Attention-based convolutional neural network for perfusion T2-weighted MR images preprocessing
dc.contributor.author | Alkhimova, Svitlana Mykolaivna | |
dc.contributor.author | Diumin, Oleksii Dmytrovych | |
dc.date.accessioned | 2023-02-01T10:42:04Z | |
dc.date.available | 2023-02-01T10:42:04Z | |
dc.date.issued | 2022 | |
dc.description.abstracten | Accurate skull-stripping is crucial preprocessing in dynamic susceptibility contrast-enhanced perfusion magnetic resonance data analysis. The presence of non-brain tissues impacts the perfusion parameters assessment. In this study, we propose different integration strategies for the spatial and channel squeeze and excitation attention mechanism into the baseline U-Net+ResNet neural network architecture to provide automatic skull-striping i.e., Standard scSE, scSE-PRE, scSE-POST, and scSE Identity strategies of plugging of scSE block into the ResNet backbone. We comprehensively investigate the performance of skull-stripping in Т2* weighted MR images with abnormal brain anatomy. The comparison that utilizing any of the proposed strategies provides the robustness of skull-stripping. However, the scSE-POST integration strategy provides the best result with an average Dice Coefficient of 0.9810 +/- 0.006. | uk |
dc.format.pagerange | P. 549-555. | uk |
dc.identifier.citation | Alkhimova, S. Attention-based convolutional neural network for perfusion T2-weighted MR images preprocessing / Alkhimova Svitlana, Diumin Oleksii // Proceedings of the XII International Scientific and Practical Conference «Current challenges, trends and transformations», December 13-16, 2022, Boston, USA. - Boston : International Science Group, 2022. - P. 549-555. | uk |
dc.identifier.uri | https://ela.kpi.ua/handle/123456789/52245 | |
dc.language.iso | en | uk |
dc.publisher | International Science Group | uk |
dc.publisher.place | Boston | uk |
dc.source | Proceedings of the XII International Scientific and Practical Conference «Current challenges, trends and transformations», December 13-16, 2022, Boston, USA | uk |
dc.subject | skull-striping | uk |
dc.subject | brain | uk |
dc.subject | segmentation | uk |
dc.subject | region of interest | uk |
dc.subject | deep neural network | uk |
dc.subject | dynamic susceptibility contrast perfusion | uk |
dc.subject | magnetic resonance imaging | uk |
dc.title | Attention-based convolutional neural network for perfusion T2-weighted MR images preprocessing | uk |
dc.type | Article | uk |
Файли
Контейнер файлів
1 - 1 з 1
Вантажиться...
- Назва:
- Pages-Attention-based_CNN.pdf
- Розмір:
- 373.39 KB
- Формат:
- Adobe Portable Document Format
- Опис:
Ліцензійна угода
1 - 1 з 1
Ескіз недоступний
- Назва:
- license.txt
- Розмір:
- 1.71 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: