Логотип репозиторію
  • English
  • Українська
  • Увійти
    Новий користувач? Зареєструйтесь. Забули пароль?
Логотип репозиторію
  • Фонди та зібрання
  • Пошук за критеріями
  • English
  • Українська
  • Увійти
    Новий користувач? Зареєструйтесь. Забули пароль?
  1. Головна
  2. Переглянути за автором

Перегляд за Автор "Aliyeva, G. V."

Зараз показуємо 1 - 2 з 2
Результатів на сторінці
Налаштування сортування
  • Вантажиться...
    Ескіз
    ДокументВідкритий доступ
    Issues of Optimizing Detection of Stealth Aircraft Using Group of Satellites Flying at Different Altitudes
    (КПІ ім. Ігоря Сікорського, 2023) Agayev, F. G.; Asadov, H. H.; Aliyeva, G. V.
    The article is devoted to the optimization of the detection of stealth aircraft using a group of satellites flying at different altitudes and equipped with an infrared reproducing system. The main sources for the formation of the infrared signature of stealth aircraft are the heating of the aircraft casing during flight and the high-temperature plume emanating from the nozzle of the aircraft engine. The necessity of calculating the infrared signature of stealth aircraft is noted. The infrared signature of such aircraft is usually calculated in wide ranges of IR waves. At the same time, there are works according to which it is advisable to use narrow spectral wavelengths for these purposes. A push-pull method of detecting stealth aircraft using satellites flying in a group at different orbital altitudes has been developed. The proposed method makes it possible to increase the signal-to-noise ratio in the resulting informative signal, which is the difference between the signal from the aircraft itself and the background signal within the frame. It is shown that the introduction of a binary control signal depending on the spatial resolution of the distance to the satellites allows minimizing the total background signal coming from a group of satellites. At the same time, an increasing version of this function applied to the sum of signals from the background under a given restrictive condition ultimately increases the signal-to-noise ratio in the system, and also increases the probability of detecting a stealth aircraft using spectrometric devices installed on satellites.
  • Вантажиться...
    Ескіз
    ДокументВідкритий доступ
    Method for Detecting Small Aerial Objects Appearing in Field of View in Controlled Part of Celestial Sphere in Infrared Range
    (КПІ ім. Ігоря Сікорського, 2024) Agaev, F. G.; Asadov, H. H.; Aliyeva, G. V.
    The article is devoted to the developed method of infrared detection of group remote high-temperature objects. The problem of searching for the extremum of the total infrared radiation of a group of non-identical thermal objects carrying out a group flight is formulated and solved using the variational optimization method. Examples of such objects include the flight of aircraft in a group, ground scenes involving a group of objects of interest, temperature diagnostics of various points of buildings, control of automobile traffic on highways, control of group flights of birds, drones, etc. A condition has been determined under which the total value of the infrared radiation flux of thermal elements in the group reaches an extreme value. The regression relationship function between the emission coefficient of the thermal elements of the group and the atmospheric transmission coefficient has been calculated. The problem of optimal control of small thermal objects randomly distributed in the atmosphere is practically solved using a ground-based multiradar system in which elements of a multi-radar system monitor flying objects with different values of the radiation coefficient on the routes and different atmospheric transparencies. The proposed method can be used for remote control of flight or the functioning of a group of flying thermal objects with different values of the radiation coefficient with a special procedure for selecting a controlled aircraft for observation by an element of a multi-radar system. The property of the extremum of the total IR radiation flux was found in the inverse relationship between the radiation coefficients of all controlled flying objects and the transparency of the atmosphere along the route between the multi-radar element and the controlled flying object.

DSpace software copyright © 2002-2025 LYRASIS

  • Налаштування куків
  • Зворотній зв'язок