Теплопередаючі характеристики пульсаційних капілярних теплових труб, призначених для малогабаритних систем охолодження
dc.contributor.author | Наумова, Альона Миколаївна | |
dc.contributor.degreedepartment | атомних електричних станцій і інженерної теплофізики | uk |
dc.contributor.degreefaculty | теплоенергетичний | uk |
dc.contributor.degreegrantor | Національний технічний університет України "Київський політехнічний інститут" | uk |
dc.date.accessioned | 2016-02-12T09:42:10Z | |
dc.date.available | 2016-02-12T09:42:10Z | |
dc.date.issued | 2016 | |
dc.description.abstracten | The dissertation is dedicated to the heat transfer characteristics of pulsating capillary heat pipes (PHP) depending on the regime and operational parameters. The experiments were conducted with glass and copper PHP with the internal diameter, respectively, 3,8mm and 1mm; number of turns 4 and 7. The water was used as a heat carrier; the filling ratio was approximately 50% of the internal volume. Cooling of the glass PHP was carried out by free air convection, and cooling of the copper one was carried out by forced convection of the liquid with different values of temperature and flow rate. The inclination angle of the copper PHP varied from -90° to + 90° in increments of 45 °. The PHP operation can be conditionally divided into two modes of heat transfer that are: convection-conductive mode that corresponds to small values of input heat power and pulsation mode that corresponds to middle and high of input heat power and to the heat carrier boiling. The heat flux called transient takes place at the transition from one mode of heat transfer to another. As a result of experimental studies the temperature of the PHP heating, transport, and condensation areas as well as thermal resistance and heat transfer coefficients are presented depending on the input heat flux and parameters of the cooling fluid. The dependence of the PHP heat transfer characteristics on external mechanical vibrations and PHP orientation in space was researched. The simplified semi-empirical formula for transient heat flux calculating is obtained. Given dissertation also presents a constructional calculation of the PHP number of loops when manufactured depending on the geometry of the capillary tube, and the lengths of the heater and the condenser. On the basis of the pulsation heat transfer mechanism some new heat transfer devices were designed, such as pulsating thermosyphon radiator with PHP. Comparing of the PHP with other cooling systems has shown that it is most effective for rejection of the heat fluxes over 6 W/cm2. | uk |
dc.description.abstractru | Диссертация посвящена исследованию теплопередающих характеристик пульсационных капиллярных тепловых труб (ПТТ) в зависимости от режимных и эксплуатационных параметров. Исследования проводились со стеклянной и медной ПТТ с внутренним диаметром, соответственно, 3,8мм и 1мм; количество петель 4 и 7. Теплоносителем служила вода с коэффициентом заполнения примерно 50% от внутреннего объема. Охлаждение стеклянной ПТТ осуществлялось за счет свободной конвекции воздуха, медной – за счет принудительной конвекции жидкости с разными значениями температуры и расхода. Угол наклона медной ПТТ к горизонту изменялся от -90° до +90° с шагом 45°. Работа ПТТ условно разделена на два режима передачи тепла: конвективно-кондуктивный, соответствующий малым значениям подведенной тепловой мощности, и пульсационный, соответствующий средним и высоким значениям подведенной тепловой мощности и началу кипения теплоносителя. Величина теплового по- тока, при котором происходит переход от одного режима передачи тепла к другому, называется переходным QПЕРЕХ. В результате экспериментальных исследований представлены зависимости температур в зонах нагрева (ЗН), транспорта (ЗТ) и конденсации (ЗК) ПТТ от времени и подведенного теплового потока. Показано влияние параметров охлаждающей жидкости – расхода и температуры – на величину QПЕРЕХ. Для медной ПТТ стабильный пульсационный режим теплопередачи устанавливается при 30-50 Вт в зависимости от параметров эксперимента. Величина термического сопротивления ПТТ различается только в области конвективно-кондуктивного режима теплопередачи и достигает значений 4-5 °С/Вт, после начала кипения эта цифра снижается на порядок и составляет примерно 0,3-0,6 °С/Вт. Влияние режима теплопередачи сказывается и на величину средних коэффициентов теплоотдачи в ЗН и ЗК ПТТ. Если для конвективно-кондуктивного режима теплопередачи средние коэффициенты теплоотдачи для ЗН составляют 400-450 Вт/(м2·К), а для ЗК – 200-250 Вт/(м2·К), то для пульсационного режима передачи тепла в ПТТ средние коэффициенты теплоотдачи в ЗН достигают 3,5-4 кВт/(м2·К), а в ЗК – 1,8 кВт/(м2·К), т.е. почти в 9 раз больше. Впервые исследована зависимость теплопередающих характеристик ПТТ от внешних механических колебаний. Эксперименты показали, что вибрации практически не оказывают влияния на величину термического сопротивления, однако способствуют тому, что QПЕРЕХ наступает при меньших значениях подведенной мощности. Например, если без вибраций QПЕРЕХ = 45-50 Вт, то для частоты 10 Гц это значение снижается до 40 Вт, а для частоты порядка 40 Гц – до 20-25 Вт. Приведена физическая модель процессов, возникающих в ЗН в момент начала кипения теплоносителя. На основе теплового баланса построена математическая модель, учитывающая зарождение, рост и дальнейший отрыв парового пузырька в ЗН. В результате решения математической модели получена упрощенная полуэмпирическая формула для расчета QПЕРЕХ. Расчетные значения величины QПЕРЕХ превышают экспериментальные данные в среднем на 21%, что не уменьшает работоспособности формулы. В работе представлен конструктивный расчет количества петель ПТТ при её изготовлении в зависимости от геометрии капиллярной трубки, а также длин ЗН и ЗК. Приведена методика инженерного расчета ПТТ. Зная максимальную температуру и геометрические параметры теплонагруженного элемента, а также отводимую мощность и условия охлаждения, можно рассчитать среднюю температуру и термическое сопротивление ПТТ. На основе пульсационного механизма передачи тепла разработаны новые конструкции теплопередающих устройств: пульсационный термосифон и радиатор с ПТТ. | uk |
dc.description.abstractuk | Дисертація присвячена дослідженню теплопередаючих характеристик пульсаційних капілярних теплових труб (ПТТ) в залежності від режимних та експлуатаційних параметрів. Дослідження проводились зі скляною та мідною ПТТ з внутрішнім діаметром, відповідно, 3,8мм та 1мм; кількість петель 4 та 7. Теплоносієм слугувала вода з коефіцієнтом заповнення приблизно 50% від внутрішнього об’єму. Охолодження скляної ПТТ відбувалося за рахунок вільної конвекції повітря, мідної – за рахунок вимушеної конвекції рідини з різними значеннями температури та витрати. Кут нахилу мідної ПТТ до горизонту змінювався від -90° до +90° з кроком 45°. Робота ПТТ умовно розділена на два режими передачі тепла: конвективно-кондуктивний, що відповідає малим значенням підведеної теплової потужності, та пульсаційний, що відповідає середнім та високим значенням підведеної теплової потужності та початку кипіння теплоносія. Величину теплового потоку, за якої відбувається перехід від одного режиму передачі тепла до другого, названо перехідним QПЕРЕХ. В результаті досліджень виявлено вплив режимних (підведений тепловий потік, витрата та температура охолоджувальної рідини) і експлуатаційних (орієнтації в просторі, зовнішні механічні вібрації) на температурний режим, термічний опір та коефіцієнти тепловіддачі ПТТ. Отримана напівемпірична залежність для приблизного розрахунку QПЕРЕХ. Отримані формули для обчислення кількості петель замкнутої та розімкнутої ПТТ в залежності від геометрії капілярної трубки, довжин зон нагріву та конденсації. На базі пульсаційного механізму теплопередачі розроблені новітні пристрої. Порівняння роботи ПТТ з іншими радіаторами показало, що пульсаційні теплові труби найбільш ефективні при необхідності відведення високих теплових потоків (більш ніж 6 Вт/см2). | uk |
dc.format.page | 26 с. | uk |
dc.identifier.citation | Наумова А. М. Теплопередаючі характеристики пульсаційних капілярних теплових труб, призначених для малогабаритних систем охолодження : автореф. дис. ... канд. техн. наук. : 05.14.06 – технічна теплофізика та промислова теплоенергетика / Альона Миколаївна Наумова. - Київ, 2016. - 26 с. | |
dc.identifier.uri | https://ela.kpi.ua/handle/123456789/14940 | |
dc.language.iso | uk | uk |
dc.publisher | НТУУ "КПІ" | uk |
dc.publisher.place | Київ | uk |
dc.status.pub | published | uk |
dc.subject | пульсаційна теплова труба | uk |
dc.subject | термічний опір | uk |
dc.subject | теплопередаючі характеристики | uk |
dc.subject | перехідний тепловий потік | uk |
dc.subject | коефіцієнт тепловіддачі | uk |
dc.subject | пульсационная тепловая труба | ru |
dc.subject | термическое сопротивление | ru |
dc.subject | теплопередающие характеристики | ru |
dc.subject | переходной тепловой поток | ru |
dc.subject | коэффициент теплоотдачи | ru |
dc.subject | pulsating heat pipe | en |
dc.subject | thermal resistance | en |
dc.subject | heat transfer characteristics | en |
dc.subject | transient heat flux | en |
dc.subject | heat transfer coefficient | en |
dc.subject.udc | 536.2(043.3) | uk |
dc.title | Теплопередаючі характеристики пульсаційних капілярних теплових труб, призначених для малогабаритних систем охолодження | uk |
dc.type | Thesis | uk |
thesis.degree.level | candidate | uk |
thesis.degree.name | кандидат технічних наук | uk |
thesis.degree.speciality | 05.14.06 – технічна теплофізика та промислова теплоенергетика | uk |
Файли
Контейнер файлів
1 - 1 з 1
Вантажиться...
- Назва:
- Naumova_aref.pdf
- Розмір:
- 842.09 KB
- Формат:
- Adobe Portable Document Format
Ліцензійна угода
1 - 1 з 1
Ескіз недоступний
- Назва:
- license.txt
- Розмір:
- 7.65 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: