Логотип репозиторію
  • English
  • Українська
  • Увійти
    Забули пароль?
Логотип репозиторію
  • Фонди та зібрання
  • Пошук за критеріями
  • English
  • Українська
  • Увійти
    Забули пароль?
  1. Головна
  2. Переглянути за автором

Перегляд за Автор "Feher, Anatolii"

Зараз показуємо 1 - 2 з 2
Результатів на сторінці
Налаштування сортування
  • Вантажиться...
    Ескіз
    ДокументВідкритий доступ
    Cybersecurity in AI-Driven Casual Network Formation
    (Igor Sikorsky Kyiv Polytechnic Institute, 2023) Lande, Dmytro; Feher, Anatolii; Strashnoy, Leonard
    The paper describes a methodology for forming thematic causal networks using artificial intelligence and automating the processes of their visualization. The presented methodology is considered on the example of ChatGPT, as an artificial intelligence for analyzing the space of texts and building concepts of causal relationships, and their further visualization is demonstrated on the example of Gephi and CSV2Graph programs. The effectiveness of the disaggregated method in relation to traditional methods for solving such problems is shown by integrating the means of intelligent text analytics and graphical network analysis on the example of the problem of data leakage in information systems and a selection of news clippings on the selected cybersecurity topic.
  • Вантажиться...
    Ескіз
    ДокументВідкритий доступ
    Forecasting Information Operations with Hybrid Transformer Architecture
    (Igor Sikorsky Kyiv Polytechnic Institute, 2024) Feher, Anatolii
    Proactive decision-making in all processes is difficult to imagine without forecasting methods, especially in the field of cybersecurity where the speed and quality of response are often critical. For this reason, we proposed a unique methodology based on a new hybrid architecture Transformer that perfectly captures long-term dependencies and an adaptive algorithm ACWA that quantifies historical patterns. Thus, the described approach considers short-term fluctuations, long-term trends, and seasonal patterns more effectively than traditional forecasting models, as demonstrated by the application of Information Operations and Disinformation occurrences time series forecasting.

DSpace software copyright © 2002-2025 LYRASIS

  • Налаштування куків