Кафедра прикладної фізики (ПФ)
Постійне посилання на фонд
Переглянути
Перегляд Кафедра прикладної фізики (ПФ) за Ключові слова "539"
Зараз показуємо 1 - 1 з 1
Результатів на сторінці
Налаштування сортування
Документ Відкритий доступ Вплив лазерного випромінювання на процеси індукованої оловом кристалізації аморфного кремнію(КПІ ім. Ігоря Сікорського, 2023) Ольховик, Ілля Володимирович; Воронов, Сергій Олександрович; Неймаш, Володимир БорисовичОльховик І.В. Вплив лазерного випромінювання на процеси індукованої оловом кристалізації аморфного кремнію. – Кваліфікаційна наукова праця на правах рукопису. Дисертація на здобуття наукового ступеня доктора філософії за спеціальністю 105 Прикладна фізика та наноматеріали. Найменування вищого навчального закладу, у якому здійснювалась підготовка: НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ СІКОРСЬКОГО». Дисертаційна робота присвячена вивченню процесів кристалізації аморфного кремнію індукованої оловом та механізмів формування нанокристалів кремнію у шаруватих структурах a-Si/Sn. Досліджено можливість використання різних видів лазерного випромінювання для створення умов кристалізації аморфного кремнію індуковану оловом та одночасно контролю якості нанокристалів кремнію. Зміст дисертаційного дослідження подано в п’яти розділах, де представлено та обґрунтовано основні результати роботи. У вступі обґрунтовується актуальність теми, загальні положення, формулюється мета і завдання дослідження. Ставляться задачі для її досягнення. Перераховуються методи дослідження плівкових напівпровідникових матеріалів. Стисло перераховуються отримані наукові результати та практичне значення результатів представлених у дисертації. У першому розділі проведено короткий аналіз основних літературних даних по проблемам сонячної енергетики та перспективних шляхів їхвирішення засобами кремнієвих технологій. Зокрема розглянуті принципові фізичні та технічні обмеження ефективності сонячних елементів. Показано, що суттєвого підвищення ефективності сонячних елементів можна досягти завдяки використанню каскадного принципу їх побудови. Описані основні недоліки існуючих СЕ каскадного типу та можливі шляхи їх подолання за рахунок використання квантових точок у вигляді нанокристалів кремнію. Продемонстровано, що одною з перешкод цьому є недостатній розвиток технологій керування розмірами нанокристалів та розділення шарів з різними розмірами нанокристалів. Розглянуто основні уявлення про процеси МІК та описані переваги використання саме олова для МІК кремнію. Детально описано сучасні уявлення про механізм сприяння оловом переходу кремнію із аморфного у кристалічний стан. Приведено результати експериментів, що свідчать про здатність лазерного опромінення впливати на такий перехід. Обґрунтована мета дослідження і сформульовані експериментальні задачі для її досягнення. У другому розділі коротко описані методи виготовлення і дослідження плівкових напівпровідникових матеріалів, які використані у роботі. Це - виготовлення шаруватих структур Si/Sn/Si осадженням із газової фази; комбінаційне розсіювання світла; електронна мікроскопія; атомно-силова мікроскопія; рентгенівський флуоресцентний аналіз). Представлені методи аналізу експериментальних даних. У тому числі – методи аналізу фазового стану кремнію по спектрам раманівського розсіювання на основі теорії просторово обмежених фононів. У третьому розділі представлені результати дослідження особливостей мікроструктури поверхні та об’єму шаруватих плівок Si/Sn/Si, які виготовлені шляхом послідовного осадження парів кремнію та олова і використані у роботі в якості об’єктів дослідження. Показано, що первопричиною структуризації поверхні плівок Si/Sn/Si, є розплавлення і розпад на мікро-краплі шару олова під час осадження кремнію. Вперше досліджено і описано мікро- та наноструктурування плівок аморфного кремнію при його формуванні на поверхні розплавленого металу. Засобами атомно-силової та електронної мікроскопії отримані кількісні дані про шорсткість та латеральні розміри і форми структуризації рельєфу поверхні Si в залежності від товщини шару олова. Виявилося, що шаруваті плівки Si/Sn/Si, виготовлені методом термічно-вакуумного осадження, мають поверхню, рельєф якої структуруваний у вигляді квазі-сферичні утвореннь з латеральним розміром від 20 нм до 2-3 мкм. В залежності від товщини шару олова їх форма і розмір змінюється від випуклих еліпсоїдів та багатокутників до гроно-подібних дендритів фрактального типу. Такі дендрити можуть створювати поруватий (розміри пор лежать в діапазоні від 1 до 100 нм) шар аморфного кремнію, фізичні властивості якого досі не вивчалися. В результаті досліджень впливу термообробок таких шаруватих плівок Si/Sn/Si в області 800 С° експериментально продемонстрована можливість отримання завдяки індукованій оловом кристалізації аморфного кремнію аморфно-кристалічного нанокомпозиту, який містить кристаліти кремнію з середніми розмірами 3 нм та їх часткою в об’ємі понад 90 %. У четвертому розділі представлені результати дослідження процесів утворення нанокристалів кремнію у плівкових структурах Si/Sn та Si/Sn/Si при температурах 20 – 550 0С під опроміненням лазерним опроміненням з довжиною хвилi λ = 488,0 нм і потужністю 104 - 106 Вт/см2 при різних умовах тепловідводу в підкладку. Порівняльний аналіз Раманівських спектрів свідчить, що лазерне опромінення потужністю 10 мВт/мкм2 за час 1-6 хв здатне перевести приблизно половину кремнію в шаруватій структурі a-Si/Sn із аморфного у кристалічний стан, що в умовах термообробки в темряві потребує принаймні на порядок більшого часу. Виявилося, що процеси кристалізації аморфного кремнію індукованого оловом прискорюються під дією лазерного опромінення і без впливу на температуру. Тобто має місце нетепловий механізм лазерного сприяння ОІК. Характерно, що він діє лише при температурах вище 230 0С (температура плавлення олова). Експериментально виявлена і досліджена чутливість фононного піку новостворених нанокристалів кремнію до інтенсивності опромінення лазерного збудження КРС. Встановлено, що ця чутливість не повязана зі зміною температури, а зумовлена оптичною компонентою впливу лазерного світла. Даний ефект інтерпретовано впливом нерівноважної заселеності фононів, що виникає через електрон-фононну взаємодію фотоіндукованих носіїв заряду внаслідок високого темпу генерації останніх при високій потужності збудження. У п’ятому розділі представлені результати дослідження впливу на оловом індуковану кристалізацію аморфного кремнію кількох видів імпульсного лазерного опромінення. Засобами раманівської спектроскопії шаруватих структур Si/Sn та Si/Sn/Si проаналізовано особливості генерації і накопичення нанокристалів Si під лазерним опроміненням з довжиною хвилі 535 нм і 1070 нм з тривалістю імпульсів 10 нс і 150 мкс в діапазоні потужності лазерного променю від 1,4 ∗ 104 Вт см2 до 2,18 ∗ 108 Вт см2. Опромінення здійснювалося як одинарними імпульсами, так і серіями по 2 - 5 імпульсів. Виявилося, що як і випадках опромінення безперервним лазером, утворення, ріст і накопичення нанокристалів тут теж мають порогів характер залежності від інтенсивності світла. Експериментально показано, що змінюючи потужність лазерного променю в імпульсі і кількість серій одноімпульсних сканувань можливо регулювати розмір і концентрацію нанокристалів в аморфно-кристалічному нанокомпозиті, що утворюється, з 1,5 до 5,0 нм і з 40 до 90% відповідно. Цей результат може служити принциповою основою для розробки технологій виготовлення шаруватих структур нанокремнію з різною шириною забороненої зони для СЕ каскадного типу на кремнієвих наноточках. Глибина прогріву поверхневого шару аморфного кремнію лазерним імпульсом крім потужності визначається довжиною хвилі (коефіцієнтом поглинання) та тривалістю імпульсу . Наприклад, для інфрачервоного ( = 1040 нм) лазеру при =150 мкс теплова глибина th = 6 10-5 см. Для зеленого ( = 535 нм) th = 8 10-6 см. Очевидно, що глибина і ступінь прогріву шаруватих структур, яких відбувається процес ОІК Si, можуть служити технологічними факторами формування шарів nc-Si заданих розмірів і заданого просторового розподілу. Додаткові можливості управління процесами МІК надає застосування коротких лазерних імпульсів великої потужності. В дисертаційній роботі отримано наступні наукові результати: Вперше: 1. Виявлено фрактальний характер структуризації аморфного кремнію в мікро- і нанометровому масштабі при його осадженні із газової фази на поверхню рідкого олова. 2. Експериментально показано, що стимулюючий вплив лазерного опромінення на оловом індуковану кристалізацію аморфного кремнію має не теплову (тобто не впливаючу на температуру зразку) складову. Висунута гіпотеза механізму її дії через збільшення розчинності аморфного Si в олові на інтерфейсі їх шарів під час ОІК в наслідок ослаблення і обриву ковалентних зав’язків a-Si, викликаних фото-іонізацією лазерним світлом та екрануванням нерівноважними фото-електронами. 3. Експериментально показано, що саме нетеплова складова впливу лазерного світла викликає нелінійний за інтенсивністю «червоний» зсув раманiвського спектру нанокристалiчного кремнію, на відміну від спектру монокристалічного Si. Це може свідчити на користь гіпотези про нерівноважну заселеність фононів через електрон-фононну взаємодію фотоіндукованих носіїв заряду внаслідок високого темпу генерації останніх при високій потужності збудження лазерним світлом. Удосконалено: 1. Удосконалено технологію виготовлення шаруватих плівок Si/Sn/Si за методом термічно-вакуумного осадження із газової фази в плані покращення контролю їх якості завдяки з’ясуванню впливу співвідношення товщин шарів на мікроструктуру об’єму та рельєфу поверхні плівок. 2. Удосконалено точність оцінки розмірів нанокристалів Si із аналізу їх Раманівських спектрів завдяки експериментальному виявленню нелінійної чутливості таких спектрів до інтенсивності світлового збудження комбінаційного розсіювання. Набуло подальшого розвитку: 1. Розуміння впливу головних параметрів лазерного випромінювання: довжини хвилі випромінювання, тривалості лазерного імпульсу та інтенсивності лазерного опромінення та температури на формування нанокристалів кремнію в шаруватих структурах Si/Sn, Si/Sn/Si при різних умовах тепловідводу. 2. Експериментальне підтвердження чутливості раманівського спектру нанокристалів кремнію до інтенсивності лазерного опромінення навіть при стабільній температурі на відміну від спектру монокристалічного кремнію. Цей факт інтерпретовано встановленням в області вимірювання нетеплового розподілу фононів, залежного від рівня оптичного збудження, що в результаті впливає на раманівський спектр нанокристалів у вигляді низькочастотного зсуву фононної смуги нанокристалів. 3. Оцінювання стимулюючого впливу інтенсивності лазерного випромінювання на процеси кристалізації аморфного кремнію індуковану оловом та встановлено його пороговий характер. Даний результат інтерпретовано фазовим переходом олова із твердого у рідкий стан при відповідній інтенсивності лазерного випромінювання. Це може свідчити на користь механізму кристалізації аморфного кремнію індуковану оловом через утворення евтектики Sn-Si. Практичне значення результатів представлених у дисертації полягає в: 1. Підтверджені можливості використання безперервного лазерного випромінювання для створення температурних умов кристалізації аморфного кремнію індукованої оловом. Та одночасно для контролю температури обробки, розміру новостворених кристалів та частки нанокристалічної кремнієвої фази в шаруватих структурах Si/Sn за допомогою аналізу спектрів комбінаційного розсіювання світла. 2. Отримані в роботі результати можуть бути використані для вдосконалення технології виготовлення аморфно-кристалічних нанокомпозитів на основі кремнію і контролю якості шаруватих структур Si/Sn/Si для виробництва електронних приладів фотоелектричного перетворення.