Перегляд за Автор "Yakymenko, O. S."
Зараз показуємо 1 - 2 з 2
Результатів на сторінці
Налаштування сортування
Документ Відкритий доступ Extraction of organosolv pulp and production of nanocellulose from hemp fibres(КПІ ім. Ігоря Сікорського, 2021) Barbash, V. A.; Yashchenko, O. V.; Yakymenko, O. S.; Zakharko, R. M.Background. The use of cellulose and nanocellulose instead of synthetic polymers makes it possible to improve the consumer properties and environmental friendliness of composite materials. Therefore, the development of technologies for the production of organosolv pulp and nanocellulose from plant raw materials, in particular from hemp fibres, is an urgent scientific and practical problem. Objective. The purpose of the paper is to obtain pulp from hemp fibres by the peracetic method and to study the effect of the concentration of sulfuric acid and the temperature of hydrolysis of organosolv pulp on the quality parameters of hemp nanocellulose. Methods. Treatment of hemp fibres was performed in two stages: alkaline extraction and organosolv cooking at a temperature of 97 ± 2 °C. Nanocellulose was obtained by hydrolysis with a solution of sulfuric acid of various concentra tions. The resulting nanocellulose was examined by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and atomic force microscopy (AFM). Results. Organosolv hemp pulp with a residual lignin content of 0.16% and an ash content of 0.08% was obtained. The nanocellulose particles obtained from it had a transverse size of 8–36 nanometers and a length of several micrometers. Nanocellulose films had high mechanical properties: density up to 1.54 g/cm3 and tensile strength up to 60 MPa. Conclusions. Carrying out thermochemical treatment of hemp fibres in two stages makes it possible to obtain pulp with a minimum residual content of lignin and minerals, which is suitable for the production of nanocellulose. Nanocellulose has been successfully isolated from organosolv hemp pulp by acid hydrolysis. Subsequent ultrasonic treatment allows obtaining a stable nanocellulose gel with high mechanical properties.Документ Відкритий доступ Nanocellulose from reed stalks to improve the properties of paper for packaging food products(КПІ ім. Ігоря Сікорського, 2021) Barbash, V. A.; Yaschenko, O. V.; Gondovska, A. S.; Yakymenko, O. S.Background. The development of technologies for obtaining materials from plant raw materials, the use of which improves the consumer properties of cardboard and paper products and does not pollute the environment with harmful substances from synthetic polymers, is an urgent problem of our time. Objective. The purpose of the paper is to obtain pulp and nanocellulose from reed stalks by environmentally friendly methods and apply nanocellulose to improve the quality parameters of paper for packaging food products on automatic machines. Methods. To obtain pulp from reed stalks with a minimum residual content of lignin and minerals, two processing stages were used: alkaline extraction and organosolv cooking at a temperature of 97 ± 2 °C. Nanocellulose was obtained by the oxidation of organosolv reed pulp with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) in the TEMPO / NaBr / NaClO system, which is more environmentally friendly than acid hydrolysis. The resulting nanocellulose was applied to paper samples from waste paper and sulphate unbleached pulp at a consumption from 1 to 3 g/m2 . Results. Organosolv pulp was obtained from reed stalks with a residual lignin content of 0.53 % and an ash content of 0.045 %, which was used to obtain nanocellulose. The resulting nanocellulose particles have a transverse size in the range of 5–20 nm, a length of up to several micrometers, and the tensile strength of nanocellulose films is up to 60 MPa. It is shown that the application of nanocellulose to the surface of the samples increases the breaking strength and breaking length, and reduces the surface absorbency of paper. It was determined that with a nanocellulose consumption of up to 3 g/m2 , paper samples have indicators that meet the requirements of the standard for paper for packaging food products on automatic machines. Conclusions. The use of nanocellulose from reed stalks as a hardening substance for paper production will allow replacing environmentally harmful polymer additives and up to 50 % of more expensive softwood pulp with waste paper, while maintaining paper quality indicators at the level of standard requirements.