Features’ Selection for Forest State Classification Using Machine Learning on Satellite Data

dc.contributor.authorSalii, Yevhenii
dc.contributor.authorKuzin, Volodymyr
dc.contributor.authorLavreniuk, Alla
dc.contributor.authorKussul, Nataliia
dc.contributor.authorShelestov, Andrii
dc.date.accessioned2025-01-02T14:29:30Z
dc.date.available2025-01-02T14:29:30Z
dc.date.issued2024
dc.description.abstractThis paper discusses the use of advanced computer vision and artificial intelligence techniques for analysing remote sensing data, specifically focusing on the semantic segmentation of forest areas. The goal is to identify forest damage caused by insect pests using multispectral images from Sentinel-2 satellites. The proposed approach involves using genetic algorithms to automatically select informative features based on vegetation indices. A new fitness function is introduced to assess the quality of the selected feature sets. The neural network is then trained and tested using real data. The results of the study show the effectiveness of proposed approach and highlight its advantages over traditional methods. The developed technique allowed to obtain highly informative set of features with minimized redundancy within huge feature space with moderate amount of computation.
dc.format.pagerangeP. 9874-9878
dc.identifier.citationFeatures’ Selection for Forest State Classification Using Machine Learning on Satellite Data / Yevhenii Salii, Volodymyr Kuzin, Alla Lavreniuk, Nataliia Kussul, Andrii Shelestov // IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, 7-12 July, 2024, Athens, Greece. - Athens, 2024. - P. 9874-9878.
dc.identifier.doihttps://doi.org/10.1109/IGARSS53475.2024.10642681
dc.identifier.urihttps://ela.kpi.ua/handle/123456789/71522
dc.language.isoen
dc.publisherAssembled by Conference Management Services, Inc.
dc.publisher.placeAthens
dc.relation.ispartofIGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, 7-12 July, 2024 Athens, Greece
dc.subjectBhattacharyya distance
dc.subjectremote sensing
dc.subjectfeature engineering
dc.subjectvegetation indices
dc.subjectSentinel-2
dc.titleFeatures’ Selection for Forest State Classification Using Machine Learning on Satellite Data
dc.typeArticle

Файли

Контейнер файлів
Зараз показуємо 1 - 1 з 1
Вантажиться...
Ескіз
Назва:
Features_Selection.pdf
Розмір:
1.8 MB
Формат:
Adobe Portable Document Format
Ліцензійна угода
Зараз показуємо 1 - 1 з 1
Ескіз недоступний
Назва:
license.txt
Розмір:
8.98 KB
Формат:
Item-specific license agreed upon to submission
Опис: