Π‘ΡΠ°ΡΡΡ (Π₯ΠΠ‘Π)
ΠΠΎΡΡΡΠΉΠ½Π΅ ΠΏΠΎΡΠΈΠ»Π°Π½Π½Ρ Π·ΡΠ±ΡΠ°Π½Π½Ρ
Π£ Π·ΡΠ±ΡΠ°Π½Π½Ρ ΡΠΎΠ·ΠΌΡΡΠ΅Π½ΠΎ ΠΌΠ°ΡΠ΅ΡΡΠ°Π»ΠΈ, ΡΠΎ ΠΎΠΏΡΠ±Π»ΡΠΊΠΎΠ²Π°Π½Ρ Π°Π±ΠΎ Π³ΠΎΡΡΡΡΡΡΡ Π΄ΠΎ ΠΏΡΠ±Π»ΡΠΊΠ°ΡΡΡ Π² Π½Π°ΡΠΊΠΎΠ²ΠΈΡ
ΠΆΡΡΠ½Π°Π»Π°Ρ
ΡΠ° Π·Π±ΡΡΠ½ΠΈΠΊΠ°Ρ
.
ΠΠ΅ΡΠ΅Π³Π»ΡΠ½ΡΡΠΈ
ΠΠ΅ΡΠ΅Π³Π»ΡΠ΄ Π‘ΡΠ°ΡΡΡ (Π₯ΠΠ‘Π) Π·Π° ΠΠ»ΡΡΠΎΠ²Ρ ΡΠ»ΠΎΠ²Π° "composite"
ΠΠ°ΡΠ°Π· ΠΏΠΎΠΊΠ°Π·ΡΡΠΌΠΎ 1 - 5 Π· 5
Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡΠ² Π½Π° ΡΡΠΎΡΡΠ½ΡΡ
ΠΠ°Π»Π°ΡΡΡΠ²Π°Π½Π½Ρ ΡΠΎΡΡΡΠ²Π°Π½Π½Ρ
ΠΠΎΠΊΡΠΌΠ΅Π½Ρ ΠΡΠ΄ΠΊΡΠΈΡΠΈΠΉ Π΄ΠΎΡΡΡΠΏ Creation of Structural Polymer Composite Materials for Functional Application Using Physicochemical Modification(Hindawi Wiley, 2019-08-26) Kolosov, Aleksandr Evhenovych; Sivetskii, Volodymyr I.; Kolosova, Elena P.; Vanin, Volodymyr V.; Gondlyakh, Aleksandr V.; Sidorov, Dmytro E.; Ivitskiy, Igor I.The various aspects of physico-chemical modification of the components of structural materials of functional application based on classical composites and nanocomposites are analyzed. Potential applications of such materials are briefly described. Ultrasonic cavitation treatment is considered as a basic method of physical modification when obtaining the indicated classes of composites. The influence of ultrasonic treatment modes on the technological and operational properties of reactoplastic polymers, as well as on the hardening of reinforced composites based on them, is investigated. Technical means of ultrasonic cavitation processing of liquid binders and polymer composites based on them are briefly described. An effective spectrum of interrelated structural and technological parameters of ultrasonic treatment has been characterized, which is established by calculation and experimentally-statistically. The design issues of the technological processes of obtaining polymer composites of functional application are analyzed. The efficiency of creating carbon fiber composite materials, as well as the prospects for creating of these materials based on reinforcing fabric with nanomodified fillers is described. The methods of obtaining functional nanomodified carbon-composites with improved physicomechanical and operational properties, in particular with increased strength and electrical conductivity, are characterized. The effectiveness of the ultrasonic treatment and production of nanomodified thermoplastic composite materials by extrusion method is considered. Some issues of forming products from intelligent polymer composites are analyzed. The results of the survey can be used in the design of advanced technologies for the creation of functional polymer composites of functional application.ΠΠΎΠΊΡΠΌΠ΅Π½Ρ ΠΡΠ΄ΠΊΡΠΈΡΠΈΠΉ Π΄ΠΎΡΡΡΠΏ Use of Physicochemical Modification Methods for Producing Traditional and Nanomodified Polymeric Composites with Improved Operational Properties(Hindawi Wiley, 2019-10-17) Kolosov, Aleksandr Evhenovych; Sivetskii, Volodymyr I.; Kolosova, Elena P.; Vanin, Volodymyr V.; Gondlyakh, Aleksandr V.; Sidorov, Dmytro E.; Ivitskiy, Igor I.; Symoniuk, Volodymyr P.Various aspects of the methods of physical and physicochemical modification of components of filled thermo-plastic composite materials are analyzed, aimed at improving the surface properties of the fillers and the technological properties of the polymer matrix during their interaction. It is noted that the improvement of the interfacial interaction of the components of polymer reactoplastic composites, including adhesive strength, is a key factor for improving the reliability of the cured filled composite. As a promising area of research, a modification of the surface of the reinforcing fibrous filler and the technological characteristics of the liquid polymer binder, aimed at increasing their contact properties in the composite was chosen. The effectiveness of the physical method of modifying the components of composites in the form of low-frequency ultrasonic processing is described. The peculiarities of cluster formation and physicochemical modification of epoxy polymers filled with dispersed fillers are analyzed. Attention is focused on the effectiveness of ultrasonic processing in cavitation mode for deagglomeration and uniform distribution of nanoparticles in a liquid medium during the creation of nanocomposites. Experimentally confirmed the improvement of the technological properties of liquid epoxy polymers, modified by ultrasound, used for the impregnation of oriented fibrous fillers, as well as the improvement of the physicomechanical properties of the sonicated epoxy matrices.ΠΠΎΠΊΡΠΌΠ΅Π½Ρ ΠΡΠ΄ΠΊΡΠΈΡΠΈΠΉ Π΄ΠΎΡΡΡΠΏ ΠΠ°ΡΠ΅ΡΡΠ°Π»ΠΈ ΡΠ° ΡΠ΅Ρ Π½ΠΎΠ»ΠΎΠ³ΡΡ Π΄Π»Ρ ΠΎΠ΄Π΅ΡΠΆΠ°Π½Π½Ρ ΡΡΠ½ΠΊΡΡΠΎΠ½Π°Π»ΡΠ½ΠΈΡ ΠΏΠΎΠ»ΡΠΌΠ΅ΡΠ½ΠΈΡ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΡΠΉΠ½ΠΈΡ ΠΌΠ°ΡΠ΅ΡΡΠ°Π»ΡΠ²(ΠΡΡΡΠΊΠΈΠΉ Π½Π°ΡΡΠΎΠ½Π°Π»ΡΠ½ΠΈΠΉ ΡΠ΅Ρ Π½ΡΡΠ½ΠΈΠΉ ΡΠ½ΡΠ²Π΅ΡΡΠΈΡΠ΅Ρ, 2017) ΠΠΎΠ»ΠΎΡΠΎΠ², ΠΠ»Π΅ΠΊΡΠ°Π½Π΄Ρ ΠΠ²Π³Π΅Π½ΠΎΠ²ΠΈΡ; Π‘ΡΠ²Π΅ΡΡΠΊΠΈΠΉ, ΠΠΎΠ»ΠΎΠ΄ΠΈΠΌΠΈΡ ΠΠ²Π°Π½ΠΎΠ²ΠΈΡ; Π‘ΠΎΠΊΠΎΠ»ΡΡΡΠΊΠΈΠΉ, ΠΠ»Π΅ΠΊΡΠ°Π½Π΄Ρ ΠΠ΅ΠΎΠ½ΡΠ΄ΠΎΠ²ΠΈΡ; ΠΠ²ΡΡΡΠΊΠΈΠΉ, ΠΠ³ΠΎΡ ΠΠ³ΠΎΡΠΎΠ²ΠΈΡ; ΠΡΡΠΈΠ»Π΅Π½ΠΊΠΎ, ΠΠ°Π»Π΅ΡΡΠΉ ΠΠΈΠΊΠΎΠ»Π°ΠΉΠΎΠ²ΠΈΡΠΠΎΠΊΡΠΌΠ΅Π½Ρ ΠΡΠ΄ΠΊΡΠΈΡΠΈΠΉ Π΄ΠΎΡΡΡΠΏ ΠΠ΅ΠΊΠΎΡΠΎΡΡΠ΅ Π°ΡΠΏΠ΅ΠΊΡΡ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ΅Ρ Π½ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² ΠΈ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² ΡΠΎΡΠΌΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΡ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΎΠ². 1. ΠΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΡΡΠΊΡΡΡΡ ΠΎΡΠΈΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΠΌΠ°ΠΊΡΠΎΠ²ΠΎΠ»ΠΎΠΊΠ½ΠΈΡΡΡΡ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΎΠ²(Π’Π°Π²ΡΡΠΉΡΡΠΊΠΈΠΉ Π½Π°ΡΡΠΎΠ½Π°Π»ΡΠ½ΠΈΠΉ ΡΠ½ΡΠ²Π΅ΡΡΠΈΡΠ΅Ρ ΡΠΌΠ΅Π½Ρ Π.Π. ΠΠ΅ΡΠ½Π°Π΄ΡΡΠΊΠΎΠ³ΠΎ, 2018) ΠΠΎΠ»ΠΎΡΠΎΠ²Π°, ΠΠ»Π΅Π½Π° ΠΠ΅ΡΡΠΎΠ²Π½Π°; ΠΠ°Π½ΠΈΠ½, ΠΠ»Π°Π΄ΠΈΠΌΠΈΡ ΠΠ»Π°Π΄ΠΈΠΌΠΈΡΠΎΠ²ΠΈΡ; ΠΠΎΠ»ΠΎΡΠΎΠ², ΠΠ»Π΅ΠΊΡΠ°Π½Π΄Ρ ΠΠ²Π³Π΅Π½ΡΠ΅Π²ΠΈΡΠΠΎΠΊΡΠΌΠ΅Π½Ρ ΠΡΠ΄ΠΊΡΠΈΡΠΈΠΉ Π΄ΠΎΡΡΡΠΏ ΠΠ΅ΠΊΠΎΡΠΎΡΡΠ΅ Π°ΡΠΏΠ΅ΠΊΡΡ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ΅Ρ Π½ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² ΠΈ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² ΡΠΎΡΠΌΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΡ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΎΠ². 2. ΠΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΡΡΠΊΡΡΡΡ Π΄ΠΈΡΠΏΠ΅ΡΡΠ½ΠΎΠ½Π°ΠΏΠΎΠ»Π½Π΅Π½Π½ΡΡ ΡΠ΅Π°ΠΊΡΠΎΠΏΠ»Π°ΡΡΠΎΠ², Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ΅Ρ Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ ΠΎΠ±ΠΎΡΡΠ΄ΠΎΠ²Π°Π½ΠΈΡ Π΄Π»Ρ ΡΠΎΡΠΌΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΡ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΎΠ²(Π’Π°Π²ΡΡΠΉΡΡΠΊΠΈΠΉ Π½Π°ΡΡΠΎΠ½Π°Π»ΡΠ½ΠΈΠΉ ΡΠ½ΡΠ²Π΅ΡΡΠΈΡΠ΅Ρ ΡΠΌΠ΅Π½Ρ Π.Π. ΠΠ΅ΡΠ½Π°Π΄ΡΡΠΊΠΎΠ³ΠΎ, 2018) ΠΠΎΠ»ΠΎΡΠΎΠ²Π°, ΠΠ»Π΅Π½Π° ΠΠ΅ΡΡΠΎΠ²Π½Π°; ΠΠ°Π½ΠΈΠ½, ΠΠ»Π°Π΄ΠΈΠΌΠΈΡ ΠΠ»Π°Π΄ΠΈΠΌΠΈΡΠΎΠ²ΠΈΡ; ΠΠΎΠ»ΠΎΡΠΎΠ², ΠΠ»Π΅ΠΊΡΠ°Π½Π΄Ρ ΠΠ²Π³Π΅Π½ΡΠ΅Π²ΠΈΡ