Enhancing Row-Sampling-Based Rowhammer defense methods with Machine Learning approach
dc.contributor.author | Mazurok, Valentyn | |
dc.contributor.author | Lutsenko, Volodymyr | |
dc.date.accessioned | 2025-04-10T08:55:37Z | |
dc.date.available | 2025-04-10T08:55:37Z | |
dc.date.issued | 2024 | |
dc.description.abstract | This paper investigates the integration of machine learning into the Row-Sampling technique to enhance its effectiveness in mitigating Rowhammer attacks in DRAM systems. A multidimensional multilabel predictor model is employed to dynamically predict and adjust probability thresholds based on real-time memory access patterns, improving the precision of row selection for targeted refresh. The approach demonstrates significant improvements in security, reducing Rowhammer-induced bit flips, while also maintaining energy efficiency and minimizing performance overhead. By leveraging machine learning, this work refines the Row-Sampling method, offering a scalable and adaptive solution to memory vulnerabilities in modern DRAM architectures. | |
dc.format.pagerange | P. 77-82 | |
dc.identifier.citation | Mazurok, V. Enhancing Row-Sampling-Based Rowhammer defense methods with Machine Learning approach / Valentyn Mazurok, Volodymyr Lutsenko // Theoretical and Applied Cybersecurity: scientific journal. – 2024. – Vol. 6, No. 2. – P. 77-82. – Bibliogr.: 10 ref. | |
dc.identifier.doi | https://doi.org/10.20535/tacs.2664-29132024.2.319008 | |
dc.identifier.orcid | 0009-0006-2174-0800 | |
dc.identifier.orcid | 0000-0001-7632-1730 | |
dc.identifier.uri | https://ela.kpi.ua/handle/123456789/73323 | |
dc.language.iso | en | |
dc.publisher | Igor Sikorsky Kyiv Polytechnic Institute | |
dc.publisher.place | Kyiv | |
dc.relation.ispartof | Theoretical and Applied Cybersecurity: scientific journal, Vol. 6, No. 2 | |
dc.subject | DRAM | |
dc.subject | Rowhammer | |
dc.subject | memory defense | |
dc.subject | machine learning | |
dc.subject.udc | 004.33 | |
dc.title | Enhancing Row-Sampling-Based Rowhammer defense methods with Machine Learning approach | |
dc.type | Article |
Файли
Контейнер файлів
1 - 1 з 1
Вантажиться...
- Назва:
- 319008-746400-2-10-20250331.pdf
- Розмір:
- 903.22 KB
- Формат:
- Adobe Portable Document Format
Ліцензійна угода
1 - 1 з 1
Ескіз недоступний
- Назва:
- license.txt
- Розмір:
- 8.98 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: