe object of research in the work is charged magnetic conductors of electric machines and transformers. Laminated magnetic wire together with windings are important active parts of electric machines that participate in electromechanical energy conversion.The reliability of the entire machine is mainly determined by the actual condition of the inter-sheet insulation. Violation of the insulation causes parasitic eddy current circuits, which increases the specific losses, and also significantly affects the additional heating of the magnet wire and winding. The normative method for determining the quality of the charged core is the assessment of specific losses at a frequency of 50 Hz and an induction of 1 T, which should not exceed 2.5–4 W/kg. To determine local damage to the core, methods of local heating and fixation of overheating sites are used, which should not exceed 45 °C compared to the main part of the magnetic core. In the work, a two-dimensional field mathematical model of a charged magnetic circuit is developed. This makes it possible to carry out electromagnetic calculations in a near-real magnetic conductor, taking into account the variability of magnetic permeability, hysteresis, and the interaction of currents in adjacent plates of the magnetic conductor with each other, the so-called "proximity effect".On the basis of the developed models, graphs of current distribution and distribution of magnetic induction in one, two and three sheets were obtained. The resulting graphs show how the effect of current displacement increases with increasing frequency, where at a frequency of 100 kHz the magnetic induction density in the middle of the sheet goes to zero. The results of the research confirm the correctness of the model development in comparison with the classical calculation models also given, which allows them to be used for further research of high-frequency processes in charged magnetic circuits of electric machines.