Optimization of scanning parameters for CT and CBCT: a systematic review

Вантажиться...
Ескіз

Дата

2025

Науковий керівник

Назва журналу

Номер ISSN

Назва тому

Видавець

КПІ ім. Ігоря Сікорського

Анотація

Computed tomography (CT) and cone-beam computed tomography (CBCT) have revolutionized medical imaging by providing high-resolution, three-dimensional (3D) anatomical models for diagnostics, treatment planning, and surgical simulation. The accuracy of these models is highly dependent on scanning parameters such as slice thickness, spatial resolution, radiation dose, voltage, exposure time, and reconstruction algorithms. While optimized parameters can enhance image quality and segmentation accuracy, suboptimal settings may introduce artifacts, reduce anatomical fidelity, and compromise clinical outcomes [1]. CBCT is widely used in dentistry and maxillofacial surgery due to its lower radiation dose and high spatial resolution, whereas CT is preferred for comprehensive anatomical evaluations due to its superior soft tissue contrast [3]. The choice of scanning parameters requires balancing image clarity and patient safety. Studies have shown that an optimal slice thickness of 0.075–0.125 mm in CBCT and 0.5–1.25 mm in CT yields the best segmentation results [4]. Radiation dose must also be carefully adjusted; 0.1–0.3 mSv is typically sufficient for CBCT, while 2–5 mSv is recommended for CT [5]. Voltage settings of 80–100 kV (CBCT) and 100–120 kV (CT) help reduce beam hardening artifacts while maintaining contrast. Tube current should range between 4–10 mA for CBCT and 50–300 mA for CT to optimize noise reduction [6]. One of the major challenges in CT imaging is the presence of artifacts, including scatter artifacts, beam hardening artifacts, motion artifacts, and partial volume artifacts. Scatter artifacts degrade image quality due to unintended radiation deflection and can be mitigated using anti-scatter grids and beam collimation techniques [7]. Beam hardening artifacts, caused by differential X-ray absorption in dense structures, can be corrected using higher voltage settings and advanced reconstruction algorithms [4]. Motion artifacts, resulting from patient movement, can be minimized by reducing exposure time and employing motion correction software [3]. Partial volume artifacts, which affect the accuracy of tissue segmentation, can be addressed by reducing voxel size and applying high-pass filters. Traditional artifact reduction techniques such as high-pass filters, metal artifact reduction (MAR) algorithms, dual-energy CT (DECT), and Monte Carlo simulations have been widely implemented, but their effectiveness is often limited [8]. Recent advancements in Artificial Intelligence (AI)-based artifact correction have introduced new, data-driven methods that surpass conventional approaches in speed, accuracy, and adaptability [9]. This review provides a comprehensive analysis of CT and CBCT scanning parameters and typical artifacts, summarizing the optimal settings for different clinical applications. By refining scanning protocols and employing advanced artifact reduction techniques, the accuracy and reliability of anatomical models can be significantly improved, ensuring better diagnostic and therapeutic outcomes [10]

Опис

Ключові слова

CT, CBCT, segmentation accuracy, scanning parameters, image artifacts, radiation dose, scatter artifacts, beam hardening artifacts, motion artifacts, partial volume artifacts, metal artifacts, ring artifacts, noise artifacts, reconstruction algorithms, image quality, dose optimization, artifact minimization, КТ, КПКТ, точність сегментації, параметри сканування, артефакти зображень, доза опромінення, артефакти розсіювання, артефакти затвердіння променя, артефакти руху, часткові об’ємні артефакти, металеві артефакти, кільцеві артефакти, шумові артефакти, алгоритми реконструкції, якість зображення, оптимізація дози, мінімізація артефактів

Бібліографічний опис

Tsarenko, M. Optimization of scanning parameters for CT and CBCT: a systematic review / M. Tsarenko, L. Kalashnikova // Біомедична інженерія і технологія. – 2025. – Том 1. – № 17. – С. 69-80. – Бібліогр.: 34 назв.

ORCID