Бакалаврські роботи (ПМА)
Постійне посилання зібрання
Переглянути
Перегляд Бакалаврські роботи (ПМА) за Ключові слова "RNN"
Зараз показуємо 1 - 1 з 1
Результатів на сторінці
Налаштування сортування
Документ Відкритий доступ Математичне та програмне забезпечення підсистеми виявлення фейкових новин(КПІ ім. Ігоря Сікорського, 2023) Довгаль, Єва Олександрівна; Любашенко, Наталія ДмитрівнаДипломну роботу виконано на 68 аркушах, вона містить 2 додатки та перелік посилань на використані джерела з 20 найменувань. У роботі наведено 23 рисунків та 3 таблиці. Метою даної дипломної роботи є розробка математичних та програмних засобів для розпізнавання фейкової інформації в текстових даних. У роботі проведено аналіз різних моделей машинного навчання, включаючи логістичну регресію, наївний класифікатор Баєса, нейромережі з використанням згорткових (CNN), рекурентних (RNN) та довготривалих (LSTM) шарів. Також були розглянуті різні методи векторизації тексту, зокрема Bag of Words, TF-IDF, Word2Vec та GloVe. У процесі роботи було порівняно ефективність цих моделей та методів векторизації такими метриками, як accuracy, precision, recall, f1-score. Для кожної моделі були розроблені та налаштовані відповідні алгоритми навчання. Здійснено тестування розроблених систем з використанням реальних наборів даних з відкритих джерел (Kaggle), що містили фейкову та правдиву інформацію. Отримані результати підтверджують ефективність використання машинного навчання для розпізнавання фейкової інформації, зокрема LSTM, який в результаті показав точність 94,5%. Результати цієї роботи можуть бути використані для подальшого вдосконалення та розробки подібних систем.