Improving the accuracy of neural network exchange rate forecasting using evolutionary modeling method
Вантажиться...
Дата
2024
Автори
Науковий керівник
Назва журналу
Номер ISSN
Назва тому
Видавець
КПІ ім. Ігоря Сікорського
Анотація
A set ofmodels of feedforward neural networks is created to obtain op-erational forecasts of the time series of the hryvnia/dollar exchange rate. It is shown that using an evolutionary algorithm for the total search of basic characteristics and a genetic algorithm for searching the values of the matrix of neural network weight coefficients allows optimizing the configuration and selecting the best neural net-work models according to various criteria of their training and testing quality. Based on the verification of forecasting results, it is established that the use of neural net-work models selected by the evolutionary modelling method increases the accuracy of forecasting the hryvnia/dollar exchange rate compared to neural network models created without the use of a genetic algorithm. The accuracy of the forecasting re-sults is confirmed by the method of inverse verification using data from different retrospective periods of the time series using the criterion of the average absolute percentage error of the forecast
Опис
Ключові слова
exchange rate, genetic algorithm, evolutionary modeling, neural net-work, optimization, forecasting, accuracy, time series, обмінний курс, генетичний алгоритм, еволюційне моделювання, нейронна мережа, оптимізація, прогнозування, точність, часові ряди
Бібліографічний опис
Fedin, S. S. Improving the accuracy of neural network exchange rate forecasting using evolutionary modeling method / S. S. Fedin // Системні дослідження та інформаційні технології : міжнародний науково-технічний журнал. – 2024. – № 3. – С. 7-24. – Бібліогр.: 31 назв.