Simple model for sequence prediction based on dendritic spatiotemporal integration

dc.contributor.authorOsaulenko, V. M.
dc.date.accessioned2023-12-26T07:59:15Z
dc.date.available2023-12-26T07:59:15Z
dc.date.issued2018
dc.description.abstractRecent experiments on dendritic spatiotemporal integration reveal the much bigger computational potential of a single neuron. An individual dendritic branch can work as a coincidence detector due to a dendritic spike initiated with locally spatially and temporally activated synapses. Here, we investigate a proposed idea that dendrites can perform temporal integration on behavior timescale 1s, thus weakening simultaneous activation constraint. We construct the model of the recurrent neural network where each neuron activates not as a weighted summation of inputs, but due to their coincident activation both in space and time. We show that with using sparse distributed representation and tracking activity of the network in a certain time window it is possible to achieve a high capacity prediction system. We perform the theoretical analysis and estimate the capacity for the different parameters of the model where even the network with 100 neurons can store millions of sequences. Such a capacity results in a biologically unrealistic high number of synapses, much more than 100х100. However, this mechanism of tracking space-time coincidences in sparse activation can be realized in a limited biological neural network but still with a good sequence transition memory.uk
dc.format.pagerangePp. 133-141uk
dc.identifier.citationOsaulenko, V. M. Simple model for sequence prediction based on dendritic spatiotemporal integration / V. M. Osaulenko // Системні дослідження та інформаційні технології : міжнародний науково-технічний журнал. – 2018. – № 4. – С. 133-141. – Бібліогр.: 26 назв.uk
dc.identifier.doihttps://doi.org/10.20535/SRIT.2308-8893.2018.4.11
dc.identifier.issn1681–6048
dc.identifier.orcid0000-0002-6933-1217uk
dc.identifier.urihttps://ela.kpi.ua/handle/123456789/63350
dc.language.isoenuk
dc.publisherКПІ ім. Ігоря Сікорськогоuk
dc.publisher.placeКиївuk
dc.relation.ispartofСистемні дослідження та інформаційні технології: міжнародний науково-технічний журнал, № 4uk
dc.subjectsequence predictionuk
dc.subjectdendritic nonlinearityuk
dc.subjectassociation memoryuk
dc.subject.udc004.942uk
dc.titleSimple model for sequence prediction based on dendritic spatiotemporal integrationuk
dc.typeArticleuk

Файли

Контейнер файлів
Зараз показуємо 1 - 1 з 1
Вантажиться...
Ескіз
Назва:
143211-329112-1-10-20181221.pdf
Розмір:
216.16 KB
Формат:
Adobe Portable Document Format
Опис:
Ліцензійна угода
Зараз показуємо 1 - 1 з 1
Ескіз недоступний
Назва:
license.txt
Розмір:
9.01 KB
Формат:
Item-specific license agreed upon to submission
Опис: